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Abstract

We propose a model of political persuasion in which a biased newspaper aims to

convince voters to vote for the government. Each voter receives the newspaper’s report,

as well as an independent private signal. Voters then exchange this information on social

media and form posterior beliefs, neglecting correlation among signals. An increase in

connectivity increases the newspaper’s bias if voters are ex ante predisposed to vote

against the government, and reduces the bias if they are predisposed in favour of the

government. While more precise independent signals reduce the newspaper’s optimal

bias, the bias remains positive even when connectivity becomes large. Thus, even with

a large number of social connections, the election produces an inefficient outcome with

positive probability, implying a failure of the Condorcet jury theorem.
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1 Introduction

“Repetition does not transform a lie into a truth.”

Franklin Delano Roosevelt

“Want to make a lie seem true? Say it again. And again. And again.”

Emily Dreyfuss, Wired

Individuals receive a substantial amount of political information from their social media
connections. Surveys indicate that 62% of US adults receive their news via social media,1

and a 26-country study has shown that over half 50% of all web users use social media for
news each week.2 The effect of social media on voting outcomes, ideological polarisation, and
collective action has been the focus of a number of recent studies.3

Our paper proposes a new channel through which social media can affect political out-
comes. Namely, we explore the effect of social media connectivity on biased information
providers. As voters exchange information with their peers on social media, they are exposed
to the same news report from multiple sources. This would have no effect on voters’ beliefs
if they could fully realise that different messages they receive from their friends are partly
based on a common news story, and are therefore positively correlated. Crucially, however,
there is evidence that individuals exhibit correlation neglect: they treat the same information
received from different sources as independent signals4. This causes them to overvalue the
information content of these messages. A biased media outlet that supplies the news report
that forms part of these messages can use this to manipulate the voters’ beliefs. Its ability
to do so, however, depends on the number times an individual is exposed to the same news
story on social media – which in turn depends on the number of social media connections
individuals have. Accordingly, the main objective of this paper is to analyse the effect of
increased social media connectivity on media bias, as well as on information aggregation and
voting outcomes.

To address these questions, we model a population of voters choosing whether to vote
for the government, and a biased newspaper that aims to maximise the probability that the
government wins the election. Each voter is connected to a number of other voters on social
media. There is a binary state of the world. All voters prefer voting for the government in
the high state, and voting against the government in the low state. The newspaper commits
to an editorial policy that, conditional on the realisation of the state, sends a report to all
voters. Each voter observes the newspaper’s report, as well as an independent continuous
signal about the state. Each voter then communicates this information to her social media
friends. Hence, each voter observes a number of messages which are not identical (since

1Pew Research Center, May 2016, “News use across social media platforms 2016.”
2The Guardian, June 15, 2016, “Facebook’s rise as news source hits publishers’ revenues.”
3See Gentzkow and Shapiro (2011), Battaglini (2017), Giovanniello (2017), Enikolopov et al. (2018),

Buechel and Mechtenberg (2019), Campbell et al. (2019), Pogorelskiy and Shum (2019).
4See Eyster and Weizsacker (2016), Enke and Zimmermann (2017) for experimental evidence. For a

discussion of the role of correlation neglect in political settings, see Ortoleva and Snowberg (2015) and
Levy and Razin (2015a; 2015b).
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they contain the independent signal), but are correlated, as they are partly based on the
newspaper’s report. Voters, however, fail to realise that these messages are correlated when
forming their posterior beliefs and choosing whether to vote for the government.

We analyse what happens if the distribution of the number of connections shifts in a way
that increases the number of connections that voters tend to have. If voters did not neglect
correlation, an increase in connectivity would make each voter exposed to more independent
signals. Hence, voters would become more informed, and to retain persuasive power, the
newspaper would have to send more informative reports. If connectivity became arbitrarily
large, the newspaper’s editorial policy would approach truthful revelation. In the limit,
voters would become fully informed about the state, and would almost surely re-elect the
government if and only if the state is high. Hence, a version of the Condorcet jury theorem
would hold.

However, if voters neglect correlation, an increase in connectivity has two effects. On
the one hand, each voter is exposed to more independent signals, making it harder for the
newspaper to manipulate their beliefs. On the other hand, however, each voter receives more
realisations of the newspaper’s report, which she perceives as independent messages. Hence,
the newspaper’s report becomes more persuasive, counteracting the first effect.

Our first result shows that as connectivity increases, the optimal bias of the newspaper can
both increase and decrease, depending on the prior and the voters’ preferences. If the prior
is such that without additional information voters are willing to vote for the government,
then greater connectivity induces the newspaper to send more informative signals. On the
other hand, if the prior is low enough that voters are ex ante predisposed to vote against the
government, then an increase in connectivity leads the newspaper to send more biased signals.
Thus, greater connectivity – for example, as a result of greater social media penetration –
decreases the optimal bias of the newspaper if voters tend to be ex ante supportive of its
position, and increases the optimal bias if voters tend to oppose it. In the former case,
increasing social connectivity makes it less likely that voters reelect the government in the
low state, whereas the opposite holds in the latter case, i.e., when voters tend to oppose the
government ex ante.5

As connectivity becomes arbitrarily large, in the limit each voter observes infinitely many
independent signals about the state. However, our second result shows that even in the
limit, the newspaper continues to send biased reports. In the limit the bias is lower when
independent signals are more informative; nevertheless, the probability that the newspaper
lies remains positive. Hence, even when connectivity is arbitrarily large – for example, in
the case of a large fully connected electorate – the government is re-elected with a positive
probability in the low state, implying a failure of the Condorcet jury theorem.

The rest of this section discusses the related literature. Section 2 introduces the model.
Section 3 characterises the newspaper’s optimal editorial policy. Section 4 first analyses the

5These results have implications for contexts other than voting. Consider, for example, the question
of the effect of social connectivity and communication technologies on the ability of citizens to mobilise
for a protest against the government (Enikolopov et al., 2018; Manacorda and Tesei, forthcoming; González,
2019). Suppose that a government-run media outlet is attempting to ensure that protest participation does
not exceed a certain threshold. Our results suggest that in this situation, increased social connectivity makes
it harder for citizens to mobilise for a protest if the government is ex ante unpopular, while organising a
protest against an ex ante popular government becomes easier.
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effect of connectivity on the newspaper’s bias in the benchmark case in which voters do
not neglect correlation. It then derives the main results of the paper by showing how an
increase in connectivity affects the optimal bias in presence of correlation neglect. Section
5 extends the basic model to consider partial correlation neglect, arbitrary voting rules, and
an imperfectly informed newspaper. Finally, Section 6 concludes. The appendix contains the
proofs.

Related literature. Our model is related to the large literature on Bayesian persuasion
initiated by Kamenica and Gentzkow (2011). More specifically, we add to the literature
that studies Bayesian persuasion in a voting setup. Alonso and Câmara (2016) examines a
sender who designs a policy experiment to persuade a heterogeneous group of voters to vote
in a particular way. Wang (2013), Bardhi and Guo (2018), and Chan et al. (2019) study
persuasion of heterogeneous voters when the sender is able to design different experiments
for different groups of voters. Heese and Lauermann (2019) study persuasion of voters who,
as in our model, receive exogenous private signals in addition to the sender’s signal6. The
distinguishing feature of our paper relative to that literature is that we consider information
exchange on a social network by receivers who neglect correlation.

Levy et al. (2018b) study Bayesian persuasion with correlation neglect. In their paper,
a single sender controls a number of media outlets, which, conditional on a state of the
world, send messages to a single reader with certain accuracy p. The sender can select the
degree of correlation between these outlets’ messages. The authors show that it is optimal
for the sender to positively correlate bad news and negatively correlate good news. In our
setup, the multiplicity of signals emerges from information exchange between voters on social
media. Hence, the sender can choose neither the number of signals each voter observes—
it is exogenously determined by the structure of the social network—nor the correlation
between signals. Instead, we focus on the sender’s choice of bias, that is, of the probability
of sending a high report in the low state. In this constrained optimal framework, we show
how an exogenous increase in the number of reports observed by voters affects the optimal
bias. In addition, in our model observe independent signals in addition to the newspaper’s
reports. These signals counteract the newspaper’s persuasive power, which implies that
greater connectivity can both increase and reduce the optimal bias.

Levy et al. (2018a) construct a general model of information design in presence of cor-
relation neglect, in which a sender designs an information structure to persuade a receiver
that fully or partly neglects correlation between signals. They show that an increase in the
number of signals increases the set of distributions over posteriors that the sender can induce.
When the number of signals grows large, the sender can approach her first-best utility. In
our model, receivers also observe independent signals. Because the multiplicity of signals
appears as a result of information exchange on social media, an increase in the number of
newspaper’s reports received by each voter is always accompanied by an increase in the num-
ber of independent signals. Because of this, an increase in the number of reports as a result
of greater connectivity can both increase and decrease the optimal bias. For the same reason,
the newspaper’s utility is below the first-best when the number of signals is large.

6More generally, a number of papers have studied persuasion of heterogeneous receivers in non-voting
setups (Kolotilin et al., 2017; Kolotilin, 2018; Ginzburg, 2019).
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Our paper also contributes to the literature studying information exchange in collective
decision-making. Gerardi and Yariv (2007) extend the classic Condorcet jury theorem frame-
work (see e.g. Austen-Smith and Banks, 1996, Feddersen and Pesendorfer, 1998) by allowing
voters to exchange their private signals before taking a vote.7 In a Bayesian framework, they
show that all veto-free electoral rules yield the same equilibrium outcomes. In subsequent
experimental work, Goeree and Yariv (2011) show that public communication increases ef-
ficiency of the vote, while Buechel and Mechtenberg (2019) find that private voter-to-voter
communication can reduce efficiency. Perhaps the closest paper within this literature is
Pogorelskiy and Shum (2019), which analyses individuals who receive private signals from
media outlets with exogenous biases, and communicate them prior to voting. They find
evidence of failure of Bayesian updating – individuals do not account for bias in the signals
they share – which implies that social media may reduce efficiency of collective decisions. In
our paper, individuals also deviate from Bayesian updating when exchanging information.
However, rather than failing to recognise the bias in the signals they receive, they fail to
realise that signals are correlated. We then endogenise the bias of the media outlet, and
study the relation between connectivity and the optimal bias.8

Finally, our paper is related to the research on media bias or slant9, specifically, to
the literature that models biased media as committing to a reporting strategy ex ante
(Gehlbach and Sonin, 2014; Gentzkow et al., 2015; Boleslavsky and Kim, 2018). We add
to that research by analysing how media bias is affected by information exchange among
receivers who neglect correlation.

2 Model

Players, network, and information. There are two groups of players: a continuum of
voters whose mass is 1, and a newspaper. Each voter is connected to n ∈ {0, 1, ..., N} other
citizens on social media. Our model is agnostic about the actual structure of the network
– the only object of interest is the distribution of the number of connections across voters.
For all n ∈ {0, 1, ..., N}, let γn be the share of voters with n social media connections.
Let γ ≡ (γ0, ..., γN) be the distribution of the number of connections, that is, the degree
distribution of the network.

There is an unknown binary state of the world θ ∈ {0, 1}. The state reflects the
government’s competence, with θ = 1 representing a more competent government. Let
q ≡ Pr (θ = 1) denote the common prior probability that the government is competent. The
newspaper observes the state, and sends a binary report r ∈ {0, 1}.10

7In a setting without voting or strategic senders, Levy and Razin (2018) examine information exchange
on a social network by agents who may neglect correlation, while Acemoglu et al. (2010) analyse exchange
of information when some agents do not fully update their beliefs.

8In a related experimental paper, Kawamura and Vlaseros (2017) show that voters overweigh an unbiased
public signal even in a setting without deliberation (and hence without observing multiple realisations of the
same message). Our paper suggests that information exchange reinforces this effect, implying that a when
the signal comes from a biased newspaper, the bias would increase when connectivity is larger.

9See, for example, Bernhardt et al., 2008, Gentzkow and Shapiro, 2010, Duggan and Martinelli (2011),
Oliveros and Várdy, 2015, Piolatto and Schuett, 2015, and others.

10This is without loss of generality, as the report can always be interpreted as a recommendation. See, for
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Newspaper chooses

editorial policy

(p0, p1)

Nature draws

the state θ

Citizens receive

and exchange signals

Newspaper’s

signal realizes

Citizens form

posterior beliefs

and select actions

Figure 1: Sequence of events.

In addition, each voter i receives a private signal si ∈ R. Conditional on the state,
signals are independent across voters. In state 1, the si is drawn from a normal distribution
with mean µ > 0 and variance that is normalised to 1. In state 0 the signal is drawn from
a normal distribution with mean −µ and variance 1. Note that these signal distributions
satisfy monotone likelihood ratio property, and a higher realisation of the signal indicates
that the state is more likely to equal 1. Higher value of µ corresponds to a more precise
signal, while µ = 0 corresponds to a signal that carries no information.

Preferences and actions. The newspaper commits ex ante to a strategy that specifies
for each state θ ∈ {0, 1} the probability pθ of sending report 1; report 0 is sent with the
complementary probability. We will refer to the pair (p0, p1) as the newspaper’s editorial

policy. Without loss of generality, we will assume that p0 ≤ p1 – thus, report 1 induces
a weakly higher posterior belief that θ = 1. After the exchange of information (described
below), each voter i chooses an action ai ∈ {0, 1} where the action ai = 1 (ai = 0) corresponds
to voting for (against) the government.

A voter who chooses the action 0 receives a payoff of 0. A voter who chooses the action 1
receives a payoff of 1−λ if θ = 1, and a payoff of −λ if θ = 0, where λ ∈ (0, 1) is a parameter
that represents voter’s political preferences. Thus, a higher values of λ means voters are more
inclined to vote against the government – one can interpret λ a a measure of government’s
popularity.11 Since λ ∈ (0, 1), voters prefer voting for the government in state 1, and voting
against it in state 0.12 We assume that each voter who is indifferent chooses action 1.13

The newspaper receives a payoff of 1 if at least half of the voters vote for the govern-
ment, and zero otherwise. The newspaper thus aims to maximize the probability that the
government wins the election.

Timing, information exchange, and belief formation. The sequence of events is de-
picted in Figure 1. At the beginning of the game, the newspaper chooses an editorial policy

example, Alonso and Câmara (2016).
11Note that the payoff of each voter only depends on her vote, and not on the outcome of the election.

Thus, each voter has a preference for voting “the right way” (supporting the government if it is competent,
and opposing to it otherwise), as in models of expressive voting (Brennan and Hamlin, 1998; Hillman, 2010;
see also Tyran and Wagner, 2016, for experimental evidence of expressive voting). Note that since the model
posists a continuum of voters, the probability of a given voter being pivotal is zero, and hence strategic
motives related to pivotality are irrelevant.

12Section 5 considers the case in which some voters are partisans, that is, have a preferred choice that does
not depend on the state.

13This ensures the existence of an optimal editorial policy.
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(p0, p1).
14 Then, Nature draws the state θ according to the common prior q. For each voter

i, Nature also draws her number of social media connections from distribution γ, as well as
her private signal. Upon observing θ, the newspaper sends report 1 with probability pθ, and
report 0 with the complementary probability 1 − pθ. Each voter observes the newspaper’s
report r and her private signal si. She then forms a likelihood ratio xi = Pr(θ=0|r,si)

Pr(θ=1|r,si) , and

truthfully reveals xi to her friends on social media.15 Thus, a voter with n social media
connections observes n + 1 such messages (those of her n friends, plus her own). These xi’s
are correlated, as they are based on identical realisations of the newspaper’s report, in addi-
tion to independent signals. Voters, however, fail to realise this correlation. Specifically, we
assume that when updating their beliefs, voters perceive n fully correlated signals as k (n)
independent signals. The main part of our analysis focuses on the case of full correlation
neglect, in which k (n) = n. We will compare this to the benchmark case of Bayesian voters,
for whom k (n) = 1, ∀n. Partial correlation neglect, in which k (n) is an arbitrary function,
will be considered in Section 5.

After updating her belief, each voter i chooses an action ai ∈ {0, 1}. After this, payoffs
are realised.

3 Optimal Editorial Policy

Consider the last stage of the game. If a voter has a posterior belief π, her expected utility
from voting for the government equals π (1− λ) − (1− π)λ = π − λ. She thus votes for
the government if and only if π ≥ λ, that is, if and only if her posterior belief is sufficiently
strong.

When choosing its editorial policy, the newspaper takes into account voters’ preference
parameter λ and prior q. Let A ≡ λ

1−λ

1−q

q
. Informally, a low (high) value of A indicates that

the situation is favourable (unfavourable) for the newspaper. In particular, A < 1 if and only
if q > λ, that is, if and only if voters are ex ante willing to vote for the government without
additional information.

A possible strategy for the newspaper is to select an editorial policy p0 = p1 – that is, to
send an uninformative report that does not affect the voters’ behaviour. All such babbling
strategies are payoff-equivalent for the newspaper. We will thus without loss of generality
exclude editorial policies (0, 0) and (1, 1). Since we have assumed that p0 ≤ p1, this means
that we restrict attention without loss of generality to editorial policies in which p1 > 0 and
p0 < 1.

Suppose the newspaper chooses an editorial policy (p0, p1). Consider a voter j with n
social media connections. This voter observes n + 1 messages x1, ..., xn+1. For the purposes
of belief updating, this is equivalent to observing n + 1 independent signals s1, ..., sn+1, as
well as n+1 realisations of r which the voter perceives as k (n+ 1) independent realisations.

14Thus, the newspaper commits to an editorial policy before the state is realised. In practice, commitment
to an editorial policy can mean, for example, hiring staff with particular political views. Alternatively, an
outcome similar to the equilibrium under commitment can emerge in a repeated interaction if the newspaper
cares about its reputation, as Mathevet et al. (2019) show.

15Note that voters have no incentive to lie, since they share the same preferences. Furthermore, as voters
have expressive preferences only, they have no interest in manipulating the beliefs of other voters.
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If the newspaper sends report r = 1, this voter will form a posterior belief

π1 (p0, p1) =
qp

k(n+1)
1

∏n+1
i=1 e−

(si−µ)2

2

qp
k(n+1)
1

∏n+1
i=1 e−

(si−µ)2

2 + (1− q) p
k(n+1)
0

∏n+1
i=1 e−

(si+µ)2

2

=
p
k(n+1)
1

p
k(n+1)
1 + 1−q

q
p
k(n+1)
0 e−2Sµ

where S ≡ ∑n+1
i=1 si. We will refer to S as evidence; it summarises all information that is

available to the voter, other than the newspaper’s report.
The voter will then vote for the government if and only if π1 (p0, p1) ≥ λ. This is always

true if p0 = 0. If p0 > 0, the voter votes for the government if and only if her evidence is

sufficiently convincing, that is, if and only if e2Sµ ≥ λ
1−λ

1−q

q

(

p0
p1

)k(n+1)

. After taking logs of

both sides, this is equivalent to
S ≥ Sn (p0, p1) (1)

where

Sn (p0, p1) ≡
1

2µ
lnA +

1

2µ
k (n+ 1) ln

(

p0
p1

)

At the same time, consider the case when the newspaper sends report r = 0. Then a
voter with n connections who observed independent signals s1, ..., sn+1 will form a posterior
belief

π0 (p0, p1) =
q (1− p1)

k(n+1)∏n+1
i=1 e−

(si−µ)2

2

q (1− p1)
k(n+1)∏n+1

i=1 e−
(si−µ)2

2 + (1− q) (1− p0)
k(n+1)∏n+1

i=1 e−
(si+µ)2

2

=
(1− p1)

k(n+1)

(1− p1)
k(n+1) + 1−q

q
(1− p0)

k(n+1) e−2Sµ

The voter votes for the government if and only if π0 (p0, p1) ≥ λ. When p1 = 1, this
condition is never satisfied. Otherwise, the voter votes for the government if and only if

e2Sµ ≥ λ
1−λ

1−q

q

(

1−p0
1−p1

)k(n+1)

, or, equivalently, if and only if

S ≥ Sn (1− p0, 1− p1) (2)

Let V (θ, r) be the share of voters that vote for the government in state θ when the
newspaper sends report r. Conditions (1) and (2) imply that conditional on the report,
a given voter with n connections will vote for the government if she observes independent
signals whose sum S is sufficiently large. Since signals are informative, this implies that
V (1, r) > V (0, r) , ∀r ∈ {0, 1}, that is, the government receives a larger share of votes when
θ = 1 then when θ = 0.

In addition, because p1 ≥ p0, it is true that ln
(

p0
p1

)

≤ ln
(

1−p0
1−p1

)

, and thus Sn (p0, p1) ≤
Sn (1− p0, 1− p1). Then (1) and (2) imply that in a given state, a voter is more likely
to vote for the government when the newspaper sends report 1 then when it sends report
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0. Thus, r = 1 gives the government a weakly larger vote share than r = 0, that is,
V (θ, 1) ≥ V (θ, 0) , ∀θ ∈ {0, 1}.

In each state θ ∈ {0, 1} after each report r ∈ {0, 1}, the newspaper receives a payoff of 1 if
V (θ, r) ≥ 1

2
, and a payoff of 0 otherwise. One possible strategy for the newspaper is to select

p0 = 0 and p1 = 1 – that is, to reveal the state truthfully. In that case, all voters vote for the
government in state 1, and no voters vote for the government in state 0. The newspaper’s
payoff then equals q. We can show, however, that the newspaper can always guarantee itself
a higher payoff. Specifically, the following result shows that truthfully revealing the state is
never optimal for the newspaper:

Lemma 1. Editorial policy (p0, p1) = (0, 1) is never optimal.

The opposite strategy for the newspaper is to send an uninformative signal, that is, to
set p0 = p1. Consider the following assumption, where Φ is the c.d.f. of the standard normal
distribution:

Assumption 1.
∑N

n=0 γnΦ

[

1

2µ
lnA+(n+1)µ
√
n+1

]

> 1
2

In the sequel we assume that the assumption holds unless stated differently. The as-
sumption is important because from the condition stated in it both a necessary and sufficient
condition for such a babbling strategy to be optimal follow:

Lemma 2. Editorial policy (p0, p1) such that p0 = p1 is optimal if and only if Assumption 1

is violated.

In plain words, babbling is an optimal strategy when Assumption 1 fails. This happens
when A is small (that is, voters’ preferences favour the government), µ is small (independent
signals are imprecise), and γ is such that n tends to be small (so voters tend to have few
social media connections). When Assumption 1 is satisfied, babbling is not an equilibrium
strategy.

Intuitively, suppose that q > λ (so that A < 1), and that µ = 0, so independent signals
are completely uninformative. Then without additional information all voters want to vote
for the government. Then by babbling the newspaper achieves its maximum payoff. More
generally, if q is much larger than λ, µ is small, and voters tend to have few connections (and
hence few voters observe sufficient evidence to push their posterior beliefs below λ), then in
each state sufficiently many voters vote for the government when the newspaper babbles.

On the other hand, if A is large, µ is large (that is, independent signals are informative),
and voters tend to have many connections, then by babbling the newspaper can convince 1

2

of all voters to vote for the government in, at most, state 1 only. In this case its expected
payoff is then at most q, which equals its payoff from truthful revelation. Since we have
already shown that truthful revelation is suboptimal, this implies that babbling is also not
optimal under these conditions.

If Assumption 1 is violated, then babbling is an optimal policy, and small changes in
connectivity do not affect it. For most of the analysis, we will consider the more interesting
case in which Assumption 1 is satisfied. In particular, the following simple condition is
sufficient for Assumption 1 to hold (and hence for babbling not to be optimal) for any γ:

9



Lemma 3. A sufficient condition for Assumption 1 to hold is lnA ≥ −2µ2.

Intuitively, it is optimal for the newspaper to reveal some information under any γ if the
government is sufficiently unpopular and voters are sufficiently well-informed.

When Assumption 1 holds, the newspaper selects an editorial policy such that p0 < p1.
Then the government receives strictly more votes after report r = 1 then after report r = 0.
Together with the fact that for each r more voters vote for the government in state 1, this
implies that

V (1, 1) > max {V (1, 0) , V (0, 1)} > min {V (1, 0) , V (0, 1)} > V (0, 0)

The newspaper receives a payoff of 1 if and only if V (θ, r) ≥ 1
2
. What are the (θ, r) pairs

under which this happens? We can show that the optimal editorial policy has the following
property:

Lemma 4. Under an optimal editorial policy (p0, p1), for all θ ∈ {0, 1}, we have V (1, 1) >
V (0, 1) ≥ 1

2
, and V (0, 0) < V (1, 0) < 1

2
.

In words, at the equilibrium the newspaper selects an editorial policy under which in
every state it receives a payoff of 1 after sending report r = 1, and a payoff of 0 after sending
report r = 0. Its expected utility then equals qp1 + (1− q) p0.

We can now characterise the optimal editorial policy as follows:

Proposition 1. There exists a unique optimal editorial policy (p0, p1) such that p1 = 1 and

p0 ∈ (0, 1) that is given by

N
∑

n=0

γn

(

1− Φ

[

Sn (p0, 1) + (n + 1)µ√
n+ 1

])

=
1

2

Thus, the newspaper always sends report 1 in state 1. In state 0, it sends report 1 with
some probability p0 that is distinct from zero and from one. That probability is chosen in
such a way as to ensure that V (0, 1) = 1

2
, that is, in state 0 after report 1 exactly 1

2
of all

voters vote for the government. On the other hand, p1 = 1 implies that upon receiving report
0, all voters know that θ = 0 with certainty.

Consequently, the government will always receive 1
2

of all votes in state 1. In state 0 the
government receives no votes with probability 1 − p0, and with probability p0 it receives 1

2

of all votes. Hence, a competent government always wins the election, while an incompetent
government wins the election with probability p0. Hence, the probability that the election
produces the correct decision is

Ψ ≡ 1− (1− q) p0

The newspaper’s equilibrium payoff is q + (1− q) p0.
We can think of p0 as a measure of bias: the higher it is, the more likely it is that the

newspaper misreports the state. Our analysis will focus on how a change in the distribution
of links γ towards more connectivity affects p0.
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4 The Effect of Connectivity

In this section we will look the effect of an increase in connectivity on the equilibrium.
Specifically, consider a shift from connectivity distribution γ to another distribution γ̃ that
first order stochastically dominates γ.16 How will such a shift affect the optimal bias p0
and the probability of the correct decision Ψ? We will start with a benchmark case of no
correlation neglect, before analysing the effect of an increase in connectivity when voters
neglect correlation.

4.1 A Benchmark: Persuasion Without Correlation Neglect

If voters do not neglect correlation, then k (n) = 1, ∀n. Thus, Sn (p0, 1) =
1
2µ

lnA + 1
2µ

ln p0.

Rearranging the expression in Proposition 1 using the fact that
∑N

n=0 γn = 1, we can then
write the expression that defines optimal bias as

N
∑

n=0

γnΦ

[

1
2µ

lnA+ 1
2µ

ln p0 + (n+ 1)µ
√
n+ 1

]

=
1

2
(3)

Then we have the following result

Proposition 2. If voters do not neglect correlation, then a shift from γ to γ̃ reduces the

optimal p0.

Intuitively, when the number of connections tends to increase, each voter observes more
independent signals, and thus her information becomes more precise. In particular, in state
0 voters become more reluctant to vote for the government. Then to ensure that report r = 1
induces sufficiently many voters to vote for the government when θ = 0, the newspaper needs
to make this report a stronger signal. Hence, it reduces the bias.

We can also look at what happens in the limit as connectivity becomes arbitrarily large.
Formally, suppose that γN = 1, and let N → ∞, i.e., the number of social media connections
of each voter approaches infinity. The next result shows that in the limit the optimal strategy
approaches truthful revelation as the number of connections becomes arbitrarily large:

Proposition 3. Suppose γN = 1. If voters do not neglect correlation, then limN→∞ p0 = 0.

Propositions 2 and 3 imply the following result about the effect of connectivity on the
probability of the correct decision:

Corollary 1. Suppose voters do not neglect correlation. Then a shift from γ to γ̃ increases

Ψ. Furthermore, if γN = 1, then limN→∞Ψ = 1.

Corollary 1 says that when voters do not neglect correlation, a version of the Condorcet
jury theorem holds in this setting: as each voter observes more independent signals from

16Many standard network models have one or more parameters such that changing this parameter changes
the degree distribution in exactly the same way, i.e., such that we can rank connectivity using first order
stochastic dominance. Two examples are the random network models by Erdös and Rényi (1959) or by
Jackson and Rogers (2007).
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her friends on social media, she becomes increasingly more informed. Hence, it becomes
increasingly more likely that the outcome of the vote corresponds to voters’ preferences. The
presence of the biased newspaper does not change this, since the newspaper optimally reveals
more information as voters become more informed.

4.2 Persuasion with Correlation Neglect

We will now derive the main results of the paper: comparative statics for the case when voters
neglect correlation. In that case, k (n) = n. Thus, Sn (p0, 1) = 1

2µ
lnA + 1

2µ
(n + 1) ln p0.

Rearranging the expression in Proposition 1, we can then write the expression that defines
optimal bias as

N
∑

n=0

γnΦ

[

1
2µ

lnA+ 1
2µ

(n+ 1) ln p0 + (n+ 1)µ
√
n+ 1

]

=
1

2
(4)

Then we have the following result

Proposition 4. If voters neglect correlation, then a shift from γ to γ̃ reduces the optimal p0
if A < 1, increases the optimal p0 if A > 1, and leaves the optimal p0 unchanged if A = 1.

Hence, when A < 1 – that is, when voters are ex ante willing to vote for the government –
an increase in connectivity reduces the optimal bias, as in the case without correlation neglect.
However, when voters are ex ante predisposed against the government, higher connectivity
leads the newspaper to increase the bias.

We can also look at the optimal bias in the limit, as connectivity becomes arbitrarily
large. As before, suppose that γN = 1, and let N → ∞. The next result shows that in
the limit the optimal strategy approaches truthful revelation as the number of connections
becomes arbitrarily large:

Proposition 5. Suppose γN = 1. If voters neglect correlation, then limN→∞ p0 = e−2µ2

.

Hence, when correlation neglect is present, the newspaper continues to send biased reports
even when connectivity—and hence the overall precision of independent signals—is arbitrarily
large.

The following intuition underlies these results. When connectivity becomes very large,
voters receive a large number of independent signals. In itself, this should make the voters
almost perfectly informed. On the other hand, voters also observe a large number of real-
isations of the newspaper’s report, which they treat as independent messages. Hence, the
newspaper’s report becomes increasingly more convincing. Thus, in the limit, the bias is
bounded away from 0.

As connectivity increases, the newspaper adjusts its bias to ensure that in state 0 report
r = 1 continues to induce exactly half of all voters to vote for the government. When
independent signals are more informative – that is, when µ is larger – the newspaper, at
each γ, needs to send a more persuasive message to convince enough voters to vote for the
government in state 0. Thus, its optimal bias is lower – therefore, the limit of p0 as N → ∞
is decreasing in µ. This implies the result described in Proposition 5.

12



An the same time, note that when connectivity is very large, the posterior belief in the
limit does not depend on the prior, because voters observe infinitely many independent signals
and an infinitely strong report from the newspaper. These messages overcome any prior belief.
Hence, the limit of p0 as N → ∞ does not depend on q. However, when connectivity is low,
the prior has a large effect on the posterior belief. When A < 1, and hence q < λ, voters
are ex ante unwilling to vote for the government. To induce voters to do so, the newspaper
needs to send a very credible report when connectivity is low – that is, to select a low bias.
Hence, when the prior is unfavourable to the government, as connectivity increases the bias
converges to e−2µ2

from below. On the other hand, when A > 1, the newspaper can select
a high bias when connectivity is low – thus, as connectivity increases, the bias converges to
e−2µ2

from above. This underlies the result in Proposition 4.
Note that if µ = 0, then p0 converges to 1 as as N → ∞. As the expected payoff of the

newspaper equals q+(1− q) p0, the newspaper can achieve its first-best utility in the limit if
independent signals are uninformative. Furthermore, if µ = 0, then Assumption 1 only holds
when A > 1 – thus, either babbling is an equilibrium for all connectivity levels, or an increase
in connectivity always increases the optimal bias and the newspaper’s expected payoff.17 In
general, however, the existence of independent signals puts a bound on the maximum utility
that the newspaper can attain. It also ensures that p0 (and hence the newspaper’s utility) is
decreasing in connectivity when A < 1.

Propositions 4 and 5 imply the following result about the effect of connectivity on the
probability of the correct decision:

Corollary 2. Suppose voters fully neglect correlation. Then a shift from γ to γ̃ increases Ψ
if A < 1, reduces Ψ if A > 1, and leaves Ψ unchanged if A = 1 . Furthermore, if γN = 1,
then limN→∞Ψ = 1− (1− q) e−2µ2

.

Corollary 2 implies that Condorcet jury theorem fails when voters neglect correlation,
as the probability of an incorrect decision remains positive even when each voter observes a
large number of signals.

5 Extensions

5.1 Partial Correlation Neglect

In our model of correlation neglect we have assumed that k (n) = n – that is, that voters
perceive any number of perfectly correlated signals as an equivalent number of independent
signals. One can argue that this may not always be the case. For example, the strength of
correlation neglect may decrease when the number of signals becomes larger.

As connectivity becomes large, the optimal bias in the limit depends on the behaviour of
k (n) when n is large. If k becomes flat when n is large – that is, if voters cease to perceive
additional reports as independent when they observe many of them – then for large n a further
increase in connectivity only increases the number of independent signals that voters receive,
without increasing the newspaper’s persuasive power. Then a similar characterisation to the

17Similar results emerge in Levy et al. (2018a), where independent signals do not exist, and the sender can
approach her first-best when the number of messages she sends approaches infinity.
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case with no correlation neglect emerges: an increase in connectivity reduces the optimal
bias, which converges to zero as connectivity becomes arbitrarily large.

On the other hand, if k remains an increasing function when n is large, then an increase
in connectivity continues to increase the newspaper’s ability to manipulate beliefs. Hence,
the optimal bias remains positive, and results from Section 4.2 continue to qualitatively hold.

The following proposition captures this intuition:

Proposition 6. Suppose γN = 1. If limN→∞
k(N)
N

= L for some L > 0, then limN→∞ p0 =

e−
2µ2

L . If limN→∞
k(N)
N

= 0, then limN→∞ p0 = 0.

Note that the bias in the limit is increasing in L, because the greater is correlation neglect
in the limit, the more scope the newspaper has to send a biased report.

5.2 Generic Voting Rule

So far we have assumed that the newspaper aims to maximise the probability that at least 1
2

of voters vote for the government. Suppose instead that the newspaper receives a payoff of
1 if and only if the share of voters who vote for the government is at least τ ∈ (0, 1).18 For
example, some voters may be partisans, who are willing to support or oppose the government
regardless of the state. The newspaper then needs to persuade a sufficient fraction of the
remaining voters to vote for the government. Alternatively, the newspaper may be trying
to ensure that the fraction of voters who join an anti-government protest is below a certain
threshold.

It is straightforward to show that Lemma 1 holds in this more general setting. At the
same time, the condition that rules out babbling as an optimal editorial policy is different
but similar to Assumption 1, as the following result shows:

Lemma 5. An editorial policy (p0, p1) such that p0 = p1 is optimal if and only if

N
∑

n=0

γn

(

1− Φ

[

1
2µ

lnA + (n+ 1)µ
√
n+ 1

])

≥ τ.

When babbling is not an optimal policy, the same approach as the one used to prove
Lemma 4 and Proposition 1 then implies that the optimal editorial policy ensures that the
government receives at least τ votes if and only if r = 1. Hence, at the optimum, the
newspaper selects p1 = 1 and p0 such that

N
∑

n=0

γn

(

1− Φ

[

1
2µ

lnA+ 1
2µ

(n+ 1) ln p0 + (n+ 1)µ
√
n+ 1

])

= τ (5)

It is straightforward to see that when τ increases, p0 needs to decrease for (5) to continue
to hold. Hence, a more restrictive voting rule reduces the optimal bias. Since the probability

18It is straightforward to show that if τ = 0, any strategy that does not perfectly reveal the state guarantees
the newspaper a payoff of 1, as a positive mass of voters will always receive sufficiently high signals. If τ = 1,
the only way for the newspaper to attain a payoff of 1 with positive probability is to reveal the true state
when it equals 1 – hence, truthful revelation is an optimal strategy.
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of the correct decision is decreasing in p0, it follows that a more restrictive voting rule makes
the correct decision more likely19.

How does connectivity affect the optimal bias? We can show that the following result
holds:

Proposition 7. Suppose babbling is not optimal. If voters neglect correlation, then a shift

from γ to γ̃ reduces the optimal p0 if A < 1 and τ ≤ 1
2
, and increases the optimal p0 if A > 1

and τ ≥ 1
2
.

This result parallels the result derived in Proposition 4. The latter showed that an
increase in connectivity increases the optimal bias if preferences are ex ante unfavourable
to the government, and vice versa. Proposition 7 shows that an increase in connectivity
reduces the optimal bias if preferences are unfavourable, and, in addition, the newspaper has
to overcome an unfavourable voting rule. Similarly, an increase in connectivity increases the
optimal bias if preferences and the voting rule favour the government.

When preferences and the voting rule affect the newspaper in the opposite ways – that
is, if A < 1 and τ > 1

2
, or if A > 1 and τ < 1

2
– the effect of connectivity on the bias is, in

general, non-monotone. Nevertheless, we can show that for any voting rule, as connectivity
becomes arbitrarily large, the optimal bias converges to the same limit:

Proposition 8. Suppose γN = 1. If voters neglect correlation, then limN→∞ p0 = e−2µ2

.

Hence, the result of Proposition 5 holds regardless of the voting rule. In other words, the
bias converges to the same limit for all voting rules τ ∈ (0, 1).

5.3 Newspaper Receives Imprecise Signals

In our analysis so far the newspaper perfectly observed the true state θ. This enabled it to
choose an editorial policy with arbitrary precision, and hence it was always able to persuade
voters. But the assumption of a newspaper perfectly observing the state is strict. In this
section we study the implication of a newspaper that receives a signal σ with precision
α = Pr[σ = θ] ∈ (1

2
, 1).

Receiving an imprecise signal constrains the newspaper’s editorial policy’s maximum pre-
cision, and hence may also impede the newspaper’s ability to persuade a majority of voters.
Intuitively, when α is small, even truthfully revealing σ may not be sufficient to persuade
voters, if voters are ex ante biased against the government (q < λ). If µ is small this may
be true even independent of the state. For larger µ, however, the newspaper might be able
to persuade the electorate in state 1, while in state 0 this remains impossible. The reason
is that the voters’ independent signals shift the distribution of beliefs by more when µ is
larger. Finally, when α is large, persuasion is possible, i.e., persuasion is possible in both
states as before. In this section we focus on the case where persuasion is generally possible,
meaning that independent of the true state and the network structure the newspaper is able

19A similar result emerges in Alonso and Câmara (2016), in a setting without private information but with
heterogeneous voters.
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to persuade a majority of voters by choosing an appropriate editorial policy.20 The following
lemma establishes under which conditions this is the case:

Lemma 6. For a given γ persuasion is possible in both states if and only if

N
∑

n=0

γnΦ

(

1
2µ

lnA + 1
2µ
(n + 1) ln 1−α

α
+ (n + 1)µ

√
n+ 1

)

<
1

2
.

A sufficient and necessary condition for persuasion to be generally possible, i.e., in both states

and for any γ, is

max{1, A}1− α

α
≤ e−2µ2

. (6)

Intuitively, when α is close to 1 persuasion is generally possible, while it is generally
impossible when α = 1

2
. Moreover, as the precision of voters’ independent signals increases,

the newspaper’s signal’s precision may need to increase as well for the newspaper to remain
able to persuade a majority of voters.

Note that the condition under which babbling is optimal is independent of the newspaper’s
signal’s quality α, because when the newspaper babbles it does not transmit any information.
Therefore, when Assumption 1 holds babbling cannot be optimal (see Lemma 2).

The next proposition shows that all of our earlier results qualitatively remain valid when
Assumption 1 holds and when persuasion is generally possible.

Proposition 9. Assume persuasion is generally possible for any γ, i.e., that (6) holds. If

voters neglect correlation, then a shift from γ to γ̃ reduces the optimal p0 if A < 1, increases

the optimal p0 if A > 1, and leaves the optimal p0 unchanged if A = 1. If γN = 1, then

limN→∞ p0 =
e2µ

2
(1−α)−α

(1−α)−e2µ
2
α
∈ (0, 1).

When persuasion is generally possible, the bias is increasing (decreasing) in social con-
nectivity if A > 1 (A < 1), and in the limit the optimal bias remains strictly positive.

Note that the bias in the limit is increasing in the newspaper’s signals precision. That is,
as the newspaper receives a more precise signal, it sends a less precise signal itself.

Proposition 9 further implies that the probability that voters collectively take the correct
decision depends on social connectivity in the same way as before. Furthermore, even in the
limit the probability that the collective decision is incorrect remains strictly positive:

Corollary 3. Suppose voters neglect correlation. Then a shift from γ to γ̃ increases Ψ if

A < 1, reduces Ψ if A > 1, and leaves Ψ unchanged if A = 1. Furthermore, if γN = 1, then

lim
N→∞

Ψ = 1− (1− q)
e2µ

2

(1− α)− α

(1− α)− e2µ2α
∈ (0, 1).

20If persuasion is not generally possible, two distinct case can emerge. First, persuasion is generally not
feasible. This is the case when α is very small, where small depends on the other parameters of the game
such as q, µ, and λ. In this case any editorial policy yields the same outcome of zero utility to the newspaper
and hence also any editorial policy is optimal. Second, it is possible that the newspaper can only persuade
a majority in state θ = 1, while it is impossible when θ = 0. The reason is that when µ > 0 and θ = 0 the
newspaper needs to be more persuasive than when θ = 1, but it cannot send any signal with precision greater
than (1 − α)/α > 0. In this case the newspaper is indifferent between all sufficiently informative editorial
policies, i.e., those policies that help the government to win if θ = 1. One of these optimal editorial policies
is truthfully revealing its signal σ, p1 = 1 and p0 = 0.
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6 Conclusions

This paper developed a model of political persuasion in which voters observe a report about
a state from a biased newspaper, as well as independent signals, and communicate this
information to other voters on social media. The messages that each voter receives are thus
correlated, because they are partly based on the newspaper’s report. Voters ignore this
correlation and form posterior beliefs about the state, before voting based on these beliefs.
As connectivity increases, the newspaper optimally sends more biased or less biased reports,
depending on the prior belief of the voters. At the same time, even when connectivity is
large, the bias does not disappear in the limit, and voters make incorrect collective decision
with positive probability.

Future research can extend this analysis in a number of ways. One potential extension
could be to endogenise the decision of whether to read the newspaper. Another way to
extend the model would be to consider a dynamic setting in which voters observe messages
from their social media friends before choosing which social media connections to maintain
in the next stage. This would enable the model to account for endogenous formation of social
networks based on common political views.
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Appendix

Proof of Lemma 1. Take the editorial policy (p0, p1) = (0, 1). Then π0 (p0, p1) = 0 and
π1 (p0, p1) = 1. Therefore, all voters vote for the government if θ = 1, and no voters vote
for the government if θ = 0. The newspaper’s expected payoff then equals q. Consider a
deviation to an editorial policy (p0, p1) = (ε, 1) for some small ε > 0. Then with a positive
probability, the newspaper sends message 1 in state 0. Note that

lim
ε→0

Sn (ε, 1) ≡ lim
ε→0

[

1

2µ
lnA+

1

2µ
k (n+ 1) ln (ε)

]

= −∞

Hence, when ε → 0, (1) implies that under editorial policy (ε, 1) almost all voters vote
for the government when r = 1. By continuity, there exists a sufficiently small ε̂ > 0 such
that under editorial policy (ε̂, 1) at least half of voters vote for the government when r = 1.
Then the newspaper’s expected payoff under editorial policy (ε̂, 1) equals q + (1− q) ε̂ > q.
Hence, editorial policy (0, 1) is not optimal.

Proof of Lemma 2. Suppose that p0 = p1. Then, Sn (p0, p1) = Sn (1− p0, 1− p1) =
1
2µ

lnA. Note that S is distributed normally with variance n+1 and mean (n + 1)µ if θ = 1,

and mean − (n + 1)µ if θ = 0. Hence, the probability that a voter with n connections votes
for the government in state θ is

1− Φ

[

1
2µ

lnA− θ (n+ 1)µ+ (1− θ) (n + 1)µ
√
n+ 1

]

Thus, for each θ ∈ {0, 1} we have

V (θ, 0) = V (θ, 1) =
N
∑

n=0

γn

(

1− Φ

[

1
2µ

lnA− θ (n+ 1)µ+ (1− θ) (n+ 1)µ
√
n+ 1

])
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This implies that V (0, r) < V (1, r) for each r ∈ {0, 1}. Furthermore, for each r ∈ {0, 1},
we have

V (0, r) =

N
∑

n=0

γn

(

1− Φ

[

1
2µ

lnA+ (n + 1)µ
√
n+ 1

])

If Assumption 1 holds, then V (0, r) < 1
2
. Thus, the share of voters that vote for the

government can only reach 1
2

in state 1. Hence, the payoff of the newspaper cannot exceed
q. But q is also the payoff of the newspaper under editorial policy (0, 1). We have shown
in Lemma 1 that the newspaper can guarantee itself a payoff strictly higher than q. Hence,
babbling is not optimal. This proves the first statement.

To prove the second statement, note that if Assumption 1 is violated, then 1
2
≤ V (0, r) ≤

V (1, r). Hence, under babbling the newspaper receives a payoff of 1 with certainty. This is
the highest payoff the newspaper can receive, so babbling is an optimal strategy.

Proof of Lemma 3. If lnA ≥ −2µ2, then lnA ≥ −2 (n + 1)µ2, and hence 1
2µ

lnA +

(n + 1)µ ≥ 0 for all n, with strict inequality for n > 0. Hence,
1

2µ
lnA+(n+1)µ
√
n+1

≥ 0, implying

that Φ

[

1

2µ
lnA+(n+1)µ
√
n+1

]

≥ 1
2

for all n, with strict inequality for n > 0. Thus,

N
∑

n=0

γn

(

1− Φ

[

1
2µ

lnA + (n+ 1)µ
√
n+ 1

])

<

N
∑

n=0

γn
1

2
=

1

2

Proof of Lemma 4. Note that S is distributed normally with variance n + 1 and mean
(n + 1)µ if θ = 1, and mean − (n+ 1)µ if θ = 0. Hence, the probability that (1) holds for a
voter with n connections is

1− Φ

[

Sn (p0, p1)− θ (n+ 1)µ+ (1− θ) (n+ 1)µ√
n+ 1

]

Hence, if p0 = 0, then V (θ, 1) = 1, ∀θ ∈ {0, 1}. If p0 > 0, we have

V (θ, 1) =







∑N

n=0 γn

(

1− Φ
[

Sn(p0,p1)+(n+1)µ√
n+1

])

if θ = 0
∑N

n=0 γn

(

1− Φ
[

Sn(p0,p1)−(n+1)µ√
n+1

])

if θ = 1
(7)

Similarly, the probability that (2) holds for a voter with n connections is

1− Φ

[

Sn (1− p0, 1− p1)− θ (n+ 1)µ+ (1− θ) (n + 1)µ√
n+ 1

]

Hence, if p1 = 1, then V (θ, 0) = 0, ∀θ ∈ {0, 1}. If p1 < 1, we have

V (θ, 0) =







∑N
n=0 γn

(

1− Φ
[

Sn(1−p0,1−p1)+(n+1)µ√
n+1

])

if θ = 0
∑N

n=0 γn

(

1− Φ
[

Sn(1−p0,1−p1)−(n+1)µ√
n+1

])

if θ = 1
(8)
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Comparing V (θ, 0) and V (θ, 1), we obtain

V (1, 1) > max {V (1, 0) , V (0, 1)} > min {V (1, 0) , V (0, 1)} > V (0, 0)

We will now show that a profitable deviation exists from any editorial policy that does
not satisfy the condition in the lemma.

If V (1, 1) < 1
2
, then the newspaper’s payoff is 0, so the newspaper can gain by deviating

to editorial policy (0, 1), which ensures it a payoff of q.
If V (1, 1) ≥ 1

2
and max {V (1, 0) , V (0, 1)} < 1

2
, then the newspaper receives a payoff of

1 if and only if θ = 1 and r = 1. Its expected utility is then qp1 ≤ q. But we have shown in
Lemma 1 that the newspaper can guarantee itself a payoff strictly larger than q.

If min {V (1, 0) , V (0, 1)} ≥ 1
2

and V (0, 0) < 1
2
, then the newspaper receives a payoff of

1 unless θ = 0 and r = 0. The newspaper’s payoff then equals q + (1− q) p0. Furthermore,
V (1, 0) ≥ 1

2
implies that p1 < 1, because otherwise V (1, 0) = 0. Now consider a deviation to

an editorial policy (p′0, p
′
1) =

(

p0
p1
, 1
)

. This deviation does not affect the value of Sn (p0, p1),

and hence V (1, 1) and V (0, 1) remain unchanged. Furthermore, under this deviation in state
1 the newspaper always sends report 1. Hence, the newspaper always receives a payoff of 1
when θ = 1, and when θ = 0 it receives a payoff of 1 with probability p′0 =

p0
p1

. Its expected

utility is thus q + (1− q) p0
p1

, which is higher than the original utility since p1 < 1.

Finally, if V (0, 0) ≥ 1
2
, we have

1

2
≤ V (0, 0) ≤

N
∑

n=0

γn

(

1− Φ

[

1
2µ

lnA+ (n+ 1)µ
√
n + 1

])

which violates Assumption 1.
Hence, at the equilibrium we must have V (1, 1) > max {V (1, 0) , V (0, 1)} ≥ 1

2
>

min {V (1, 0) , V (0, 1)} > V (0, 0). If V (1, 0) ≥ 1
2
> V (0, 1), then the newspaper receives a

payoff of 1 if and only if θ = 1. Then its payoff is equal to a payoff from truthfully revealing
the state. But Lemma 1 shows that this payoff is not optimal. Hence, at the equilibrium,
V (1, 1) > V (0, 1) ≥ 1

2
, and V (0, 0) < V (1, 0) < 1

2
.

Proof of Proposition 1. Consider any editorial policy (p0, p1) that satisfies Lemma 4.
Suppose that p1 < 1. Then the expected utility of the newspaper is qp1+(1− q) p0. Consider

a deviation to an editorial policy (p′0, p
′
1) =

(

p0
p1
, 1
)

(note that we have ruled out the case

when p1 = 0). This deviation leaves Sn (p0, p1) unchanged, as it only depends on the ratio of
p0 and p1. Hence V (1, 1) and V (0, 1), given by (7) in the proof of Lemma 4, do not change.
Thus, (p′0, p

′
1) satisfies Lemma 4. The newspaper’s expected utility under (p′0, p

′
1) then equals

qp′1 + (1− q) p′0 = q + (1− q) p0
p1

, which is higher than the utility under (p0, p1), as p1 < 1.
Hence, this deviation is profitable, so at the optimum we must have p1 = 1.

The equilibrium expected utility of the newspaper then equals q + (1− q) p0. The news-
paper chooses p0 to maximise it, subject to satisfying the condition given in Lemma 4. The
maximum is attained when V (0, 1) = 1

2
, which, given, p1 = 1 is equivalent to the expression

in the proposition.
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Uniqueness follows from the fact that the left-hand side of that expression is monotone
in p0. Existence is guaranteed because the left-hand side of the expression approaches 1 as
p0 → 0, and is smaller than 1

2
when p0 = 1 as long as Assumption 1 holds.

Proof of Proposition 2. We can rewrite (3) as

N
∑

n=0

γnΦ
[

ĥ (n)
]

=
1

2

where

ĥ (n) ≡ 1

2µ
[lnA+ ln p0] (n + 1)−

1

2 + (n+ 1)
1

2 µ

Note that ĥ (n) is increasing in p0. If ĥ (n) is increasing in n, then a shift from γ to γ̃

increases the left-hand side of (3), so p0 has to decrease to restore equality. Hence, to prove
the result, it is sufficient to show that ĥ (n) is increasing in n. Replacing n with a continuous
variable and differentiating yields

dĥ (n)

dn
= − 1

4µ
[lnA+ ln p0] (n + 1)−

3

2 +
1

2
(n + 1)−

1

2 µ

for this to be positive for all n, it is sufficient to have lnA+ ln p0 ≤ 0. Suppose the opposite
is the case, i.e. lnA+ ln p0 > 0. Then ĥ (n) > 0 for all n. Hence,

N
∑

n=0

γnΦ
[

ĥ (n)
]

>

N
∑

n=0

γnΦ (0) =
1

2

N
∑

n=0

γn =
1

2

which violates (3). Hence, lnA+ ln p0 ≤ 0, implying that dĥ(n)
dn

> 0 for all n, and hence ĥ (n)
is increasing in n.

Proof of Proposition 3. When γN = 1, Assumption 1 is equivalent to

Φ

[

1
2µ

lnA+ (N + 1)µ
√
N + 1

]

>
1

2

Since limN→∞Φ

[

1

2µ
lnA+(N+1)µ
√
N+1

]

= limN→∞Φ
[√

N + 1µ
]

= 1, Assumption 1 holds when

N is sufficiently large. Proposition 1 then implies that for sufficiently large N , p0 is given by
(3) as

Φ

[

1
2µ

lnA + 1
2µ

ln p0 + (N + 1)µ
√
N + 1

]

=
1

2

This is equivalent to
1
2µ

lnA+ 1
2µ

ln p0 + (N + 1)µ
√
N + 1

= 0

and hence

p0 =
1

A
e−2(N+1)µ2

which converges to 0 as N → ∞.
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Proof of Corollary 1. The first statement follows from from Proposition 2 and the fact
that Ψ is decreasing in p0. The second statement follows from Lemma 3, which implies that
limN→∞Ψ = limN→∞ [1− (1− q) p0] = 1.

Proof of Proposition 4. We can write (4) as

N
∑

n=0

γnΦ [h (n)] =
1

2

where

h (n) ≡ 1

2µ
(n+ 1)−

1

2 lnA+

(

1

2µ
ln p0 + µ

)

(n + 1)
1

2

Note that h (n) is increasing in p0. If h (n) is increasing in n, then a shift from γ to
γ̃ increases the left-hand side of (3), so p0 has to decrease to restore equality. If h (n) is
decreasing in n, then a shift from γ to γ̃ decreases the left-hand side of (3), so p0 has to
increase to restore equality. If h (n) is constant in n, then a shift from γ to γ̃ leaves the
left-hand side of (3) unchanged, so p0 remains unchanged.

Thus, to prove the result, it is sufficient to show that for all n, h (n) is (i) strictly increasing
in n if A < 1; (ii) strictly decreasing in n if A > 1; and (iii) constant in N if A = 1. Replacing
n with a continuous variable and differentiating yields

dh (n)

dn
= − 1

4µ
(n+ 1)−

3

2 lnA+
1

2

(

1

2µ
ln p0 + µ

)

(n+ 1)−
1

2

Note that h (n) is increasing (decreasing) in n if and only if the derivative is positive
(negative) for all n.

To show (i), suppose that A < 1. Then lnA < 0. To show that dh(n)
dn

> 0 for all n,
it is then sufficient to show that 1

2µ
ln p0 + µ ≥ 0. Suppose the opposite is the case, i.e.

1
2µ

ln p0 + µ < 0. Then h (n) < 0 for all n. Hence,

N
∑

n=0

γnΦ [h (n)] <

N
∑

n=0

γnΦ (0) =
1

2

N
∑

n=0

γn =
1

2

which violates (4). Hence, 1
2µ

ln p0 +µ ≥ 0, implying that dh(n)
dn

> 0 for all n, and hence h (n)
is strictly increasing in n.

To show (ii), suppose that A > 1. Then lnA > 0. To show that dh(n)
dn

< 0 for all n,
it is then sufficient to show that 1

2µ
ln p0 + µ ≤ 0. Suppose the opposite is the case, i.e.

1
2µ

ln p0 + µ > 0. Then h (n) > 0 for all n. Hence,

N
∑

n=0

γnΦ [h (n)] >

N
∑

n=0

γnΦ (0) =
1

2

N
∑

n=0

γn =
1

2

which violates (4). Hence, 1
2µ

ln p0 +µ ≤ 0, implying that dh(n)
dn

< 0 for all n, and hence h (n)
is strictly decreasing in n.
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To show (iii), suppose that A = 1. Then lnA = 0. To show that dh(n)
dn

= 0 for all n,
it is then sufficient to show that 1

2µ
ln p0 + µ = 0. Suppose the opposite is the case, i.e.

1
2µ

ln p0 + µ = B for some B 6= 0. Then h (n) = B (n + 1)
1

2 6= 0, and

N
∑

n=0

γnΦ [h (n)] >

N
∑

n=0

γnΦ
[

B (n+ 1)
1

2

]

= Φ
[

B (n + 1)
1

2

]

6= 1

2

which violates (4). Hence, 1
2µ

ln p0+µ = 0, implying that dh(n)
dn

= 0 for all n, and hence h (n)
is constant in n.

Proof of Proposition 5. We have shown in the proof of Lemma 3 that when γN = 1,
Assumption 1 holds for sufficiently large N . Proposition 1 then implies that for sufficiently
large N , p0 is given by (4) as

Φ

[

1
2µ

lnA + 1
2µ

(N + 1) ln p0 + (N + 1)µ
√
N + 1

]

=
1

2

This is equivalent to

1
2µ

lnA+ 1
2µ

(N + 1) ln p0 + (N + 1)µ
√
N + 1

= 0

Solving for p0 yields

p0 = A− 1

N+1 e−2µ2

which converges to e−2µ2

as N → ∞.

Proof of Corollary 2. The first statement follows from Proposition 4 and the fact that
Ψ is decreasing in p0. The second statement follows from Lemma 3 and the fact that Ψ =
1− (1− q) p0.

Proof of Proposition 6. We have shown in the proof of Lemma 3 that when γN = 1,
Assumption 1 holds for sufficiently large N . Then, given Proposition 1 and our expression
for Sn (p0, p1), the optimal value of p0 is given by

Φ

[

1
2µ

lnA+ 1
2µ
k (n + 1) ln p0 + (n + 1)µ

√
n+ 1

]

=
1

2

Equivalently,
1
2µ

lnA+ 1
2µ
k (n+ 1) ln p0 + (n+ 1)µ

√
n+ 1

= 0

and hence

ln p0 =
− lnA− (N + 1) 2µ2

k (N + 1)
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Thus,

lim
N→∞

ln p0 = lim
N→∞

−2µ2 N

k (N)

If limN→∞
k(N)
N

= L, then limN→∞ ln p0 = −2µ2

L
, so limN→∞ p0 = e−

2µ2

L . If limN→∞
k(N)
N

= 0,
then limN→∞ ln p0 = −∞, so limN→∞ p0 = 0.

Proof of Lemma 5. Analogous to the proof of Lemma 2, with τ replacing 1
2
.

Proof of Proposition 7. We can write (5) as

N
∑

n=0

γnΦ [h (n)] = 1− τ

where h (n) is defined as in the proof of Proposition 4. Following the logic of that proof, it is
sufficient to show that for all n, h (n) is (i) strictly increasing in n if A < 1 and τ ≤ 1

2
; and

(ii) strictly decreasing in n if A > 1 and τ ≥ 1
2
. Replacing n with a continuous variable and

differentiating yields

dh (n)

dn
= − 1

4µ
(n+ 1)−

3

2 lnA+
1

2

(

1

2µ
ln p0 + µ

)

(n+ 1)−
1

2

Note that h (n) is increasing (decreasing) in n if and only if the derivative is positive
(negative) for all n.

To show (i), suppose that A < 1 and τ ≤ 1
2
. Then lnA < 0. To show that dh(n)

dn
> 0 for

all n, it is then sufficient to show that 1
2µ

ln p0 + µ ≥ 0. Suppose the opposite is the case, i.e.
1
2µ

ln p0 + µ < 0. Then h (n) < 0 for all n. Hence,

N
∑

n=0

γnΦ [h (n)] <
N
∑

n=0

γnΦ (0) =
1

2

N
∑

n=0

γn =
1

2
≤ 1− τ

which violates (4). Hence, 1
2µ

ln p0 +µ ≥ 0, implying that dh(n)
dn

> 0 for all n, and hence h (n)
is strictly increasing in n.

To show (ii), suppose that A > 1 and τ ≤ 1
2
. Then lnA > 0. To show that dh(n)

dn
< 0 for

all n, it is then sufficient to show that 1
2µ

ln p0 + µ ≤ 0. Suppose the opposite is the case, i.e.
1
2µ

ln p0 + µ > 0. Then h (n) > 0 for all n. Hence,

N
∑

n=0

γnΦ [h (n)] >

N
∑

n=0

γnΦ (0) =
1

2

N
∑

n=0

γn =
1

2
≥ 1− τ

which violates (4). Hence, 1
2µ

ln p0 +µ ≤ 0, implying that dh(n)
dn

< 0 for all n, and hence h (n)
is strictly decreasing in n.

26



Proof of Proposition 8. When γN = 1, the condition in Lemma 5 is equivalent to

Φ

[

1
2µ

lnA+ (N + 1)µ
√
N + 1

]

> 1− τ

Since limN→∞Φ

[

1

2µ
lnA+(N+1)µ
√
N+1

]

= limN→∞Φ
[√

N + 1µ
]

= 1, thus condition holds when

N is sufficiently large. Thus, babbling is not optimal, and the optimal bias is defined by (5)
as

Φ

[

1
2µ

lnA+ 1
2µ

(N + 1) ln p0 + (N + 1)µ
√
N + 1

]

= 1− τ

which is equivalent to

1
2µ

lnA+ 1
2µ

(N + 1) ln p0 + (N + 1)µ
√
N + 1

= Φ−1 (1− τ)

and hence

ln p0 = − 1

N + 1
lnA− 2µ2 + 2µ2 1√

N + 1
Φ−1 (1− τ)

and hence
p0 = A− 1

N+1 e
−2µ2+2µ2 1

√

N+1
Φ−1(1−τ)

which converges to e−2µ2

as N → ∞.

Proof of Lemma 6. Note that for any µ > 0 and a given report sent by the newspaper
r, the share of voters voting for the government is greater if θ = 1 than if θ = 0. Hence, if it
is possible to convince a majority of voters in state θ = 0 if is also possible to do so in state
θ = 0. Hence, to prove the lemma it suffices to provide a condition such that persuasion is
possible if θ = 0.

The newspaper is maximally persuasive when it reports it’s signal truthfully, p1 = 1 and
p0 = 0. However, in this case it never sends report r = 1 in state θ = 0. Hence, consider
p0 = ǫ. When ǫ → 0 implies that a majority of voters votes for the government in state
θ = 0, persuasion is possible in both states.

When p1 = 1 and p0 = 0, the belief after receiving report r = 1 and evidence S is

π =
q

q + (1− q)
(

1−α
α

)n+1
e−2Sµ

.

Thus, a voter with n connections needs to receive at least at evidence Sn(1−α, α), where Sn

is defined as above. This implies that the share of voters voting for the government is

N
∑

n=0

γn

(

1− Φ

(

Sn(1− α, α) + (n+ 1)µ√
n + 1

))

.
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Using the definition of Sn(1−α, α), this policy of reporting the own signal truthfully achieves
the newspaper a majority if and only if

∑N
n=0 γn

(

1− Φ
(

Sn(1−α,α)+(n+1)µ√
n+1

))

> 1
2

⇔∑N
n=0 γnΦ

(

Sn(1−α,α)+(n+1)µ√
n+1

)

< 1
2

⇔∑N

n=0 γnΦ

(

1

2µ
lnA+ 1

2µ
(n+1) ln 1−α

α
+(n+1)µ

√
n+1

)

< 1
2

(9)

The strict inequality follows from the fact that p0 = ǫ > 0, as otherwise the probability of
r = 1 in state θ = 0 is zero. If the inequality would be weak there might be no p0 > 0 such
that at least half of the voters vote for the government.

The lemma states that a necessary and sufficient condition for (9) to hold for any γ is
max{1, A}1−α

α
≤ e−2µ2

. We prove both parts separately.

Sufficiency: To see that this is sufficient observe that Φ is a strictly increasing function.
If no voter is connected to another voter, γ0 = 1, (9) simplifies to

Φ
(

1
2µ

lnA+ 1
2µ

ln 1−α
α

+ µ
)

< 1
2
⇔ 1

2µ
lnA+ 1

2µ
ln 1−α

α
+ µ < 0

⇔ lnA+ ln 1−α
α

< −2µ2 ⇔ A1−α
α

< e−2µ2

This is the condition stated in the lemma if max{1, A} = A. If κ := 1
2µ

lnA+ 1
2µ
(n+1) ln 1−α

α
+

(n+ 1)µ weakly decreases in n, truthfully revealing its signal persuades a majority of voters
for any number of connections n, and hence persuasion is generally possible. Approximate
n by a continuous variable and take the derivative of κ with respect to n:

∂κ

∂n
=

1

2µ
ln

1− α

α
+ µ.

For this to be weakly negative it has to hold that e−2µ2 ≥ 1−α
α

, which is the stated condition

if max{A, 1} = 1. Thus, if max{1, A}1−α
α

< e−2µ2

, persuasion is feasible for any γ, and hence

it is generally feasible. Note that when α = 1, the inequality always holds as e−2µ2

> 0.

Necessity: Necessity follows immediately. Assume the condition was violated and that
max{1, A}1−α

α
> e−2µ2

. If max{1, A} = 1, κ linearly increases in n and converges to positive
infinity. This means that for γN = 1 and sufficiently large N persuasion is impossible. To
the contrary, if max{1, A} = A and max{1, A}1−α

α
> e−2µ2

, then for γN = 1 and N = 0

persuasion is impossible. Finally, note that when max{1, A}1−α
α

= e−2µ2

truthfully revealing
natures signal might persuade a majority of voters for any γ, but since p0 = 0 the newspaper
would never send this signal, and hence persuasion would be possible only in state θ = 1.
Hence, max{1, A}1−α

α
< e−2µ2

is necessary for persuasion to be possible.

Proof of Proposition 9. Given that the state is θ = 1, the newspaper sends report r = 1
with probability z1 = αp1+(1−α)p0. In state θ = 0 this probability is z0 = αp0+(1−α)p1.
Thus, the belief of a voter with n connections and independent evidence S after report r are

π1 =
q

q + (1− q)
(

z0
z1

)n+1

e−2µS
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and
π0 =

q

q + (1− q)
(

1−z0
1−z1

)n+1

e−2µS

.

These beliefs are structurally identical to before except that now pi = zi. Thus, the newspaper
now chooses zi instead of pi. Recall that we assume without loss of generality that p1 ≥ p0,
which implies that z0 ≤ z1. When α = 1, the newspaper can choose any z0

z1
∈ [0, 1]. However,

when α ∈ (1
2
, 1) this changes, as

z0
z1

=
αp0 + (1− α)p1
αp1 + (1− α)p0

=
αρ+ (1− α)

α+ (1− α)ρ
∈
[

1− α

α
, 1

]

,

where ρ ≡ p0/p1 ∈ [0, 1]. Thus, as we have noted before, the newspaper now has to choose a
likelihood ratio z0/z1 from a constrained set. This impacts the newspaper because it might
not be able to persuade a majority of voters in general. However, under the conditions of
Lemma 6 persuasion is generally possible.

To prove that a unique optimal editorial policy exists when persuasion is generally possible
we follow similar steps as those leading to Proposition 1. First note that truth telling cannot
be optimal, because, as before, this would imply a probability that the government wins of
q. A very small deviation from this to p1 = 1 and p0 = ǫ yields a greater probability for the
government to win, and hence truthfully revealing σ cannot be optimal. Moreover, also as
before, when a policy of babbling is not optimal (p0/p1 = z0/z1 = 1), the newspaper can only
persuade a majority after sending report r = 1 (see Lemma 4). Hence, the optimal editorial
policy leads to vote shares V (1, 1) > V (0, 1) ≥ 1

2
and 1

2
> V (1, 0) > V (0, 0). We can thus

also proceed analogous to Proposition 1 to prove that the optimal editorial policy must have
p1 = 1 and p0 ∈ (0, 1) such that V (0, 1) = 1

2
.

Note that this also implies that Proposition 4 remains valid if persuasion is generally
possible. In this case we can go through its proof step by step while replacing pi with zi, as
general persuadability assures that the optimal ratio z0/z1 is feasible.

Finally, if γN = 1, the optimal editorial policy follows from

1− Φ

(

SN (z0, 1) + µ(n+ 1)√
n + 1

)

=
1

2
⇔ SN(z0, 1) = −µ(n + 1).

Solving for p0 we find

p0 =
αA

1

N+1 − e2µ
2

+ αe2µ
2

αA
1

N+1 − A
1

N+1 + αe2µ2

In the limit, as N → ∞, we get

lim
N→∞

p0 =
α− e2µ

2

+ αe2µ
2

α− 1 + αe2µ2

This is strictly between 0 and 1 if 1−α
α

< e−2µ2

, which follows from the condition in Lemma
6.
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