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Abstract:
In this paper we propose the following conjecture: the equilibrium manifold E(r) ⊂
R
LM−1, where L is the number of goods and M the number of consumers, is a minimal

submanifold if and only if the price is unique for every economy. We show the validity of
this conjecture for an arbitrary number of goods and two consumers and for an arbitrary
number of consumers and two goods under the assumption that the normal vector field
of E(r) is constant outside a compact subset.
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1 Introduction

In this paper we explore the connection between minimality and uniqueness of equi-
librium. We provide the following motivation. Let ω be an endowment with multiple
equilibrium price vectors. One can assign a probability distribution to these set of prices,
which play the role of events (which price vector will actually be the supporting price
vector is the main issue of selection theory and goes behind the scope of this paper).
Consider the value of the information content of a message saying that a price vector, e.g.
p1 with probability x1, will be the equilibrium price vector. The information content of
a message (see [14]) is a decreasing function of the probability that it occurs, h(x1), and
is defined as h(x1) = −log(x1). The expected information content of the distribution,
or entropy, is

H(x) =
n∑

1=1

xih(xi) = −
n∑

i=1

xilogxi

Entropy increases as the amount of uncertainty increases, and its maximum value is
attained when all the events are equiprobable, i.e. xi =

1
n
, i = 1, . . . , n. Observe that

an economy with a unique equilibrium price vector has entropy zero.
In a dynamic setting, one can link the length of a path from ω to ω′ to its entropic

measure. A minimal path is less entropic than a longer one, where the length of the
path is measured taking into account the supporting equilibrium price vectors as we move
from ω to ω′. Similarly, and more generally, one can establish a connection between the
neighborhood of an economy and its entropy, where the volume is positively associated
to the entropy. Since volume takes into account the equilibrium prices, it is natural
to follow the equilibrium manifold approach, where the equilibrium manifold, E(r), or
Walras correspondence, is defined as the set of pairs of prices and endowments such that
the aggregate excess demand function is equal to zero.

In this paper we investigate whether it is possible to have multiplicity of prices and
minimal volume. This question leads us to the concept of minimal surfaces and, more
generally, minimal submanifolds, a very active research area in differential geometry.
Roughly speaking1, a minimal submanifold M

n of a Riemannian manifold N
n+k mini-

mizes volume locally, namely every point of Mn admits a neighborhood which minimizes
volume among all submanifolds of Nn+k with the same boundary.

Even if the equilibrium manifold E(r) is unknotted in its ambient space R
LM−1,

where L is the number of goods and M the number of consumers (see [4]), it can almost
arbitrarily be twisted for an appropriate preference profile. Hence one could expect to
find a configuration giving rise to multiplicity and minimality. We believe that exactly
the opposite is true. Indeed we address the following:

1Throughout this paper we will content ourselves with this definition since in the proof of our main
results we are not using the differential geometric machinery of the theory of minimal submanifolds. The
interested reader is referred to [13] for more details and material on minimal submanifolds. The simplest
examples of minimal submanifolds arise when n = 1: in this case they are simply geodesics of Nk+1.
In higher dimensions every totally geodesic submanifold is a minimal submanifold (cf. also [7] for some
properties of geodesics and totally geodesic submanifolds of the equlibrium manifold). Nevertheless,
there exist a lot of interesting minimal submanifolds (see [13] or Section 3 below).
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Conjecture: The equilibrium manifold E(r) ⊂ R
LM−1 is a minimal submanifold if and

only if the equilibrium price is unique.

In other words we believe that there is not an utility profile which minimizes volume
by preserving multiplicity.

Notice that the “only if’ part of our conjecture follows by Balasko’s work (cf. The-
orem 2.1 below). Here we are concerned with the other implication, namely we are
conjecturing that minimality implies unicity.

In this paper we show the validity of this conjecture in the case of an arbitrary
number of goods and two consumers (Theorem 3.1) and in the case of an arbitrary
number of consumers and two goods (Theorem 4.1) under the additional assumption
that the normal vector field of E(r) is constant outside a compact subset of the ambient
space. The proof of Theorem 3.1 strongly relies on the classification of ruled minimal
submanifolds of the Euclidean space, on the bundle structure of the equilibrium manifold
and on the positiveness of prices. On the other hand, the proof of Theorem 4.1 combines
deep geometric results relating the topology of a minimal submanifold of the Euclidean
space with the fact that E(r) is globally diffeomorphic to an Euclidean space.

There is a relationship with a recent result [9], where it is shown that the zero
curvature of the equilibrium manifold implies uniqueness of equilibrium. As in [9], we
are concerned with uniqueness across the whole commodity space in a smooth exchange
economy. But the issue, and the approach, is entirely different. Here we are concerned
with the immersion of the manifold on its ambient space, while in [9] the explored
geometric properties are intrinsic, i.e. they do not depend on the ambient space.

We believe that the connection between the broad literature on minimal submani-
folds and uniqueness and stability issues (see [6, 11] for a survey) may deserve further
investigation (cf. also Remark 4.4 at the end of the paper).

This paper is organized as follows. In Section 2 we recall the standard economic
setup. Section 3 and Section 4 are dedicated to the proof of Theorem 3.1 and Theorem
4.1, respectively.

2 The economic setting

The economic setup is represented by a pure exchange smooth economy with L goods
and M consumers under the standard smooth assumptions (see [1, Chapter 2]). The set
of normalized prices is defined by

S = {p = (p1, . . . pL) ∈ R
L | pl > 0, l = 1, . . . , L, pL = 1}

and the set Ω = (RL)M denotes the space of endowments ω = (ω1, . . . , ωM ), ωi ∈ R
L.

The equilibrium manifold E is the set of the pairs (p, ω) ∈ S × Ω, which satisfy the
equality:

M∑

i=1

fi(p, p · ωi) =
M∑

i=1

ωi, (1)
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where fi(p, wi) is consumer’s i demand.
By [1, Lemma 3.2.1], E is a (closed) smooth submanifold of S×Ω, globally diffeomorphic
to S × R

M × R
(L−1)(M−1) = R

LM , i.e. φ|E
∼= R

LM , where the smooth mapping

φ : S × Ω → S × R
M × R

(L−1)(M−1)

is defined by

(p, ω1 . . . , ωM ) 7→ (p, p · ω1, . . . , p · ωM , ω̄1, . . . , ω̄M−1),

where ω̄i denotes the first L− 1 components of ωi, for i = 1, . . . ,M − 1.

We also introduce the following two subsets of E:

• the set of no-trade equilibria T = {(p, ω) ∈ E| fi(p, p · ωi) = ωi, i = 1, . . . ,M};

• the fiber associated with (p, w1, . . . , wM ) ∈ S × R
M , which is defined as the set of

pairs (p, ω) ∈ S × Ω such that:

– p · ωi = wi for i = 1, . . . ,M ;

–
∑

i ωi =
∑

i fi(p, wi).

By defining the two smooth maps

f : S × R
M → S × R

LM ,

where f(p, w1, . . . , wM ) = (p, f1(p, w1), . . . , fM (p, wM )), and

φFiber : E → S × R
M ,

where φFiber(p, ω1, . . . , ωM ) = (p, p · ω1, . . . , p · ωM ), since f(S × R
M ) = T ⊂ E and

φFiber ◦ f is the identity mapping, by applying [1, Lemma 3.2.1], Balasko shows [1,
Proposition 3.3.2] that T is a smooth submanifold of E diffeomorphic to S × R

M .
By construction, every fiber associated with (p, w1, . . . , wM ) is a subset of E which is

the inverse image of (p, w1, . . . , wM ) via the mapping φFiber. It is intuitively clear that
while holding (p, w1, . . . , wM ) fixed and letting ω varying along the fiber, there are not
any nonlinearities which may arise from the aggregate demand. In fact the fiber is a
linear submanifold of E of dimension (L− 1)(M − 1) [1, Proposition 3.4.2].

Since every fiber contains only one no-trade equilibrium [1, Proposition 3.4.3], the
equilibrium manifold E can be thought as a disjoint union of fibers parametrized by
the no-trade equilibria T via the mapping φ|E : E → S × R

M × R
(L−1)(M−1): for a

fixed (p, w1, . . . , wM ) ∈ S ×R
M , each fiber is parametrized by ω̄1, . . . , ω̄M−1. By letting

(p, w1, . . . , wM ) varying in S × R
M , we obtain the bundle structure of the equilibrium

manifold.

If total resources are fixed, the equilibrium manifold is defined as
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E(r) = {(p, ω) ∈ S × Ω(r) |

M∑

i=1

fi(p, p · ωi) = r}, (2)

where r ∈ R
L is the vector that represents the total resources of the economy and

Ω(r) = {ω ∈ R
LM |

∑M
i=1 ωi = r}.

Let

B(r) = {(p, w1, . . . , wM ) ∈ S × R
M |

M∑

i=1

fi(p, wi) = r} (3)

be the set of price-income equilibria (see [1, Definition 5.1.1]). B(r) is a submanifold
of S × R

M diffeomorphic to R
M−1 [1, Corollary 5.2.4] through the map θ : S × R

M →
R
L × R

M−1, defined by

(p, w) 7→ (
∑

i

fi(p, wi), u1(f1(p, w1), . . . , uM−1(fM−1(p, wM−1)). (4)

The equilibrium manifold E(r) is a submanifold of S × Ω(r) diffeomorphic to R
L(M−1)

[1, Corollary 5.2.5]

φ(E(r)) = B(r)× R
(L−1)(M−1). (5)

Moreover we can define and T (r) = T ∩S ×Ω(r). By construction, even in a fixed total
resource setting, the equilibrium manifold preserves its bundle structure property and,
hence, E(r) can be written as the disjoint union

E(r) = ⊔x∈T (r)Fx, (6)

where Fx is an (L− 1)(M − 1)-affine subspace of RL(M−1).
Let t = (t1, . . . , tl−1), ω̄j = (ω1

1, . . . , ω
l−1
1 ) and p(t) = (p1(t), . . . , pl−1(t). Following

[1] and [9], we can parametrize B(r) via the map:

ϕ : RM−1 → B(r), t → (p(t), w1(t) . . . , wm−1(t)) (7)

and E(r) via the map:

Φ : RL(M−1) → E(r), (8)

(t, ω1
1, . . . , ω

1
M−1, . . . , ω

1
1, . . . , ω

L−1
M−1) 7→ (p(t), ω̄1, w1(t)−p(t)·ω̄1, . . . , wM−1(t)−p(t)·ω̄M−1)

We end this section with a theorem due to Balasko which is related with the issue
raised in this paper.

Theorem 2.1 [1, p. 188 Theorem 7.3.9 part (2)] If for every ω ∈ Ω(r) there is unique-

ness of equilibrium, the equilibrium correspondence is constant: The equilibrium price

vector p associated with ω does not depend on ω.
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Remark 2.2 This theorem will be used to prove the “only if” part of Theorem 3.1 and
Theorem 4.1. In this paper we are concerned with the other implication: does minimality
implies uniqueness? (cf. the conjecture in the introduction).

3 The case M = 2

In this section we prove the following:

Theorem 3.1 Let M = 2. Then E(r) is a minimal submanifold of R2L−1 if and only

if the price is unique.

Before proving the theorem we need some definitions.

• a submanifold M
n ⊂ R

n+k is said to be ruled if Mn is foliated by affine subspaces
of dimension n− 1 in R

n+k.

• a generalized helicoid is the ruled submanifold M
n(a1, . . . , ak, b) ⊂ R

n+k, k ≤ n,
admitting the following parametrization:

(s, t1, . . . , tn−1) 7→ (t1 cos(a1s), t1 sin(a1s), . . . , tk cos(aks), tk sin(aks), tk+1, . . . , tn−1, bs)),

where aj , j = 1, . . . , k, and b are real numbers (we are not escluding that one of these
coefficients could vanish and the generalized helicoid becomes an affine subspace).

The key ingredient in the proof of Theorem 3.1 is the following classification result
on ruled minimal submanifolds of the Euclidean space. We refer the reader to [5, Section
1] and references therein (in particular [10] for a proof).

Theorem 3.2 ([10]) A minimal ruled submanifold M
n ⊂ R

n+k is, up to rigid motions2

of Rn+k, a generalized helicoid.

We need also the following simple but fundamental fact:

Lemma 3.3 Let Mn(a1, . . . , ak, b) ⊂ R
n+k be a generalized helicoid such that b·

∏k
i=1 ai 6=

0. Then M
n intersects any affine hyperplane of Rn+k.

Proof: In cartesian coordinates x1, y1, . . . , xk, yk, xk+1, . . . , xn−1, xn an hyperplane of
R
n+k has equation:

α1x1 + β1y1 + · · ·+ αkxk + βkyk + αk+1xk+1 + · · ·+ αn−1xn−1 + αnxn = δ,

where αi, βi, i = 1, . . . k, αj , j = k + 1, . . . n and δ are real numbers such that

k∑

i=1

(α2
i + β2

i ) +

n∑

j=1

α2
j 6= 0.

2A rigid motion of the Euclidean space R
l is an isometry of R

l given by the composition of an
orthogonal l × l matrix and a translation by some vector v ∈ R

l.
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On the other hand the following equation represents the condition to be satisfied for
a point of the hyperplane to belong to the generalized helicoid:

k∑

i=1

ti(αi cos(ais) + βi sin(ais)) +

n−1∑

j=k+1

αjtj + αnbs = δ.

Since one can always find a pair (s0, t0) satisfying the previous equation, the lemma is
proved. �

Proof of Theorem 3.1: Since M = 2, by the bundle structure property (see (6)), E(r)
is a ruled submanifold in R

2L−1. By Theorem 3.2, E(r) is (up to rigid motions) a
generalized helicoid. If some ai or b are equal to zero then E(r) is an hyperplane and,
by Theorem 2.1, the price is unique. Otherwise if b ·

∏
i ai 6= 0, by combining Lemma 3.3

with the fact that E(r) is contained in the open set of R2L−1 consisting of those points
with p > 0 (p being the price) one deduces that E(r) is an affine hyperplane and so the
price is unique. The “only if” part follows by Theorem 2.1 (see Remark 2.2). �

Remark 3.4 In the previous theorem we assumed the minimality of E(r). We can
prove the same result by only assuming that the no-trade equilibria T (r) (which is one
dimensional for M = 2) is a minimal submanifold of E(r), namely it is a geodesic.
Indeed, by using the diffeomorphism between T (r) and B(r), and the parametrization
Φ of E(r) (see (8)), T (r) can be parametrized through Φ by letting v = 0:

Φ(t, 0) = γ(t).

Hence, if T (r) is a geodesic in E(r), its acceleration γ′′(t) is parallel, for every t, to the
unit normal vector N(t)|v=0 of E(r) or, equivalently, γ′′(t) ∧ N(t)|v=0 = 0. We have

γ′′(t) = β′′(t) = (p̈, 0, ẅ) and, since v = 0, Φt ∧ Φv = β̇ ∧ δ = (−ẇ, pṗ, ṗ). Hence
γ′′(t) ∧N(t)|v=0 = β′′ ∧ (β′ ∧ δ) = 0 if and only if

(−pṗẅ, pp̈+ ẇẅ, pṗp̈) = (0, 0, 0).

This implies that, for every t, ṗp̈ = 0, i.e. (ṗṗ)′ = 0, hence p is (constant and) unique.

4 The case L = 2

In this section we consider an economy with two goods and an arbitrary number of
consumers. In this case the equilibrium manifold is a hypersurface. More precisely, the
equilibrium manifold E(r) has dimension R

2M−2 and the ambient space has dimension
R
2M−1. So it makes sense to consider the normal vector field N along E(r), namely for

each x ∈ E(r) we consider a unit vector N(x) parallel to one dimensional affine subspace
TxE(r)⊥ ⊂ R

2M−1 normal to the tangent space TxE(r) of E(r) at x. The smooth map
N : E(r) → S2M−2 which takes x to the point N(x) of the unit sphere S2M−2 ⊂ R

2M−1

7



is called the Gauss map. Obviously, if the Gauss map is constant then the price is
constant and hence E(r) is an affine hyperplane in R

2M−1. In the following theorem,
which represents the second main result of the paper, we show that the minimality
assumption together with the constancy of the Gauss map outside a compact set imply
uniqueness of the equilibrium price.

Theorem 4.1 Let L = 2 and assume that the Gauss map is constant outside a compact

subset of E(r). Then E(r) is a minimal submanifold of R2M−1 if and only if the price

is unique.

This theorem can be intepreted by saying that if the equilibrium manifold is minimal
and there exists a compact subset K of R2M−1 such that (R2M−1\K)∩E(r) is the union
of open subsets of hyperplanes each parallel to the hyperplane p = const, then E(r) is
indeed an hyperplane. As a consequence, the usual one-dimensional representation of
the equilibrium manifold cannot be minimal (see figure below).

N(y)

y

N(x)

x

N
E(r)

K
S2M−2

The proof of Theorem 4.1 relies on the following theorem obtained in turn by suitably
combining some deep results obtained by Anderson in [2].

Theorem 4.2 Let Mn ⊂ R
n+1, n > 2, be a minimal hypersurface such that the following

conditions are satisfied:

1. M
n has one end;

2. M
n is a C1-diffeomorphic to a compact manifold M̄

n punctured at a finite number

of points {pi}.

3. the Gauss map N : Mn → Sn extends to a C1-map of M̄n.

Then M
n is an affine n-plane.

Remark 4.3 The number of ends of a smooth manifold is a topological invariant which,
roughly speaking, measures the number of connected components “at infinity”. The
reader is referred to [2] for a rigorous definition. What we are going to use in the proof
of Theorem 4.1 is that for n > 1, the Euclidean space R

n has only one end. This is
because R

n \K has only one unbounded component for any compact set K.
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Proof of Theorem 4.1: If M = 2 we can apply Theorem 3.1. We can then assume
M > 2 and so dimE(r) = 2M − 2 > 2. Hence, in order to prove the “if” part it is
enough to verify that the three conditions of Theorem 4.2 are satisfied for E(r) ⊂ R

2M−1.
Conditon 1 follows by the previous remark, since E(r) is globally diffeomorphic to R2M−2.
Notice that the unit sphere S2M−2 is the Alexandroff compactification of E(r) ∼= R

2M−2,
namely it can be obtained by adding one point, called ∞, to E(r). In other words E(r)
is diffeomorphic to the sphere S2M−2 punctured to ∞ and so also condition 2 holds true.
The assumption that the Gauss map N : E(r) → S2M−2 is constant outside a compact
set K means that N(x) = N0, where N0 is a fixed vector in S2M−2, for all x ∈ E(r) \K.
Therefore, one can extend N to a C∞-map N̂ : S2M−2 → S2M−2 by simply defining
N̂(∞) = N0, and so also condition 3 is satisfied. The “only if” part follows by Theorem
2.1 (see Remark 2.2). �

Remark 4.4 Given a submanifold M
n of a Riemannian manifold N

n+k, one can express
the minimality condition in terms of the vanishing of the mean curvature H. If k = 1,
namely when M

n is an hypersurface, the minimality condition, namely H = 0 , is
equivalent to the vanishing of the trace of the differential of the Gauss map (see e.g.
[3]). Thus, for L = 2 one could try to show that minimality of E(r) implies uniqueness
of the equilibrium price without imposing the extra condition on the constancy of the
Gauss map outside a compact set (as in Theorem 4.1), by computing the Gauss map
through the parametrisation (8) above and imposing the vanishing of the trace of its
differential. This gives rise to a complicated PDE equation, which also when M = 3 the
authors were not able to handle.
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[10] Ü. Lumiste, 1958, Die n-dimensionalen Minimalflächen mil einer (n − 1)-dimensionalen
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