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Abstract

I propose an estimation procedure that can accommodate fixed effects in the widely

used proxy variable approach to estimating production functions. The procedure allows

unobserved productivity to have a permanent component in addition to a (nonlinear)

Markov shock. The procedure does not rely on differencing out the fixed effect and

thus is not restricted to within-firm variation for identification. Finally, the procedure

is easy to implement as it only entails adding a two stage least squares using internal

instruments.
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1 Introduction

Estimation of production functions is a staple in several fields in economics including agricul-

ture and resource economics, trade, macroeconomics, and industrial organization, to name

a few. An important econometric problem that has spurred a “search for identification”

(Griliches and Mairesse, 1998) is the problem of simultaneity. (Marschak and Andrews,

1944). Observed input choices of firms are not under the control of the econometrician but

instead reflect optimal behavior of the firm. Thus, the relationship between inputs and out-

put may depend on factors that are observed by the firm but not by the econometrician.

Not accounting for these unobserved factors—often referred to as unobserved productivity—

creates bias in estimates of the production function.

Different methods essentially impose different assumptions on unobserved productivity,

with the econometrician facing a tradeoff in choosing the method most appropriate for the

data and institutional setting. In this paper, I develop an estimation procedure that com-

bines the strengths of the two most popular estimation methods and thus relaxes the tradeoff

between the two. Specifically, just as in the dynamic panel approach (Arellano and Bond,

1995; Blundell and Bond, 1998, 2000), I allow unobserved productivity to have both a per-

manent component (i.e. a fixed effect) and a time-varying component that follows a Markov

process. However, I do not restrict the Markov process to be linear and the estimation

method does not require differencing of the fixed effect. To do this, I adopt the assumption

of an existence of a proxy variable that provides an expression of unobserved productivity

as a function of observables. Thus, one can view the estimation method in the paper as an

extension of proxy variable methods (Olley and Pakes, 1996; Levinsohn and Petrin, 2003;

Ackerberg, Caves and Frazer, 2015) that is robust to inclusion of a fixed effect in unobserved

productivity. In fact, estimation of capital and labor output elasticities only involves adding

a two stage least squares step to the standard proxy variable estimation procedure. More-
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over, the estimation procedure does not require additional proxies for instruments. Instead,

“internal” instruments are constructed from the control function based on a single proxy

variable. Therefore the method is readily accessible to econometricians who are already

planning to use some form of the proxy variable approach.

A robust observation about productivity is that it is persistent and exhibits large dis-

persion even in narrowly defined industries (see Syverson (2011)). It seems natural to use

methods that are robust to inclusion of a fixed effect. Current methods rely on differencing

out fixed which can be subject to attenuation bias (Griliches and Hausman, 1986) and often

exhibit poor finite sample performance (Blundell and Bond, 1998; Blundell and Bond, 2000).

The method I propose does not rely on differencing. Instead I construct instruments from

the data that are orthogonal to the fixed effect. This strategy is similar to the additional mo-

ment conditions suggested by Blundell and Bond (1998, 2000) which uses the level equation

with first differences of inputs as instruments. However, instead of relying on an auxiliary

assumption that the fixed effect is orthogonal to the growth in inputs, which are endogenous

decision variables of the firm, orthogonality is between time-varying productivity shocks and

the fixed effect, both of which are exogenous in the model.

The proxy variable approach assumes that there exists a strictly monotonic mapping

between unobserved productivity and a firm’s decision variable (the proxy). The econome-

trician can then invert this mapping to express unobserved productivity as a function of

observables, including the proxy variable. There are however two reasons why the proxy

variable approach, as is often formulated, cannot accommodation a permanent fixed compo-

nent in unobserved productivity. First, as Ackerberg, Caves and Frazer (2015) and Ackerbeg

(2016) show, the proxy variable approach essentially rely on timing assumptions for identi-

fication. Basically the econometrician exploits the gap between when an action is taken and

when unobservables (to the econometrician) such as productivity enter the firm’s information
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set. When unobserved productivity includes a permanent component such as a fixed effect,

then all actions will be correlated with the unobservable. To the best of my knowledge,

there is currently no method that allows this case without sacrificing the attractive features

of proxy variable methods.1

Second, if unobserved productivity also includes a fixed effect, then the inversion may fail.

This is known as the scalar unobservable assumption. Similar to an extension to Gandhi,

Navarro and Rivers (2017, Appendix O5-1), I assume that there is a proxy that it is a strictly

increasing function of the sum of the two components of unobserved productivity. Although

the two components cannot be separately expressed as functions of observables, one can still

invert the relationship to express the sum of the components as a function of observables.

The key step then is to think about the sum of the two components of unobserved

productivity as having a measurement error form: the latent variable is the time-varying

Markov component while the fixed component is the measurement error. This measurement

error is not classical since it is correlated with input choices including other potential proxy

variables. Thus, I cannot use double measurements such as multiple proxies subject to

independent measurement errors as instruments (e.g. Hu, Huang and Sasaki, (2019)).

Instead, I rely on a different instrumental variable strategy that uses a Berskon instru-

ment: the measurement error is correlated with the latent variable, but independent of the

instrument (Schennach, 2007). I construct Berkson instruments by taking first differences

1Gandhi, Rivers and Navarro (2017) allow for a fixed effect as an extension of their estimation procedure.

However, they assume that the Markov component evolves as a linear (AR(1)) process and rely on the same

differencing technique as in the dynamic panel approach.

More recently, Lee, Stoyanov and Zubanov (2019) consider a model where a fixed effect enters the evolution

of productivity, i.e. ωit = g(ωit−1) + ci + ξit assuming the inversion of the proxy variable gives ωit. This is

similar to the set up in Theorem 1 of Asker, Collard-Wexler and De Loecker (2014) whereby the fixed effect

eventually appears linearly in the estimating equation which can then be differenced away.
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of the inverted function involving the proxy variable. Given this instrument, I show how to

estimate the labor and capital coefficients by adding a two stage least squares step.

Using Monte Carlo experiments, I compare the performance of the proposed estimation

procedure with some of the widely used estimators in the literature. Proxy variable ap-

proaches yield inconsistent estimators when there is a fixed effect hence the bias persists

even in relativity large samples. In contrast, the estimation procedure that uses a Berkson

instrument is robust to inclusion of the fixed effect and performs as well as the standard

proxy variable approach when there is no fixed effect. Compared to methods that rely on

differencing, the results point to better finite sample performance in terms of bias and pre-

cision. Finally, the system GMM approach (Arellano and Bover, 1995; Blundell and Bond,

1998, 2000) only works if the fixed effect is orthogonal to the growth in inputs. Since the

growth in capital is driven by investment, this essentially requires that the way investment

affects growth is orthogonal to a state variable such as a fixed effect. Indeed I do observe

biased estimates when the role of the fixed effect in determining investment is larger.

The paper is related to the literature that relaxes the scalar unobservable assumption in

proxy variable methods, specifically to the strand of the literature that develops methods

to handle measurement error in inputs and proxies. Hu, Huang and Sasaki (2019) establish

identification of such a model using results from the nonlinear errors-in-variables literature

(i.e. Hu and Schennach (2008)). Their strategy is to use multiple proxies, which they

assume as having independent measurement errors. In contrast to this double measurement

strategy, I use an instrumental variables strategy with a Berkson instrument (Schennach,

2007). Finally, Kim, Petrin and Song (2016) and Collard-Wexler and De Loecker (2017)

both focus on the case where capital is measured with error. Similar to Hu, Huang and

Sasaki (2019), Kim, Petrin and Song (2016) use results form the nonlinear errors-in-variables

literature and suggest an estimation procedure based on sieves. In contrast, Collard-Wexler
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Table 1: Abbreviations of key papers cited

Ackerberg, Caves and Frazer (2015) ACF

Blundell and Bond (1998) BB98

Blundell and Bond (2000) BB00

Gandhi, Rivers and Navarro (2017) GNR

Levinsohn and Petrin (2003) LP

Olley and Pakes (1996) OP

and De Loecker (2017) leverage on a Cobb Douglas production function to pose the problem

as a linear errors-in-variables model, and use investment as an instrument for mismeasured

capital. They emphasize the attractiveness of methods that are easy to implement and

readily accessible.

The next section presents the model and key assumptions maintained throughout the

paper. Section 3 discusses both identification and estimation. Section 4 contains the Monte

Carlo experiments and finally section 5 concludes. For ease of exposition, Table 1 lists the

abbreviations of some of the key papers I repeatedly refer to.

2 Model

Consider the following production function:2

yit = βllit + βkkit + wit + εit.

2I discuss the approach in the context of value-added production functions to keep the discussion as close

to OP, LP and ACF.
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The variable yit is firm i’s log output at time t, and lit and kit are the labor and capital

inputs (in logs) respectively. These inputs and output are observed by the econometrician.

In contrast, the econometrician does not observe εit and wit. The unobservable εit represents

shocks to the production function that are also unobserved by the firm at the time it decides

on its time t inputs. This unobservable can represent measurement error in output or other

factors that affect output (holding inputs fixed) that the firm cannot predict. On the other

hand, wit represents factors that are observed (or predicted) by the firm and taken into

account in its input choices.The unobservable wit is often thought of as a firm’s “productivity”

which is observed by the firm but not by the econometrician.

The goal of the econometrician is to estimate parameters βl and βk, which are the output

elasticities for labor and capital respectively. In this paper, I focus on the problem of

simultaneity (Marschak and Andrews, 1944). Since the firm takes productivity wit into

account when choosing its inputs, an OLS regression of output on inputs will generate

biased estimates.

As a solution to the simultaneity problem, the proxy variable approach (e.g. OP, LP

and ACF) exploits a “structural” function that maps a firm’s productivity to an endogenous

decision. In OP, investment is assumed to be strictly increasing in productivity and thus

can be inverted to express it as a function of observables (e.g. investment, capital stock and

age). That is, if Iit refers to investment and

Iit = f(wit, kit, ageit),

where f is strictly increasing in ωit, then

wit = f−1(Iit, kit, ageit)) = h(xit)

where xit = (Iit, kit, ageit). LP suggest using intermediate inputs as a proxy variable since

data usually contain a lot of observations with zero investment. As in OP, LP assumes
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that the intermediate input is a strictly increasing function of productivity, and thus can be

inverted to control for the latter.

An important assumption in proxy variable methods is that unobserved productivity

evolves as a Markov process. Formally, unobserved productivity wit is assumed to be equal

to

ωit = E[ωit|Iit−1] = E[ωit|ωit−1] + ξit = g(ωit−1) + ξit.

where Iit−1 is firm i’s information set at time t − 1. This Markov assumption implies

E[ξit|Iit−1] = 0, and thus one can generate moment conditions based on the timing of

decisions and the information used when making these decisions (ACF; Ackerberg, 2016).

For example, since past decisions on the labor input belongs to Iit−1, then E[ξit|lit−j] = 0 for

all j ≥ 1. These timing assumptions are powerful since not only do they provide moment

conditions for estimation, they also allow the econometrician to generate and use “internal”

instruments, e.g. lagged input choices.

The timing assumption breaks down when unobserved productivity has a permanent

component. To see this, suppose wit = ωit + ai where ωit satisfies the Markov assumption

as above. Although E[ξit|Iit−1] = 0 remains valid, E[ξit + ai|Iit−1] = 0 is not. In fact, when

unobserved productivity has a permanent component, all input choices will be correlated

with ai regardless of how far in the past the decision was made.

One potential solution is to eliminate ai from the estimating moment conditions. This is

possible under the proxy variable approach if either ai does not enter the proxy equation, or

if it does, g(·) is linear (GNR). If ai does not enter the proxy equation, then ωit−1 = h(xit−1)

and we can rewrite the production function as

yit = βllit + βkkit + g(h(xit−1)) + (ξit + ai + εit).

We can then eliminate ai from the estimating equation by taking first differences.
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Suppose instead that ai enters the proxy variable equation. This violates the so-called

scalar unobservable assumption hence one can no longer express ωit−1 as a function of only

observables. In Appendix O5-1 of GNR, they extend their model to the case where unob-

served productivity has a fixed effect component. They assume that the proxy variable is a

strictly increasing function of the sum (ωit + ai), and thus h(xit) = ωit + ai in my notation.

Such an assumption is tenable if the proxy is static, otherwise the proxy is likely to be a

function of the state variables ωit and ai separately, and not only their sum (Ackerberg,

2016). Following GNR, suppose this assumption holds, e.g. we use intermediate inputs that

are assumed to be static, the production function becomes

yit = βllit + βkkit + g(h(xit−1)− ai) + (ξit + ai + εit).

In this case, we need g(·) to be linear in order to difference out ai, similar to the dynamic

panel approach (Arellano and Bond, 1991; BB98; BB00). A drawback of the dynamic panel

approach is that identification relies on within-firm variation, which may not be a good source

of variation when output and inputs are highly serially correlated (Griliches and Hausman,

1986; BB98).3

In the next section, I show how to identify and estimate output elasticities in a model

that largely follows the proxy variable approach but allows for a fixed effect in unobserved

productivity. Unless stated otherwise, I maintain the following assumptions throughout the

paper:

1. Unobserved productivity:

wit = ωit + ai
3GNR (Table O6.5) find lower and noisier capital estimates for Colombia using an extension of their

method that allows for fixed effects.
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2. Markov:

ωit = E[ωit|Iit−1] + ξit = g(ωit−1) + ξit

where g(·) can be nonlinear.

3. Timing:

E[ξit|kit−j] = 0 for all j ≥ 0

4. Proxy variable:

ωit + ai = h(xit)

where xit is a vector of observables including the proxy variable.

5. Mean independence:

E[ai|ξit] = 0 for all t.

The first assumption assumes the same error structure as in BB00 and GNR. The second and

third assumptions are standard in the proxy variable literature, while the fourth assumption

follows GNR as discussed above. Finally the fifth assumption consists of normalizing the

mean of the fixed effect to zero, and also the assumption that unexpected innovations ξit

are not informative of ai. Note that mean independence is sufficient as opposed to full

independence. The purpose of the fifth assumption will be clearer in the next section.

3 Identification and estimation

Using the previous assumptions, we can rewrite the production function as

yit = βllit + βkkit + g(ωit−1) + (ξit + ai + εit) (1)

There are two issues in estimating the coeffcients βl and βk. First, even if we observe

ωit−1, input choices (including the proxy) are still endogenous because ai is unobserved and
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correlated with the inputs. Second, ωit−1 is unobserved and cannot be simply replaced by

h(xit) as in the standard proxy variable case where ai = 0.

To solve the first issue, I use a vector of instruments z such that

E[ξit + ai + εit|z] = 0.

Consider the decomposition

lit = E[lit|z] + ηlit = l̂it + ηlit

kit = E[kit|z] + ηkit = k̂it + ηkit

where by construction, E[ηlit|z] = E[ηkit|z] = 0. I can then rewrite the estimating equation

as

yit = βl l̂it + βkk̂it + g(ωit−1) + (βlηlit + βkηkit + ξit + ai + εit). (2)

Thus, if ωit−1 were observed, then one can estimate β’s by applying OLS to equation 2.

As for the second issue, although ωit−1 is unobserved, we do observe the sum ωit−1 + ai

up to some unknown function h(·) of observables:

h(xit−1) = ωit−1 + ai.

We can think of ωit−1 as a latent variable that we observe subject to some measurement error

ai. A common solution to handle nonlinear errors-in-variables models is to use a second in-

dependent measurement as an instrument. In the context of production function estimation,

Hu, Huang and Sasaki (2019)), for example, assume the econometrician has multiple proxies

with independent measurement errors. However in my case, the measurement error ai is

potentially correlated with all proxies and inputs, and thus the strategy of using multiple

proxies will not work.

Schennach (2007) establishes nonparametric identification of a nonlinear errors-in-variables

model using an instrument that has a Berkson-error form (Berkson, 1950; Chen, Hong and
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Nekipelov, 2011). Instead of assuming independence between the latent variable and the

measurement error, a measurement with Berkson-error satisfies the “causal equation”

ωit−1 = m(z) + v

where the instrument z and the error v are independent, m(·) is some function4, and E[ξit+

εit|z, v] = 0 and E[ai|z, v, ξit] = 0. In contrast to classical measurement error, the latent

variable is correlated with the measurement error v. The independence assumption instead

is between m(z) and the measurement error. Given these assumptions, Schennach (2007)

shows that βl, βk and g(·) are identified.5

Nonlinear errors-in-variables models are often complicated to estimate and implementa-

tion is often still challenging (Collard-Wexler and De Loecker, 2016). It turns out that if we

assume g(·) is a polynomial, then estimating the coefficients βl and βk is pretty straightfor-

ward. To show this, I rely on results from Hausman, Newey, Ichimura and Powell (1991),

where they show identification using Berkson instruments when g(·) is a polynomial of known

degree P :

g(ω) =
P∑

j=0

βjω
j.

Under the polynomial assumption, the estimating equation (2) becomes

yit = βl l̂it + βkk̂it +
P∑

j=0

γjω̂
j
it−1

+ eit

4The function m(·) is identified and can be estimated using data on h(xit−1) and z. To see this note

h(xit−1) = ωit−1 + ai = m(z) + (v + a)

where E[v + a|z] = 0 by assumption.
5Schennach’s (2007) main model does not include regressors such as l and k. A model similar to equation 2

is mentioned as a simple extension. See Schennach (2007, p. 222).
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where ω̂it−1 = m(z),

γj ≡

(
P∑

q=j

βj

(
q

j

)
E(vqit)

)

and

eit ≡
P∑

j=0

ω̂
j
it−1

(
P∑

q=j

βj

(
q

j

)
[vqit − E(vqit)]

)
+ (βlηlit + βkηkit + ξit + ai + εit).

As long as the instrument vector z satisfies E[eit|z] = 0, then βl and βk can be identified

using the moment condition

E[eit|l̂it, k̂it, ω̂it−1] = 0. (3)

Therefore we can estimate the output elasticities by running an OLS regression of yit on l̂it,

k̂it, and powers of ω̂it−1.

3.1 Internal Berkson instruments

The feasibility of the previous identification strategy hinges on the existence of a set of

instruments that satisfy the properties of a Berkson instrument. In the context of our

model, we need

1. E[ηlit|z] = E[ηkit|z] = 0,

2. E[ξit + ai + εit|z] = 0, and

3. E[vqit|z] = E[vqit] for all q = 1, 2, ..., P .

The first condition follows by construction since

ηlit = lit − E[lit|z] and ηkit = kit − E[kit|z]

and therefore I focus on the second and third conditions.
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I propose using changes in unobserved productivity and its lags as instruments:

∆ωit−j = ∆h(xit−j)

for j ≥ 1. The advantage of these instruments is that they are “internal” in that they can

be constructed from the data at hand. These instruments are similar to the instruments

proposed by Blundell and Bond (1998, 2000) to improve the finite sample performance of

the dynamic panel approach. There, a crucial assumption is that changes in endogenous

variables, i.e. ∆lit and ∆kit. are mean independent with ai. In my case, mean independence

is between ai and a function of ξit−j. In addition, since E[ξit|Iit−1] = 0 and ∆ωit−j ∈ Iit−1,

then indeed E[ξit + ai + εit|∆ωit−j] = 0.

Finally, we need the instruments to satisfy E[vqit|z] = E[vqit] for all q = 1, 2, ..., P . This is

implied by the structure of the Berskon-error, i.e. z (m(z)) is independent of

v = ωit−1 −m(z).

Mean independence between z and v is satisfied by construction since I estimate m(z) =

E[h(xit−1)|z] = E[ωit−1|z]. What is then needed is mean independence between z and higher

moments of v (up to the P -th moment).6

3.2 Comparison of identifying moment conditions

Following Ackerberg (2016), consider a model where g(·) is linear and ε = 0. The goal of this

section is to compare the moment conditions that identify the parameters from the proposed

estimation procedure with the proxy variable and dynamic panel approaches.

6If g(·) is linear, then mean independence between z and v is sufficient. Also, if we observe all lags of

∆ωit−j , i.e. z = (∆ωit−1,∆ωit−2,...,∆ωi0
), then we essentially observe ωit−1 and m(z) and v are trivially

independent.
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Under the given simplifications, the identifying moment condition using the proposed

estimation strategy is

E


(yit − βllit − βkkit − ρh(xit−1)) ·




∆ωit−1

∆ωit−2

∆ωit−3





 = 0 (4)

This moment condition is the same as the moment condition in ACF (Ackerberg’s (2016)

equation 5) except that the instrument vector in ACF is z = (h(xit−1), lit, kit). Since yit −

βllit − βkkit − ρh(xit−1) = ξit + (1− ρ)ai and

E


ai ·




h(xit−1)

lit

kit





 6= 0,

the moment condition in ACF no longer holds unless ai = 0. In contrast, the instrument

vector in equation 4 has ai differenced out.

The moment condition for the dynamic panel approach is given by

E


(∆∆ρyit − βl∆∆ρlit − βk∆∆ρkit) ·




lit−3

kit−2

yit−3





 = 0 (5)

where, for example, ∆∆ρyit = (yit − ρyit−1) − (yit−1 − ρyit−2). This moment condition is

valid since ai is differenced away. However, BB98 find that this moment condition leads to

poor finite sample properties (i.e. biased and imprecise estimates) due to weak identification.

If one is willing to assume the assumption

E[ai|∆lit,∆kit] = 0,
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then they suggest adding the following moment condition:

E


(∆ρyit − βl∆ρlit − βk∆ρkit) ·


∆lit−1

∆kit




 = 0. (6)

The estimator based on moment conditions 5 and 6 is sometimes referred to as the “system

GMM” estimator.

Observe that

∆ρyit − βl∆ρlit − βk∆ρkit = yit − βllit − βkkit − ρ (yit−1 − βllit−1 − βkkit−1) .

Since in a model without ε,

h(xit−) = yit−1 − yit−1 − βllit−1 − βkkit−1,

the additional moment used in the system GMM estimator can be rewritten as

E


(yit − βllit − βkkit − ρh(xit−1)) ·


∆lit−1

∆kit




 = 0. (7)

But this is the same as moment condition 4, except for the choice of instruments. Note

though that both sets of instrument essentially differences out the fixed effect ai. Therefore,

one can view the proposed estimation procedure as combining the assumption used in the

system GMM estimator, with the proxy variable assumption that allows us to construct the

instruments ∆h(xit−j) = ∆ωit−j.

3.3 Estimation

I now discuss estimation of the model under the assumption that g(·) is a polynomial of

known degree as in Hausman, Newey, Ichimura and Powell (1991). The estimation procedure

is iterative and proceeds in several steps.
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Step 0 is basically the first stage in OP, LP or ACF. That is, I get an estimate Φ̂it of

Φit(lit, kit, xit) = βllit + βkkit + h(xit)

by estimating the partial linear model

yit = Φit(lit, kit, xit) + εit.

Step 1 is the start of the iteration. Given a guess (β̃l, β̃k) and the estimate Φ̂it from Step

0, construct instruments:

∆h(xit−j) = ∆Φ̂it−j − β̃l∆lit−j − β̃k∆kit−j

for j ≥ 1. We need to generate at least three instruments (three lags) to be (exactly)

identified.

Once the instruments are constructed, we proceed to Step 2 which can be thought of as

the first stage in two stage least squares. That is, we estimate the conditional expectations

l̂it = E[lit|z]

k̂it = E[kit|z]

ω̂it−1 = E[h(xit−1)|z]

where z is the vector of instruments, e.g. z = (∆h(xit−1),∆h(xit−2),∆h(xit−3)).

Step 3 then is just an OLS regression of yit on l̂it, k̂it and powers of ω̂it. This will give

estimates β̂l(β̃l, β̃k) and β̂k(β̃l, β̃k). We repeat Steps 1 to 3 until we find the fixed point:

β̃l = β̂l(β̃l, β̃k) and β̃k = β̂k(β̃l, β̃k).

For OP or LP, the proxy is not a function of lit (i.e. lit has independent variation), and

so Φit(kit, xit) = βkkit + h(xit) and βl can be separately identified in Step 0. Moreover, we

only need a guess β̃k and two lags of the instrument to be exactly identified.
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4 Monte Carlo experiments

I perform Monte Carlo experiments to compare the finite sample performance of the proposed

estimation procedure. To simplify the simulations, I assume a data generating process where

LP is identified and consistent if ai = 0. Specifically, I assume log labor (in reduced form) is

given by

lit = ωit + ai + uit

where uit is iid and distributed standard normal. I also assume reduced forms for investment

and log materials (i.e. the proxy):

Iit = exp(0.1ωit + ai + kit)

and

mit = ωit + ai + kit

respectively. Finally, the capital accumulation equation is Kit = 0.95Kit−1 + Iit−1 where

initial log capital, logKi0, is a random draw from a standard normal distribution.

To generate productivity, I assume the fixed component ai is distributed iid standard

normal. For the Markov component, I consider both linear and nonlinear processes:

ωit = ρωit−1 + ξit

and

ωit = ρ(ωit−1 − 0.01ω3

it−1
) + ξit

where ρ ∈ {0.2, 0.8}, ξit is iid standard normal, and ωi0 = 0.

I run 1000 replications, with N = 250 firms and T = 5 time periods. I estimate the labor

and capital coefficients using OLS, first differencing (FE), the dynamic panel approach with

and without the stationarity assumption (DPS and DP respectively), LP, and the approach

proposed in the paper (proxy + Berkson IV, or PIV).
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Table 2 contains the results for ρ = 0.2 and g(·) is linear. Table 3 corresponds to the case

where g(·) is nonlinear. The first three columns of numbers are the mean, standard deviation

and root mean squared errors over 1000 simulation runs when productivity does not have a

fixed effect, while the next three is when productivity is equal to ωit + ai. Tables 4 and 5

instead contain the results for ρ = 0.8. For all of these tables, the true values are βl = 0.7

and βk = 0.3.

Focusing on the OLS estimates, the bias is larger for βl compared to βk. This observa-

tion seems to apply to the other estimation procedures as well, except for FE. The capital

coefficient under FE is severely downward biased, consistent with what have been observed

in the literature (e.g. Griliches and Hausman (1986), and the famous quote from Griliches

and Mairesse (1998, p. 178)).

Consistent with BB98, the DP estimates are biased and are terribly imprecise. DPS on

the other hand significantly improves the estimates. In fact, the estimate for the capital

coefficient seem very reliable across specifications. However, even with DPS, the labor coef-

ficient remains biased and imprecise in almost all specifications except for when there is no

fixed effect, ρ = 0.8 and g(·) is linear (Table 4).

LP exhibits good finite sample properties in all specification with ai = 0. Since the

simulation assumptions allow estimation of βl in the first stage, the labor coefficient does

not suffer from bias even when there is a fixed effect. However, the capital coefficient is biased

upwards when ai 6= 0. The bias seems to get worse when ρ is lower, i.e. the persistence in

productivity (and other variables) are mostly due to the fixed component rather than the

Markov component.

PIV performs well in all specifications. It is robust to inclusion of a fixed effect, and it

does not suffer from a potential weak identification problem as in DP. Therefore PIV can be

seen as taking advantage of both proxy variable and dynamic panel methods.
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5 Conclusion

In this paper, I show how one can allow for a fixed effect component in the widely used

proxy variable method. There are two main benefits of the procedure. First, the procedure

does not rely on differencing and also allows for a nonlinear Markov component. Second,

the procedure is easy to implement as it only entails adding a two stage least squares step.

Since the instruments used are constructed from functions of the proxy and its lags, the data

requirements are the same as in most applications of proxy variable methods. I illustrate

the performance of the estimaiton prcoedure using Monte Carlo simulations. The procedure

performs as well as other existing estimation procedures in settings where assumptions of

these estimators hold, and works better for settings where these estimators are known to

fail.
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Table 2: ρ = 0.2, linear

Productivity = ωit Mean Std RMSE ωit + ai Mean Std RMSE

OLS βl 1.2078 0.0234 0.5083 1.3400 0.0237 0.6404

βk 0.3159 0.0216 0.0268 0.3797 0.0174 0.0816

FE βl 1.1222 0.0309 0.4233 1.1338 0.0319 0.4350

βk 0.0309 0.0382 0.2718 0.1254 0.0295 0.1771

DP βl 1.0602 0.6987 0.7860 1.0827 0.6944 0.7928

βk 0.4111 0.4411 0.4549 0.4278 0.4433 0.4614

DPS βl 1.2562 0.6749 0.8745 1.2311 0.3501 0.6361

βk 0.3026 0.0259 0.0260 0.3015 0.0275 0.0276

LP βl 0.7001 0.0274 0.0274 0.7006 0.0286 0.0286

βk 0.2866 0.1255 0.1262 0.4513 0.0483 0.1588

PIV βl 0.7001 0.0274 0.0274 0.7006 0.0286 0.0286

βk 0.3000 0.0337 0.0337 0.3015 0.0374 0.0374

Note: I estimate the following models 1000 times and compute the mean, standard deviation and root

mean squared error of the estimates. For each run, N = 250 and T = 5. FE refers to estimation via first

differencing to remove ai. DP and DPS are estimates based on the dynamic panel approach. DP only

uses the differenced equation with levels as instruments while DPS uses the levels equation with differenced

variables as instruments. LP corresponds to Levinsohn and Petrin (2003) where βl is estimated in the first

stage. PIV is the approach proposed in the paper and shares the first stage of LP (hence the estimates for βl

under LP and PIV are identical). The true values for the coefficients of interest are βl = 0.7 and βk = 0.3
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Table 3: ρ = 0.2, nonlinear

Productivity = ωit Mean Std RMSE ωit + ai Mean Std RMSE

OLS βl 1.2045 0.0233 0.5050 1.3395 0.0237 0.6400

βk 0.3105 0.0217 0.0241 0.3784 0.0174 0.0803

FE βl 1.1336 0.0308 0.4347 1.1462 0.0319 0.4474

βk 0.0181 0.0388 0.2845 0.1179 0.0300 0.1846

DP βl 1.0743 0.6970 0.7911 1.1145 0.6891 0.8041

βk 0.4172 0.4591 0.4738 0.4248 0.4427 0.4600

DPS βl 1.3049 0.6693 0.9021 1.3290 0.3533 0.7214

βk 0.3015 0.0256 0.0257 0.3017 0.0260 0.0261

LP βl 0.7001 0.0274 0.0274 0.7006 0.0286 0.0286

βk 0.2847 0.1420 0.1428 0.4596 0.0353 0.1635

PIV βl 0.7001 0.0274 0.0274 0.7006 0.0286 0.0286

βk 0.3000 0.0330 0.0330 0.3020 0.0371 0.0371

See note in Table 2.
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Table 4: ρ = 0.8, linear

Productivity = ωit Mean Std RMSE ωit + ai Mean Std RMSE

OLS βl 1.3216 0.0228 0.6220 1.3903 0.0231 0.6907

βk 0.3904 0.0194 0.0925 0.3978 0.0162 0.0991

FE βl 1.0427 0.0318 0.3442 1.0450 0.0327 0.3465

βk 0.2045 0.0309 0.1003 0.2307 0.0251 0.0737

DP βl 1.0768 0.6870 0.7835 1.0819 0.6781 0.7783

βk 0.4020 0.3983 0.4111 0.4162 0.4290 0.4444

DPS βl 0.6978 0.1942 0.1942 0.7522 0.1829 0.1902

βk 0.2987 0.0482 0.0483 0.2982 0.0480 0.0480

LP βl 0.7000 0.0275 0.0275 0.7005 0.0286 0.0286

βk 0.2645 0.1363 0.1409 0.3196 0.1152 0.1168

PIV βl 0.7000 0.0275 0.0275 0.7005 0.0286 0.0286

βk 0.2966 0.0639 0.0640 0.2977 0.0636 0.0637

See note in Table 2.
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Table 5: ρ = 0.8, nonlinear

Productivity = ωit Mean Std RMSE ωit + ai Mean Std RMSE

OLS βl 1.2630 0.0410 0.5645 1.3634 0.0346 0.6643

βk 0.3489 0.0211 0.0532 0.3842 0.0182 0.0862

FE βl 1.0988 0.0577 0.4030 1.1055 0.0577 0.4096

βk 0.1031 0.0367 0.2003 0.1658 0.0283 0.1371

DP βl 1.0334 0.6858 0.7626 1.0550 0.6861 0.7725

βk 0.3959 0.3767 0.3887 0.3946 0.3707 0.3826

DPS βl 0.9601 0.5256 0.5864 0.9704 0.2848 0.3927

βk 0.3040 0.0303 0.0306 0.2998 0.0349 0.0349

LP βl 0.7003 0.0281 0.0281 0.7005 0.0286 0.0286

βk 0.2937 0.0480 0.0484 0.3929 0.0607 0.1110

PIV βl 0.7003 0.0281 0.0281 0.7005 0.0286 0.0286

βk 0.3010 0.0486 0.0486 0.3015 0.0490 0.0490

See note in Table 2.
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