NJIKE, ARNOLD (2019): Import processing zones, tools for regional integration? The case of the free trade zone of Manaus (Brazil).
Preview |
PDF
MPRA_paper_97652.pdf Download (2MB) | Preview |
Abstract
Characterised by low-quality transport infrastructures and located quite far from the country economic centre, the Amazonian region in Brazil was almost wholly disconnected from the rest of the country for several decades. In conjunction with other factors, this motivated the creation of a Free Trade Zone in the region by Brazilian authorities to foster economic linkages with the country’s other states. We examine in this article whether this challenging goal of connecting an isolated region marked by lowquality transport infrastructures to a distant economic centre has been accomplished and if the Free Trade Zone (FTZ) has played a role in the process. Using a gravity model to assess each Brazilian state trade performance and level of trade costs, we found that the two entities representing the state of Amazonas (Manaus where the Free Trade Zone is implanted and the rest of Amazonas) were among the most effective intra-national exporters in Brazil in 2008 despite facing the highest level of trade costs in the country. These apparently counter-intuitive findings indicate a potentially significant role of the FTZ in this process of integration.
Item Type: | MPRA Paper |
---|---|
Original Title: | Import processing zones, tools for regional integration? The case of the free trade zone of Manaus (Brazil) |
Language: | English |
Keywords: | stochastic frontier analysis, regional integration, trade costs, Import processing zones |
Subjects: | F - International Economics > F1 - Trade > F15 - Economic Integration |
Item ID: | 97652 |
Depositing User: | M. ARNOLD NJIKE |
Date Deposited: | 18 Dec 2019 12:23 |
Last Modified: | 18 Dec 2019 12:23 |
References: | Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. journal of Econometrics, 6(1), 21-37. Anderson, J. E. (1979). A theoretical foundation for the gravity equation. The American Economic Review, 69(1), 106-116. Anderson, J. E., & Van Wincoop, E. (2003). Gravity with gravitas: a solution to the border puzzle. the american economic review, 93(1), 170-192. Baldwin, R., & Taglioni, D. (2006). Gravity for dummies and dummies for gravity equations (No. w12516). National Bureau of Economic Research. Battese, G.E., & Coelli, T. J. (1988). Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. Journal of econometrics, 38(3), 387-399. Bergstrand, Jeffrey H. "The generalized gravity equation, monopolistic competition, and the factor-proportions theory in international trade." The review of economics and statistics (1989): 143-153. Buys, P., Deichmann, U., & Wheeler, D. (2010). Road network upgrading and overland trade expansion in Sub-Saharan Africa. Journal of African Economies, 19(3), 399-432. Caudill, S. B., Ford, J. M., & Gropper, D. M. (1995). Frontier estimation and firm-specific inefficiency measures in the presence of heteroscedasticity. Journal of Business & Economic Statistics, 13(1), 105-111. Combes, P. P., Lafourcade, M., & Mayer, T. (2005). The trade-creating effects of business and social networks: evidence from France. Journal of international Economics, 66(1), 1-29. Costinot, A., & Rodríguez-Clare, A. (2014). Trade theory with numbers: Quantifying the consequences of globalization. In Handbook of international economics (Vol. 4, pp. 197-261). Elsevier. Daumal, M., & Zignago, S. (2010). Measure and determinants of border effects of Brazilian states. Papers in Regional Science, 89(4), 735-758. De Benedictis, L., & Vicarelli, C. (2005). Trade potentials in gravity panel data models. The BE Journal of Economic Analysis & Policy, 5(1). Egger, P. (2002). An econometric view on the estimation of gravity models and the calculation of trade potentials. The World Economy, 25(2), 297-312. Fally, T. (2015). Structural gravity and fixed effects. Journal of International Economics, 97(1), 76-85. Farole, T., & Akinci, G. (Eds.). (2011). Special economic zones: progress, emerging challenges, and future directions. World Bank Publications. Ferreira, N. (1990). La zone franche de Manaus, l’échec régional d’une industrialisation réussie. Governo do Estado do Amazonas. (2008). Balanço geral do Estado. Governo do Estado do Amazonas. Governo do Estado do Para. (2008). Balanço geral do Estado. Governo do Estado do Para. Guilhoto, J. J., & Filho, U. A. (2010). Estimação da Matriz Insumo-Produto Utilizando Dados Preliminares das Contas Nacionais: Aplicação e Análise de Indicadores Econômicos para o Brasil em 2005. Economia & Tecnologia. UFPR/TECPAR, 6(23), pp. 53-62. Head, K., & Mayer, T. (2014). Gravity Equations: Workhorse, Toolkit, and Cookbook, Ch. 3 in Handbook of International Economics, Gopinath, G, E. Helpman and K. Rogoff (Eds), Vol. 4, 131-95. Johansson, H., & Nilsson, L. (1997). Export processing zones as catalysts. World Development, 25(12), 2115-2128. Jondrow, J., Lovell, C. K., Materov, I. S., & Schmidt, P. (1982). On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of econometrics, 19(2-3), 233-238. Kang, H., & Fratianni, M. U. (2006). International trade efficiency, the gravity equation, and the stochastic frontier. Silva, J. S., & Tenreyro, S. (2006). The log of gravity. The Review of Economics and statistics, 88(4), 641-658. Kumbhakar, S. C., & Lovell, C. A. (2000). Knox (2000) Stochastic Frontier Analysis. Kumbhakar, S. C., Wang, H., & Horncastle, A. P. (2015). A Practitioner's Guide to Stochastic Frontier Analysis Using Stata. Cambridge University Press. Limao, N., & Venables, A. J. (2001). Infrastructure, geographical disadvantage, transport costs, and trade. The World Bank Economic Review, 15(3), 451-479. Madani, D. (1999). A review of the role and impact of export processing zones (Vol. 2238). World Bank Publications. Meeusen, W., & Van den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas production functions with composed error. International economic review, 435-444. Parmeter, C. F., & Kumbhakar, S. C. (2014). Efficiency analysis: a primer on recent advances. Foundations and Trends® in Econometrics, 7(3–4), 191-385. Ravishankar, G., & Stack, M. M. (2014). The Gravity Model and Trade Efficiency: A Stochastic Frontier Analysis of Eastern European Countries' Potential Trade. The World Economy, 37(5), 690-704. Schmidt, P., & Lin, T. F. (1984). Simple tests of alternative specifications in stochastic frontier models. Journal of Econometrics, 24(3), 349-361. Venables, A. J., & Redding, S. (2000). Economic Geography and International Inequality. Center for Economic Policy Research, Discussion Paper No, 2568. Xu, K. (2015). Why Are Agricultural Goods Not Traded More Intensively: High Trade Costs or Low Productivity Variation? The World Economy, 38(11), 1722-1743. Yücer, A., Guilhoto, J., & Siroën, J. M. (2014). Internal and International Vertical Specialization of Brazilian states–An Input-Output analysis. Revue d'économie politique, 124(4), 599-612. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/97652 |