
Munich Personal RePEc Archive

One Lab, Two Firms, Many Possibilities:

on RD outsourcing in the

biopharmaceutical industry

Billette de Villemeur, Etienne and Versaevel, Bruno

2019

Online at https://mpra.ub.uni-muenchen.de/97822/

MPRA Paper No. 97822, posted 01 Jan 2020 04:20 UTC



One Lab, Two Firms, Many Possibilities:

on R&D outsourcing in the biopharmaceutical industry∗

Etienne Billette de Villemeur† Bruno Versaevel‡

December 2019

(A shorter version of this paper is published in the Journal of Health Economics (2019)

https://doi.org/10.1016/j.jhealeco.2019.01.002)

Abstract

We draw from documented characteristics of the biopharmaceutical industry to construct a

model where two firms can choose to outsource R&D to an external unit, and/or engage in in-

ternal R&D, before competing in a final market. We investigate the distribution of profits among

market participants, and the incentives to coordinate outsourcing activities or to integrate R&D

and production. Consistent with the empirical evidence, we find that the sign and magnitude of

an aggregate measure of direct (inter-firm) and indirect (through the external unit) technological

externalities drives the distribution of industry profits, with higher returns to the external unit

when involved in development (clinical trials) than in early-stage research (drug discovery). In

the latter case, the delinkage of investment incentives from industry value, together with the abil-

ity of firms to transfer risks to the external unit, imply a vulnerability of early-stage investors’

returns to negative shocks, and the likely abandonment of projects with economic and medical

value. We also find that competition in the equity market makes a buyout by one of the two firms

more profitable to a research biotech than to a clinical services unit, and can stimulate early-stage

investments. However, this long-term incentive can be minimal, notably if the superior efficiency

of outsourced operations originates from economies of scope that can hardly be exploited when

a firm takes control of the external unit exclusively for itself. R&D outsourcing thus does not al-

ways qualify as a relevant pathway to address the declining productivity in innovation that has

characterized the industry over several decades.
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1 Introduction

A decline in R&D (research and development) productivity has been observed in the biopharmaceu-

tical industry over several decades (Munos, 2009; Pammolli et al., 2011). While the number of new

molecular entities and biologics that are approved annually by the US Food and Drug Administra-

tion (FDA) has remained around the same level since 1950, when measured per billion US dollars

spent on R&D this number has halved roughly every 9 years (Scannell et al., 2012). The scale of

the productivity problem can be gauged by considering changes in the average full cost estimate of

bringing a new compound to the market. This estimate is $451 million in DiMasi et al. (1991), $1,031

million in DiMasi et al. (2003), and $2,558 million in DiMasi et al. (2016).1

There is also evidence that pharmaceutical companies that engage in internal R&D increasingly

outsource specific tasks: “The global drug discovery outsourcing market was USD 14.9 billion (2014)

and is expected to reach USD 25 billion by 2018, while the market for CRO [contract research organiza-

tion]-conducted clinical trials was USD 23.1 billion (2014) and is expected to increase to USD 35.8 bil-

lion by 2020 ”(Schuhmacher et al., 2016, p. 8). It is believed in the industry that R&D outsourcing can

reduce costs by increasing efficiency in the discovery and testing steps toward new medicines (e.g.,

Taylor et al., 2016; Sancheti et al., 2018). On the demand side of the R&D market, the tasks that phar-

maceutical companies choose to contract out cover a large range of activities, including target vali-

dation, genetic engineering, chemical synthesis, compound screening, lead compounds evaluation,

preclinical studies, and clinical (in-human) trials. On the supply side, science-based biotech firms

specialize in early-stage research activities for the discovery of new chemical or biological molecules,

while CROs deliver later-stage development services for the safety and efficacy assessment of drug

or vaccine candidates.

Despite the observed decline in R&D productivity, as gross margins in medication markets have

evolved in parallel with R&D spending, the net profit returns in the biopharmaceutical industry

have remained persistently high at the aggregated level since the early 1960s (Scherer, 2001, 2010).

However, the average profitability of biotech units that specialize in the discovery of new treatments

1Here we refer to studies based on the same methodology to estimate costs, which include out-of-pocket R&D costs
and time cost (i.e., cost of capital). The estimates in DiMasi et al. (1991, 2003) have been updated to US$ 2011 prices in
Mestre-Ferrandiz et al. (2012), and the one in DiMasi et al. (2016) is in 2013 prices. The three estimates are based on
compound-level data, with initial human testing that occurred during the periods 1970-1982, 1983-1994, and 1995-2007,
respectively.
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or preventives has remained low since the emergence of genetic engineering in the 1970s (Pisano,

2006a, 2010). Biotech firms also face greater financial risk and are more sensitive to policy shocks

that affect expected future profitability than the average large pharmaceutical company (Golec and

Vernon, 2009). A recent empirical analysis of a comprehensive sample of 1,066 companies in the pe-

riod 1930-2015 confirms these observations by disaggregating the financial performance across the

pharmaceutical and biotech subsectors: “[o]ur empirical results show that investments in the phar-

maceutical industry have outperformed the broader stock market over a long period of time, whereas

investments in the biotech industry have underperformed the market” (Thakor et al., 2017, p. 1154),

and the performance differential appears especially pronounced after 2001. Moreover, by decompos-

ing the risk of the pharma and biotech portfolios into factors arising from general economic condi-

tions (systematic risk) and factors that are unique to the individual company or project (idiosyncratic

risk), it is found that the majority of the total risk for the pharmaceutical subsector is of the systematic

type while, in contrast, “the biotech portfolio has both systematic risk and idiosyncratic risk, with a

much higher idiosyncratic risk than in the pharma portfolio” (p. 1153). Moreover, the systematic

risk in biotech firms is as large as – and in some periods can even be substantially higher than –

that of the pharma companies. The latter empirical analysis does not include the subsector of CROs

involved in the clinical assessment of drug or vaccine candidates. For these organizations, business

information abounds that describes more favourable financial conditions, such as “high visibility of

revenues, excess cash generation, strong balance sheets and limited exposure to a number of risks

that commonly affect biopharma companies ...” (Bali et al., 2013, p. 3). As a consequence, unlike

biotech firms, “CROs have historically traded at a 21% premium to the S&P 500 over the past 14

years” (Wilson et al., 2016, p. 41).

How does the distribution of industry profits among pharma companies, biotech firms, and

CROs, relate to the functioning of the R&D market? Can technological characteristics of contracted-

out operations explain the low average profitability of biotech units, and the higher financial returns

of CROs? Are the risks inherent to discovery and clinical development activities mitigated by out-

sourcing contracts? What are the consequences for early-stage investment incentives? In order to an-

swer these questions, we draw on documented characteristics of the biopharmaceutical industry to

construct a model in which a for-profit upstream external unit (e.g., a biotech startup, or a contract re-

search organization) conducts specific R&D tasks as solicited non-cooperatively by two downstream

firms (big pharma), which also run R&D operations internally before competing in a final market.
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The external unit interacts with the two firms by responding to their contract offers, and can choose

to serve both firms, only one, or none. The firms can substitute internal resources for some or all of

the external unit’s operations, and their contract offers reflect multi-stage strategic interactions in the

intermediate R&D market and in the final product market. Overall, the formal analysis leads to new

insights on the functioning of R&D outsourcing and its implications for biopharmaceutical firms and

their external partners, with strong and intelligible connections to the recent empirical evidence on

the relation between contracted-out and in-house technological activities, on the nature of knowl-

edge externalities in discovery and (distinctively) clinical development, and on merger activity in the

equity market.

More specifically, our main results establish simple conditions on the model primitives for the

total equilibrium R&D benefits to be either fully appropriated by the two firms, or partially retained

by the external unit. These conditions, which can explain the persistently low average profitability

of biotech firms, relate to indirect and direct technological externalities. There are indirect techno-

logical externalities if the cost of R&D, as conducted by the external unit for the two firms, reflects

economies or diseconomies of scope. There are direct technological externalities if some of the knowl-

edge received or produced by a firm impacts the gross profit of its competitor. We connect the sign

and magnitude of these externalities with the distribution of profits among participants in the inter-

mediate market for R&D.

Situations of positive indirect (through the external unit) and direct (inter-firm) externalities cor-

respond mainly to early-stage discovery activities, in which biotech units are typically involved, and

where economies of scope across research projects and significant inter-firm knowledge spillovers

have been evidenced in the empirical literature (Henderson and Cockburn, 1996).2 In the theoretical

context of our model, we find that the external unit exactly breaks even, and hence investors have

no positive incentive to engage financial resources, precisely in circumstances where outsourcing the

tasks of the most fundamental nature can reduce the costs of discovering new medicines. We also

demonstrate that downstream firms can use risk-proof contract offers in order to transfer – at least

partly – the burden of unfavorable realizations of uncertainty to the external unit, via adjusted pay-

ments. With an expected payoff at the upstream stage equal to zero, an unfavorable realization of

uncertainty then implies a negative return, and thus possibly leads the external unit to shut down,

2In a survey, Hernandez-Villafuerte et al. (2017) observe that, although the evidence is mixed, in biomedical and health
research the literature more often points to the existence of positive economies of scope than diseconomies.
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although its activities generate a positive – and possibly very high – industry profit. This (interme-

diate) market failure outcome suggests that protection measures for the external unit (e.g., a lower

bound to milestone payments in case of adverse events) can be necessary to avoid the abandonment

of socially valuable research projects.

However, in our model, when an aggregate measure of technological externalities is negative,

the external unit can appropriate a positive share of total profits that can be derived analytically. In

that case the downstream firms earn only their marginal contribution to the industry value, and the

payoff to the external unit depends on the magnitude of externalities. This situation is consistent with

the empirical studies that identify diseconomies of scope and nonexistent spillovers in the late-phase

clinical trials of candidate drugs (Danzon et al. 2005; Macher and Boerner, 2006), such as conducted

by specialized CROs. Then the positive profit to the external unit is an effect of competition between

the contract offers of the two firms for the orientation of R&D resources toward specific needs. The

intensity of that competition depends on the nature of R&D activities – as conducted by the external

unit and by the two firms – and then on the effect of these activities on downstream cost and demand

characteristics, which in the end also impact final market interactions.

We also connect the technological conditions that drive the distribution of R&D benefits to the

firms’ incentives to participate in the equity market, where big pharma companies acquire special-

ized innovative units involved in promising research or clinical development programs. For exam-

ple, in the oncology domain, AbbVie agreed to buy Pharmacyclics for $21 billion in 2015, and Pfizer

acquired Medivation for $14 billion in 2016. Such acquisitions, which substitute for contractual out-

sourcing relations, are viewed by industry leaders as another response to the declining R&D produc-

tivity problem (Comanor and Scherer, 2013). Still the high transaction prices observed in the equity

market suggest that pharmaceutical firms pay more for R&D by acquiring an external unit than by

contracting with it as a partner, or by carrying out the R&D internally (Pisano, 2015). Acquisitions

usually conclude a bidding contest where several big pharma rivals compete for the same buyout

target,3 leading to equity valuations often considered excessive by industry analysts and experts.4

3For example, “[f]or several days, Johnson & Johnson was considered the most likely acquirer of Pharmacyclics ... But
AbbVie stepped in with a higher bid ...” (www.nytimes.com, March 5, 2015). In the same vein, “AstraZeneca Plc and Pfizer
Inc. are among firms considering a counteroffer for Medivation Inc., challenging Sanofi’s $9.3 billion bid for the company
...” (www.bloomberg.com, April 29, 2016).

4To illustrate, “AbbVie shares were down 3% in Thursday trading, as some investors and analysts expressed con-
cern the company was overpaying for Pharmacyclics ...” (www.wsj.com, May 5, 2015); and “GlaxoSmithKline CEO An-
drew Witty questioned the ... valuations of recent deals” ... and stated that “[s]ome of these valuations look stretched.”
(www.firstwordpharma.com, May 11, 2015).
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Two categories of cases are identified that depend on the ability of firms to bid or not for the

external unit, in relation to financial, managerial, or governance constraints of all kinds. If such

constraints are binding, either positive technological externalities dominate and the firms remain in-

dependent, or negative externalities lead the firms to choose to coordinate horizontally their R&D

outsourcing (as in Majewski, 2004). Otherwise, should the firms be unable to commit to not unilat-

erally considering vertical integration, one of them does acquire the external unit. Whether one or

the other firm is the acquirer occurs with equiprobability, independently of firm asymmetries. The

main outcome is that the competition for the control of the external unit leads to overbidding (an

issue discussed in Higgins and Rodriguez, 2006), although the premium can be nil in the case of

negative externalities (diseconomies of scope and inexistant inter-firm spillovers), as characteristic of

late-stage development tasks. We thus obtain that biotech founders engaged in early-stage research

– more than owners of contract research organizations – may reappropriate in the equity market part

of the value transferred to their sponsors in the R&D market.

The paper is organized as follows. Characteristics of the biopharmaceutical industry, in relation

to our analysis, are presented in Section 2. The theoretical and empirical literature is reviewed in

Section 3. The model specifications are introduced in Section 4. The distribution of industry profits

is characterized in Section 5, and incentives to shift to a more integrated structure are investigated in

Section 6. Final remarks are in Section 7. All proofs are relegated to the Appendix.

2 The Industry Context

We derive our theoretical results from model specifications that are carefully related to documented

characteristics of the biopharmaceutical “market for technology” (Arora et al., 2001, 2004a), where the

industry usually divides research and development activities into two sets. The early-stage research

(“R”) consists of the discovery of new chemical compounds, vaccine candidates, or other biologics.

The later-stage development (“D”) tasks aim at assessing the safety and efficacy of the therapeutic or

prophylactic properties of a candidate medicine on increasingly large populations of individuals.

Outsourced R&D activities include early-stage research in the biotechnology field, where from

the early years onward, “[b]ecause different commercial products were based on similar basic tech-

nologies, the costs ... could be shared by clients” (Pisano, 1991, p. 241) and then “[v]irtually every
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new entrant ... formed at least one, and usually several, contractual relationships with established

pharmaceutical ... companies” (Pisano, 2006a, p. 87).5 A historical example involves the pioneer-

ing biotech firm Genentech, which started collaborations with Ely Lilly in 1978 for the synthesis of

human insulin, and with Hoffman-LaRoche the same year for the synthesis of interferons. A more

recent example involves CureVac, which contracted with Crucell (a Johnson & Johnson company) in

2013, and with Sanofi Pasteur in 2014, for the funding of R&D operations toward prophylactic vac-

cines. Another recent example involves Moderna Therapeutics, which partnered with AstraZeneca

in 2016, and with Merck a few months later, for the co-discovery and development of RNA-based

candidates for the treatment or prevention of a range of cancers. In our model, accordingly, an exter-

nal unit can serve up to two client firms simultaneously.6

Another important characteristic of the current market for biotechnology is that established phar-

maceutical firms do not only give a biotech firm (external unit) access to finance and to manufactur-

ing or marketing resources, they also operate internal biotechnology functions. The situation was

different when the biotechnology market emerged in the late 1970s. At that time there was a clear

dichotomy in the R&D focus of suppliers and buyers. On the supply side, a typical new biotech

firm used advances in biological sciences – e.g., recombinant DNA technology – for the design of

a therapeutic agent. On the demand side, the established pharmaceutical firms, whose technolog-

ical competence focused on the random screening of compounds against disease targets, procured

research in the market for biotechnology before engaging in clinical development. Since then, the

largest pharmaceutical firms have acquired capabilities in cell and molecular biology (Galambos and

Sturchio, 1998; Rydzewski, 2008), so that the dichotomy has eroded: “[e]stablished firms have em-

braced biological approaches, including genomics, to drug discovery, while ‘biotech firms’ employ

chemistry” (Pisano, 2006a; p. 17).

Outsourced R&D also relates to late-stage development activities. Once a new compound, or

a candidate vaccine, has been discovered, and tested in animal models, it must go through clinical

trials conducted on human subjects. These trials need to produce evidence of safety and efficacy, as

required for regulatory approval by government agencies (e.g., the FDA) before market introduction.

5According to Higgins (2007), who uses a large data set of alliances in the biopharmaceutical industry, from 1994 to 2001
each biotechnology firm had on average six alliance partnerships with large pharmaceutical firms.

6Although the biotech and CRO industries are highly fragmented (see Argyres and Liebeskind, 2002, and Getz, 2007,
respectively), the specification that only one external unit faces two client firms is consistent with the observation that
several big pharma companies usually compete for a differentiated technology or expertise as specifically supplied by a
given entity among several others (a case of monopolistic competition).
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There are three phases that involve increasingly large samples of subjects (from a few dozen in phase

1 to, in case of success, several hundred in phase 2, and then to several thousand subjects in phase

3). As in the case of biotechs, a CRO that supplies clinical trial services can enter in simultaneous

contractual relationships with several clients. For example, Parexel entered in 2011 into multi-year

contractual agreements with both Merck and Pfizer. The contracting firms do not restrict their strate-

gies to either make or buy clinical trial services as “[f]or a given study, sponsors can choose to retain

some functions in house while contracting out others” (Azoulay, 2004; p. 1594). By outsourcing the

latter tasks the firms attempt to benefit from economies of scale and scope (Macher and Boerner,

2006), and thereby to reduce their clinical trial costs, which are estimated at around US$220 million

for a new drug (Mestre-Ferrandiz, Sussex, and Towse, 2012).7

In our model, the respective efforts of the external unit and its client firms are endogenous, so

that the vertical division of R&D activities can occur at any point between total outsourcing and full

integration. This specification is consistent with the observation that the collaboration of big pharma

firms with biotech units or clinical trial providers creates joint inputs across the two sides of the

contractual relationship, with an exact balance that might vary significantly on a case by case basis.

The large pharmaceutical firms on the demand side of the intermediate market for technology

are likely to design the contracts that organize the relationship with an external supplier of discovery

or clinical trial services. This is explained by the fact that, when internal resources are available, the

capacity of established pharmaceutical firms to “go for it alone” – though possibly at a higher cost

– increases their bargaining power (Arora et al., 2004b). Other factors include the severe financial

constraints faced by specialized biotech units (Lerner and Merges, 1998; Golec and Vernon, 2009),

together with a high rate of entry on the fragmented supply side (Rothaermel, 2001; Argyres and

Liebeskind, 2002) while incumbents on the demand side remain highly concentrated. Although the

latter structural features describe a “buyer’s market”, we show that they cannot fully explain the per-

sistently low average profitability of biotech firms since the late 1970s (Pisano, 2006a, 2010). Indeed,

in the analysis that follows we identify circumstances where the external unit appropriates the total

industry profit, for any probability of success, with client firms that behave as principals and are no

less informed than the common independent contractor.

7The out-of-pocket cost of clinical testing depends on the number of patients required to collect sufficient data as de-
manded from regulatory agencies. It is even higher in the case of preventive vaccine candidates, as the size of human
subject test samples is often larger than for drugs (Scherer, 2011; Keith et al., 2013).
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R&D contracts can incorporate complex clauses to fine tune the financial mechanism (equity par-

ticipation, milestone payments, licensing fees, royalties, ...)8 with the technology or services supplied

(or not) by the external unit to other client firms. Non-compete clauses delineate the know-how or

expertise that the external unit may or may not use with or provide to a third party, except as ex-

pressly notified.9 For example, in an early-stage agreement between the pharma company Glaxo and

the Canadian research unit BioChem, the latter “shall have the right to contract with third parties

for the performance of work, or the provision of consulting services, in connection with the spon-

sored research program, provided that Glaxo shall have the opportunity to review, comment on and

approve any such proposed contract prior to its execution”(p. 9).10 Other clauses modulate the pay-

ments received by the external unit from the pharma sponsor in connection to the technology that can

be supplied to a competitor. To illustrate, a research, development, and license agreement between

the pharma company Bristol-Myers Squibb (BMS) and the biotech Ligand Pharmaceuticals (Ligand)

stipulates that “[i]n the event that ... Ligand or a Ligand Affiliate, or a Third Party with whom Ligand

had collaborated with respect to the development of a Competing Product ... sell such Competing

Product in any country in the Territory in which BMS ... is then marketing a Product, ... then ... all

royalty rates payable by BMS in each such country shall be reduced by *** during the period that

both such products are marketed in such country”(pp. 27-28).11 Accordingly, in our model each firm

can condition its payment on the verifiable operations conducted inside the external unit, including

those that relate to a third party.12 This assumption does not mean that a technology received from

the external unit cannot partly benefit a competitor. Unsolicited and non-contractible knowledge

spillovers, both through the external unit and across firms, are introduced in the analysis.13

8In practice, biotech firms typically receive an upfront fee, milestone payments conditioned on the occurrence of a pre-
determined event, and sales-based royalties if their intellectual property is in-licensed by the downstream partner, while
CROs usually receive a negotiated fee for development services.

9Non-compete clauses typically include a “right of first refusal” (Folta, 1998; Hagedoorn and Hesen, 2007) that allows
a firm to purchase the rights – or only a selection – to R&D outcomes before such an option is offered to other firms.

10The features of this contractual agreement, dated Jan. 1990, are discussed in Robinson and Stuart (2000).
11The contract, dated January 1st 1990, is available at: http://contracts.onecle.com/alpha, where the signs *** refer to

undisclosed confidential information.
12The common agency model in Section 4 is thus of the public kind (Martimort, 2007). This specification, in line with the

stylized facts presented in section 2, differs from most papers that focus on consumer goods markets where less sophis-
ticated non-compete clauses, hardly verifiable activities, and various antitrust regulations can justify the assumption that
a principal can contract exclusively on what it specifically receives from the agent, with no possible connection between
payments and the other activities of the agent that benefit a competitor (e.g., Bernheim and Whinston, 1998).

13In Cohen et al. (2000) survey data show that firms in the pharmaceutical domain rely more on patents as a protection
mechanism than in any other industries. Patenting is an important source of technological spillovers, as it “involves a
leakage of a certain portion of the knowledge to the public in the process of filing a patent application”(Bhattacharya and
Guriev, 2006, p. 1114).
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Circumstances have been studied in the economics literature where a research unit can (re)sell se-

cretly its technology, and is more knowledgeable than its downstream clients.14 In the biopharmaceu-

tical context, secret reselling is unlikely when biotech firms and clinical trial suppliers alike enhance

their reputation by communicating on their contractual partners and on the content of agreements.15

It can also be the case that pharma firms with internal R&D operations are more informed on the

technological potential of a research program than an external unit engaged in the “least intimate”

form of fee-for-service agreement (Pisano, 2006a, p. 108), for example to perform systematic tests on a

compounds library, or than a CRO involved in the most “routinized part” (Shuchman, 2007, p. 1367)

of clinical trials services. So in our theoretical framework the two firms are not less competent than

the external unit, and are not threatened by some form of misbehavior. Our model specifications

are rather motivated by the observation that, in science-based businesses, “[p]rofound and persis-

tent uncertainty, rooted in the limited knowledge of human biological systems and processes, makes

drug R&D highly risky” (Pisano, 2006b; p. 119) to all undertakings. We thus focus on situations of

“symmetric uncertainties” (Arora and Gambardella, 2010, p. 788), where all parties have the same

information on the distribution of a technological parameter, with the state of nature being unknown

at the contracting stage.

3 The Related Literature

3.1 The Theory

Our analysis relates to theoretical contributions that adopt a general approach, with no specific refer-

ence to the biopharmaceutical domain, as in the paper by Aghion and Tirole (1994) who compare the

relative efficiency of separating or integrating an external research unit and a firm. In their model the

two entities have fully distinct roles, with an exclusive division of R and (separately) D tasks. This

setting describes complementary activities, since only the external unit can produce an innovation,

and only the firm can develop it into a marketable product.16 A contract specifies ex ante whether

14For example, in Bhattacharya and Guriev (2006) an external unit can sell its technology to one of two client firms, then
secretly to a competitor. In Bhattacharya and Guriev (2013) the external unit also chooses a non-verifiable research effort
that conditions the value of the technology needed for downstream firms to innovate.

15Moreover, “the identities of partners and descriptions of alliances figure prominently in biotechnology companies’
securities registration statements” when an initial public offering is in preparation (Stuart et al., 1999, p. 327).

16In the terminology of Mowery (1983), complementarity here can be seen as “structural”, in that in-house and external
R&D operations are not substitutable by assumption.
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R and D tasks will occur under separation or integration, the license fee received by the research

unit, and the firm’s investment level. It is found that separation – a case of research outsourcing – is

more efficient (i.e., joint expected value is maximized) than integration when the marginal efficiency

of the research unit’s effort is large enough relative to the one of the firm’s investment. However, if

the firm writes the contract, and the external unit is financially constrained, then integration can be

inefficiently retained in equilibrium, with no value earned by the external unit.

In Anton and Yao (1994) the value of the new technology does not depend on the level of either R

(upstream) or D (downstream), so the focus is on profit distribution, not on efficiency. There are two

possible client firms, approached sequentially by the external research unit, and which can proceed

to the development stage before competing in a final market. Because there is no patent protection,

if the external unit discloses its discovery to one of the two firms, then that firm can imitate it at no

cost and appropriate all innovation benefits. However, a firm can choose not to imitate but instead

pay for the technology to incentivize the external unit not to contract subsequently with the other

firm. The main result is that provided the external unit’s ex ante wealth is sufficiently limited, it can

appropriate a share of the value of its discovery by first disclosing it to one of the two firms to get a

contract offer from that informed client, without transferring any knowledge to the other firm.

In our formal setting, both the value generated by technological operations and its distribution

among players are endogenous. As in Aghion and Tirole (1994), a firm can outsource research efforts

to an external unit and simultaneously invest in internal development operations, although it can

also possibly rely exclusively on internal resources, in which case all R&D activities are conducted

downstream. As in Anton and Yao (1994), the external unit can supply new technology to two client

firms that can benefit from (or be penalized by) knowledge externalities, although in our model the

two firms interact simultaneously in the market for technology.

Bhattacharya and Guriev (2006, 2013) combine some of the specifications of the seminal models

by Aghion and Tirole (1994) and Anton and Yao (1994). Again the output of the external research unit

is needed for innovation, along with the endogenous development efforts chosen non-cooperatively

by two client firms, who then compete in the final market. The external unit can decide to sell its

technology to one of the two firms, then secretly to the competitor. Although selling twice means

additional revenue, it also reduces the ex-post final-market value to the first firm, and thereby induces

a lower payment from the latter to the research unit. Bhattacharya and Guriev (2006) concentrate on
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the development choices of client firms (the R part of R&D is not considered). For a given level of the

external unit’s output, the parties can opt for two alternative licensing modes. In the “open” mode,

a patent describes the new technology, that the external unit can then license to one of the two firms

exclusively in exchange for a lump sum transfer, with some knowledge that leaks to the competitor.

In the “closed” mode, the external unit discloses the non-patented technology to one of the firms in

exchange for a share of final-market revenues, which must be sufficiently high for the external unit

not to resell secretly. The latter mode occurs more frequently, with no reselling to the competitor, if

the external unit’s output level is high and the technological leakage with patenting is substantial.

In Bhattacharya and Guriev (2013) the external unit chooses ex ante a non-verifiable research effort

that conditions the value of its technological output (the R part of R&D is thus reintroduced, with

no possible reallocation of the two types of activities). Then integration with one of the firms, plus

closed governance (no patenting, exclusive transfer to the acquirer, sharing of ex-post revenues), can

result in a higher ex ante effort than separation.

Although we depart from the assumption that technology reselling is secret and not verifiable, we

share with Bhattacharya and Guriev (2006, 2013) the specification that industry efficiency depends

on endogenous choices by the external unit and/or two firms that also interact in a final market.

In another set of papers, R and D operations are not considered separately, but are viewed as a

single activity that is fully performed either by an external unit or, exclusively so, internally by a firm,

so the external and internal R&D activities are substitutable.

Both Lai, Riezman, and Wang (2009) and Ho (2009) assumed that a single client firm (a princi-

pal) offers a contract to the external unit (an agent), although some technological information can

be leaked subsequently to a competitor, a decision that cannot be verified by a Court. In Lai, Riez-

man, and Wang (2009) the firm chooses a lump-sum amount plus a revenue percentage to be paid

in exchange for a specific cost-reducing technology. In the process some information on the firm’s

operating environment is learnt by the external unit, which can then decide to leak that knowledge in

secret to the firm’s competitor. When writing the contract, the firm trades-off between the benefit of

the external unit’s superior R&D efficiency and the revenue loss caused by the leakage. For some pa-

rameter values, the firm finds it profitable to externalize R&D with a lump-sum contract even though

this allows the leakage to occur.

In Ho (2009) the external unit can supply a cost-reducing technology with some non-zero prob-
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ability by incurring a fixed cost. The outsourcing firm commits contractually to transfer a payment

that is a function of the reported success of the R&D process. Both the external unit’s decision to in-

vest and the result of its R&D effort (success/failure) are private information. After the external unit

accepts the contract and incurs the fixed cost, if successful then it can secretly offer the technology

to an ex ante symmetric final-market competitor of the principal, possibly for a higher total revenue,

before reporting the failure to the outsourcing firm. As a main result, any contract that incentivizes

the external unit not to leak the technology necessarily results in a lower net profit to the principal

than the status quo (no outsourcing).

R&D operations are also formalized as a single activity in Vencatachellum and Versaevel (2009),

but the model departs from the possible secret recontracting assumption, and the two firms simul-

taneously offer competing contracts to the external unit for the delivery of specific technological

services (a common agency situation). An observable “active” leakage occurs when the contracts

incentivize the external unit to serve both firms, together with a “passive” (unsolicited) leakage cap-

tured by an inter-firm spillover parameter. With positive economies of scope, but limited spillovers,

the two firms receive R&D and earn higher equilibrium profits than by relying on internal resources.

In Spulber (2013), a set of competing external inventors engage in uncertain R&D projects for a

new production technology (a unit cost of production drawn independently of other inventors from

a given distribution). They compete in the market for technology to sell their invention to a set of

firms, which compete in a final market. After the R&D takes place upstream, the firms observe the in-

ventions together with their respective inventors’ two-part royalty offers, and simultaneously make

adoption and product pricing decisions. In equilibrium, the inventor with the most efficient process

technology charges a combination of lump-sum and per-unit royalties to the firms, which all adopt

the technology. It is found that competitive entry of inventors generates more R&D than a multi-

project monopoly inventor, and that an increase in the number of downstream firms (without free

entry) and a lower entry cost (when there is free entry) both increase entry of competing inventors.

When the downstream firms vertically integrate R&D and production operations, and agree to share

the best invention obtained from all projects before competing in prices in the final market, the R&D

activity is suboptimal.

Allain, Henry, and Kyle (2015) adopt another approach with separated R and D periods. An

external research unit, which generates new technology of uncertain value, faces a set of potential
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client firms that compete in an auction for the exclusive benefit of the technology, and again possibly

interact in a final market. Consistently with the biopharmaceutical context (the theoretical model is

motivated by an empirical analysis with data collected in that industry), there is full patent protec-

tion, so that no secret technology transfer occurs. A development phase is needed to establish the

value of the innovation. The research unit can decide either to engage in it, at a given high cost, before

selling the new technology with known value, or to first sell the innovation before its value is known

and let a firm proceed to the development phase, at a lower cost, so the external and internal devel-

opment efforts are substitutable. When the research unit is ex ante more confident about the value

of the innovation than the firms, it chooses to develop it on its own for a higher expected benefit if

and only if its cost disadvantage is not too large. The latter situation is more likely if, following an

increase in the number of firms, the positive effect on the license fee resulting from the auction (more

bidders participate) dominates the negative effect on gross profits (more downstream competition).17

Our approach is complementary to the latter two recent papers. As in Spulber (2013), an appro-

priability problem may lead to integrate R&D and production vertically, and as in Allain et al. (2015)

the vertical division of labor in R&D operations is driven by the nature of competition among client

firms. A distinctive feature of our model is that the intensity of competition is a consequence of the

exact effects of external and internal technological operations on cost and demand conditions, not on

the number of downstream firms. We also share with Ho (2009) and Lai et al. (2009) the assumption

that the downstream firms write contract offers, to which the external unit responds, and which can

lead to multi-contracting. Moreover, in our model the firms condition their payments on a measure of

the external unit’s operations, as in Vencatachellum and Versaevel (2009). It follows that the external

unit’s operations are not conducted before the client firms’ choice of payment schemes, consistently

with contractual situations in the biopharmaceutical context. These payment schemes are the firms’

instruments that determine the equilibrium distribution of industry profit among contracting parties.

17Allain et al. (2015) also construct a large dataset on exclusive licensing deals and investigate the drivers of the decision,
by a research unit that has discovered a drug candidate, to proceed also to development operations. They find an inverted
U-shaped relation between the number of potential licensees and the probability that a research unit engages in the later
phases of clinical trials before licensing, instead of leaving the whole development process to its licensee.
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3.2 The Empirical Evidence

The endogeneity of the respective efforts of the external unit and its client firms, in our model, cap-

tures the observation that the distribution of tasks between a R&D supplier and its sponsors might

vary significantly on a case by case basis. Several empirical papers identify a number of factors that

cause this variation.

Arora and Gambardella (1990) use data on agreements that involve large chemical and/or phar-

maceutical producers. They establish that several types of linkages, including investments in the

capital stock of biotech companies and joint R&D with other producers, complement each other. In

a transaction costs approach, Pisano (1991) analyzes data on biotechnology projects that are either

the sole responsibility of an independent partner or fully conducted internally by a pharma firm.

Pisano finds that internal sourcing is more likely in the biotechnology product areas in which ex-

pertise is concentrated in fewer R&D suppliers. In an incomplete contracts perspective, Lerner and

Merges (1998) use a database of agreements between biotechnology suppliers and pharmaceutical

firms. They find support for the conjecture that the allocation of control rights to the R&D entity (e.g.,

right to manage clinical trials, to undertake process development, to terminate alliance, ...) increases

with its financial resources. The latter result justifies our specification that big pharma firms, which

have deeper pockets than biotech units and CROs, are those that write contracts in the intermediate

market for R&D.

Our formal approach of the circumstances in which contracted-out technology either stimulates

or reduces in-house operations connects also to other papers that characterize the interaction between

external and internal R&D activities in the biopharmaceutical industry. In an early contribution to

that literature, Arora and Gambardella (1994) use a sample of client firms in the biotech market, and

find support for the hypothesis that firms need internal know-how to evaluate alternative projects

and to use the technology more effectively. More recently, Belderbos, Kelchtermans and Leten (2010)

use panel data on the patenting and publication activities of large pharmaceutical firms and find that

the magnitude of the effect of external basic research exploitation is significantly greater if firms con-

duct more internal basic research. Hagedoorn and Wang (2012) also use a panel sample of incumbent

pharmaceutical firms, with the innovative output (the dependent variable) measured as the number

of annual biotechnology patents granted to these firms. They find that the level of internal R&D ex-

penditure drives the interactive effect between external and internal R&D strategies. Above (below) a
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threshold level of internal R&D investments, the marginal returns to internal R&D are higher (lower)

when new technology is sourced externally through alliances or acquisitions, which indicates com-

plementarity (substitutability). An ambiguous conclusion is also reached by Ceccagnoli, Higgins,

and Palermo (2014), who use another panel dataset from the pharmaceutical industry to estimate the

partial cross-derivative of an innovation production function (the output is the yearly stock of com-

pounds in a firm’s pipeline) with respect to external (in-licensing) and internal R&D expenditure.

Their results suggest that external and internal R&D are neither complements nor substitutes, and

that complementarity increases with a few drivers (e.g., prior licensing experience). Our first formal

proposition, in Section 5, accords with these empirical results.

Another set of papers use data collected at the firm level and at the level of individual R&D

projects in order to distinguish between economies of scale and economies of scope in the produc-

tion of intellectual property. The evidence depends on the nature of technological activities. Hender-

son and Cockburn (1996) find economies of scope and significant knowledge spillovers in early-stage

drug “discovery” tasks (those on with biotech units typically focus). Conversely, Danzon, Nicholson,

and Sousa Pereira (2005), and Macher and Boerner (2006), identify diseconomies of scope and nonex-

istent spillovers in the late-phase clinical trials of candidate medicines (the “development” activities

that are usually outsourced to specialized CROs). Our main theoretical propositions echo these con-

trasted empirical results, and show their relevance for explaining the distribution of industry profits

between an external unit and its downstream sponsors.

A few other recent papers point to the ability of client firms, in the biopharmaceutical industry, to

contractually control the behavior of external technology suppliers. Robinson and Stuart (2007) study

the features of early-stage (discovery) research contractual agreements, in which large firms sponsor

small biotech companies. They notably find that partners choose to contract for actions that might be

costly, or even impossible, to verify. A suggested interpretation is that a client firm can obtain broader

termination rights when provisions on unverifiable research decisions are included in a contract, and

thus enhance the ex ante incentives of the external research unit to uphold the contract. Higgins

(2007) analyzes R&D alliances between a firm and a biotech company. There is a milestone payment

structure in 90 percent of the contracts. Because they condition further financing on clearly identified

objectives, milestone payments protect the client firm from misbehavior. Lerner and Malmendier

(2010) examine agreements that involve a biotech firm as an R&D provider. Termination rights are
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assigned to the financing firm in 96 percent of the contracts, and can be coupled with the reversion

to the same firm of all intellectual property rights as generated through the contractual relationship.

Termination rights thus incentivize the subcontractor to remain focused on the objectives specified

in the agreement, and our model specifications are consistent with this conclusion.18

Another set of papers focuses on the drivers or implications of mergers and acquisitions in the

pharma industry. By using a sample of transactions that each involve a target biotech firm, Folta

(1998) finds support for the hypothesis that contractual agreements are used to defer acquisition of a

target R&D supplier and economize on the cost of committing resources to a technology with uncer-

tain value. Our choice to study first the profit distribution in a decentralized setting, before character-

izing incentives to integrate in the R&D market, is thus compatible with industry practice. Higgins

and Rodriguez (2006) examine the performance of acquisitions by established pharmaceutical firms

of smaller competitors and/or biotech units to understand the effect of R&D outsourcing acquisitions

on an individual firm’s R&D productivity. In their analysis, each acquiring firm had been involved,

on average, in four contractual relationships with the target prior to the acquisition. They notably

find that acquisitions supplement a firm’s internal R&D efforts, and that firms with greater R&D in-

tensity are more likely to engage in acquisitions. Danzon, Epstein, and Nicholson (2007) examine the

determinants and effects of a sample of operations that include the purchase by pharmaceutical firms

of an equity stake in biotech firms. They find in particular that financially strong firms are less likely

to be part of an acquisition, either as a target or as an acquirer. We use these findings to comment our

results in Section 6.

4 The Model

In this section we draw on the industry characteristics described above to construct a formal model.

There are two related research and development (R&D) stages in an intermediate market for tech-

nology, and a final product market. Upstream, a for-profit independent unit (hereafter, “the lab”)

conducts R&D activities. Downstream, two firms can outsource R&D to the lab, and/or also con-

duct in-house R&D operations, before competing in the final market where they supply substitutable

18In a model that precedes their empirical analysis, Lerner and Malmendier (2010) show that if the R&D supplier is not
financially constrained, the termination rights coupled with transfer payments can result in the same outcome as a simple
complete contract.
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products.

Information — The two risk-neutral firms (principals) know the strategies available to the other play-

ers and the related payoffs, while the risk-neutral lab (an agent) needs not know the downstream

cost and demand conditions. Technological uncertainty is described by a parameter θ ∈ Θ whose

distribution is known by all parties, with the state of nature being unknown ex-ante (at the contract-

ing stage, that is before the lab tests technological options) but observable and verifiable ex-post (so

that payments can be made contingent on it and the firms are committed to their contracts).19.

Profit functions — The non-negative external R&D levels, as chosen by the lab specifically for each firm,

are described by x = (x1, x2). The internal R&D levels and the final-market commercial strategies, as

non-cooperatively chosen by the firms, are described by y = (y1, y2) and z = (z1, z2), respectively.20

The lab’s net profit is

v0(x, θ) = t1(x, θ) + t2(x, θ)− f0(x, θ), (1)

where f0 is the lab’s cost, and ti is firm i’s transfer payment, both functions of x and θ. As a transfer

can include an upfront part, it can be rewritten as ti (x, θ) = ti + ki (x, θ), where the function ki

formalizes the fine tuning of each firm’s contingent transfer payment with the technology effectively

supplied by the lab (after uncertainty is realized), as made possible by complex non-compete clauses

and a well-functioning legal environment (see section 2).

Each firm i’s net profit is

vi(x, y, z, θ) = gi

(
xi + yi, xj, yj, z, θ

)
− fi (yi, θ)− ti (x, θ) , (2)

i, j = 1, 2, j 6= i, where fi is the firm-specific cost of generating yi internally, and gi is a gross profit

function. In the latter function, firm i’s external and internal R&D levels xi and yi are added as an ar-

gument, which formalizes the technological assumption that all R&D tasks can be a priori performed

either externally or internally. However, the respective equilibrium values are the outcome of distinct

decision processes that can result in external and internal efforts being substitutes or complements

(y∗i can be either decreasing or increasing in xi in Proposition 1, below). The competitor’s variables xj

and yj are arguments of the same function, allowing for technological spillovers received indirectly

19R&D contracts usually include provisions for dispute resolution and point to an external private arbitrager, or to a
specific Court, in case of litigation (e.g., Robinson and Stuart, 2007).

20The argument z can represent prices or quantities, indifferently, or refer to more elaborate competitive interactions.
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through the lab and directly from the competitor. The gross profit also depends on final-market non-

cooperative strategies, z. (Several examples are discussed below that adapt specific algebraic forms

from the R&D literature, with a focus on the effect of uncertainty in Examples 2 and 3.)

Timing — There are four stages, as follows:

(i) The two firms simultaneously and non-cooperatively choose a transfer function ti(x, θ) ≥ 0,

i = 1, 2, offered to the lab as a contract.

Each contract offer thus connects a payment to the lab’s chosen R&D levels for any possible state

of nature, and the specification that payments are non-negative formalizes the assumption that the

institutional environment allows the firms to reduce payments but not to impose penalty fees to the

lab in cases of unsuccesful outcomes. More specifically, in what follows, we assume that both ti and

ki (x, θ) are non-negative.

(ii) The lab accepts either both contract offers simultaneously, or only one, or none, and chooses

the firm-specific R&D levels x∗ that maximize its expected profit Eθ [v0 (x, θ)].

If accepted contracts include an upfront payment, the lab receives ti from each contracting firm.

At this stage the lab refuses all contracts if they imply a lower benefit than the reservation value

v0 = 0, and it takes only one of the two contracts if this implies a higher benefit than accepting the

two offers.21 Formally, for any given tj offered by firm j, the lab accepts firm i’s contract offer only if

Eθ [v0 (x
∗, θ)] ≥ sup

{

0, max
x

Eθ

[
tj (x, θ)− f0 (x, θ)

]}

, (3)

for some x∗ ≥ (0, 0), i, j = 1, 2, j 6= i. As the firms’ contract offers cannot be negative, in equilibrium

(3) is always exactly satisfied.22 This however does not imply that the equilibrium R&D levels and

transfer functions are symmetric, nor that payments are both positive. It can be the case that firm

i offers a “null” contract, where ti (x, θ) = 0, all (x, θ), and still receives technology, if for example

limiting inter-firm technological spillovers is prohibitively costly for the lab.

21As the lab (an agent) can choose to accept only a subset of contracts offered by the two firms (principals), this is a
“delegated common agency” model in the terminology introduced by Bernheim and Whinston (1986a).

22Should in equilibrium the for-profit lab contract exclusively with, say, firm 1, to deliver x̃ ∈ arg maxx Eθ [t1 (x, θ) −
f0 (x, θ)], for any non-negative contract offer t2 the lab would earn in expectation Eθ [t1 (x̃, θ) − f0 (x̃, θ)] < Eθ [t1 (x̃, θ) +
t2 (x̃, θ)− f0 (x̃, θ)], a contradiction, so (3) is always satisfied. Moreover, should the lab supply x̂ to earn the expected payoff
Eθ [t1 (x̂, θ) + t2 (x̂, θ)− f0 (x̂, θ)] > Eθ [t1 (x̃, θ)− f0 (x̃, θ)], then firm 2 would find it profitable to adapt its contract offer to
t′2 verifying Eθ [t

′
2 (x̂, θ)] = Eθ [t2 (x̂, θ)]− ϕ, where ϕ = Eθ [(t1 (x̂, θ) + t2 (x̂, θ)− f0 (x̂, θ))− (t1 (x̃, θ)− f0 (x̃, θ))], and hence

(3) holds with equality.
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(iii) Given the accepted contracts, and on the basis of their expected returns, the firms simultane-

ously and non-cooperatively choose their own internal R&D level yi ≥ 0.

Uncertainty realizes and the state of nature is revealed to all parties.

(iv) Given the realized state of nature, and the outcome of ex-ante chosen R&D levels, the firms

simultaneously and non-cooperatively choose their final-market commercial strategy zi (θ) ≥ 0.

The firms transfer their respective contingent payments ki (x, θ) = ti (x, θ)− ti to the lab.

The net profits to the lab and to each firm, after contingent payments have been transferred, are

derived from the following equilibrium concept.

Equilibrium concept — For any (x, y) and any realization of θ, henceforth we assume that (i) there exists

a unique final-market Nash equilibrium z∗(x, y, θ), and (ii) for any x, and given the distribution of θ,

there exists a unique internal-R&D stage Nash equilibrium y∗(x), so that we may introduce

g̃i (x, θ) = gi(xi + y∗i (x) , xj, y∗j (x) , z∗(x, y∗(x), θ), θ)− fi (y
∗
i (x), θ) ,

that is firm i’s concentrated profit net of internal R&D costs. Finally, for any given t = (t1, t2), and

again given the distribution of θ, we denote by X(t) the set of R&D choices that maximize the lab’s

profits in expectation, that is X(t) = arg maxx Eθ [v0 (x, θ)].

The following definitions are needed before introducing the solution concept:

(1) for any x ∈ X(ti, tj) and x′ ∈ X(t′i, tj), firm i’s transfer function ti is a best response to the other

firm’s tj if Eθ [g̃i (x, θ)− ti(x, θ)] ≥ Eθ [g̃i (x
′, θ)− t′i(x

′, θ)], all t′i;

(2) the transfer function ti is truthful relative to firm i’s payoff with xo if ti(x, θ) = sup
{

0, g̃i (x, θ)−

[g̃i (x
o, θ)− ti (x

o, θ)]
}

.23

The solution concept is the truthful subgame-perfect Nash equilibrium (TSPNE). The four-tuple

(t̃, x̃, ỹ, z̃) is a TSPNE if, for i, j = 1, 2, j 6= i: (i) z̃ = z∗(x̃, ỹ, θ); (ii) ỹ = y∗(x̃); (iii) x̃ ∈ X(t̃); (iv) t̃i is

a best response to t̃j; and (v) t̃i is truthful relative to firm i’s payoff with x̃. It follows that t̃i(x, θ) =

sup
{

0, g̃i(x, θ)− vi (x̃, ỹ, z̃, θ)
}

, where vi (x̃, ỹ, z̃, θ) = [g̃i(x̃, θ)− t̃i(x̃, θ)] is firm i’s equilibrium payoff

as a function of the realization of θ.

23When the gross profit g̃i(x, θ) exceeds the firm’s expected net profit at xo, that is g̃i(x
o, θ) − ti(x

o, θ), the difference
between ti(x, θ) and ti(x

o, θ) is equal to the difference between g̃i(x, θ) and g̃i(x
o, θ); otherwise the transfer ti(x, θ) is set

equal to zero. For each θ, on its positive part a truthful contract offer thus exactly reflects firm i’s valuation of x relative to
the value for xo.
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Truthfulness is a standard refinement in delegated common agency games, and two properties in

the theoretical literature offer a strong justification for using it (Bernheim and Whinston, 1986b; Laus-

sel and Le Breton, 2001; Martimort, 2007). A first property is that, for any set of transfer offers by any

of the two firms, there exists a truthful strategy in the other firm’s best-response correspondence. A

firm can thus restrict itself to truthful strategies at no cost. A second property is that, when firms

can communicate with each other, all truthful Nash equilibria are coalition-proof. Therefore, the two

firms’ joint net profits in a TSPNE are not lower than in any other subgame-perfect Nash equilib-

rium.24 The proofs of several propositions in Section 5 present the technical challenge of extending

fundamental results of this common agency literature to a context where firms not only interact as

principals in the intermediate market for external R&D, but also compete in internal technological

decisions and in final-market commercial strategies.25

Technological assumptions — The results in the next sections refer to properties of the lab’s and the two

firms’ expected costs f̂0 (x) = Eθ [ f0 (x, θ)] and f̂i (yi)) = Eθ [ fi (yi, θ)], i = 1, 2, which are (weakly)

increasing in their respective arguments, and to the firms’ expected gross profit26 ĝi

(
xi + yi, xj, yj

)
=

Eθ

[
gi(xi + yi, xj, yj, z∗(x, y, θ), θ)

]
, i, j = 1, 2, j 6= i. The latter expression is (weakly) increasing in

the firm’s own R&D levels received from the lab or sourced internally (formally ∂ĝi/∂si ≥ 0 where

si = xi + yi, i = 1, 2), but can be decreasing, or not, in the rival’s arguments xj and yj. In any case a

firm’s expected gross profit is (weakly) more impacted by its own R&D, as either purchased from the

lab or produced in-house, than by its rival’s arguments:

∂ĝi

∂xi
≥

∥
∥
∥
∥

∂ĝi

∂xj

∥
∥
∥
∥

, (4)

= ≤

∂ĝi

∂yi
≥

∥
∥
∥
∥

∂ĝi

∂yj

∥
∥
∥
∥

, (5)

i, j = 1, 2, j 6= i. The vertical comparison of the terms on the RHS of the inequality sign in (4)

24A Nash equilibrium is coalition-proof if it is robust to credible threats of deviations by any subset of principals (for
a formal definition see Bernheim, Peleg, and Whinston, 1987). With two principals only, a coalition-proof equilibrium is
Pareto-efficient among principals (Bernheim and Whinston, 1986b). For a discussion on truthfulness as an equilibrium
refinement, see Martimort (2007).

25In appendix the proofs of Lemmas A.1 and A.2 establish formal conditions which, in combination with theorems by
Laussel and Le Breton (2001) and extensions by Billette de Villemeur and Versaevel (2003), lead to Propositions 2, 3, and 5.

26Here we follow Amir et al. (2003) by suggesting that the reduced-form expected gross profit function ĝi can be in-
terpreted as the overall payoff of a multi-stage game in the product market. Then R&D choices are seen as long-term
decisions, on which we focus, followed by a series of short-term final-market decisions.
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and (5) specifies that the R&D leaks emanating from the lab are (weakly) more informative than the

technological spillovers received from the competitor’s internal facilities.27

For both firms, returns to R&D can be either non-increasing (that is, ∂2 ĝi/∂s2
i ≤ 0, i = 1, 2), or in-

creasing. The sign of all partial cross-derivatives can also be either non-positive (that is, ∂2 ĝi/∂xi∂xj ≤

0, ∂2 ĝi/∂xi∂yj ≤ 0, ∂2 ĝi/∂yi∂xj ≤ 0, and ∂2 ĝi/∂yi∂yj ≤ 0, i, j = 1, 2, j 6= i), or positive. In all cases, the

second-order impact of a firm’s R&D, either produced in-house or received from the lab, on its own

expected gross profit, is higher than the second-order effect of its competitor’s R&D:

∥
∥
∥
∥

∂2 ĝi

∂yi∂xi

∥
∥
∥
∥
≥

∥
∥
∥
∥

∂2 ĝi

∂yi∂xj

∥
∥
∥
∥

, (6)

= ≤

∥
∥
∥
∥

∂2 ĝi

∂y2
i

∥
∥
∥
∥
≥

∥
∥
∥
∥

∂2 ĝi

∂yi∂yj

∥
∥
∥
∥

, (7)

i, j = 1, 2, j 6= i. The vertical comparison of cross-derivatives in (6) and (7) indicates that each firm’s

marginal expected gross profit is (weakly) more impacted by the technological leakages that emanate

from the lab than from its competitor. These technological assumptions are very mild as they bear

only on expected profit expressions, and they encompass many possible specifications encountered

in the literature (we illustrate with examples of specific algebraic forms in the next section).

Standalone values — The lab can guarantee for itself the value v0 = 0 (a normalization). As for the

firms, to define their outside option suppose that j has exclusive access to the lab, so that their contrac-

tual relationship results in x∗j ∈ arg maxx

{
Eθ [g̃j (x, θ)− f0(x, θ)]

}
. Then firm i can only rely on inter-

nal resources, and it chooses y∗i (x
∗
j ) to earn the standalone expected value vi = Eθ

[

g̃i(x
∗
j , θ)

]

. Here

x∗j = (x∗i , x∗j ), with x∗i ≥ 0, so firm i can possibly receive technology, without financial compensa-

tion, despite firm j’s exclusive relationship with the lab. For an equilibrium to exist, with technology

outsourcing, it must be the case that v∗i = Eθ [g̃i(x̃, θ)− t̃i(x̃, θ)] ≥ vi, for both firms.28

27In the words of Lai, Riezman, and Wang (2009), “information leakage is much more severe in the absence of internal
controls when R&D is outsourced” (p. 487).

28In the proofs of Propositions 2 and 3 we check that this condition holds in equilibrium (see Appendix A.4).
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5 Technological Conditions and Equilibrium Analysis

In this section, we investigate the circumstances in which technology outsourcing either reduces or

stimulates internal R&D levels, before deriving conditions for the lab to appropriate a share of R&D

profits, or to exactly break-even to the benefit of the outsourcing firms.

As a first result, we find that in equilibrium each firm’s internal R&D level y∗i can be substitutable

or complementary to the level xi received from the lab. The sign of the relation between y∗i and xi

depends on the nature of R&D returns, but not on technological spillovers.

Proposition 1 (external/internal R&D) The equilibrium level of a firm’s internal R&D activity y∗i is de-

creasing in the contracted external lab’s activity xi if and only if the gross profit functions ĝi have decreasing

returns in si = xi + yi, i = 1, 2. More formally:

dy∗i
dxi

⋚ 0 ⇔
∂2 ĝi

∂s2
i

⋚ 0.29 (8)

A first message in this proposition is that whether contracted-out R&D reduces or raises inter-

nal activity does not depend on inter-firm technological spillovers, because the second-order effect

in (8) bears only on each firm i’s own argument si, not on xj or yj, i, j = 1, 2, j 6= i. This property

contrasts with the well-known lesson received from many papers that adopt the analytical frame-

work of d’Aspremont and Jacquemin (1988) in order to focus on horizontal technological interactions.

In these papers, the strategic substitutability or complementarity of the firms’ technological choice

variables depends entirely on whether a spillover parameter is low or high, respectively. In our

model, the firms also interact vertically by competing in their contract offers to the external unit. This

vertical interaction appears to dominate the horizontal effects for what regards the substitutabil-

ity/complementarity outcome.

Another message in Proposition 1 is that the relationship between external and internal sourcing

is formally ambiguous. This ambiguity is structural, in that it depends on the functional form of

firms’ expected gross profit. Here contracted-out R&D reduces internal activity if and only if there are

decreasing returns to the introduction of a new technology in downstream operations. In real-world

circumstances, returns to R&D in the biopharmaceutical domain depend on a number of factors,

29More specifically,
dy∗i
dxi

= 0 if and only if either (i)
∂2 ĝi

∂s2
i

= 0, or (ii)
∂2 ĝi

∂x2
i

=
∂2 ĝi

∂xi∂yj
< 0,

∂2 ĝj

∂x2
j

=
∂2 ĝj

∂xj∂xj
< 0, and

∂2 f̂ j

∂y2
j

= 0,

where i, j = 1, 2, j 6= i (see Appendix A.2).
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including the therapeutic area (for example, the discovery of new antibiotics does not present the

same challenges as the discovery of a universal influenza vaccine) or the relative exploratory nature

of a scientific approach (cell therapies against cancer are only emerging, unlike chemotherapy). Our

proposition predicts that situations of decreasing returns imply more concentration of R&D activities

than with increasing returns, either upstream in external units or downstream in pharma companies.

This result is reminiscent of several recent empirical analyses that indicate a context-specific re-

lationship between external and internal R&D sources in the biopharmaceutical industry. In Hage-

doorn and Wang (2012) the estimated sign of the marginal effect of internal R&D expenditure on the

innovative output is negative, with internal and external R&D turning out to be complements only

at higher levels of in-house R&D investments. In Ceccagnoli et al. (2014), the estimated sign of the

partial cross-derivative of an innovation production function with respect to external and internal

R&D expenditure is found to depend on a series of factors. These empirical investigations and our

formal characterization share the conclusion that external and internal R&D are neither complements

not substitutes per se, the exact connection between the two channels being rather context related, as

captured here by the sign of a second-order effect.

In what follows we build on Proposition 1 by first considering separately situations of non-

increasing returns (∂2 ĝi/∂s2
i ≤ 0), before discussing the robustness of our results when we shift to

non-decreasing returns (∂2 ĝi/∂s2
i ≥ 0). In either cases, to characterize the distribution of R&D profits

among the intermediate R&D market participants we need defining as a value function the highest

expected joint profit for the lab together with any subset of firms, that is

v (S) = max
x

(

Eθ

[

∑
i∈S

g̃i (x, θ)− f0(x, θ)

])

, (9)

where S ∈ {∅, {1}, {2}, {1, 2}}.

We assume that v(∅) = v0 = 0, which describes the no contract situation, and that v ({i}) ≥ vi,

implying that firm i’s exclusive control of the lab dominates its standalone value, i = 1, 2. Hereafter,

for conciseness we denote the maximum expected industry profit v ({1, 2}) by Λ.

The value function v(.) in (9) is instrumental for the caracterization of equilibrium outcomes in

the intermediate market for technology, as it captures the interplay of indirect and direct techno-

logical externalities: there are indirect technological externalities if the lab’s cost f0 of conducting
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firm-specific R&D tasks is characterized by economies or diseconomies of scope; there are direct ex-

ternalities if the R&D received or generated by firm i enters in the gross profit function ĝj of its com-

petitor, i, j = 1, 2, j 6= i.30 Indirect (through the lab) and direct (inter-firm) technological externalities

can differ in magnitude and in sign, and an aggregate measure of the combination of both categories

of externalities is given by the structural parameter

ǫ = Λ − v ({1})− v ({2}) . (10)

If ǫ < 0, that is v(.) is strictly subadditive, the maximization in x of joint profits generates less

value than the sum of individual profits as obtained by each firm when it exclusively controls the

lab, a situation where negative externalities dominate. Otherwise v(.) is superadditive, and positive

externalities (weakly) dominate.

� Non-increasing returns to R&D. In this section we assume that

∂2 ĝi

∂s2
i

≤ 0, (11)

i = 1, 2. Simple sufficient conditions on the primitives of the model can now be derived that de-

termine the sign of the aggregate measure of externalities, and whether the equilibrium expected

industry profit is fully appropriated by the two firms or partly retained by the lab. These conditions

bear on the sign of indirect and direct R&D externalities, hence on the lab’s expected costs f̂0 (x) and

firms’ expected gross profits ĝi

(
xi + yi, xj, yj

)
, respectively.

Non-negative R&D externalities — Suppose, as a first case, that indirect and direct R&D exter-

nalities are non-negative. Formally, for i, j = 1, 2, j 6= i,

∂2 f̂0

∂xi∂xj
≤ 0, (12)

∂ĝi

∂xj
≥ 0,

∂ĝi

∂yj
≥ 0. (13)

30Recall that g̃i(x, θ) = gi(xi + y∗i (x), xj, y∗j (x), z∗(x, y∗(x), θ), θ) − fi(y
∗
i (x), θ), so that firm i’s profit does not depend

only on the R&D generated by the rival internally (y∗j (x)), but also on the technology received by the latter firm from the

lab (xj).
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Proposition 2 (non-negative R&D externalities) Conditions (12-13) imply that ǫ ≥ 0 (v(.) is superad-

ditive). Then there exists a continuum of firm equilibrium expected payoffs (v∗1 , v∗2) ≥ (v1, v2) that verify

v∗1 + v∗2 = Λ, (14)

and the lab exactly breaks even in expectation, that is

v∗0 = 0. (15)

In (12) the non-positive sign of the cross-derivatives of f̂0 in the dimensions of x describes economies

of scope in the production of R&D inside the external lab. Selecting a higher xi, as demanded by firm

i, makes it less costly for the lab to satisfy firm j.31 This condition is consistent with empirical investi-

gations that evidence the presence of economies of scope mainly in drug discovery (Henderson and

Cockburn, 1996) and only to some extent in clinical trials (Cockburn and Henderson, 2001).32

For an interpretation of the conditions in (13), recall from the structure of each firm’s gross profit

function in (2) that R&D decisions generate not only inter-firm technological spillovers (xj and yj

are arguments of gi, j 6= i) but also a product-market rivalry effect (firm j’s external and internal

R&D impacts firm i’s strategy zi, j 6= i). As the two non-negative derivatives in (13) relate to the

reduced-form ĝi of the gross profit expression, they capture situations where technological spillovers

dominate the negative business stealing effect. This specification points to situations of substantial

spillovers, as observed by Henderson and Cockburn (1996) between pharmaceutical firms. It is also

consistent with Bloom et al. (2013) where significant technological spillovers are found in the case

of pharmaceuticals, together with strategic complementarity in R&D (for a formal illustration see

Example 4, below, case β ≥ 1/2).

Examples of complementarities in pre-clinical research include the use of mRNA (messenger ri-

bonucleic acid) to produce medicines that code for the production of proteins by cells in the body, as

the same biological mechanism can lead in principle to the treatment of many different diseases. The

same applies to research activities in the immuno-oncology domain, as the understanding of how

immune responses are controlled by “checkpoints” can result in drugs against a large set of different

targets.33 In that domain, a molecule approved for the treatment of a given type of cancer can be

31As Pisano (2006a) puts it, “knowledge and capabilities accumulated in the pursuit of one therapeutic area can often be
leveraged to others” (p. 101).

32“It may be the case ... that success in drug development is purely a function of success in drug discovery”(Cockburn
and Henderson, 2001, p. 1053).

33“The modulation of immune checkpoints using monoclonal antibodies can have a universal effect on immune re-
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extended to other indications – a kind of market expansion effect – with competing pharma compa-

nies learning from each other the indications toward which their respective research efforts can be

targeted.

Non-negative indirect and direct externalities reflect circumstances of weak technological rivalry

among the two firms, both in their contract offers to the lab and in their internal operations, implying

a limited ability of the external lab to appropriate R&D benefits. This theoretical characterization is

consistent with the empirical observation that the average profitability of biotech units is persistently

low. Proposition 2 actually establishes that the two firms appropriate all industry profits, and in

expectation the lab exactly breaks even. Therefore:

Corollary 1 When conditions (12-13) hold, incentives to invest upstream, in the external unit, are delinked

from the value generated by R&D, to the exclusive benefit of downstream sponsors.

The following (deterministic) example illustrates Propositions 1 and 2 with specific cost and de-

mand functional forms borrowed from the R&D literature.

Example 1 � Each firm i’s inverse demand is pi(q) = S
(

1 − 2qi

u2
i

− σ
ui

qj

uj

)

, i, j = 1, 2, j 6= i, where S is the

number of identical consumers, σ ∈ (0, 2) captures horizontal product differentiation, and ui measures product

quality (e.g., increased drug efficacy), as in Symeonidis (2003). Specifically, let ui = ε (si)
1/4 + εβ

(
sj

)1/4
,

where ε > 0 is an inverse cost measure, β ∈ [0, 1] is an inter-firm technological parameter, si = xi + yi and

sj = xj + yj, i, j = 1, 2, j 6= i.34 For simplicity, we set S = σ = ε = 1, β = 1/2, and the production cost

to zero, before solving for the Cournot-Nash quantities (q∗1(x, y), q∗2(x, y)). Inserting the latter expressions in

gi

(
si, xj, yj, q

)
= pi(q)qi leads to ĝi

(
si, xj, yj

)
. As ∂2 ĝi/∂s2

i < 0 (decreasing returns) for all si > 0, from

Proposition 1 we have dy∗i /dxi < 0 (substitutability). Moreover ∂ĝi/∂xj > 0 and ∂ĝi/∂yj > 0 (positive

direct externalities) for all xi, xj > 0, so (13) is satisfied.35 Then any additive cost function for the lab (e.g.,

f̂0 (x) = x1 + x2) satisfies (12), in which case from Proposition 2 the downstream firms appropriate the

industry profit. �

Negative R&D externalities — Suppose now that indirect and direct R&D externalities are neg-

sponses that is not dependent on tumour histologies or individual cancer-specific antigens” (Hoos, 2016, p. 235).
34If x1 = x2 = 0 we have the same specification as in Symeonidis (2003), where the functional form for ui is adapted

from Motta (1992).
35The expressions of derivatives are omitted for space limitation. They are available from the authors on request.
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ative, that is for i, j = 1, 2, j 6= i,

∂2 f̂0

∂xi∂xj
> 0, (16)

∂ĝi

∂xj
≤ 0,

∂ĝi

∂yj
≤ 0. (17)

Proposition 3 (negative R&D externalities) Conditions (16-17) imply that ǫ < 0 (v(.) is strictly subad-

ditive). Then there is a unique pair of firm equilibrium expected payoffs (v∗1 , v∗2), which are

v∗i = v({i})− |ǫ| ≥ vi, (18)

i = 1, 2, and the lab appropriates a share of expected industry profits

v∗0 = |ǫ| > 0. (19)

The condition on f̂0 in (16) formalizes a case of congestion, or diseconomies of scale, in the pro-

duction of R&D by the external lab. Supplying more R&D to a given firm makes it more costly to

serve the other firm. The conditions on ĝi in (17) describe circumstances in which more of firm

j’s R&D, as sourced externally or produced internally, weakly reduces firm i’s reduced-form gross

profit, all other things remaining equal. Together, these formal conditions relate to real-world cir-

cumstances that strongly differ from the ones captured by conditions (12-13). Unlike the empirical

evidence mentioned in the previous section on early-stage discovery activities that involve biotech

entities, diseconomies of scope (Macher and Boerner, 2006) and nonexistent technological spillovers

(Danzon et al. 2005; Macher and Boerner, 2006) have been found in later-stage development activ-

ities, notably in phase 2 and phase 3 clinical trials, which involve CROs. The formal conditions in

(16) and (17) thus point to these development activities.

To illustrate, recent advances in immuno-oncology have induced clinical trials in the hundreds

that test new antibodies or combinations (Tang et al., 2018), implying that the enrollment of patients

by a CRO for several competing sponsors has become problematic. Moreover, regulatory constraints

such as data exclusivity – i.e., a firm that applies for marketing approval cannot refer to the clinical

data generated by a competitor over a given time period – entail limited inter-firm spillovers.

In such cases of negative indirect and direct externalities, the client firms compete for the con-

trol of the lab’s operations in the intermediate R&D market, and are also penalized by the in-house

activity of their competitor. These circumstances are favorable to the lab. Proposition 3 establishes
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that negative externalities fully drive the distribution of R&D benefits. Unlike the payoff in the pre-

vious section, the lab here appropriates a positive share of industry profits, in direct proportion to −ǫ

which is positive. Each firm’s payoff is equal to v({i}), i = 1, 2, as would be earned by controlling

the lab exclusively, truncated by |ǫ|. The latter payoff can be shown to be greater than the standalone

value vi.
36 The theoretical outcome that the external unit extracts a positive share is consistent with

the observation that CROs involved in clinical trials, unlike biotech units, on average earn superior

financial returns.

The conditions used in Proposition 3, rewritten in discrete form, apply in the following example.37

Example 2 � Assume that x, y ∈ {0, 1}2, so the decision to invest in a cost-reducing program implies a

lump-sum expenditure. The lab’s R&D costs are f̂0(0, 0) = 0, f̂0(0, 1) = f̂0(1, 0) = 1, and f̂0(1, 1) = +∞,

so that the discrete form of condition (16) is satisfied. Here anti-complementarities imply that the lab serves

at most one firm profitably .38 Firm i’s internal R&D costs are f̂i(yi) = γyi, with γ ≥ 1 capturing a relative

inefficiency vis-à-vis the lab (cost cutting is a driver of the use of contract service providers). The unit cost of

production is a positive constant ci(xi + yi), with ci(0) = cH and 0 ≤ ci(1) = ci(2) = cL < cH. The two

firms sell a homogeneous good, with total demand q = sup{0, a − p}, with p ≥ 0 and a > cH. Given (x, y),

defining π = (cH − cL) (a − cH), and solving for Bertrand-Nash prices, leads to ĝi(xi + yi, xj, yj) = π > 0

if xi + yi ≥ 1 and xj + yj = 0, and ĝi

(
xi + yi, xj, yj

)
= 0 otherwise, so the discrete form of condition (17) is

also satisfied. We assume that internal R&D is worth undertaking, that is γ/π < 1. To compute equilibrium

payoffs, we consider the following two cases: (1) If the lab is inactive (x1 = x2 = 0), there exists a unique Nash

equilibrium in mixed strategies (α∗
i , α∗

j ) of internal R&D investments, verifying

α∗
i × (−γ) + (1 − α∗

i )× (π − γ) = α∗
i × 0 + (1 − α∗

i )× 0,

i = 1, 2. By symmetry,39α∗
i = α∗

j = 1 − γ
π , which leads to the payoff vi(α

∗
1 , α∗

2) = vi = 0, i = 1, 2.40 So the

36See Appendix A.4. From (10) the payoff can be rewritten as firm i’s marginal contribution to industry profit, that is
v∗i = Λ − v({j}), i, j = 1, 2, j 6= i.

37In the whole paper differentiability is adopted for notational convenience, but is not required as illustrated by Example
2. So the condition in (16) can be rewritten in discrete form as f̂0(x ∧ x′) + f̂0(x ∨ x′)− f̂0(x)− f̂0(x

′) ≥ 0, all x, x′, with
a strict inequality whenever x and x′ cannot be compared with respect to ≥ (strict supermodularity). The conditions in
(17) can also be rewritten as ĝi(xi + yi, xj, yj) ≥ ĝi(xi + yi, x′j, y′j) for all (x′j, y′j) ≥ (xj, yj). In Appendix A.4 the proofs of

Propositions 2 and 3 are written for any f̂0 which is either weakly submodular or strictly supermodular, respectively.
38The cost specification in this example is borrowed from Laussel and Le Breton (2001). The extreme supermodularity of

f̂0, with f̂0(1, 1) = +∞, here helps illustrating the effect of negative externalities on the distribution of industry profits.
39Given that in this example firms are assumed to be symmetric, we leave aside the two asymmetric equilibria in pure

strategies (y∗1 = 0, y∗2 = 1) and (y∗1 = 1, y∗2 = 0).
40In this example, when firm i does not participate in the R&D market, its rival j receives technology from the relatively
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firms are willing to transact with the lab. (2) When the lab is active, from the assumption on f̂0 only one firm

is served (xi = 1 > xj = 0), and no firm invests in internal R&D since ĝi(1 + 1, 0, yj)− f̂i(1) < ĝi(1 +

0, 0, yj)− f̂i(0), all yj, and ĝj(0+ 1, 1, yi)− f̂ j(1) < ĝj(0+ 0, 1, yi)− f̂ j(0), all yi. Therefore, industry value

is v ({1, 2}) = v ({1}) = v ({2}), so that v∗0 = v ({1, 2}) = π − 1, and v∗i = v ({1, 2})− v ({j}) = 0,

from Proposition 3. Firms’ interests are so antagonistic in this example as to make the lab fully appropriate

industry value. �

Uncertainty — The structural conditions in Propositions 2 and 3 also capture circumstances in

which R&D outcomes are uncertain for all parties. To see that, consider again Example 2, but with

the lab and the firms being successful in R&D with probability θ < 1. The unit cost of production

c (xi + yi) is now c (0) = cH with certainty, ci (1) = cL with probability θ and ci (1) = cH with

probability 1 − θ, and ci (2) = cL with probability 1 − (1 − θ)2 and ci (2) = cH with probability

(1 − θ)2. The distribution of (un)favorable events is assumed to be common knowledge ex ante, and

the true state is discovered only through the realization of R&D tasks (between stages (iii) and (iv) in

the timing described in Section 4) so firms’ payments can be made contingent on it. Condition (16)

remains unchanged, and although the process is now uncertain, condition (17) also remains valid

in expectation, as the choice of firm j to attempt to innovate always reduces firm i’s expected profit.

Thus Proposition 3 still holds. We assume as above that R&D is worth undertaking, even internally,

that is γ/(θπ) < 1. Provided that the probability of success θ remains sufficiently close to 1 so that

1 − θ < γ/ (θπ), again a firm will not engage in R&D if its rival receives technology from the lab

or sources it internally, and we can directly generalise the baseline example: (1) If the lab is inactive

(x1 = x2 = 0), there exists a unique symmetric Nash equilibrium in mixed strategies

α∗
i (θ) = α∗

j (θ) =
1

θ

(

1 −
γ

θπ

)

,

for a payoff which again is the same as the standalone value vi (θ) = 0, i = 1, 2, so the firms have an

incentive to transact with the lab. (2) When the lab is active, again from the assumption on f̂0 only

one firm is served (xi = 1 > xj = 0), and limited uncertainty does not modify the outcome that no

firm invests internally since expected net profits verify ĝi(1+ 1, 0, yj)− f̂i(1) < ĝi(1+ 0, 0, yj)− f̂i(0),

all yj, and ĝj(0 + 1, 1, yi) − f̂ j(1) < ĝj(0 + 0, 1, yi) − f̂ j(0), all yi. The payoff to the firm that does

more efficient lab (so x∗j = 1), exclusively so (x∗i = 0), and finds it profitable not to operate internally (y∗j = 0). Then in

this Bertrand context firm i maximizes profits by not investing in internal R&D, and its standalone value is vi = ĝi(0 +
y∗i , 1, 0)− f̂i(y

∗
i ) = ĝi(0 + 0, 1, 0)− f̂i(0) = 0, i = 1, 2.
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not receive external R&D is nil, so that v ({1, 2}) = v ({1}) = v ({2}). Then v∗0 = v ({1, 2}), and

v∗i = v ({1, 2})− v ({j}) = 0, i, j = 1, 2, j 6= i, from Proposition 3. With these specifications, the lab’s

expected equilibrium payoff is θπ − 1, the firm that benefits from the lab’s output exactly breaks

even, and its rival earns its standalone value.

In the next example, we show that our results also apply to the polar situation with highly un-

certain R&D. We obtain that, when the competitor or its external contractor might fail with a high

probability, it can be a dominant strategy for the firms to engage in R&D as well.

Example 3 � We consider the specifications of Example 2 with the extension to uncertain R&D as above, and

focus on the case of rare successful outcomes. Internal R&D can be profitable, that is γ/(θπ) < 1, although θ

is sufficiently close to 0 for γ/ (θπ) < (1 − θ)2 to hold. In this case, the likelihood that the competitor and the

lab succeed in R&D is so low as to make the probability of simultaneous success negligible. Then everything

happens as if, when deciding to engage or not in R&D, each firm were focusing on its own probability of

success only, abstracting from the other players’ actions. Investing in internal R&D is a dominant strategy:

(1) If the lab is inactive (x1 = x2 = 0), the firms’ expected payoff is (1 − θ)θπ − γ, which is slightly higher

than the standalone level vi (θ) = (1 − θ)2θπ − γ, i = 1, 2. (2) When the lab is active, again the form of f̂0

implies that only one firm is served (xi = 1 > xj = 0). Still the distinctive feature here, in comparison to

the previous example, is that both firms choose to invest internally as well: ĝi(1 + 1, 0, yj)− f̂i(1) > ĝi(1 +

0, 0, yj) − f̂i(0), all yj, and ĝj(0 + 1, 1, yi) − f̂ j(1) > ĝj(0 + 0, 1, yi) − f̂ j(0), all yi, for i, j = 1, 2, j 6= i.

Thus v ({i}) = (1 − (1 − θ)2)(1 − θ)π − γ − 1 (i.e., π is earned by firm i when the latter player and the lab

do not both fail while firm j fails) and the expected industry value is now v ({1, 2}) = (3 − 2θ)(1 − θ)θπ −

2γ − 1 (i.e., the sum of firm i’s expected gross payoff (1 − (1 − θ)2)(1 − θ)π and of firm j’s gross payoff

(1 − θ)2θπ net of total R&D costs). Therefore, from Proposition 3 we have v∗0 = (1 − θ) θπ − 1 > 0, and

v∗i = v ({1, 2})− v ({j}) = (1 − θ)2 θπ − γ, which is positive but only equal to the standalone level (the

profit earned when the competitor controls the lab to its exclusive benefit). By competing for the lab’s resources,

here the firms earn less than if the lab does not exist. �

There is more in Examples 2 and 3 than an illustration of the applicability of a theoretical proposi-

tion to specific algebraic forms. Only in the latter example, where the probability of success of R&D

operations is assumed to be low, both the lab and its sponsor engage in R&D efforts. This outcome

is consistent with the empirical evidence (Guedj, 2005) that projects with a low probability of success
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are more often conducted through a contractual alliance between a large firm and a smaller biotech

company (as in Example 3) than conducted entirely within the same entity (as in Example 2). The

comparison of Examples 2 and 3 thus rationalizes the general observation that the reduction in drug

R&D productivity over the last decades – which is formally captured here by a lower probability of

success – has coincided with increasingly frequent situations where large pharma firms and smaller

external biotech units contribute jointly to research and development (Pisano, 2006a; Rydzewski,

2008; Scannell et al., 2012). This is a sufficiently high level of uncertainty, in our theoretical frame-

work, that triggers an investment by all industry participants.

Another interesting equilibrium property illustrated by examples 2 and 3 is that the firms (princi-

pals), whose payments to the lab (agent) are truthful, are shielded from the uncertainty that is specific

to external R&D operations. The lab, however, bears the risk inherent to its technological activities.

These findings, beyond specific examples, can be generalized to all situations described in Proposi-

tions 2 and 3, for any distribution of θ, by establishing that each firm can adjust within boundaries

its contract offer to the lab, without changing the equilibrium strategies and the related equilibrium

expected payoffs to all parties, in order to guarantee for itself a constant payoff whenever possible.

This adjusted transfer function, to
i , is characterized by the following lemma.

Lemma 1 Suppose that (t̃, x̃, ỹ, z̃) is a TSPNE. Define, for each θ, the lower bound of firm i’s gross payoff

over all possible efficient choices41

g
i
(θ) = inf

x∈X∗
[g̃i (x, θ)] ,

and the function h : Θ → R, whose value depends on the realized state only, with

Eθ [h (θ)] = 0, (20)

vi (x̃, ỹ, z̃, θ)− g
i
(θ) ≤h (θ) ≤ vi (x̃, ỹ, z̃, θ) , (21)

all θ ∈ Θ. Then to
i (x, θ) = sup {0, g̃i (x, θ)− [vi (x̃, ỹ, z̃, θ)− h(θ)]} is a truthful best reply to tj that

incentivizes the lab to choose an action which is undistinguishable from x̃, in that it yields the same expected

payoffs to all parties. However, for any realized θ the (ex-post) equilibrium payoffs are:

v0 (x̃, θ) + h(θ), vi (x̃, ỹ, z̃, θ)− h(θ), vj (x̃, ỹ, z̃, θ) ,

i, j = 1, 2, j 6= i.

41Unless there exists a multiplicity of optima, g
i
(θ) does not differ from the equilibrium gross payoff g̃i(x̃, θ). In the proof

of Proposition 4, in Appendix A.7, we assume that g
i
(θ) ≥ 0 for almost all θ (that is, no one expects adverse events to be

so extreme as to more than annihilate the gross value of a principal’s operations).
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The condition in (20) is needed for all profit expressions to remain unchanged in expectation,

although the lab receives more than the expected level for some values of θ, and less for others. In

(21) the first inequality implies that contract offers to the lab are non-negative, and the second one

that the equilibrium payoff to the firm is also non-negative in all states of nature.42

By introducing in the payment strategy an adjustment term h(θ), as defined in Lemma 1, a firm

can condition its financial transfers on the realization of the technological risk, and thereby protect

its ex-post payoff from adverse events. In unfavourable circumstances where uncertainties imply

that the gross equilibrium profit can be so low as to be strictly lower than the expected equilibrium

payoff v∗i with positive probability, then each firm can adjust its payment to earn the lower bound

g
i
(θ) < v∗i if an adverse event occurs (e.g., the lab’s efforts are unsuccessful, or they cost much

more than expected), or a superior profit level vi ≥ v∗i that does not depend on θ otherwise. In

more favourable circumstances where uncertainty does not prevent the gross equilibrium profit to

be higher than the expected net equilibrium value v∗i for almost all θ, each firm can guarantee for

itself the latter value as an ex-post payoff, which is thus independent of the realized state of nature.

Toward a more formal characterization of adjusted payment strategies, that is risk-proof contract

offers, we define the set Θ (vi) such that g
i
(θ) ≤ vi, for all θ ∈ Θ (vi), with vi ≥ v∗i . Then:

Proposition 4 Suppose that (t̃, x̃, ỹ, z̃) is a TSPNE:

(i) If g
i
(θ) ≥ v∗i for almost all θ ∈ Θ, firm i can guarantee for itself the expected net equilibrium value v∗i as

an ex-post payoff for almost all states of nature, by addressing to the lab the risk-proof contract offer

to
i (x, θ) = sup {0, g̃i (x, θ)− v∗i } .

(ii) If g
i
(θ) < v∗i for a subset of Θ of strictly positive measure, firm i can guarantee for itself an ex-post payoff

equal to the lower bound g
i
(θ) for all θ ∈ Θ (vi), and to a higher constant vi ≥ v∗i for all θ ∈ Θ\Θ (vi), by

addressing to the lab the risk-proof contract offer

to
i (x, θ) =







0 if θ ∈ Θ (vi) ,

sup {0, g̃i (x, θ)− vi} if θ ∈ Θ\Θ (vi) .

There exists a unique constant vi such that the expected payoff to firm i remains equal to v∗i = Eθ [vi (x̃, ỹ, z̃, θ)].

42The adjusted contract offer introduced in Lemma 1 remains compatible with an upfront part to
i paid to the agent.

Supposing that to
i (x̃, θ) > 0 for almost all θ, the upfront payment is bounded from above by the non-negative threshold Ti =

maxT>0 {T | g̃i(x̃, θ)− vi(x̃, ỹ, z̃, θ) ≥ T, for almost all θ}. Indeed, as long as to
i ≤ Ti, equilibrium contingent payments

ko
i (x̃, θ) = to

i (x̃, θ)− to
i verify ko

i (x̃, θ) ≥ g̃i(x̃, θ)− vi(x̃, ỹ, z̃, θ)− Ti ≥ 0, for almost all θ.
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In other words, in unfavorable circumstances where the distribution of θ can result in the gross

payoff g
i
(θ) to be strictly lower than v∗i with positive probability, firm i’s contract offer specifies a

high ex-post payoff vi ≥ v∗i if the realization of the technological risk implies that g
i
(θ) > vi, and a

payoff limited to the lower bound g
i
(θ) otherwise (with no transfer to the lab), so that in expectation

the equilibrium payoff remains equal to v∗i (see Appendix A.7.2 for a formal characterization of vi).

Proposition 4 establishes that truthful contract offers are available to the firms that shield them

(at least partly) from adverse technological events by transferring (some or all of ) the burden of risk

to the upstream lab. This insurance property holds in particular when R&D externalities are non-

negative (ǫ ≥ 0), implying from Proposition 2 that the equilibrium payoff to the lab, in expectation,

is exactly zero. In that case, valuable projects at the industry level are vulnerable since an unfavorable

draw necessarily yields, ex-post, a negative net return to the external lab. This vulnerability is made

more acute when strategies are used that pass on the downside effect of uncertainty through risk-

proof contingent payments. (Of course such a negative outcome can generalize to situations where

profits are positive, as in Proposition 3, and still sufficiently close to zero.) As a direct implication,

risk-averse investors are deterred to finance projects on the supply side of the intermediate market

for technology, and “fewer projects being funded means a weaker industry pipeline, and fewer new

drugs”(Cockburn and Lerner, 2009, p. 5).

Some safeguarding measures can be designed that aim at avoiding the abandonment of projects

that contribute positively to the total industry profit, but are characterized by a high degree of tech-

nological uncertainty. Such measures, in light of our results and their connections to the empirical

evidence, appear less relevant for clinical development than for early-stage research characterized

by significant economies of scope and technological spillovers. The financial back-up of a partner

university, as commonly observed for startups since the emergence of biotech engineering, can be

interpreted as a relevant attempt to insure promising spin-offs from unfavorable events. Our formal

analysis also points to the introduction of regulatory constraints on the adjustment of payments, by

big pharma companies, on the realization of technological risks.

We now consider cases with increasing returns to R&D.
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� Non-decreasing returns to R&D. In this section, for i = 1, 2, we assume that

∂2 ĝi

∂s2
i

≥ 0, (22)

where si = xi + yi. We identify simple conditions for Propositions 2 and 3 to remain valid.

Proposition 5 Suppose that returns to R&D are non-decreasing, as in (22). If ∂2 ĝi/∂xi∂xj > 0 (i.e., xi and

xj are complementary for firm i, with i, j = 1, 2, j 6= i), which implies that dy∗i /dxj > 0, then Propositions 2

and 3 still hold. Otherwise, a sufficient condition is dy∗i /dxj > −1.

The interplay of contracted-out and internal R&D levels is central to that result. From Proposi-

tion 1 we already know that, for each firm i, non-decreasing R&D returns imply that internal and

contracted-out R&D are strategic complements: dy∗i /dxi ≥0. Then, there are two cases: (1) If xj and

xi are complements inside firm i’s gross payoff function, that is ∂2 ĝi/∂xi∂xj ≥ 0, then y∗i is mono-

tone increasing with the other firm’s contracted-out R&D level xj, that is dy∗i /dxj ≥ 0. In that case,

the respective effects of xi, xj, yi and yj on firms’ gross profits are all congruent and Propositions

2 and 3 remain valid with non-decreasing returns as well. (2) When xi and xj are substitutes, in

that ∂2 ĝi/∂xi∂xj < 0, then y∗i decreases with the other firm’s contracted-out R&D level xj, that is

dy∗i /dxj < 0. Here more R&D received from the lab reduces the competitor’s internal R&D level, so

firm i’s gross profit may be impacted negatively. In the most extreme circumstances, the latter effect

could possibly result in dĝi/dxi being negative when ∂ĝi/∂xj and ∂ĝi/∂yj are both positive. The lat-

ter property however does not occur when the substitution effect is limited, more specifically when

dy∗i /dxj > −1.

The next (deterministic) example illustrates all cases predicted by Proposition 5. It shows that

while external and internal R&D tasks are complementary (a consequence of non-decreasing returns

to R&D from Proposition 1), the client firms may fully appropriate industry profit (as in Proposition

2) or concede to the lab a positive share of it (as in Proposition 3).

Example 4 � The external lab’s R&D cost is f̂0(x) = γ(x2
1 + x2

2)/2 − δx1x2, with δ ∈ [−γ, γ), γ > 0,

and the firms’ internal R&D costs are f̂i(yi) = κ + y2
i , i = 1, 2, κ > 0. The downstream marginal cost of

production is c > 0, the final-market inverse demands are pi(q) = sup
{

0, ai(x, y)− qi − qj

}
, i, j = 1, 2,

j 6= i, where pi is the price, (qi, qj) are quantities, and ai(x, y) = (a + si + βsj) is the price intercept,
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which involves spillovers measured by the parameter β ∈ [0, 1] borrowed from d’Aspremont and Jacquemin

(1988). Then si = xi + yi can be interpreted as the sum of R (xi) and D (yi), as in Vonortas (1994), here

toward a quality improvement (e.g., increased drug safety). Non-cooperative profit maximization in quantities

leads to q∗i (x, y) =
[
(a − c) + si (2 − β) + sj (2β − 1)

]
/3. We have ∂2 ĝi/∂s2

i = 2 (2 − β)2 /9 > 0, so

condition (22) is satisfied for all parameter values (increasing R&D returns). Then, whether Proposition 2

or 3 applies depends on δ and β: (i) if δ ≥ 0 (< 0) then condition (12) (resp. condition (16)) holds; (ii) if

β ≥ 1/2 (< 1/2) then condition (13) (resp. condition (17)) holds, directly from ∂ĝi/∂xj = ∂ĝi/∂yj =

(2/3) (2β − 1) q∗i (x, y). Moreover, ∂2 ĝi/∂xj∂xi = (2/9) (2 − β) (2β − 1) ≥ 0 only if β ≥ 1/2, and we

have dy∗i /dxj = 3 (2β − 1) (β − 2) /
[(

β2 − β + 7
) (

β2 − 3β − 1
)]

> −1 for β < 1/2. Therefore, in this

example the non-negative R&D externalities case of Proposition 2 applies if β ≥ 1/2 and δ ≥ 0, and the

negative externalities case of Proposition 3 applies if β < 1/2 and δ < 0. �

An important lesson of Propositions 2 and 3 is that the interplay of indirect (through the lab)

and direct (inter-firm) technological externalities drives the additivity status of the value function v

in (9), which in the end determines the distibution of industry profits. This characterization applies

in all situations where the two types of externalities have the same sign, as formalized by the easy-

to-use conditions (12-13) and (16-17). It applies also in “mixed” cases where indirect externalities

are negative, while direct externalities are not, or vice versa. For an illustration, consider again the

previous example by setting δ = β = 0, γ > 1, and by assuming that the firms rely exclusivey on

the exernal lab (y1 = y2 = 0). Here we have non-negative indirect but negative direct externalities

(∂2 f̂0/∂x1∂x2 = 0 and ∂ĝi/∂xj < 0 for all positive final-market quantities). Then, for γ approach-

ing 1 from above, one finds v({1}) = v({2}) = (a − c)2 /5, and Λ = (a − c)2 /4, a case of strict

subadditivity, implying from (18) that equilibrium payoffs are v∗1 = v∗2 = v∗0/3 = (a − c)2 /20.

6 Incentives for More Integration

The distribution of industry profits can be modified by a shift to a more integrated structure that uni-

fies the lab with one of the two firms, or both. The analysis of incentives to integrate vertically, after

having characterized the equilibrium profit distribution in the decentralized common agency setting,

is consistent with industry practice as the acquisition of an R&D unit by a big pharma company often

follows a period of collaboration (Folta, 1998; Danzon and Grabowski, 2012).

35



Supposing that the owners of the lab and the two firms can participate in the equity market in

order to depart from the initial outsourcing equilibrium characterized in the previous section, we as-

sume that (i) initially, each entity is owned by distinct sets of individuals (no one can simultaneously

be a seller and a buyer); (ii) when the lab and only one firm integrate vertically, the unified entity can

agree to supply R&D to the other firm by bargaining with it over the sharing of industry profits; and

(iii) transaction costs are nil.

Consider first the situation in which the lab and the two firms all participate in some form of

integration in the intermediate R&D market. This occurs if the lab acquires the two firms and controls

them as subsidiaries, or if the two firms share the ownership of the lab and control it as a joint

venture, with choices of internal R&D and final-market strategies remaining non cooperative (no

collusion). In these two cases there is no gain in joint profits to be earned vis-à-vis equilibrium payoffs

of the common agency structure. This is because the truthfulness of the firms’ equilibrium payment

strategies implies that the lab is offered two transfer schedules which exactly reflect the respective

shapes of the firms’ gross profit functions (that is, g̃i (x, θ), i = 1, 2). The lab thereby internalizes both

direct and indirect externalities, and thus is incentivized to supply R&D outputs that maximize the

joint profits of all participants. It follows that the net share of joint profits accruing to each buyer of

another firm’s equity cannot improve on the amount of net profits received in the common agency

equilibrium. Forward integration (i.e., the two users become subsidiaries of the lab) would imply

the payment of v∗i by the lab to the firms’ owners. Backward integration (i.e., the lab becomes a joint

venture) would require the total payment of v∗0 by the two firms for the ownership of the upstream

assets. The equality v∗0 + v∗1 + v∗2 = Λ holds in all cases, so there is no incentive for the lab and the

two firms to form a unique entity, unless further assumptions are introduced (e.g., cost or demand

parameters become a function of the governance structure). More formally:

Proposition 6 In the initial outsourcing equilibrium, the firms’ non-cooperative transfers and the lab’s for-

profit R&D operations result in a maximum expected industry profit: x̃ ∈ arg maxx∈X Eθ [g̃1 (x, θ) + g̃2 (x, θ)

− f0(x, θ)]. Therefore, unless the firms coordinate internal R&D operations (y) or collude in final-market com-

mercial decisions (z), there is no incentive for the lab to acquire the two firms and control them as subsidiaries,

nor for the firms to share the ownership of the lab and control it as a joint venture.

As for uncertainty, it can only reduce incentives for the two firms to acquire and control the lab

jointly, since by doing so they internalize the part of risks that can be transferred via adjusted pay-
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ments to the supply side of the R&D market. The viewpoint of the lab’s owners is different though,

as by acquiring the two firms they alleviate the burden of risk they bear in the initial outsourcing situ-

ation. Nevertheless, Proposition 6 establishes that the integrated structure cannot generate the value

that is needed to finance such possible risk dilution benefits. The integration of all market partici-

pants can be financed only if the firms neutralize downstream strategic interactions by coordinating

internal R&D activities or/and final-market strategies.

It remains to investigate all alternative forms of integration that can allow the owners of the lab,

or of the two firms, to privately appropriate a larger share of the industry maximum Λ than in the

decentralized outsourcing initial situation. Toward an equilibrium industry structure in the equity

market, we consider the following discrete set of possible arrangements: the horizontal integration

of firms 1 and 2 for the joint procurement of external R&D (internal R&D and final-market choices

remaining non cooperative), the vertical integration of the lab with firm 1, or with firm 2. We consider

in turn the situations in which the value function v, in (9), is superadditive (ǫ ≥ 0, as in Proposition 2),

then strictly subadditive (ǫ < 0, as in Proposition 3), depending on the interplay of indirect (through

the lab) and direct (inter-firm) technological externalities. The two cases are illustrated respectively

by Figures 1 and 2, which represent the space of possible partitions of the maximum industry profit

Λ as a 2-simplex, with full appropriation by the lab (i.e., v0 = Λ) at the top vertex, and by either of

the two firms at the bottom vertices. More generally, the payoffs to the lab and each of the two firms

are proportional to the distance of the allocation point to the edge opposite to their respective vertex.

Non-negative R&D externalities — When indirect and direct R&D externalities are both non-

negative, or in “mixed” situations with positive and negative externalities where the former domi-

nate, so that v is superadditive (ǫ ≥ 0), from Proposition 2 the lab only breaks even in equilibrium

of the common agency structure, that is its expected profit is v∗0 = 0, and the two firms thus expect

to appropriate the total industry profit, v∗1 + v∗2 = Λ (where v∗i ≥ vi, k = 1, 2). As there exists a

continuum of firm equilibrium expected payoffs, the exact distribution (v∗1 , v∗2) can only reflect cir-

cumstances outside of the initial model specifications. Hereafter we formalize such circumstances by

the bargaining powers (φ1, φ2) in [0, 1]2, with φ1 + φ2 = 1. They verify

v∗k = vk + φk (Λ − v) , (23)
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where k = 1, 2, and (v1, v2) is the disagreement point, with v = v1 + v2, so that,

φk =
v∗k − vk

Λ − v
. (24)

Although with non-negative externalities joint R&D procurement cannot increase the firms’ joint

profit, a larger individual share can be earned by a firm if it deviates unilaterally from the outsourcing

equilibrium to acquire the lab. By exclusively controlling the lab, the vertically integrated entity {0, i}

benefits from a stronger bargaining position. In case of disagreement its payoff becomes v ({i}) ≥ vi,

while its rival j’s payoff remains at vj, the standalone value. The bargaining process, in case of vertical

integration, thus determines an expected payoff to the unified entity equal to

v
{0,i}
0+i = v ({i}) + φi

(

Λ − v ({i})− vj

)

> v∗i , (25)

and an expected payoff to the outsider equal to

v
{0,i}
j = vj + φj

(

Λ − v ({i})− vj

)

< v∗j , (26)

with the weights
(
φi, φj

)
as defined in (24), i, j = 1, 2, j 6= i.43

As they face two competing alternatives, the lab’s owners can choose the firm to integrate with.44

By selling out to firm i, they may expect to earn v
{0,i}
0 = v

{0,i}
0+i − v

{0,i}
i , the difference between the

expected payoff to the unified entity and the acquirers’ residual claim. The two firms’ respective

owners thus compete in the equity market, and their willingness to pay is the difference between the

profit they earn by acquiring the lab and the profit they earn should the lab integrate with the other

firm. In comparison to the initial equilibrium situation, the firm that does not integrate, say firm j, is

forced to concede what the other firm appropriates by acquiring the lab. Firm i’s willingness to pay,

as an acquirer, is thus the sum of what it appropriates, and what the other would have appropriated,

that is

v
{0,i}
0+i − v

{0,j}
i = φj (v ({i})− vi) + φi

(

v ({j})− vj

)

> 0, (27)

43An equality sign replaces the strict inequality signs in (25) and (26) only if the exclusive control of the lab by firm i
entails no benefit vis-à-vis the standalone value, that is v ({i}) = vi.

44For completeness, if the exclusive control of the lab strictly dominates the standalone option only for firm i, so that

v ({i}) > vi and v ({j}) = vj, then v
{0,j}
0+j = v∗j . If v ({i}) = vi as well, then no firm is interested in acquiring the lab.
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i, j = 1, 2, j 6= i.45 Therefore, although firms are asymmetric, and appropriate different amounts by

acquiring the lab, the willingness to pay is the same across the two firms. Competition in the equity

market is thus frontal, and it leads to the integration of the lab with any of the two firms, indifferently.

A

v 2
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v
1
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{2
})
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v 2
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Figure 1: v is superadditive (ǫ ≥ 0), so the loci for v ({1}) and v ({2}) intersect inside the simplex. In the initial equilibrium

(point I), in expectation the firms fully appropriate industry profits (v∗1 + v∗2 = Λ), so the lab exactly breaks even (v∗0 = 0).

Should a firm integrate the lab at no cost, it would appropriate more industry profits (point A for firm 1, or B for firm 2).

However, competition in the equity market lowers firms’ payoffs to v
{0,j}
i , for i, j = 1, 2, j 6= i, and results in the lab to

appropriate a positive benefit, that is v
{0,1}
0 = v

{0,2}
0 > 0 (point V).

In the equilibrium industry structure, firm i’s owners have bidden their willingness to pay so

they receive only v
{0,j}
i < v∗i , a case of winner’s curse. Uncertainty does not help, as by integrating

the lab the acquirer cannot benefit any more from the contractual ability to shield (at least partly) its

financial performance from adverse technological events.46 The rival j’s owners are not better off, as

45In (27) we have v
{0,i}
0+i − v

{0,j}
i = 0 only if v ({i})− vi = v ({j})− vj = 0, or φi = v ({j})− vj = 0, i, j = 1, 2, j 6= i.

46However, integration is more attractive if it entails a reduced ability for firm j, as an outsider, to transfer risks to the
lab when the latter is controlled by its rival i. Still, by integrating the lab the acquirer must bear the consequence of risks
that were transferred upstream in the initial outsourcing situation. So even when vertical integration modifies the design
of contracts and the distribution of risks over R&D market participants, at this level of generality it is not clear whether the
net effect of that change mitigates the winner’s curse problem or not.
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by contracting out for R&D with the integrated entity {0, i} they earn only v
{0,i}
j < v∗j . As for the lab’s

owners, they earn a payoff equal to the common maximum bid, which from (24) and (27) is equal to

v
{0,1}
0 = v

{0,2}
0 =

v ({1})− v1

Λ − v
(v∗2 − v2) +

v ({2})− v2

Λ − v
(v∗1 − v1) > v∗0 = 0, (28)

with the strict inequality replaced by an equality sign only in the degenerate case where v ({i}) = vi

for the two firms (i = 1, 2). Otherwise, even if v∗i = vi for one of the two firms (say i = 1), the

inequality remains strict (as necessarily v∗2 − v2 = Λ − v − (v∗1 − v1) > 0).

Therefore, in expectation, the lab’s owners extract a positive share of industry profits in the equity

market (point V in Figure 1), unlike in the initial equilibrium of the R&D market (Proposition 2).

This theoretical result is consistent with the empirical evidence in Higgins and Rodriguez (2006),

where firms overbid for an external unit, and the acquirer succumbs to the winner’s curse. More

recently, Pisano (2015) also reflected on whether “pharmaceutical companies [are] paying more for

R&D by acquiring companies than by carrying out the R&D themselves”. According to our result,

pharmaceutical companies pay more for R&D by acquiring the lab than by engaging in a contractual

arrangement with it. This is because, in this model, competition is tougher in the equity market,

where only one firm can acquire the lab, and the opportunity cost of not being that firm is very

high, whereas in the R&D market firms can partially reconcile their antagonism through finely tuned

contract offers.

Proposition 7 With non-negative R&D externalities (ǫ ≥ 0), one of the two firms – which are possibly asym-

metric – acquires the lab with equal probability 1/2. The bidding contest in the equity market implies a strictly

higher expected profit to the lab, and a lower one to each firm, than in the initial outsourcing equilibrium.

The latter proposition points to exit payoffs to capital holders as a long-term financial incentive

that can motivate investments in early-stage research activities (discovery). Indeed, from (28) the

expected profit to the lab’s owners in the equity market can be as high as the net industry level Λ− v,

which occurs when v ({i}) is set equal to Λ − vj, i, j = 1, 2, j 6= i. This case describes rather extreme

situations where, in the initial outsourcing equilibrium, the net marginal contribution of each firm

to the total industry value is equal to zero, that is v({1, 2}) − v({i}) − vj = 0, for i, j = 1, 2, j 6= i,

implying that having two firms instead of only one does not change the industry value.
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On the other hand, exit payoffs can also be very low. Again from (28), the gain to the lab’s owners

in the equity market are negligible whenever the difference v ({i})− vi, for i = 1, 2, approaches zero.

This situation relates typically to interesting situations where the lab’s superior efficiency originates

from economies of scope that can hardly be exploited when a firm controls the external unit exclu-

sively for itself.47 In that case, the lab’s owners, who exactly break-even in the initial outsourcing

equilibrium (Proposition 2), cannot reapproriate industry profits by selling the equity to a firm. They

thus have little incentive to invest in the first place, even when large economies of scope imply a

project of high total value Λ.

Negative R&D externalities — When indirect and direct R&D externalities are both negative,

or in “mixed” situations with positive and negative externalities where the latter dominate, so that

v is strictly subadditive (ǫ < 0), from Proposition 3 the equilibrium expected payoffs in the initial

outsourcing situation are v∗0 = |ǫ| > 0, and v∗i = v({i})− |ǫ| ≥ vi, i = 1, 2, so that v∗1 + v∗2 < Λ. As

an alternative to the initial outsourcing situation, the firms can opt for an horizontal arrangement in

order to procure jointly external R&D. In that case they behave cooperatively as a unique principal

in the intermediate market for technology, and fully appropriate the maximum industry profit, with

the lab breaking even exactly in expectation (point H in Figure 2 below).48 We thus have v
{1,2}
0 = 0

and v
{1,2}
1 + v

{1,2}
2 = Λ (here the superscript {1, 2} refers to the industry structure with firms 1 and 2

procuring jointly).

The initial outsourcing equilibrium payoffs determine the firms’ disagreement point (v∗1 , v∗2) when

they bargain over the agent’s expected payoff v∗0 = Λ− v∗1 − v∗2 . The firms’ expected payoffs
(

v
{1,2}
1 , v

{1,2}
2

)

then verify

v
{1,2}
k = v∗k + ωk (Λ − v∗1 − v∗2) , (29)

where k = 1, 2, implying that bargaining powers (ω1, ω2) in [0, 1]2, with ω1 + ω2 = 1, are

ωk =
v
{1,2}
k − v∗k

Λ − v∗1 − v∗2
. (30)

47To illustrate, consider Example 4 above (see Section 5), with β = 1/2 (so direct externalities are nil, for simplicity), and
δ > 0 (economies of scope), so ǫ > 0. Then, whenever the cost parameter γ takes a sufficiently high value, supposing that
firm i controls the lab for itself it must focus on internal R&D (the yi dimension) to earn a maximum profit v ({i}) which is
only slightly higher than the standalone value vi.

48A horizontal arrangement here relates to the intermediate market for technology, as opposed to the final market for
products, where the firms are assumed to remain competitors. This situation is similar to the cases observed by Majewski
(2004) where firms engaged in a technology alliance jointly choose to outsource their R&D to a third party in order to split
costs.
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Figure 2: v is strictly subadditive (ǫ < 0), so the loci for v ({1}) and v ({2}) intersect outside the simplex. In the initial

R&D equilibrium (point I) the firms earn an expected profit v∗i = v({i}) − |ǫ|, i = 1, 2, and the lab earns v∗0 > 0. By

agreeing horizontally to coordinate R&D outsourcing, the firms fully reappropriate industry profits (point H). Should a

firm integrate vertically with the lab, at no cost, it would increase profits (point A for firm 1, or B for firm 2). The bidding

contest to acquire the lab leads both firms to earn v
{0,j}
i , i, j = 1, 2, j 6= i (point V) in the equilibrium industry structure.

From Proposition 3 we know that v∗0 = Λ − v∗1 − v∗2 > 0, implying that in (29) we have v
{1,2}
k ≥ v∗k

for k = 1, 2, with a strict inequality sign for at least one firm, implying that the latter firm earns a

positive gain by shifting to the horizontal arrangement. Moreover, the definition of ǫ in (10) together

with v∗i = v({i})− |ǫ| in (18) imply that v∗j = Λ − v ({i}), so that v
{1,2}
j ≥ v∗j and v

{1,2}
j = Λ − v

{1,2}
i

lead to v
{1,2}
i ≤ v ({i}), i, j = 1, 2, j 6= i, again with a strict inequality sign for at least one firm. It

follows that

v({k})− |ǫ| ≤ v
{1,2}
k ≤ v ({k}) , (31)

where k = 1, 2, with at least one strict inequality sign. In (31) the first inequality states that any

situation resulting in lower individual payoffs than in the initial equilibrium is rejected. The second
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inequality indicates that each firm’s expected payoff in the horizontal arrangement is bounded from

above by v ({k}), the value generated when it acquires the external lab without contracting with its

rival.

While the two firms’ joint profit is maximized in the horizontal arrangement, each firm has an

incentive to depart unilaterally from {1, 2} by acquiring the lab, for a strictly49 higher disagreement

payoff v ({i}) > v∗i accruing to the integrated entity {0, i}, and a (weakly) lower disagreement payoff

vj ≤ v∗j to the other firm. By controlling the lab and benefitting exclusively from its technology, in

case of disagreement the integrated entity can guarantee for itself the upper bound of the horizon-

tal arrangement payoff in (31), while the outsider earns only its standalone value. The bargaining

process, with vertical integration, implies an expected payoff to the unified entity equal to

v
{0,i}
0+i = v ({i}) + ωi

(

Λ − v ({i})− vj

)

> v
{1,2}
i , (32)

and an expected payoff to the outsider equal to

v
{0,i}
j = vj + ωj

(

Λ − v ({i})− vj

)

< v
{1,2}
j , (33)

i, j = 1, 2, j 6= i.50

The lab’s owners, as in the non-negative externalities situation of the previous section, can thus

make the two firms compete in the equity market by soliciting bids in order to appropriate a share of

industry profits. Provided that no restriction is introduced that limits payment offers, again the firms

have the same willingness to pay for the lab, that is

v
{0,i}
0+i − v

{0,j}
i = ωj (v ({i})− vi) + ωi

(

v ({j})− vj

)

> 0, (34)

i, j = 1, 2, j 6= i, and any of them becomes the acquirer with the same probability 1/2. The payoffs

structure already obtained in the non-negative externalities case thus prevails, with each firm’s re-

spective owners earning exactly their outside value, v
{0,2}
1 < v

{1,2}
1 and v

{0,1}
2 < v

{1,2}
2 , in any of the

two possible equilibrium industry structures.

49In this negative externalities situation (ǫ = Λ − v ({i})− v ({j}) < 0) we have v ({i}) > Λ − v ({j}) = v∗i .
50The strict inequality sign in (33) is a consequence of v ({i}) > v∗i ≥ vi, and possibly of firm j’s strictly lower disagree-

ment value vj < v∗j (this differs from the non-negative externalities case in (26)). Then the strict inequality in (32) follows

from v
{1,2}
i + v

{1,2}
j = v

{0,i}
0+i + v

{0,i}
j = Λ, which leads to v

{0,i}
0+i − v

{1,2}
i = v

{1,2}
j − v

{0,i}
j > 0.
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However, with negative externalities it is not a priori established that the lab’s owners are better

off post integration than in the initial outsourcing equilibrium. Inserting the expression of the firms’

respective bargaining powers in (34), and reorganizing terms (see Appendix A.10), we find that

v
{0,1}
0 = v

{0,2}
0 =

v ({1})− v1

|ǫ|

(

v
{1,2}
2 − v∗2

)

+
v ({2})− v2

|ǫ|

(

v
{1,2}
1 − v∗1

)

≥ v∗0 = |ǫ| . (35)

The value that can be extracted by the lab’s owners by selling their property rights to any of the

two – possibly asymmetric – firms (from I to V in Figure 2) is only weakly greater than the share of

expected industry profits obtained in Proposition 3. To summarize:

Proposition 8 With negative R&D externalities (ǫ < 0): (a) If the firms can commit not to integrate the

lab they horizontally coordinate external technology sourcing and appropriate the total industry value Λ; (b)

Otherwise, one of the two firms acquires the lab with the same probability 1/2, and the positive profit earned

by the lab’s owners in the equity market is only weakly superior than in the initial outsourcing equilibrium.

Part (a) of Proposition 8 focuses on cases where the firms, for some exogenous reasons (e.g., a

regulation), rule out the possibility to acquire the lab. When technological externalities are negative

(ǫ < 0), because multi-client R&D operations entail diseconomies of scope and inter-firm knowledge

spillovers are limited, or as a consequence of a strong business-stealing effect in the final market,

the firms are more likely to coordinate horizontally the sourcing of new technology from the same

external lab whereas in the case of positive externalities they derive no benefit from coordination.

This observation is reminicent of Majewski (2004), where evidence is found that “when collabora-

tive agreements involve firms that compete in downstream markets, they tend to outsource their

collaborative R&D to a third party” (p. 2). Part (b) of Proposition 8 emphasizes that, with negative

technological externalities (late-stage clinical development), the financial performance of the lab can

only be weakly augmented in the equity market in comparison to the initial outsourcing equilib-

rium. As the upstream expected financial returns are already positive in the latter equilibrium, and

increasing with the magnitude of ǫ (in Proposition 3), the lab’s owners face relatively weak incentives

to sell ownership to a downstream firm when their activities are characterized by strongly negative

externalities.

Financial constraints — Propositions 7 and 8 are derived under the assumption that bids are un-

restricted. However, in real-world business circumstances a financial constraint might be introduced
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that limits firms’ ability to compete for the control of an external entity. In the theoretical context of

the model, the effect of such a constraint can be investigated by assuming that the price paid to the

lab’s owners, in case of vertical integration, cannot be so high as to imply a lower expected payoff

to the acquiring firm than in the initial outsourcing equilibrium. Formally, the two firms’ respective

financial constraints are thus

v∗i ≤ v
{0,i}
i = Λ − v

{0,i}
j − v

{0,i}
0 , (36)

i, j = 1, 2, j 6= i. In principle such constraints make it more difficult for a firm to acquire the lab

when the latter makes positive profits than when it exactly breaks even. They also help identifying

the profile of the most agressive bidder.

With non-negative R&D externalities (ǫ ≥ 0), as Λ − v∗i = v∗j from Proposition 2, firm i’s con-

straint in (36) becomes v
{0,i}
0 ≤ v∗j − v

{0,i}
j . In other words, firm i’s maximum bid, when it acquires

the lab, must not exceed what firm j has lost, as an outsider, because of the change in bargaining

positions vis-à-vis the outsourcing situation. By using (23) and (26), firm i’s financial constraint can

thus be rewritten v
{0,i}
0 ≤ φj (v ({i})− vi), i, j = 1, 2, j 6= i. The lab’s owners face two competing bids,

and select the highest, say the one of firm i if φj (v ({i})− vi) ≥ φi

(

v ({j})− vj

)

which, by using

(24), is equivalent to

v∗i − vi

v ({i})− vi

≤
v∗j − vj

v ({j})− vj

. (37)

The comparison in (37) predicts that the acquirer is the ”weaker“ firm, that is the one whose net

equilibrium expected payoff in the initial outsourcing situation (that is v∗i − vi), relatively to the net

profit that the integrated entity can guarantee for itself (v ({i})− vi), is lower.

With negative R&D externalities (ǫ < 0), the same reasoning starting from (36) leads to the fol-

lowing condition for firm i to be the one that acquires the lab:

v
{1,2}
i − vi

v({i})− |ǫ| − vi

≤
v
{1,2}
j − vj

v({j})− |ǫ| − vj

. (38)

Here the acquirer is the firm whose gain in the horizontal arrangement (that is v
{1,2}
i − vi), relatively

to the initial equilibrium net expected payoff (v∗i − vi = v({i})− |ǫ| − vi), is lower.

The theoretical prediction of conditions (37 - 38) is compatible with the empirical evidence. In

Higgins and Rodriguez (2006), the firms experiencing a deterioration of their research pipeline are

found to be more likely to engage in the acquisition of a biotech entity. In Danzon et al. (2007), the
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financially strong firms appear to be less likely to engage in acquisitions. In other words, the most

active firms in the equity market are not the ones with the highest profit prospects nor the deepest

pockets.

7 Conclusion

Our formal analysis offers a new rationale for the low average profitability of the science-based busi-

nesses of biotech (Pisano, 2006a, 2010), and the high amount of risk they take in comparison to their

pharma sponsors (Golec and Vernon, 2009; Thakor et al., 2017), as observed since the emergence of

genetic engineering in the 1970s. In light of our results, and their connection with empirical observa-

tions, we believe that limited financial returns should not be seen as evidence of disappointing tech-

nological progress, but can be interpreted as a confirmation that economies of scope and inter-firm

knowledge spillovers have been significant in the biotechnology domain. Indeed, in such circum-

stances, our results establish that the decision by competing firms to outsource early-stage research

activities to a common external unit leads most expected value, possibly very substantial, to be ap-

propriated by downstream sponsors. This conclusion does not extend, in our theoretical framework,

to contracted-out development services that are characterized by negative technological externalities.

Moreover, the higher level of idiosyncratic risk (specific to an individual unit or project) observed in

biotech firms than in pharma companies is explained in our model by the ability of downstream

firms to transfer – at least partly – the financial consequences of R&D uncertainties to the supply side

of the market for technology by the means of contingent transfer payments.

The contracting-out of discovery and clinical tasks is attractive from the viewpoint of big pharma

companies, because it allows them to transfer risks to an external unit whose distinctive capabilites,

and the ability to internalize technological externalities, are sources of efficiency gains. However, the

possible delinkage of upstream investment incentives from total industry value, and the vulnerability

of investors’ net returns to negative shocks, together theorize the abandonment of projects precisely

in those early-stage areas that can generate critical advances toward new treatments or preventives.

An important consequence is that, although the long-run perspective of substantial exit payoffs in

the equity market can in some cases generate incentives to start a biotech unit, externalizing research

does not always qualify as a relevant pathway to address the declining productivity in innovation

that has characterized the biopharmaceutical sector over several decades. Our theoretical results thus
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do not support the view of R&D outsourcing as the panacea often described by business experts or

industry publications.
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A Appendix

We first develop the derivatives
dy∗j
dxj

and
dy∗i
dxj

, which are needed to prove Propositions 1 to 5 afterwards.

A.1 Derivation of
dy∗j
dxj

and
dy∗i
dxj

As the arguments xi and yi enter additively into gi (hence ĝi), we have

∂ĝi

(

xi + y∗i , xj, y∗j

)

∂xi
−

∂ f̂i (y
∗
i )

∂yi
= 0, (39)

and similarly

∂ĝj

(

xj + y∗j , xi, y∗i

)

∂xj
−

∂ f̂ j

(

y∗j

)

∂yj
= 0, (40)

where the Nash strategies y∗i = y∗i
(
xi, xj

)
and y∗j = y∗j

(
xi, xj

)
result from the two firms’ non-

cooperative profit-maximization in their respective internal R&D levels, for i, j = 1, 2, j 6= i.

Differentiating (39) and (40) w.r.t. xj, and using again si = xi + yi in ĝi, and sj = xj + yj in ĝj, we

obtain the system of equations






∂2 ĝi

∂xi∂yj

∂2 ĝi

∂x2
i

− ∂2 f̂i

∂y2
i

∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

∂2 ĝj

∂xj∂yi










dy∗j
dxj
dy∗i
dxj



 =




− ∂2 ĝi

∂xi∂xj

−
∂2 ĝj

∂x2
j



 ,

where ĝi = ĝi

(

xi + y∗i , xj, y∗j

)

, ĝj = ĝj

(

xj + y∗j , xi, y∗i

)

, f̂i = f̂i (y
∗
i ), and f̂ j = f̂ j(y

∗
j ), for clarity.

This yields the solution





dy∗j
dxj
dy∗i
dxj



 =
1

∆






−
∂2 ĝj

∂xj∂yi

∂2 ĝi

∂x2
i

− ∂2 f̂i

∂y2
i

∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

− ∂2 ĝi

∂xi∂yj









− ∂2 ĝi

∂xi∂xj

−
∂2 ĝj

∂x2
j



 (41)

where

∆ =

(

∂2 ĝi

∂x2
i

−
∂2 f̂i

∂y2
i

)(

∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

)

−
∂2 ĝi

∂xi∂yj

∂2 ĝj

∂xj∂yi
. (42)
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We thus have

dy∗j

dxj
=

1

∆

[

∂2 ĝj

∂xj∂yi

∂2 ĝi

∂xi∂xj
−

(

∂2 ĝi

∂x2
i

−
∂2 f̂i

∂y2
i

)

∂2 ĝj

∂x2
j

]

, (43)

dy∗i
dxj

=
1

∆

[

∂2 ĝi

∂xi∂yj

∂2 ĝj

∂x2
j

−

(

∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

)

∂2 ĝi

∂xi∂xj

]

. (44)

We know that
∂2 f̂i(y∗i )

∂y2
i

≥ 0 (by assumption) and
∂2 ĝi

∂x2
i

− ∂2 f̂i

∂y2
i

< 0 (second-order condition), which

holds also for firm j. As
∂2 ĝi

∂xi∂yj
and

∂2 ĝj

∂xj∂yi
have the same sign (by assumption),

∥
∥
∥

∂2 ĝi

∂x2
i

∥
∥
∥ ≥

∥
∥
∥

∂2 ĝi

∂xi∂yj

∥
∥
∥ and

∥
∥
∥
∥

∂2 ĝj

∂x2
j

∥
∥
∥
∥
≥
∥
∥
∥

∂2 ĝj

∂xj∂yi

∥
∥
∥ (see (7)), we obtain from (42) that ∆ ≥ 0.51

Moreover, we know also from Henriques (1990) that the reaction functions in the internal R&D

space
(
yi, yj

)
cross “correctly”, so that the Nash equilibrium (y∗i , y∗j ) is stable, only if

∣
∣
∣
∣
∣
∣

∂2
[

ĝi

(
xi + yi, xj, yj

)
− f̂i (yi)

]

∂y2
i

/
∂2
[

ĝi

(
xi + yi, xj, yj

)
− f̂i (yi)

]

∂yi∂yj

∣
∣
∣
∣
∣
∣

< 1, (45)

for i, j = 1, 2, j 6= i.

Again, the argument si = xi + yi in ĝi, together with f̂i being a function of yi only, imply that
∂2[ĝi(xi+yi ,xj,yj)− f̂i(yi)]

∂yi∂yj
=

∂2 ĝi(xi+yi ,xj,yj)
∂yi∂yj

=
∂2 ĝi(xi+yi ,xj,yj)

∂xi∂yj
, so that (45) becomes

∣
∣
∣

(
∂2 ĝi

∂x2
i

− ∂2 f̂i

∂y2
i

)

/
∂2 ĝi

∂xi∂yj

∣
∣
∣ <

1. The latter inequality, together with
∂2 ĝi

∂x2
i

− ∂2 f̂i

∂y2
i

< 0 for i = 1, 2 (second-order condition) and

∂2 ĝi

∂xi∂yj

∂2 ĝj

∂xj∂yi
≥ 0 for i, j = 1, 2, j 6= i (partial cross-derivatives, for both firms, have the same sign

by assumption) imply from (42) that ∆ is nonzero at (y∗i , y∗j ), and the derivatives in (43) and (44) are

well defined.

Suppose now that
∂2 ĝi

∂x2
i

is nonzero for i = 1, 2 (the case
∂2 ĝi

∂x2
i

= 0 is considered below in the proof of

Proposition 1). Then, a careful reorganization of terms in the expression of
dy∗j
dxj

in (43) leads to

dy∗j

dxj
=

−
∂2 ĝj

∂x2
j

∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j




1 −

∂2 ĝj

∂xj∂yi

−
∂2 ĝj

∂x2
j

Njj

∆




 , (46)

where Njj =
∂2 ĝi

∂xi∂yj

∂2 ĝj

∂x2
j

−

(
∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

)

∂2 ĝi

∂xi∂xj
.

51From the expression in (2), the argument si = xi + yi of the gross profit function gi, hence also of the reduced-form ĝi,
implies that inequalities (6 - 7) can be rewritten by substituting the derivatives with respect to xi for the ones with respect
to yi. Thus ∂2 ĝi/∂yi∂xi = ∂2 ĝi/∂x2

i , ∂2 ĝi/∂yi∂xj = ∂2 ĝi/∂xi∂xj, and ∂2 ĝi/∂yi∂yj = ∂2 ĝi/∂xi∂yj, for i, j = 1, 2, j 6= i. We
make use of these substitutions throughout the appendix.
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Similarly, a reorganization of terms in the expression of
dy∗i
dxj

in (44) leads to

dy∗i
dxj

=
− ∂2 ĝi

∂xi∂xj

∂2 ĝi

∂x2
i

− ∂2 f̂i

∂y2
i



1 −

∂2 ĝi

∂xi∂yj

− ∂2 ĝi

∂xi∂xj

Nij

∆



 , (47)

where Nij =
∂2 ĝj

∂xj∂yi

∂2 ĝi

∂xi∂xj
−
(

∂2 ĝi

∂x2
i

− ∂2 f̂i

∂y2
i

)
∂2 ĝj

∂x2
j

.

Both expressions in (46) and (47) are well defined because the denominators of their respective

first terms are nonzero by assumption (second-order condition for a unique y∗(x)).

A.2 Proof of Proposition 1.

We want to establish that
dy∗i
dxi

< 0 ⇔ ∂2 ĝi

∂s2
i

< 0, where si = xi + yi, and with ĝi = ĝi

(

xi + y∗i , xj, y∗j

)

,

ĝj = ĝj

(

xj + y∗j , xi, y∗i

)

, f̂i = f̂i (y
∗
i ), and f̂ j = f̂ j(y

∗
j ), i, j = 1, 2, j 6= i, throughout this section for

clarity. There are three cases:

Case 1:
∂2 ĝi

∂s2
i

= 0. Recalling from si = xi + yi in ĝi that
∂2 ĝi

∂yi∂xi
= ∂2 ĝi

∂x2
i

and
∂2 ĝi

∂yi∂xj
= ∂2 ĝi

∂xi∂xj
, from (6) we have

∥
∥
∥

∂2 ĝi

∂yi∂xi

∥
∥
∥ =

∥
∥
∥

∂2 ĝi

∂x2
i

∥
∥
∥ = 0 ≥

∥
∥
∥

∂2 ĝi

∂yi∂xj

∥
∥
∥ =

∥
∥
∥

∂2 ĝi

∂xi∂xj

∥
∥
∥, implying that

∂2 ĝi

∂xi∂xj
= 0. Then, by inserting

∂2 ĝj

∂x2
j

= 0 and

∂2 ĝi

∂xi∂xj
= 0 into (43) and (44) we find

dy∗j

dxj
=

dy∗i
dxj

= 0. (48)

Case 2:
∂2 ĝi

∂s2
i

< 0. (i) Here
∂2 f̂i(y∗i )

∂y2
i

≥ 0 implies that
∂2 ĝi

∂x2
i

− ∂2 f̂i

∂y2
i

≤ ∂2 ĝi

∂x2
i

< 0, while
∥
∥
∥

∂2 ĝi

∂x2
i

∥
∥
∥ ≥

∥
∥
∥

∂2 ĝi

∂xi∂xj

∥
∥
∥ by

assumption from (7) implies that
∂2 ĝi

∂x2
i

≤ ∂2 ĝi

∂xi∂xj
, and by transitivity

∂2 ĝi

∂x2
i

− ∂2 f̂i

∂y2
i

≤ ∂2 ĝi

∂xi∂xj
. (ii) As

∂2 ĝj

∂x2
j

< 0,

here

∥
∥
∥
∥

∂2 ĝj

∂x2
j

∥
∥
∥
∥
≥
∥
∥
∥

∂2 ĝj

∂xj∂yi

∥
∥
∥ by assumption from (6) leads to

∂2 ĝj

∂x2
j

≤
∂2 ĝj

∂xj∂yi
. From (i) and (ii) we obtain that

−

(

∂2 ĝi

∂x2
i

−
∂2 f̂i

∂y2
i

)

∂2 ĝj

∂x2
j

≤ −
∂2 ĝi

∂xi∂xj

∂2 ĝj

∂xj∂yi
≤ 0,

with an equality sign (the 1st one) if and only if
∂2 ĝj

∂x2
j

=
∂2 ĝj

∂xj∂yi
< 0 and

∂2 ĝi

∂x2
i

− ∂2 f̂i

∂y2
i

= ∂2 ĝi

∂xi∂xj
< 0.

Multiplying through by
∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

< 0, adding
∂2 ĝj

∂x2
j

∂2 ĝj

∂xj∂yi

∂2 ĝi

∂xi∂yj
on both sides, and reorganizing terms,

leads to

1 ≥

∂2 ĝj

∂xj∂yi

−
∂2 ĝj

∂x2
j

Njj

∆
,
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so that the expression between brackets in (46) is non-negative, and finally we have

dy∗j

dxj
= −

−
∂2 ĝj

∂x2
j

∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

︸ ︷︷ ︸

<0




1 −

∂2 ĝj

∂xj∂yi

−
∂2 ĝj

∂x2
j

Njj

∆






︸ ︷︷ ︸

≥0

≤ 0, (49)

again with an equality sign if and only if
∂2 ĝj

∂x2
j

=
∂2 ĝj

∂xj∂yi
< 0 and

∂2 ĝi

∂x2
i

− ∂2 f̂i

∂y2
i

= ∂2 ĝi

∂xi∂xj
< 0, where the latter

equality implies that
∂2 f̂i

∂y2
i

= 0.

Case 3:
∂2 ĝi

∂s2
i

> 0 (i = 1, 2). Here we have
(

∂2 ĝi

∂x2
i

− ∂2 f̂i

∂y2
i

)
∂2 ĝj

∂x2
j

< 0, which together with
∂2 ĝj

∂xj∂yi

∂2 ĝi

∂xi∂xj
≥ 0

(partial cross-derivatives have the same sign by assumption) implies that
(

∂2 ĝi

∂x2
i

− ∂2 f̂i

∂y2
i

)
∂2 ĝj

∂x2
j

<
∂2 ĝj

∂xj∂yi

∂2 ĝi

∂xi∂xj
.

Multiplying through by
∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

< 0, adding −
∂2 ĝj

∂x2
j

∂2 ĝj

∂xj∂yi

∂2 ĝi

∂xi∂yj
on both sides of the inequality sign,

and reorganizing terms, leads to

1 >

∂2 ĝj

∂xj∂yi

−
∂2 ĝj

∂x2
j

Njj

∆
, (50)

so that the expression between brackets in (46) is positive. Then −
∂2 ĝj

∂x2
j

(
∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

)−1

> 0 implies

finally that

dy∗j

dxj
=

−
∂2 ĝj

∂x2
j

∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

︸ ︷︷ ︸

>0




1 −

∂2 ĝj

∂xj∂yi

−
∂2 ĝj

∂x2
j

Njj

∆






︸ ︷︷ ︸

>0

> 0. (51)

The sign of
dy∗j
dxj

in (48), (49) and (51), establishes Proposition 1. �

A.3 Lemmas

The technical results introduced in this section are needed to prove Propositions 2, 3, and 5. The first

two lemmas establish a connection between properties of ĝi (x, y) and ĝi (x, y∗(x))− f̂i (y
∗
i (x)).

Lemma A.1 Suppose that
∂2 ĝi

∂x2
i

≤ 0, i = 1, 2. Then
d[ĝi(xi+y∗i ,xj,y

∗
j )− f̂i(y∗i )]

dxj
, i, j = 1, 2, j 6= i, has the same

sign as
∂ĝi(xi+yi ,xj,yj)

∂xj
and

∂ĝi(xi+yi ,xj,yj)
∂yj

.
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Proof. By the envelope theorem, as y∗i = y∗i
(
xi, xj

)
maximizes ĝi

(
xi + yi, xj, yj

)
− f̂i (yi), we have

d
[

ĝi

(

xi + y∗i , xj, y∗j

)

− f̂i (y
∗
i )
]

dxj
=

∂ĝi

(

xi + y∗i , xj, y∗j

)

∂xj
+

∂ĝi

(

xi + y∗i , xj, y∗j

)

∂yj

dy∗j

dxj
. (52)

Our objective is to determine the sign of the RHS expression in (52). Given the (same) sign of
∂ĝi(xi+y∗i ,xj,y

∗
j )

∂xj
and

∂ĝi(xi+y∗i ,xj,y
∗
j )

∂yj
, we need only characterizing

dy∗j
dxj

.

First, if
∂2 ĝi

∂x2
i

= 0 (i = 1, 2), we know from (48) that
dy∗j
dxj

= 0, which is sufficient to conclude.

Next, if
∂2 ĝi

∂x2
i

< 0 (i = 1, 2), we know from (49) that
dy∗j
dxj

≤ 0. Then toward a contradiction we

suppose that
∥
∥
∥

dy∗j
dxj

∥
∥
∥ > 1, or equivalently here

dy∗j
dxj

< −1. Developing the expression in (46) then leads

to
∂2 ĝj

∂xj∂yi

(
∂2 ĝi

∂xi∂yj
−

∂2 ĝi

∂xi∂xj

)

> −
∂2 f̂ j

∂y2
j

︸︷︷︸

≥0

(

∂2 ĝi

∂x2
i

−
∂2 f̂i (y

∗
i )

∂y2
i

)

︸ ︷︷ ︸

<0

. (53)

As
∂2 ĝi

∂xi∂yj
and

∂2 ĝi

∂xi∂xj
have the same sign, and

∥
∥
∥

∂2 ĝi

∂xi∂xj

∥
∥
∥ ≥

∥
∥
∥

∂2 ĝi

∂xi∂yj

∥
∥
∥ (model specifications in (6-7)), we

know that the expression on the LHS of the strict inequality sign in (A.9) is non-positive. How-

ever,
∂2 f̂ j

∂y2
j

≥ 0 (by assumption) and
∂2 ĝi

∂x2
i

−
∂2 f̂i(y∗i )

∂y2
i

< 0 (second-order condition) imply that the prod-

uct on the RHS is always non-negative, a contradiction. Hence
∥
∥
∥

dy∗j
dxj

∥
∥
∥ ≤ 1. This, together with

∥
∥
∥
∥

∂ĝi(xi+y∗i ,xj,y
∗
j )

∂xj

∥
∥
∥
∥
≥

∥
∥
∥
∥

∂ĝi(xi+y∗i ,xj,y
∗
j )

∂yj

∥
∥
∥
∥

(model specifications), is sufficient to conclude that
d[ĝi(xi+y∗i ,xj,y

∗
j )− f̂i(y∗i )]

dxj

in (52) has the same sign as
∂ĝi(xi+yi ,xj,yj)

∂xj
and

∂ĝi(xi+yi ,xj,yj)
∂yj

. �

Lemma A.2 Suppose that
∂2 ĝi

∂x2
i

≤ 0, i = 1, 2. If
∂ĝi(xi+yi ,xj,yj)

∂xj
≥ 0 and

∂ĝi(xi+yi ,xj,yj)
∂yj

≥ 0, i, j = 1, 2, j 6= i,

then
d[ĝi(xi+y∗i ,xj,y

∗
j )− f̂i(y∗i )]

dxi
≥ 0 also.

Proof. By the envelope theorem, as y∗i = y∗i
(
xi, xj

)
maximizes ĝi

(
xi + yi, xj, yj

)
− f̂i (yi), we have

d
[

ĝi

(

xi + y∗i , xj, y∗j

)

− f̂i (y
∗
i )
]

dxi
=

∂ĝi

(

xi + y∗i , xj, y∗j

)

∂xi
+

∂ĝi

(

xi + y∗i , xj, y∗j

)

∂yj

dy∗j

dxi
, (54)

where
∂ĝi(xi+y∗i ,xj,y

∗
j )

∂xi
≥ 0 as a model specification, and

∂ĝi(xi+y∗i ,xj,y
∗
j )

∂yj
≥ 0 as an assumption of the

present lemma. In order to determine the sign of the RHS expression in (54), we thus need only

characterizing
dy∗j
dxi

.

First, if
∂2 ĝi

∂x2
i

= 0 (i = 1, 2), we know from (48) that
dy∗j
dxi

= 0, which is sufficient to conclude.
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Next, if
∂2 ĝi

∂x2
i

< 0 (i = 1, 2), recall from (47) in Section A.1 that

dy∗j

dxi
=

−
∂2 ĝj

∂xj∂xi

∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j




1 −

∂2 ĝj

∂xj∂yi

−
∂2 ĝj

∂xj∂xi

Nji

∆




 , (55)

where Nji =
∂2 ĝi

∂xi∂yj

∂2 ĝj

∂xj∂xi
−

(
∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

)

∂2 ĝi

∂x2
i

. There are two possible cases that depend on the sign of

∂2 ĝj

∂xj∂xi
.

(i) If
∂2 ĝj

∂xj∂xi
≥ 0 (i, j = 1, 2, j 6= i), as

∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

< 0 we have −
∂2 ĝj

∂xj∂xi
/

(
∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

)

≥ 0. Then, toward

a contradiction, suppose that the expression between brackets in (55) is negative. This, together with
∥
∥
∥

∂2 ĝj

∂xj∂yi
/

∂2 ĝj

∂xj∂xi

∥
∥
∥ ≤ 1 (model specifications in (6-7)), implies that

Nji

∆
< −1, which can be rewritten as

∂2 ĝi

∂xi∂yj

(

∂2 ĝj

∂xj∂xi
−

∂2 ĝj

∂xj∂yi

)

<
∂2 f̂i

∂y2
i

(

∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

)

,

where the expression on the LHS of the inequality sign is non-negative, whereas the expression on

the RHS is non-positive, a contradiction. It follows that
dy∗j
dxi

≥ 0, which is sufficient to conclude

directly that
d[ĝi(xi+y∗i ,xj,y

∗
j )− f̂i(y∗i )]

dxi
in (54) is non-negative also.

(ii) If
∂2 ĝj

∂xj∂xi
< 0 (i, j = 1, 2, j 6= i), unlike in the previous case the model specifications do not imply

that
dy∗j
dxi

≥ 0. Then, toward a contradiction, whenever
dy∗j
dxi

< 0 suppose that
∥
∥
∥

dy∗j
dxi

∥
∥
∥ > 1, or equivalently

here −
dy∗j
dxi

> 1. From (55), by using ∆ > 0 (see (42) and related subsequent comments in Section A.1)

we have

−
∂2 ĝj

∂xj∂yi

∂2 ĝi

∂x2
i

+
∂2 ĝj

∂xj∂xi

(
∂2 ĝi

∂x2
i

− ∂2 f̂i

∂y2
i

)

(
∂2 ĝi

∂x2
i

− ∂2 f̂i

∂y2
i

)(
∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

)

− ∂2 ĝi

∂xi∂yj

∂2 ĝj

∂xj∂yi

> 1,

which can be rewritten as

−
∂2 ĝj

∂xj∂yi

∂2 ĝi

∂x2
i

+
∂2 ĝj

∂xj∂xi

(

∂2 ĝi

∂x2
i

−
∂2 f̂i

∂y2
i

)

>

(

∂2 ĝi

∂x2
i

−
∂2 f̂i

∂y2
i

)(

∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

)

−
∂2 ĝi

∂xi∂yj

∂2 ĝj

∂xj∂yi
,

with
∂2 ĝi

∂x2
i

and
∂2 ĝi

∂xi∂yj
both negative here. Moreover we know by assumption from (7) that

∥
∥
∥

∂2 ĝi

∂x2
i

∥
∥
∥ ≥

∥
∥
∥

∂2 ĝi

∂xi∂yj

∥
∥
∥. Therefore, substituting

∂2 ĝi

∂x2
i

for
∂2 ĝi

∂xi∂yj
in the last term above, by transitivity we obtain

−
∂2 ĝj

∂xj∂yi

∂2 ĝi

∂x2
i

+
∂2 ĝj

∂xj∂xi

(

∂2 ĝi

∂x2
i

−
∂2 f̂i

∂y2
i

)

>

(

∂2 ĝi

∂x2
i

−
∂2 f̂i

∂y2
i

)(

∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

)

−
∂2 ĝj

∂xj∂yi

∂2 ĝi

∂x2
i

,
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which simplifies to

∂2 ĝj

∂xj∂xi
<

∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

≤
∂2 ĝj

∂x2
j

≤ 0.

As the latter inequalities contradict the initial assumption in (6) that
∥
∥
∥

∂2 ĝj

∂xj∂xi

∥
∥
∥ ≤

∥
∥
∥
∥

∂2 ĝj

∂x2
j

∥
∥
∥
∥

, it must be

the case that
∥
∥
∥

dy∗j
dxi

∥
∥
∥ ≤ 1. This, together with the model specification in (4-5) that

∥
∥
∥
∥

∂ĝi(xi+y∗i ,xj,y
∗
j )

∂xi

∥
∥
∥
∥
≥

∥
∥
∥
∥

∂ĝi(xi+y∗i ,xj,y
∗
j )

∂yj

∥
∥
∥
∥

, is sufficient to conclude that
d[ĝi(xi+y∗i ,xj,y

∗
j )− f̂i(y∗i )]

dxi
in (54) is non-negative. �

The next two lemmas were established in Laussel and Le Breton (2001). We restate them in the

notation of this paper for a self-contained appendix:52

Lemma A.3 If v is superadditive, that is Λ ≥ v({1}) + v({2}), then in all TSPNE v∗0 = 0, and all vectors

of equilibrium profits (v∗1 , v∗2) are such that v∗1 + v∗2 = Λ.

Lemma A.4 If v is strictly subadditive, that is Λ < v({1}) + v({2}), then in all TSPNE v∗0 > 0, and there

exists a unique vector of equilibrium profits (v∗1 , v∗2), where v∗i = Λ − v({j}), i, j = 1, 2, j 6= i.

A.4 Proof of Propositions 2 and 3.

Proof of Proposition 2. We first use Lemmas A.1 and A.2, and finally Lemma A.3, in order to

extend a proof by Billette de Villemeur and Versaevel (2003, Proposition 1) to establish the (weak)

superadditivity of v(.). Then we show that the equilibrium payoffs (v∗1 , v∗2) exist that are (weakly)

higher than the respective standalone values (v1, v2).

1) Denote by X∗
{i} the set of the lab’s actions that maximize its expected joint profit with firm i, that is

X∗
{i} = arg max

x

(

max
yi

[

ĝi

(
xi + yi, xj, yj

)
− f̂i (yi)

]

− f̂0 (x)

)

.

Define a = (a1, a2) ∈ X∗
{1} and b = (b1, b2) ∈ X∗

{2}. We know from the initial model specifications

that
∂ĝi(xi+yi ,xj,yj)

∂si
≥ 0, where si = xi + yi. Moreover, it is assumed in this proposition that

∂2 ĝi

∂x2
i

≤ 0

(non-increasing returns to R&D), and from (13) that
∂ĝi(xi+yi ,xj,yj)

∂xj
≥ 0 and

∂ĝi(xi+yi ,xj,yj)
∂yj

≥ 0 (non-

negative R&D externalities). It follows that ĝi(xi + y∗i (x) , xj, y∗j (x))− f̂i (y
∗
i (x)) is non-decreasing in

xj from Lemma A.1, and also in xi from Lemma A.2. Therefore, for u = (u1, u2), with u1 = a1 ∨ b1

52With two principals, the convexity condition introduced in Laussel and Le Breton (2001, Proposition 3.2 p. 103) coin-
cides with the superadditivity of v in our model, and the strong subadditivity property (Proposition 3.3, p. 104) coincides
here with strict subadditivity.
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and u2 = a2 ∨ b2, we have

ĝ1 (a1 + y∗1 (a) , a2,y∗2 (a))− f̂1 (y
∗
1 (a)) ≤ ĝ1 (u1 + y∗1 (u) , u2,y∗2 (u))− f̂1 (y

∗
1 (u)) , (56a)

ĝ2 (b2 + y∗2 (b) , b1,y∗1 (b))− f̂2 (y
∗
2 (b)) ≤ ĝ2 (u2 + y∗2 (u) , u1,y∗1 (u))− f̂2 (y

∗
2 (u)) . (56b)

The non-negative cross-derivative in (12) implies the weak submodularity of f̂0 (Topkis, 1995). This

property, with (56a) and (56b), together lead to

ĝ1 (a1 + y∗1 (a) , a2,y∗2 (a))− f̂1 (y
∗
1 (a))− f̂0 (a)

︸ ︷︷ ︸

=v({1})

+ ĝ2 (b2 + y∗2 (b) , b1,y∗1 (b))− f̂2 (y
∗
1 (b))− f̂0 (b)

︸ ︷︷ ︸

=v({2})

≤ ĝ1 (u1 + y∗1 (u) , u2,y∗2 (u))− f̂1 (y
∗
1 (u)) + ĝ2 (u2 + y∗2 (u) , u1,y∗1 (u))− f̂2 (y

∗
2 (u))− f̂0 (u)

︸ ︷︷ ︸

≤v({1,2})

− f̂0 (a ∧ b)
︸ ︷︷ ︸

≥0

,

which in turn establishes that v({1}) + v({2}) ≤ v({1, 2}). The conclusion that v∗0 = 0 < v∗1 + v∗2 =

v({1, 2}) follows directly from Lemma A.3.

2) To check that v∗i ≥ vi, recall that vi = Eθ [g̃j(x
∗
j , θ)], where x∗j ∈ arg maxx Eθ [g̃j (x, θ) − f0(x, θ)]

describes the lab’s actions when firm j has exclusive access to it (for i, j = 1, 2, j 6= i). Moreover, by

assumption firm i’s exclusive control of the lab dominates the standalone value, that is v({i}) ≥ vi.

Then from the superadditivity of v(.), together with v∗1 + v∗2 = v({1, 2}) as established above, we

have directly

v1 + v2 ≤ v({1}) + v({2}) ≤ v({1, 2}) = v∗1 + v∗2 ,

and the equilibrium set
{
(v∗1 , v∗2) | v∗1 + v∗2 = Λ, v∗1 ≥ v1, v∗2 ≥ v2

}
is nonempty. �

Proof of Proposition 3. We first use Lemmas A.1 and A.4 to prove the strict subadditivity of

v(.), before establishing that the equilibrium payoffs (v∗1 , v∗2) are (weakly) higher than the respective

standalone values (v1, v2).

1) Pick any x∗ = (x∗1 , x∗2) in X∗
{1,2}, the set of R&D levels that maximize the expected industry profit.

It is assumed in this proposition that
∂2 ĝi

∂x2
i

≤ 0 (non-increasing returns to R&D), and from (17)

that that
∂ĝi(xi+yi ,xj,yj)

∂xj
≤ 0 and

∂ĝi(xi+yi ,xj,yj)
∂yj

≤ 0 (weakly negative R&D externalities). It follows from

Lemma A.1 that the net profit expression ĝi(xi + y∗i (x), xj, y∗j (x)) − f̂i (y
∗
i (x)) is non-increasing in

(x1, x2) so that, for all x∗1 , x∗2 ≥ 0,

ĝ1 (x∗1 + y∗1 (x
∗) , x∗2 , y∗2 (x

∗))− f̂1 (y
∗
1 (x

∗)) ≤ ĝ1 (x∗1 + y∗1 (x∗1 , 0) , 0, y∗2 (x∗1 , 0))− f̂1 (y
∗
1 (x∗1 , 0)) , (57a)

ĝ2(x∗2 + y∗2 (x
∗) , x∗1 , y∗1 (x

∗))− f̂2 (y
∗
2 (x

∗)) ≤ ĝ2 (x∗2 + y∗2 (0, x∗2) , 0, y∗1 (0, x∗2))− f̂2 (y
∗
2 (0, x∗2)) . (57b)

The negative cross-derivative in (16) implies the strict supermodularity of f̂0 (Topkis, 1995), with

59



f̂0 (0, 0) = 0. This property, together with (57a) and (57b), lead to

ĝ1(x∗1 + y∗1 (x
∗) , x∗2 , y∗2 (x

∗))− f̂1 (y
∗
1 (x

∗)) + ĝ2(x∗2 + y∗2 (x
∗) , x∗1 , y∗1 (x

∗))− f̂2 (y
∗
2 (x

∗))− f̂0 (x∗1 , x∗2)
︸ ︷︷ ︸

=v({1,2})

< ĝ1 (x∗1 + y∗1 (x∗1 , 0) , 0, y∗2 (x∗1 , 0))− f̂1 (y
∗
1 (x∗1 , 0))− f̂0 (x∗1 , 0)

︸ ︷︷ ︸

≤v({1})

+ ĝ2 (x∗2 + y∗2 (0, x∗2) , 0, y∗1 (0, x∗2))− f̂2 (y
∗
2 (0, x∗2))− f̂0 (0, x∗2)

︸ ︷︷ ︸

≤v({2})

,

which establishes that v ({1, 2}) < v ({1}) + v ({2}). The conclusion that v∗0 > 0 and v∗i = Λ −

v({j}), i, j = 1, 2, j 6= i, follows directly from Lemma A.4.

2) For any x∗1 and x∗2 , by definition of v(.) we have

Eθ [g̃1(x
∗
1 , θ) + g̃2(x

∗
1 , θ)− f0(x

∗
1 , θ)] ≤ v({1, 2}),

Eθ [g̃1(x
∗
2 , θ) + g̃2(x

∗
2 , θ)− f0(x

∗
2 , θ)] ≤ v({1, 2}).

Then by reorganizing terms, and recalling that v({i}) = Eθ [g̃i(x
∗
i , θ)− f0(x∗i , θ)] and vi = Eθ

[

g̃i(x
∗
j , θ)

]

,

where x∗j ∈ arg maxx Eθ

[
g̃j (x, θ)− f0 (x, θ)

]
, i, j = 1, 2, j 6= i, we obtain

v({1}) + v2 ≤ v({1, 2}),

v({2}) + v1 ≤ v({1, 2}),

which, together with v∗i = Λ − v({j}), i, j = 1, 2, j 6= i, as established above, implies that vi ≤ v∗i . �

A.5 Bilateral profit maximization.

We demonstrate that an element of

X(t̃i, tj) = arg max
x

{
Eθ

[
t̃i (x, θ) + tj (x, θ)− f0 (x, θ)

]}
,

the set of actions that maximize the expected payoff to the agent (the lab) given the principals’ (firms’)

strategies (t̃i, tj), is also an element of

X∗
{i} = arg max

x

{
Eθ

[
g̃i (x, θ) + tj (x, θ)− f0 (x, θ)

]}
,

the set of actions that maximize the joint payoff to the agent and principal i. That is:

Lemma A.5 If x̃ is an element of X(t̃i, tj), then x̃ is also an element of X∗
{i}.
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Proof. We suppose that x̃ /∈ X∗
{i}, and look for a contradiction. In equilibrium, the strategy t̃i is

truthful relative to the equilibrium choice x̃, that is t̃i (x, θ) = sup {0, g̃i (x, θ)− [g̃i (x̃, θ)− t̃i (x̃, θ)]},

for all θ ∈ Θ, implying that

t̃i (x, θ) ≥ g̃i (x, θ)− [g̃i (x̃, θ)− t̃i (x̃, θ)] ,

all θ ∈ Θ, all x. This holds in particular for any given x∗ ∈ X∗
{i}, so that t̃i (x

∗, θ) ≥ g̃i (x
∗, θ) −

[g̃i (x̃, θ)− t̃i (x̃, θ)] , all θ ∈ Θ. Adding tj (x
∗, θ)− f0 (x∗, θ) on each side of the inequality, leads to

v0 (x
∗, θ) ≥ g̃i (x

∗, θ) + tj (x
∗, θ)− f0 (x

∗, θ)− g̃i (x̃, θ) + t̃i (x̃, θ) .

By introducing tj (x̃, θ)− f0 (x̃, θ) on the right-hand side only, and reorganizing terms, we obtain

v0 (x
∗, θ) ≥

[
g̃i (x

∗, θ) + tj (x
∗, θ)− f0 (x

∗, θ)
]

−
[
g̃i (x̃, θ) + tj (x̃, θ)− f0 (x̃, θ)

]
+ t̃i (x̃, θ) + tj (x̃, θ)− f0 (x̃, θ) ,

all θ ∈ Θ. Obviously, if this holds for all θ ∈ Θ, this is also true in expectation, that is

Eθ [v0 (x
∗, θ)] ≥ Eθ

[
g̃i (x

∗, θ) + tj (x
∗, θ)− f0 (x

∗, θ)
]

−Eθ

[
g̃i (x̃, θ) + tj (x̃, θ)− f0 (x̃, θ)

]
+ Eθ [v0 (x̃, θ)] . (58)

Observe that x∗ ∈ X∗
{i} and x̃ /∈ X∗

{i} together imply that Eθ

[
g̃i (x

∗, θ) + tj (x
∗, θ)− f0 (x∗, θ)

]
>

Eθ

[
g̃i (x̃, θ) + tj (x̃, θ)− f0 (x̃, θ)

]
, which in turn implies from (58) that

Eθ [v0 (x
∗, θ)] > Eθ [v0 (x̃, θ)] .

The latter comparison says that x̃ /∈ X(t̃i, tj), a contradiction. Therefore, x̃ ∈ X∗
{i}. �

A.6 Proof of Lemma 1.

Consider xo ∈ X
(
to
i , tj

)
, a choice of the agent (the lab) when it faces principal (firm) i’s strategy

(contract offer) to
i (x, θ), the other strategy tj (x, θ) remaining unchanged. Formally,

xo ∈ arg max
x∈X

{
Eθ

[
to
i (x, θ) + tj (x, θ)− f0 (x, θ)

]}
.

We want to prove that xo cannot be distinguished from the action x̃, as chosen by the agent when

principal i’s strategy is t̃i (x, θ). That is, we want to establish that

xo ∈ arg max
x∈X

{
Eθ

[
t̃i (x, θ) + tj (x, θ)− f0 (x, θ)

]}
,
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and that the strategy to
i results in the same expected payoff to the agent and both principals.

(i) We first prove that x̃ leads to the same expected payoff to the agent when facing to
i (x, θ) as when

facing t̃i (x, θ) so that principal i’s change of strategy from t̃i to to
i should not result in the agent

turning down the new contract offer. Toward this aim, observe that vi (x̃, ỹ, z̃, θ) = g̃i (x̃, θ)− t̃i (x̃, θ),

by definition, for all θ ∈ Θ. From inequality (21), we have

h (θ) + t̃i (x̃, θ) ≥ g̃i (x̃, θ)− g
i
(θ) ≥ 0,

so that

vi (x̃, ỹ, z̃, θ)− h (θ) = g̃i (x̃, θ)− [t̃i (x̃, θ) + h (θ)] ≤ g̃i (x̃, θ) ,

for all θ ∈ Θ. As a result

to
i (x̃, θ) = sup {0, g̃i (x̃, θ)− [vi (x̃, ỹ, z̃, θ)− h (θ)]} = g̃i (x̃, θ)− [vi (x̃, ỹ, z̃, θ)− h (θ)] ,

for all θ ∈ Θ, and hence

Eθ

[
to
i (x̃, θ) + tj (x̃, θ)− f0 (x̃, θ)

]
= Eθ

[
g̃i (x̃, θ)− [vi (x̃, ỹ, z̃, θ)− h (θ)] + tj (x̃, θ)− f0 (x̃, θ)

]

= Eθ

[
g̃i (x̃, θ)− vi (x̃, ỹ, z̃, θ) + tj (x̃, θ)− f0 (x̃, θ)

]

= Eθ

[
t̃i (x̃, θ) + tj (x̃, θ)− f0 (x̃, θ)

]
, (59)

where the passage from the first to the second equality is justified by the zero expected value of a

lump-sum transfer adjustment (equation (20)), and the passage from the second to the third directly

follows from the definition of principal i’s equilibrium payoff: vi (x̃, ỹ, z̃, θ) = g̃i (x̃, θ)− t̃i (x̃, θ).

(ii) We now prove that xo, as chosen by the agent when facing to
i , must be an element of

arg max x∈X

{
Eθ

[
t̃i (x, θ) + tj (x, θ)− f0 (x, θ)

]}

so that, for principal i, it is indistinguishable from the action x̃ chosen when the agent faces t̃i. To see

that, recall that by construction to
i (x, θ) = sup {0, g̃i (x, θ)− [vi (x̃, ỹ, z̃, θ)− h (θ)]} is truthful with

respect to x̃ as associated to the equilibrium payoff vi (x̃, ỹ, z̃, θ)− h (θ) ≥ 0. Then, as established by

Lemma (A.5), truthful equilibria are (bilaterally) efficient so that it must be the case that

Eθ

[
g̃i (x

o, θ) + tj (x
o, θ)− f0 (x

o, θ)
]
= Eθ

[
g̃i (x̃, θ) + tj (x̃, θ)− f0 (x̃, θ)

]
. (60)
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It follows that

Eθ

[
t̃i (x

o, θ) + tj (x
o, θ)− f0 (x

o, θ)
]
≥ Eθ

[
g̃i (x

o, θ)− vi (x̃, ỹ, z̃, θ) + tj (x
o, θ)− f0 (x

o, θ)
]

= Eθ

[
g̃i (x

o, θ) + tj (x
o, θ)− f0 (x

o, θ)
]
− Eθ [vi (x̃, ỹ, z̃, θ)]

= Eθ

[
g̃i (x̃, θ) + tj (x̃, θ)− f0 (x̃, θ)

]
− Eθ [vi (x̃, ỹ, z̃, θ)]

= Eθ

[
g̃i (x̃, θ)− vi (x̃, ỹ, z̃, θ) + tj (x̃, θ)− f0 (x̃, θ)

]

= Eθ

[
t̃i (x̃, θ) + tj (x̃, θ)− f0 (x̃, θ)

]
,

where the inequality follows from the definition of the truthful strategy t̃i, the fist equality follows

from the linearity of the expectation operator, the second equality follows from equation (60), the

third equality uses again the linearity of the expectation operator, and finally the bottom line follows

from the definition of principal i’s equilibrium payoff vi (x̃, ỹ, z̃, θ). Thus, the agent’s expected profit,

when offered t̃i by principal i and choosing xo, is at least as high as the one earned by choosing x̃.

Because the latter action maximizes the agent’s payoff when offered t̃i by principal i, the inequality

cannot be strict. Therefore,

Eθ

[
t̃i (x

o, θ) + tj (x
o, θ)− f0 (x

o, θ)
]
= Eθ

[
t̃i (x̃, θ) + tj (x̃, θ)− f0 (x̃, θ)

]
. (61)

(iii) We now prove that, by offering to
i rather than t̃i, principal i is not conceding more profit to the

agent. Indeed, by definition, and using the linearity of the expectation operator again, we have

Eθ

[
to
i (x̃, θ) + tj (x̃, θ)− f0 (x̃, θ)

]
≥ Eθ

[
g̃i (x̃, θ)− [vi (x̃, ỹ, z̃, θ)− h (θ)] + tj (x̃, θ)− f0 (x̃, θ)

]

= Eθ

[
g̃i (x̃, θ) + tj (x̃, θ)− f0 (x̃, θ)

]
− Eθ [vi (x̃, ỹ, z̃, θ)− h (θ)]

= Eθ

[
g̃i (x

o, θ) + tj (x
o, θ)− f0 (x

o, θ)
]
− Eθ [vi (x̃, ỹ, z̃, θ)− h (θ)]

= Eθ

[
g̃i (x

o, θ)− [vi (x̃, ỹ, z̃, θ)− h (θ)] + tj (x
o, θ)− f0 (x

o, θ)
]

,

where the inequality follows from the definition of the truthful strategy to
i , and the second equality

follows from equation (60). We also know that g̃i (x
o, θ) ≥ g

i
(θ) by definition (lower bound), and

that g
i
(θ) ≥ vi (x̃, ỹ, z̃, θ)− h (θ) from the first inequality in (21), so

g̃i (x
o, θ) ≥ g

i
(θ) ≥ vi (x̃, ỹ, z̃, θ)− h (θ) , (62)

and hence

to
i (x

o, θ) = sup {0, g̃i (x
o, θ)− [vi (x̃, ỹ, z̃, θ)− h (θ)]}

= g̃i (x
o, θ)− [vi (x̃, ỹ, z̃, θ)− h (θ)] ,
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for all θ ∈ Θ, and we have

Eθ

[
to
i (x̃, θ) + tj (x̃, θ)− f0 (x̃, θ)

]
≥ Eθ

[
to
i (x

o, θ) + tj (x
o, θ)− f0 (x

o, θ)
]

= max
x∈X

Eθ

[
to
i (x, θ) + tj (x, θ)− f0 (x, θ)

]
,

which, by definition of a maximum, cannot be strict. Thus, there is no other efficient choice xo that

results in a higher payoff than x̃ when the agent is offered to
i by principal i.

As we have already shown that the choice of x̃ implies the same payoff to the agent whether

offered to
i or t̃i (see equation (59)), the agent cannot improve on its expected payoff when facing the

first strategy rather than the second.

(iv) From Lemma (A.5), because both strategies are truthful their associated choices are efficient, that

is the expected joint profit of principal i and the agent is a maximum and hence unchanged whether

the agent is offered to
i (x, θ) or t̃i (x, θ). Since we have just shown that the expected payoff of the agent

is also unchanged, the one of principal i must also be unchanged.

Eventually, from the previous steps we obtain that, when offering the strategy to
i rather than t̃i,

principal i still induces the agent to make efficient choices, and the expected payoffs to the agent

and both principals end up unchanged. However, from equation (62) we obtain that principal i’s

realized (ex-post) payoff is now given by vi (x̃, ỹ, z̃, θ) − h (θ), whereas the one of the agent is now

equal to v0 (x̃, θ) + h (θ). �

A.7 Proof of Proposition 4.

There are two possible cases to consider, depending on the occurence of favorable (A.7.1) or, possibly,

unfavorable circumstances (A.7.2) relative to the realization of θ.

A.7.1 Suppose that g
i
(θ) ≥ v∗i for almost all θ ∈ Θ.

We define the function h : Θ → R by

h (θ) = vi (x̃, ỹ, z̃, θ)− v∗i , (63)

that is the exact difference between firm i’s realized equilibrium payoff with payment t̃i(x̃, θ) to the

lab, for any θ, and its expected equilibrium payoff v∗i (= Eθ [vi (x̃, ỹ, z̃, θ)]).

By construction Eθ [h (θ)] = 0, and from 0 ≤ v∗i ≤ g
i
(θ), we have

vi (x̃, ỹ, z̃, θ)− g
i
(θ) ≤ h (θ) ≤ vi (x̃, ỹ, z̃, θ) ,
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for almost all θ ∈ Θ. Then we know from Lemma 1 that the truthful strategy

to
i (x, θ) = sup {0, g̃i (x, θ)− [vi (x̃, ỹ, z̃, θ)− h (θ)]}

is a best-response strategy to t̃j, for the same equilibrium outcomes (x̃, ỹ, z̃) and a realized equilibrium

payoff equal to vi (x̃, ỹ, z̃, θ) − h (θ). Given the specification of h (θ) in (63), the modified truthful

strategy to
i (x, θ) is actually given by

to
i (x, θ) = sup {0, g̃i (x, θ)− v∗i } ,

so that firm i’s realized equilibrium payoff is vi (x̃, ỹ, z̃, θ)− h (θ) = v∗i , which is independent of θ.

A.7.2 Suppose that g
i
(θ) < v∗i for a subset of Θ with strictly positive measure (with g

i
(θ) non-

negative for almost all θ).

For a given constant vi ≥ v∗i , define

Θ (vi)
.
= {θ ∈ Θ | g

i
(θ) ≤ vi},

the subset of Θ whose elements are such that the gross equilibrium profit g
i
(θ) is lower than vi.

53

By construction Θ (vi) is of strictly positive measure,54 and it induces a family of ordered sets for the

inclusion relation. That is,

v ≤ v′ ⇔ Θ (v) ⊆ Θ
(
v′
)

,

for any (v, v′) ≥ (0, 0).

We now define the function h : Θ → R by

h (θ) =

{

vi (x̃, ỹ, z̃, θ)− g
i
(θ) for all θ ∈ Θ (vi) ,

vi (x̃, ỹ, z̃, θ)− vi otherwise.
(64)

We must prove that conditions (20) and (21) in Lemma 1 are satisfied.

Condition (20) – To show that there exists a unique constant vi ≥ v∗i such that Eθ [h (θ)] = 0,

observe from (64) that h(θ) is (weakly) decreasing in vi, as established by shifting vi from v to v′,

with v < v′:

53More precisely, recall from Lemma 1, that g
i
(θ) is actually the lower bound of firm i’s gross payoff over all possible

equilibrium choices. Unless there exists a multiplicity of optima, g
i
(θ) does not differ from the equilibrium gross payoff

g̃i(x̃, θ). We assume that g
i
(θ) ≥ 0 for almost all θ (one does not expect adverse events to be so extreme as to more than

cancel out the gross value of a firm’s operations).
54We know that v∗i ≤ vi by assumption, implying that g

i
(θ) < vi for any θ such that g

i
(θ) < v∗i , which we suppose

occurs with positive probability in this section.
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(1) if g
i
(θ) ≤ v < v′, that is θ ∈ Θ (v) and θ ∈ Θ (v′), then h(θ) remains equal to vi (x̃, ỹ, z̃, θ)− g

i
;

(2) if v < g
i
(θ) ≤ v′, that is θ /∈ Θ (v) and θ ∈ Θ (v′), then h(θ) decreases (strictly) from

vi (x̃, ỹ, z̃, θ)− v to vi (x̃, ỹ, z̃, θ)− g
i
(θ);

(3) if v < v′ < g
i
(θ), that is θ /∈ Θ (v) and θ /∈ Θ (v′), then h(θ) decreases (strictly) from

vi (x̃, ỹ, z̃, θ)− v to vi (x̃, ỹ, z̃, θ)− v′.

Whenever the subset Θ\Θ (vi) is of strictly positive measure, the latter case (3) occurs with a strictly

positive probability, implying that Eθ [h (θ)] is strictly monotone in vi.

(For an intuitive interpretation of the monotonicity of h(θ) in vi, recall that in equilibrium to
i (x̃, θ) =

t̃i (x̃, θ) + h (θ). As t̃i (x̃, θ) is independent of vi, we obtain that the adjusted payment to
i (x̃, θ) is de-

creasing in vi > v∗i . In other words, the higher vi, the lower the transfer to the lab, and the higher the

payoff to the firm.)

By definition,

Eθ [h (θ)] =
∫

Θ(vi)

[

vi (x̃, ỹ, z̃, θ)− g
i
(θ)
]

dµ (θ) +
∫

Θ\Θ(vi)
[vi (x̃, ỹ, z̃, θ)− vi] dµ (θ) ,

where µ (θ) is the probabilistic measure associated to the distribution of θ ∈ Θ. The latter expected

value can be rewritten as

Eθ [h (θ)] =
∫

Θ(vi)

[

vi (x̃, ỹ, z̃, θ)− v∗i + v∗i − g
i
(θ)
]

dµ (θ)+
∫

Θ\Θ(vi)
[vi (x̃, ỹ, z̃, θ)− v∗i + v∗i − vi] dµ (θ) .

Again by definition, v∗i = Eθ [vi (x̃, ỹ, z̃, θ)], implying that
∫

Θ
[vi (x̃, ỹ, z̃, θ)− v∗i ] dµ (θ) = 0, so we

obtain

Eθ [h (θ)] =
∫

Θ(vi)

[

v∗i − g
i
(θ)
]

dµ (θ)−
∫

Θ\Θ(vi)
[vi − v∗i ] dµ (θ) . (65)

We now consider the sign of the latter expression for two particular values of vi chosen in [v∗i , ∞).

(i) Suppose first that vi = v∗i (lower bound). Then

Eθ [h (θ)] =
∫

Θ(v∗i )

[

v∗i − g
i
(θ)
]

dµ (θ) > 0, (66)

where the strict positivity follows directly from the assumption that, in this section A.7.2, we have

g
i
(θ) < v∗i for a subset of Θ with positive measure.

(ii) Suppose now that vi = v (upper bound), with

v = inf
v∈R+

{

g
i
(θ) ≤ v, for almost all θ ∈ Θ

}

.
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From the very definition of v we have g
i
(θ) ≤ v for almost all θ ∈ Θ. Hence Θ

(
v
)
≡ Θ, except

possibly for a subset of Θ with zero measure. It follows from the definition of h (θ) in (64) that

h (θ) = vi (x̃, ỹ, z̃, θ)− g
i
(θ) ,

for almost all θ ∈ Θ. Therefore,

Eθ [h (θ)] = Eθ

[

vi (x̃, ỹ, z̃, θ)− g
i
(θ)
]

,

= Eθ

[

g̃i (x̃, θ)− g
i
(θ)− t̃i (x̃, θ)

]

≤ −Eθ [t̃i (x̃, θ)]

since, by definition, g
i
(θ) = infx∈X∗ [g̃i (x, θ)] ≤ g̃i (x̃, θ) for all θ ∈ Θ. Whenever expected transferts

to the agent are strictly positive in equilibrium (a necessary condition for contract offers to provide

incentives to the agent), we thus obtain

Eθ [h (θ)] ≤ −Eθ [t̃i (x̃, θ)] < 0.55 (67)

Finally, the strict monotonicity of Eθ [h (θ)] over [v∗i , v), together with Eθ [h (θ)] being positive for

vi = v∗i in (66) and negative for vi = v in (67), imply that there exists a unique value vi ∈
(
v∗i , v

)

such that Eθ [h (θ)] = 0, and condition (20) in Lemma 1 is verified.

Condition (21) – We know from (64) that, by definition,

h (θ) =

{

vi (x̃, ỹ, z̃, θ)− g
i
(θ) for all θ ∈ Θ (vi) ,

vi (x̃, ỹ, z̃, θ)− vi otherwise.

Then from the non-negativity of g
i
(θ) and v∗i , with vi ≥ v∗i , we establish directly that, for all θ ∈ Θ,

h (θ) ≤ vi (x̃, ỹ, z̃, θ) . (68)

Moreover, from the definition of the subset Θ (vi), we know that g
i
(θ) > vi if θ /∈ Θ (vi). Then, again

from the two-part expression of h(θ) in (64) we obtain that, for all θ ∈ Θ,

vi (x̃, ỹ, z̃, θ)− g
i
(θ) ≤ h (θ) . (69)

Therefore, from (68) and (69), the definition of h (θ) in (64) verifies condition (21) in Lemma 1.

55We exclude from the analysis the case where Eθ [t̃i (x̃, θ)] = 0 for almost all θ ∈ Θ. It would refer to a situation where
the lab chooses x̃ without being incentivized to do so by firm i.
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Firm i’s equilibrium outcome – From the definition of h(θ) in (64), the adjusted payment strategy

to
i (x, θ) = sup {0, g̃i (x, θ)− [vi (x̃, ỹ, z̃, θ)− h (θ)]}

can be rewritten as

to
i (x, θ) =

{

sup
{

0, g̃i (x, θ)− g
i
(θ)
}

for all θ ∈ Θ (vi) ,

sup {0, g̃i (x, θ)− vi} otherwise.

For a chosen vi ≥ v∗i such that conditions (20)-(21) are satisfied (and whose existence and uniqueness

was demonstrated above), we know from Lemma 1 that the adjusted payment strategy is a truthful

best reply to tj that incentivizes the lab to choose an action which is identical to (or indistinguishable

from) x̃, for the same expected equilibrium outcomes. Then firm i’s realized payoff vi (x̃, ỹ, z̃, θ)− h (θ)

is

vi (x̃, ỹ, z̃, θ)− h (θ) =

{

g
i
(θ) for all θ ∈ Θ (vi) ,

vi otherwise.

This says that firm i’s (net) equilibrium payoff is equal to the gross equilibrium payoff g
i
(θ), with no

transfer to the lab, if circumstances are so unfavorable that the realized θ is in Θ (vi), whereas the net

payoff is constant and equal to vi ≥ v∗i otherwise.

Firm i’s choice of vi – The expression of the expected value of h(θ) in (65) and Eθ [h(θ)] = 0

(condition (20) in Lemma 1) together imply that

∫

Θ\Θ(vi)
[vi − v∗i ] dµ (θ) =

∫

Θ(vi)

[

v∗i − g
i
(θ)
]

dµ (θ) , (70)

which can be rewritten as

vi − v∗i =
Prob {θ ∈ Θ (vi)}

1 − Prob {θ ∈ Θ (vi)}
Eθ∈Θ(vi)

[

v∗i − g
i
(θ)
]

.

An alternative characterization follows by adding
∫

Θ(vi)
[vi − v∗i ] dµ (θ) on both sides in (70), to ob-

tain

vi − v∗i =
∫

Θ(vi)

[

vi − g
i
(θ)
]

dµ (θ)

= Eθ

[

sup
{

0, vi − g
i
(θ)
}]

.

In other words, in unfavorable circumstances where g
i
(θ) < v∗i for a subset of Θ with strictly positive

measure, the strictly positive ex-post margin vi − v∗i is chosen by firm i when θ /∈ Θ (vi) so that, in

expectation, shortfalls that occur when θ ∈ Θ (vi) are exactly recouped, and the expected equilibrium

payoff remains equal to v∗i . �
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A.8 Proof of Proposition 5.

First, Lemma A.1 extends to the case
∂2 ĝi

∂x2
i

≥ 0 (i = 1, 2). Indeed we have established in (48) that

∂2 ĝi

∂x2
i

= 0 ⇒
dy∗j
dxj

= 0, and in (51) that
∂2 ĝi

∂x2
i

> 0 ⇒
dy∗j
dxj

> 0. This is sufficient to conclude directly that

d[ĝi(xi+y∗i (x),xj,y
∗
j (x))− f̂i(y∗i (x))]

dxj
in (52) has the same sign as

∂ĝi(xi+yi ,xj,yj)
∂xj

and
∂ĝi(xi+yi ,xj,yj)

∂yj
.

To extend Lemma A.2 as well, note that
∂2 ĝi

∂x2
i

≥ 0 (i = 1, 2) implies
Nji

∆
≥ 0 in (55), because ∆ > 0

(from stability condition) and Nji ≥ 0 from
∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

< 0 (second-order condition) and
∂2 ĝj

∂x2
j

≥ 0

(assumption in this proposition). Then there are only two possible cases:

(i) If
∂2 ĝj

∂xj∂xi
≥ 0 then

∂2 ĝj

∂xj∂yi
≥ 0 also (model specifications). As

Nji

∆
≥ 0, we obtain that the expression

between brackets in (55) is positive. Moreover,
∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

< 0 (second-order condition) here implies

that −
∂2 ĝj

∂xj∂xi

(
∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

)−1

≥ 0. Therefore, from (55) we have
dy∗j
dxi

≥ 0, which is sufficient to conclude

directly that
d[ĝi(xi+y∗i (x),xj,y

∗
j (x))− f̂i(y∗i (x))]

dxi
in (54) is non-negative also.

(ii) If
∂2 ĝj

∂xj∂xi
≤ 0 then

∂2 ĝj

∂xj∂yi
≤ 0 also (model specifications). As

Nji

∆
≥ 0, again the expression between

brackets in (55) is positive. Moreover,
∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

< 0 (second-order condition) implies here that

−
∂2 ĝj

∂xj∂xi

(
∂2 ĝj

∂x2
j

−
∂2 f̂ j

∂y2
j

)−1

≤ 0. Therefore, from (55) we have that
dy∗j
dxi

≤ 0, implying that
∥
∥
∥

dy∗j
dxi

∥
∥
∥ = −

dy∗j
dxi

.

So, recalling that
∥
∥
∥

∂ĝi

∂xj

∥
∥
∥ ≥

∥
∥
∥

∂ĝi

∂yj

∥
∥
∥ (model specifications in (6-7)), a sufficient condition for Lemma A.2

to be robust to the increasing R&D return specification is
dy∗j
dxi

> −1. �

A.9 Proof of industry profit maximization result in Proposition 6.

Recall from the model specifications in Section 4 that, in equilibrium, for any given pair of transfer

payment functions (t̃1, t̃2) we know that x̃ is an element of X(t̃1, t̃2) = arg maxx {Eθ [v0 (x, θ)]}, the

set of external R&D choices that maximize the lab’s profit. We want to demonstrate that x̃ is also

an element of X∗
{1,2} = arg maxx {Eθ [g̃1 (x, θ) + g̃2 (x, θ)− f0 (x, θ)]}, the set of external R&D levels

that maximize industry profit. The proof is a simple adaptation, in the notation of our model, of a

common agency efficiency result in Bernheim and Whinston (1986b, Theorem 2, p. 14).

We suppose that x̃ /∈ X∗
{1,2}, and look for a contradiction. In equilibrium, the strategy t̃i is truthful

relative to the equilibrium choice x̃ for all θ ∈ Θ, that is t̃i (x, θ) = sup {0, g̃i (x, θ)− [g̃i (x̃, θ)− t̃i (x̃, θ)]},

all θ ∈ Θ, all x, implying that

g̃i (x, θ)− [g̃i (x̃, θ)− t̃i (x̃, θ)] ≤ t̃i (x, θ) .
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This holds in particular for any given x∗ ∈ X∗
{1,2}, so that g̃i (x

∗, θ)− [g̃i (x̃, θ)− t̃i (x̃, θ)] ≤ t̃i (x
∗, θ) ,

all θ ∈ Θ, i = 1, 2. Summing the latter inequality for the two firms, and subtracting f0 (x∗, θ) on each

side, leads to

g̃ (x∗, θ)− g̃ (x̃, θ) + t̃ (x̃, θ)− f0 (x
∗, θ) ≤ t̃ (x∗, θ)− f0 (x

∗, θ) ,

all θ ∈ Θ, where g̃ (x, θ) = g̃1 (x, θ) + g̃2 (x, θ), and t̃ (x, θ) = t̃1 (x, θ) + t̃2 (x, θ). By introducing

f0 (x̃, θ) on the left-hand side only, and reorganizing terms, we obtain

[g̃ (x∗, θ)− f0 (x
∗, θ)]− [g̃ (x̃, θ)− f0 (x̃, θ)] + t̃ (x̃, θ)− f0 (x̃, θ) ≤ t̃ (x∗, θ)− f0 (x

∗, θ) ,

all θ ∈ Θ. Obviously, if this inequality holds for all θ ∈ Θ, it holds also in expectation, that is

Eθ [g̃ (x
∗, θ)− f0 (x

∗, θ)]− Eθ [g̃ (x̃, θ)− f0 (x̃, θ)] + Eθ [t̃ (x̃, θ)− f0 (x̃, θ)] ≤ Eθ [t̃ (x
∗, θ)− f0 (x

∗, θ)] .

(71)

Observe that x∗ ∈ X∗
{1,2} and x̃ /∈ X∗

{1,2} together imply that Eθ [g̃ (x
∗, θ)− f0 (x∗, θ)] > Eθ [g̃ (x̃, θ)− f0 (x̃, θ)],

which in turn implies from (71) that

Eθ [v0 (x̃, θ)] = Eθ [t̃ (x̃, θ)− f0 (x̃, θ)] < Eθ [t̃ (x
∗, θ)− f0 (x

∗, θ)] = Eθ [v0 (x
∗, θ)] .

The latter comparison says that x̃ /∈ X(t̃1, t̃2), a contradiction. Therefore, x̃ ∈ X∗
{1,2}. �

A.10 Proof of v
{0,1}
0 = v

{0,2}
0 ≥ v∗0 = |ǫ| in Proposition 8 (for ǫ < 0).

Suppose that ǫ < 0, and consider firm i’s two alternatives: if it acquires the lab, as an integrated entity

it earns Λ − v
{0,i}
j ; otherwise, as an outsider it earns v

{0,j}
i . The difference of the latter two payoffs is

firm i’s willingness to pay for the lab, which is equal to the one of firm j. Therefore, competition for

the acquisition of the lab implies that in equilibrium v
{0,i}
0 = v

{0,j}
0 = Λ − v

{0,2}
1 − v

{0,1}
2 .

Suppose now that firm i is the one that acquires the lab, while firm j remains independent, i, j =

1, 2, j 6= i. In the latter industry structure, the integrated entity {0, i} and firm j bargain over the

value generated by the acquired lab, with respective disagreement payoffs v ({i}) and vj. Firm j’s

payoff is thus

v
{0,i}
j = vj + ωj

(

Λ − vj − v ({i})
)

, (72)

where from (30) firm j’s bargaining power is

ωj =
v
{1,2}
j − v∗j

Λ − v∗1 − v∗2
. (73)
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Given that v
{0,i}
0 = Λ − v

{0,2}
1 − v

{0,1}
2 , i = 1, 2, as established above, and using (72-73), we have

v
{0,i}
0 = Λ −

(

v1 +
v
{1,2}
1 − v∗1

Λ − v∗1 − v∗2
(Λ − v1 − v ({2}))

)

−

(

v2 +
v
{1,2}
2 − v∗2

Λ − v∗1 − v∗2
(Λ − v2 − v ({1}))

)

,

which, by reorganizing terms, can be rewritten as

v
{0,i}
0 =

(
v ({1})− v1

Λ − v∗1 − v∗2

)(

v
{1,2}
2 − v∗2

)

+

(
v ({2})− v2

Λ − v∗1 − v∗2

)(

v
{1,2}
1 − v∗1

)

.

Then, recalling that v∗0 = |ǫ| = v ({1}) + v ({2}) − Λ, and that Λ = v
{1,2}
1 + v

{1,2}
2 , after a few

steps we obtain that v
{0,1}
0 ≥ v∗0 if and only if

(

v ({1})− v
{1,2}
1

|ǫ|

)

[v1 + v ({2})− Λ] +

(

v ({2})− v
{1,2}
2

|ǫ|

)

[v2 + v ({1})− Λ] ≤ 0. (74)

As the two added terms in (74) are symmetric, we focus on the first one:

(i) Consider the expression between square brackets. By definition of Λ = maxx Eθ [g̃1 (x, θ)+ g̃2 (x, θ)−

f0(x, θ)], we have Λ ≥ Eθ [g̃1(x
∗
2 , θ)+ g̃2(x∗2 , θ)− f0(x∗2 , θ)], where x∗2 ∈ arg maxx Eθ [g̃2 (x, θ)− f0(x, θ)].

Since v1 = Eθ [g̃1(x
∗
2 , θ)] and v ({2}) = Eθ [g̃2(x∗2 , θ)− f0(x∗2 , θ)], we have v1 + v ({2})− Λ ≤ 0.

(ii) Consider the numerator in the term between parentheses. From Proposition 3 we know that

v∗2 = Λ − v ({1}). Moreover, Λ − v∗1 − v∗2 = v∗0 > 0 implies from (29) that v
{1,2}
2 > v∗2 for all (ω1, ω2)

in (0, 1)2. It follows that v
{1,2}
2 > Λ − v ({1}), and it is sufficient to recall that v

{1,2}
2 = Λ − v

{1,2}
1 (the

lab makes no profit in the horizontal arrangement) to establish that v ({1})− v
{1,2}
1 > 0.

Therefore, (74) is always true, with a strict inequality sign whenever Λ > Eθ [g̃i(x
∗
i , θ)+ g̃j(x

∗
i , θ)−

f0(x∗i , θ)], for some i = 1, 2, j 6= i, unlike in Examples 2 and 3 where firms’ interests are so antagonistic

as to have Λ = v ({1}) + v2 = v ({2}) + v1. �
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