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1 Introduction

The importance of production function formalizing the transformation of inputs into the output

needs no justification for economists. The concept lies at the very core of the theory of the firm. It

is thus unsurprising that the issues surrounding the consistent estimation of the production function

have been among the most studied in empirical economics. The primary hurdle to the identification

of the firm’s production function is latent productivity which, while unobserved by an econometri-

cian, is one of the key determinants of the firm’s endogenous input allocation. If not accounted for

explicitly, the presence of the firm’s productivity leads to the simultaneity (endogeneity) problem

as first pointed out by Marschak & Andrews (1944).

In light of rather unsatisfactory performance of conventional approaches to tackling endogene-

ity in the production function context, such as fixed effects estimation or instrumenting for inputs

using prices (see Griliches & Mairesse, 1998; Ackerberg et al., 2007, 2015; Gandhi et al., 2017), the

recently developed alternative control-function-based approach to the structural identification of

production functions by Olley & Pakes (1996) and Levinsohn & Petrin (2003) has gained wide pop-

ularity among practitioners. The method relies on the use of lagged inputs as a source of exogenous

variation (under some assumptions about the firm’s economic environment) to achieve identifica-

tion. More recently, many such proxy-based production function estimators have been subject to

serious critiques for the lack of identification due to perfect functional dependence (Ackerberg et al.,

2015) and/or violation of the “rank condition” (Gandhi et al., 2017). Nonetheless, the estimators

remain, if not have become more, dominant in the applied work on productivity.

In this paper, we develop a novel structural framework for control-function-based nonparametric

identification of the gross production function and latent firm productivity that is robust to both

Ackerberg et al.’s (2015) and, more importantly, Gandhi et al.’s (2017) critiques and provide an

alternative estimation methodology. Namely, we consider the firm’s production decisions in the

presence of export opportunities.

Our motivation is largely rooted in the longstanding interest of economists in studying the nexus

between firm productivity and export behavior, empirical research on which has proliferated greatly

since Bernard & Jensen’s (1995) seminal publication (e.g., Aw & Hwang, 1995; Baldwin & Gu, 2003;

Bernard et al., 2003; Wagner, 2007, to name a few). Exporting firms are generally believed to be

more productive than their domestically oriented counterparts. Not only are the exporters usually

more productive a priori (Clerides et al., 1998; Delgado et al., 2002) but, more importantly, they

are also more likely to enjoy productivity gains due to learning by exporting, quality and variety

effects, exposure to tougher competition as well as the absorption of new technologies from abroad

(Pavcnik, 2002; Amiti & Konings, 2007; De Loecker, 2007, 2013). In fact, the latter aspects are often

invoked in support of active export promotion in developing countries. However, no such regularities

seem to apply to the Chinese manufacturing sector. Puzzlingly, exporting manufacturers in China

have been found to exhibit lower productivity levels than non-exporting firms (Lu, 2010; Lu et al.,

2010; Yu, 2014; Dai et al., 2016). In drawing their conclusions, most these studies either use crude
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measures of average productivity or rely on standard proxy estimators that are prone to the above-

referenced unidentification issues as well as assume restrictive parametric assumptions. In order to

take a fresh look at China’s exporter productivity puzzle, we therefore seek to build the framework

for a robust measurement of firm productivity.

In our conceptual model of the firm’s production decisions, we pay close attention to modeling

of its export behavior, particularly the firm’s endogenous determination of the degree of its export

orientation (in addition to input choices). Failure to explicitly accommodate such endogenous ex-

port decisions and the productivity implications thereof in the production function estimation may

lead to the model misspecification and the omission of relevant export variables from the proxy

for latent productivity which, owing to their correlation with inputs, results in the endogeneity-

inducing omitted variable bias. Perhaps even more importantly, the conventional structural frame-

work does not allow the identification of both the production function and productivity in line

with Gandhi et al.’s (2017) critique. Therefore, our contribution to the literature is as follows.

We generalize the standard behavioral assumptions about the firm-level production customarily as-

sumed in the literature to explicitly formalize firms’ endogenous export decisions along with their

potential learning-by-exporting effects on productivity. We show that, unlike under the conven-

tional assumptions, our structural framework provides a workable identification strategy, whereby

the firm’s degree of export orientation provides the needed (excluded) relevant independent ex-

ogenous variation in endogenous freely varying inputs, thus allowing us to tackle Gandhi et al.’s

(2017) under-identification critique and to successfully identify the production function and latent

firm productivity. Our ability to achieve structural identification stems from both the underlying

features of our conceptual framework, whereby the firm’s export decisions are said to exhibit ad-

justment frictions implying their quasi-fixity and to depend on some external exogenous cost shifter

(e.g., a locational or institutional cost differential) which need not be observable, and the fact that

we use the information about firms’ exports in the form of a continuous measure such as export

intensity as opposed to a discrete export status as commonly done in the productivity literature.

Thus, our methodology constitutes a useful addition to the toolkit of practitioners interested in a

robust empirical modeling of the nexus between the firm’s export behavior and its productivity.

In order to avoid a likely possibility of misspecification due to the widely-imposed restrictive

Cobb-Douglas parametric assumption, our methodology employs the nonparametric formulation

not only for the control function but also for the production process itself. However, owing to

its fully nonparametric nature, the estimation of our IV model becomes non-trivial due an “ill-

posed inverse” problem. To bypass the ill-posedness, we regularize our estimator (see Carrasco

et al., 2007, for an excellent review). Specifically, we adopt the Landweber-Fridman regularization

technique with its primary appeal being that it is iterative thereby not requiring direct inversion

of large-dimensional matrices, which is of great practical importance when working with large

panels of firms (as in our case). Given the well-documented poor finite-sample performance of

polynomial series favored in the productivity literature (e.g., Gandhi et al., 2017), in this paper, we

approximate unknown functions via the single-layer feed-forward artificial neural network (ANN)

3



sieves with a sigmoid activation function, which can approximate any function to any desired

accuracy with the use of a sufficiently large number of hidden intermediate units regulating the

degree of approximation complexity (Hornik et al., 1989; White, 1989). We choose the ANN

sieves primarily due to their superior ability to accommodate nonlinearities and non-separabilities

between the elements of an approximated function as well as because other approximators such

as polynomial, Fourier or spline sieves usually exhibit slower convergence rates requiring a higher

degree of approximation complexity to attain comparable accuracy (also see Kuan, 2008; Chen &

Ludvigson, 2009).

We first study our methodology in a small set of Monte Carlo experiments where we compare

its performance to that of the traditional estimator. The results are encouraging, and simulation

experiments show that our approach recovers the true parameters well, thereby lending strong

support to the validity of our identification strategy. As expected of a consistent estimator, the

estimation also becomes more stable as the sample size grows. In contrast, consistent with Gandhi

et al.’s (2017) critique, the under-identified traditional proxy estimator exhibits non-vanishing bi-

ases in the estimates of production function. We then apply our model to a firm-level panel for 28

manufacturing industries in China during the 1999–2006 period to obtain estimates of the (total

factor) productivity differential between exporters and non-exporters. Despite of a more robust

methodology employed, we too find a generally negative productivity premium to exporting, al-

though the results indicate non-negligible heterogeneity across industries and firm characteristics.

We fairly consistently find an increasingly negative productivity differential between non-exporters

and exporter with the higher degree of export orientation. Pooling the whole manufacturing sector

together, the (statistically significant) conditional exporter productivity premium estimates decline

from –7.1% for the first decile to –20.7% for the tenth decile of the export intensity distribution

among exporters. At the disaggregated industry level, the evidence is a bit less clear-cut, with few

premium estimates being statistically insignificant for low-export-intensity exporters. Although we

largely fail to find evidence of these more domestically oriented exporters exhibiting a positive pro-

ductivity differential over non-exporters: at most, they may be as productive as their non-exporting

counterparts.

The rest of the paper proceeds as follows. Section 2 describes the model of firm-level production

in the presence of endogenous exports. We describe our identification and estimation strategy in

Sections 3 and 4, respectively. Section 5 describes the data. The results are discussed in Section 6.

Section 7 concludes.

2 Production with Endogenous Exports

Consider the production process of a firm i (i = 1, . . . , n) in the time period t (t = 1, . . . , T ) in which

physical capital Kit, labor Lit and materials Mit (intermediate input) are being transformed into
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output Yit via production function F (·) given Hicks-neutral productivity.1 The firm’s stochastic

production process can be formalized as

Yit = F (Kit, Lit,Mit) exp{ωit + ηit}, (2.1)

where the exponent (ωit + ηit) is the composite productivity term consisting of (i) the persistent

first-order Markovian productivity ωit and (ii) a random i.i.d. transitory productivity shock ηit.
2

The F (·) function is said to satisfy the standard neo-classical assumptions, including differen-

tiability, positive monotonicity and concavity. We assume that, unlike freely varying materials,

capital and labor are subject to adjustment frictions (e.g., time-to-install, hiring costs) and thus

are quasi-fixed.3 That is,Mit is said to be statically determined by the firm in period t, whereas Kit

and Lit are determined in period t − 1 via dynamic optimization. Thus, both Kit and Lit are the

state variables with dynamic implications and follow their respective deterministic laws of motion:

Kit = Iit−1 + (1− δ)Kit−1 and Lit = Hit−1 + Lit−1, (2.2)

where Iit, Hit and δ are the gross investment, net hiring and the depreciation rate, respectively.

In this paper, we pay particularly close attention to modeling the firm’s production decisions in

the presence of export opportunities: exports are an outcome of the endogenous decision-making.

On one hand, firms may self-select into foreign markets (Clerides et al., 1998; Delgado et al., 2002).

The decision whether to start/halt exporting abroad or adjust the degree of its export orientation is

likely to be correlated with the firm’s quasi-fixed inputs and productivity in the production function

(2.1), which, if not accounted for, will produce inconsistent and biased estimates of F (·) and ωit.

On the other hand, exporting firms are also more likely (than non-exporters) to enjoy productivity

gains due to learning by exporting, quality and variety effects, exposure to tougher competition as

well as the absorption of new technologies from abroad (Pavcnik, 2002; Amiti & Konings, 2007;

De Loecker, 2007, 2013). Taking these productivity implications of the firm’s export experiences

for granted may thus lead to the misspecification of its productivity evolution process. As it is

to be evident later in the paper, in either case, the failure to explicitly accommodate endogenous

export decisions effectively leads to the omission of a relevant export variable from the proxy for

latent productivity which, owing to its correlation with inputs, results in the endogeneity-inducing

1It is easy to let the production technology be time-varying, in which case F (·) is to be replaced with Ft(·). We opt
against it to avoid notational clutter.

2Sometimes the latter shock is alternatively interpreted as a measurement error in the output.
3The timing assumption about Lit ensures that Gandhi et al.’s (2017) under-identification critique applies to a single

freely varying input only. The latter is important because, had we assumed that Lit was freely varying too, our
identification scheme would have fallen flat due to unavailability of the second source of excluded relevant exogenous
variation necessary to instrument for Lit (also see the discussion in Appendix A). Also, our assumption about
labor seems reasonable given the microeconomic evidence in support of quasi-fixity of labor in the wake of nonlinear
adjustment costs (e.g., Caballero et al., 1997; Cooper & Willis, 2003). The latter may be particularly relevant in case
of the Chinese labor market (given our empirical application) where, due to institutional/traditional reasons, firms
oftentimes face difficulties in firing workers, especially during economic downturns. It is particularly well-documented
for state-owned and -invested firms.
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omitted variable bias.

We formalize firms’ endogenous export decisions along the lines of Van Biesebroeck (2005) and

Amiti & Konings (2007). For this, we generalize the standard behavioral framework customarily

assumed in the literature. Specifically, we assume that the firm maximizes the discounted present

value of the stream of its future profits subject to its own state covariates and expectations about

the market structure variables including the input and output prices that are said to be common

to all incumbent firms. The factor markets are assumed to be perfectly competitive. Unlike in the

standard framework, the firm is now allowed to sell in domestic and/or foreign markets, both of

which are perfectly competitive with potentially different market prices. The cross-market price

differential may be attributed to different production cost fundamentals across countries that may

persist in the presence of institutional barriers — both formal, such as export/import permits,

unique packaging/labeling requirements or imperfect factor mobility, and informal like language —

separating the two markets. The price differential may also be reflective of underlying differences

in products themselves (horizontally or vertically) depending on the intended market of sale. Such

qualitative differences across products may potentially be explained by the use of somewhat different

technologies within the exporting firm (depending on the products’ intended markets of sale), in

which case the production function in (2.1) can be conceptualized as the firm-level “reduced-

form” production technology with the left-hand-side output measuring the firm’s total real sales

in both markets. For instance, De Loecker (2011) essentially pursues a similar approach whereby

representing the firm’s multi-product technology (which may consist of heterogeneous product-

specific technologies) via a single firm-level reduced-form/aggregate production function. Such an

approach, while not ideal, allows to circumvent the pervasive lack of data on cross-product input

allocations within the firm.

Under the first-order Markov process assumption both for the firm’s persistent productivity and

factor prices, we can adapt Ericson & Pakes’s (1995) result about the existence of a Markov perfect

Nash equilibrium in the firm’s time t production decisions, now also including those about the

export engagement. Instead of specifying the firm’s exporting behavior in a standard trichotomous

fashion like the bulk of the literature (e.g., Van Biesebroeck, 2005; Amiti & Konings, 2007; De

Loecker, 2013), whereby the firm chooses between engaging in exports, staying oriented on domestic

customers or, if already an exporter, withdrawing from foreign markets, we model export decisions

in a richer, continuous framework.4 Specifically, the firm is said to be choosing not only its exporter

status but also the degree of its export orientation. We do so by defining the export intensity of the

firm’s salesXit ∈ [0, 1], the boundary values of which correspond to a non-exporter and a completely

export-oriented firm, respectively. For instance, in the framework where products somewhat differ

based on the intended market of sale, the firm’s choice of Xit can be conveniently interpreted

as its decision about the (re)configuration of production lines within the firm. We also assume

a decision about the degree of export orientation Xit in period t is made in period t − 1. That

4Furthermore, modeling export decisions as continuous also helps us achieve the identification of the firm’s production
function and productivity. We discuss this in more detail in Section 3.
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is, we assume that changes in the firm’s export intensity are costly and thereby subject to delay.

The latter is meant to capture adjustment costs associated with changes in the degree of firm’s

export orientation which may include time for and cost of finding new intermediaries/buyers abroad,

contract (re)negotiations, obtaining new permits and, perhaps most importantly, reconfiguring the

production technology if products intended for sale abroad are distinct from those sold domestically,

etc. Incidentally, this implied quasi-fixed treatment of the firm’s export decisions is along the lines

of that implicitly assumed by De Loecker (2013).5 In such a setup, the firm’s export intensity plays

a role of an additional state variable that evolves according to the following controlled process:

Xit = Xit−1 +Xit−1, (2.3)

with Xit representing endogenous adjustment—a choice variable—in the firm’s degree of export

orientation.

Thus, the firm’s state variables are (Kit, Lit, Xit, ωit), with the Bellman equation corresponding

to its dynamic optimization given by

Vt(Kit, Lit, Xit, ωit) = sup
Iit,Hit,Xit

{
Πt(Kit, Lit, Xit, ωit)− CI

t (Iit,Kit)− CH
t (Hit, Lit)− CX

t (Xit, Xit,Vit) +

βE[Vt+1(Kit+1, Lit+1, Xit+1, ωit+1)| Ωit]
}
, (2.4)

where Ωit is the information available to the firm i for making period t decisions; β is the time

discount factor; and we do not explicitly include prices beyond subscripting the functions with t

since, under perfect competition, they do not vary across firms in a given time period. Here, Πt(·)

is the restricted (static) profit function with the freely varying Mit being the choice variable in

which it is maximized conditional on the already optimized quasi-fixed factors,6 and Cκ
t (·) is the

cost of κ ∈ {Iit, Hit,Xit}, respectively. By conditioning the cost of investment, hiring and export

degree adjustment on their respective stocks (i.e., capital, labor and export intensity), in line with

the convention in the literature, we are able to model the adjustment costs associated with changes

in each of these choice variables.

Notably, the cost function CX
t (·) warrants a few additional remarks. Not only does it allow for

the adjustment costs associated with changes in the firm’s export orientation but it can also implic-

itly accommodate the existence of one-time fixed irrecoverable exporting costs,7 where the latter

would take the form of a constant locational shift in CX
t once a non-exporter firm (Xit = 0) chooses

to start exporting abroad in the next period (i.e., chooses Xit > 0). More importantly, we assume

the cost of changes in the firm’s export orientation depends on a firm-varying exogenous variable

5De Loecker (2013) does not explicitly discuss the details of the firm’s decisions about its export status. However,
from the proxy function used in his estimation procedure (see his footnote 14), one can infer that De Loecker (2013)
treats the contemporaneous export status as a state variable affecting the demand for investment or an intermediate
input, which implies that the firm’s export status is assumed to be predetermined.

6This is the value function corresponding to a static profit maximization with respect to freely varying Mit in (2.5).
7For instance, Melitz (2003) assumes that firms wishing to enter foreign markets must pay a fixed, sunk export
investment cost.
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Vit which represents some external factors influencing firms’ export decisions. For instance, it may

reflect effects of the firm’s location on its export costs. Namely, since firms have different distances

to their nearest shipping center (a port, freight train station, etc), it is reasonable to assume that

those close to the shipping centers also face lower exporting costs via lower transportation costs.

Furthermore, in the economic geography and trade literature it is widely accepted that the activ-

ities of neighboring peers may also help reduce the firm’s exporting costs, and Vit thus may be

thought of as capturing such spillover effects within region and/or industry. Lastly but not least

importantly, the Chinese manufacturing firms’ exporting costs also likely depend on their location

given the country’s unique institutional environment whereby the authorities, including both the

regional or local governments, have been actively promoting exports through tax and policy incen-

tives by establishing economic and technological development zones, high-tech industrial zones and

export-processing zones around the country (Wang & Wei, 2010). Besides the locational effects,

Vit may also capture the effects of other relevant variables, such as credit constraints, on the firm’s

export costs. For example, Feenstra et al. (2014) have recently found that, given China’s credit

market imperfections which adversely affect exporters and hence influence trade patterns, credit

constraints become more stringent as the firm’s export intensity grows. As it is to become more

apparent in Section 3, the presence of an exogenous factor Vit affecting the firm’s export behavior

from outside its production environment enables us to circumvent Gandhi et al.’s (2017) critique

and successfully identify the firm’s production function. Crucially, such a variable need not be

observed for the estimation purposes when employing freely varying inputs to proxy for the firm’s

latent productivity like we do in this paper.

Solving (2.4) for (Iit, Hit,Xit), which represent changes in dynamic state variables, produces

the export-behavior adjusted gross investment function Iit = It(Kit, Lit, Xit,Vit, ωit), the net hiring

function Hit = Ht(Kit, Lit, Xit,Vit, ωit) along with the export orientation adjustment function Xit =

Xt(Kit, Lit, Xit,Vit, ωit). Note that all three policy functions depend on Vit which, if the latter is

unobservable (like in our application), implies that neither investment nor hiring are eligible proxies

for ωit due to apparent violation of the “scalar unobservable” condition necessary to ensure the

invertability of these functions. Fortunately, as shown below, this condition however continues to

hold for Mit which, owing to its freely varying nature, does not depend on Vit or any other cost

determinants pertaining to the choice of dynamic inputs.

To obtain the conditional demand for freely varying materials Mit, we consider the firm’s static

optimization problem (under risk neutrality) embedded in the restricted profit function Πt(·) inside

the dynamic problem in (2.4):

max
Mit

Pt(Xit)F (Kit, Lit,Mit) exp{ωit}E − CM
t (Mit), (2.5)

where Pt(Xit) ≡ [PX
t Xit+P

D
t (1−Xit)] is the firm-specific composite output price that is the export-

intensity-weighted average of domestic (PD
t ) and export (PX

t ) output prices; E ≡ E[exp{ηit}| Ωit] is

some constant; and CM
t (·) is the cost of materials. Solving (2.5) for Mit and omitting the elements
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common to all firms yields the material demand function Mit = Mt(Kit, Lit, Xit, ωit) with just

one unobservable. Given the profit-maximizing behavior by firms and the cross-input regularity

conditions on the production function, Mt(·)| Mit > 0 must be strictly monotonic in ωit for any

given (Kit, Lit, Xit). This condition is similar to that derived by Levinsohn & Petrin (2003). Hence,

so long as Mt(·) satisfies a scalar unobservability condition, it can be inverted to proxy for persistent

productivity via ωit = M−1
t (Kit, Lit, Xit,Mit).

8

Remark 1 The optimal policy function for intermediate inputs of the formMit = Mt(Kit, Lit, Xit, ωit),

whereby the quantity demanded of materials is conditioned not only on quasi-fixed inputs and pro-

ductivity but also on the firm’s (predetermined) degree of export orientation, may also be justified

without invoking differential prices in the domestic and foreign markets as we do in (2.5). For

instance, one can reasonably postulate dependence of the optimal Mit on Xit if the firm is said to

potentially use materials of higher quality in the production of output intended for sale abroad.

In case of a developing country like China, the latter may be reasonably justified on the basis of

higher standards in developed countries whereto the products are exported.

Next, we formalize the productivity effects of firm’s export behavior. We effectively assume that

exporting impacts the firm’s output only indirectly (via its productivity) which is why no export

variable explicitly enters production function (2.1).9 Specifically, we allow the evolution of ωit to

be impacted by the firm’s past export experiences to capture the “learning by exporting” effects

by letting its persistent productivity follow a controlled first-order Markov process à la De Loecker

(2013):10

ωit = E[ωit| ωit−1, Xit−1] + ζit with E[ζit| Ωit−1] = 0, (2.6)

where it is convenient to interpret ζit as the innovation in persistent productivity, unobservable to

the firm in period t− 1. Note that firms do observe ωit, consisting of E[ωit| ωit−1, Xit−1] and ζit, in

period t when decisions concerning freely varying Mit are being made, i.e., ωit ∈ Ωit. With regards

to a transitory productivity shock ηit, following the convention, we assume that

E[ηit| Ωit] = E[ηit] = 0, (2.7)

with its mean normalized to zero. The above implies that the random shock ηit is observable to

firms in period t only ex post after all production decisions (including those about Mit) take place.

8Note that, while our main covariate of interest Xit can take zero values, this does not pose a zero-value problem
that served as the original motivation for Levinsohn & Petrin’s (2003) estimator because we do not seek to invert
the policy function for export intensity in order to proxy for ωit in the estimation. We proxy using the conditional
demand for Mit.

9That is, following the convention in the literature, inputs are said to be the only variables affecting the firm’s output
directly, with all other production-related variables working through the latent productivity term ωit.

10Despite the similarity between our approach to modeling productivity effects of the firm’s export behavior and that
by De Loecker (2013), our papers pursue different identification strategies. Unlike us, De Loecker (2013) considers
the estimation of the value-added, not gross, production function and therefore, in the face of Gandhi et al.’s
(2017) critique, his identification scheme cannot be easily extended to the case when intermediate inputs enter the
production function directly. Our paper however pays particular attention to the latter issue.
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The evolution process in (2.6) implicitly assumes that learning is a costly process which is why

the dependence of ωit on the export variable is lagged implying that the export-driven improvements

in firm productivity take a period to materialize. This is a common assumption in the “learning”

literature: e.g., De Loecker (2013) in the case of exporting or Doraszelski & Jaumandreu (2013,

2018) in the case of R&D. Further, due to adjustment costs, firms do not experience immediate

changes in their degree of export orientation in light of a productivity shock thereby E[ζit| Ωit−1] = 0

with Xit−1 ∈ Ωit−1.

To summarize, our framework implies that, in period t− 1, the firm adjusts (if at all) the split

of its total sales across the two markets for the next period t. The actual level of output, sold both

domestically and abroad, is however determined come next period, after the random transitory

productivity shock has realized as well as the quantity of intermediate inputs has been decided

on the basis of the newly updated persistent productivity. Also, by conditioning the investment

and hiring functions on the firm’s degree of export orientation Xit, we implicitly allow the use of

quasi-fixed inputs within the firm to depend on the product designation (i.e., whether the product

is for export or not). That is, if the exported products are distinct from those sold locally and

are produced using a somewhat different technology (e.g., using somewhat different machinery or

better quality labor), the latter implies that these inputs may not be perfectly substitutable across

the product lines. Van Biesebroeck (2005) and Amiti & Konings (2007) pursue a similar approach.

Thus, our structural assumptions about costly and lagged adjustments in the firm’s degree of export

orientation (subject to unobservable exogenous cost shifter) along with costly learning by exporting

and the timing of arrival of ζit and ηit help ensure that Xit is weekly exogenous, relevant for the

contemporaneous material inputs and excludable from the production function.

Note that we model the firm’s endogenous export decisions in the “input-allocation” paradigm

as opposed to explicitly specifying a full-fledged export decision rule. That is, by modeling the

firm choosing the degree of its export orientation (Xit+1) along with its inputs, we essentially con-

ceptualize the change in export intensity (Xit) as another “investment”. Van Biesebroeck (2005)

builds on a similar framework, although his estimation methodology differs from ours on multiple

fronts with perhaps the most important difference being in his use of the original Olley & Pakes’s

(1996) estimator which has been shown to suffer from unidentification issues. In contrast, our

identification strategy is robust to various unidentification critiques of the material-based proxy

estimators of production functions (see Section 3). Further, by means of our investment-like con-

ceptualization of export decisions, we avoid making a priori presumptions about specific categories

of firms (e.g., high-productivity firms) self-selecting into foreign markets, thus mitigating the risks

of artificially pre-tailoring the model to produce desirable results. Essentially, our approach takes

a more agnostic view of export decisions. Our framework also suggests that the previous results

about the Nash equilibrium with the corresponding conditional demand functions can be extended

to our export adjusted model. Since the modified model of the firm’s production decisions differs

from the standard one essentially only by including an additional firm-specific state variable (Xit),

all integral components necessary to ensure that Ericson & Pakes’s (1995) and Olley & Pakes’s
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(1996) results hold are still in place.

3 Identification

The estimation of the production function in (2.1) is not trivial, among other things, due to the

latent nature of firm productivity ωit. Omitting it from the regression is not an option, since this

would give rise to the endogeneity problem given that ωit is correlated with inputs. We tackle this

problem by adopting a control function approach à la Levinsohn & Petrin (2003) whereby we proxy

for unobservable ωit via the observable freely varying input Mit.

Taking logs of both sides of (2.1) yields

yit = f(Kit, Lit,Mit) + ωit + ηit, (3.1)

where the lower-case variables/functions denote the logs of the respective variables/functions, e.g.,

fit ≡ logFit. Making use of the Markovian nature of ωit from (2.6), we then rewrite (3.1) as

yit = f(Kit, Lit,Mit) + h[ωit−1, Xit−1] + ζit + ηit, (3.2)

where we let E[ωit|·] be an unknown function h[·]. As discussed in Section 2, under our structural

assumptions, we can invert the material demand to control for latent persistent productivity via

ωit = M−1
t (Kit, Lit, Xit,Mit). Specifically, substituting for ωit−1 using the proxy, from (3.2) we get

yit = f(Kit, Lit,Mit) + h
[
M−1

t−1(Kit−1, Lit−1, Xit−1,Mit−1), Xit−1

]
+ ζit + ηit

≡ f(Kit, Lit,Mit) + ϕ(Kit−1, Lit−1, Xit−1,Mit−1) + ζit + ηit, (3.3)

where ϕ(·) is some unknown function.

The identification of production function f(·) in (3.3) requires that the endogenous Mit (due to

its correlation with ζit) be instrumented. Following the bulk of the literature, one may think that

the nonparametric model in (3.3) can be seemingly identified by utilizing abundant lagged covariates

to instrument for Mit given that they are predetermined under assumptions about the evolution

of firm’s productivity and hence meet the (weak) exogeneity requirement for valid instruments.

More specifically, under the assumptions embedded in (2.6) and (2.7), equation (3.3) satisfies the

following orthogonality condition:

E[ζit + ηit| Kit, Lit, Xit,Kit−1, Lit−1, Xit−1,Mit−1, . . . ,Ki1, Li1, Xi1,Mi1] = 0. (3.4)

However, Gandhi et al. (2017) have recently shown that model (3.3) may still be unidentified

despite numerous moments in (3.4), and that the identification can only be achieved if the addi-

tional predetermined variables provide some excluded relevant (exogenous) variation for Mit after

conditioning on the already included self-instrumenting variables. Intuitively, in addition to sat-
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isfying the order condition, these variables must also be relevant to meet the rank condition for

model identification.

In what follows, we show that Gandhi et al.’s (2017) critique of traditional proxy estimators,

however, does not apply to our model. Under our conceptual assumptions, the freely varying

input Mit appearing inside the production function f(·) in (3.3) has a valid instrument, namely

Xit, which provides excluded relevant exogenous variation, conditional on the already included self-

instrumenting (Kit, Lit,Kit−1, Lit−1, Xit−1,Mit−1). Therefore, we are able to structurally identify

the model.

The (structural) validity of Xit as an instrument rests on (i) its exogeneity whereby E[ζit +

ηit| Xit] = 0, (ii) the containment of independent variation from outside the model, and (iii) its

relevancy for the firm’s choice of Mit. The first condition holds owing to the quasi-fixed nature of

firm’s export intensity due to the costly adjustment therein. To see how Xit meets the remaining

two conditions, note that the freely varying input Mit

Mit = Mt(Kit, Lit, Xit, ωit)

= Mt(Kit, Lit, Xit, ht(ωit−1, Xit−1) + ζit)

= Mt(Kit, Lit, Xit, ϕ(Kit−1, Lit−1, Xit−1,Mit−1) + ζit), (3.5)

is a function of the following observables (Kit, Lit, Xit,Kit−1, Lit−1, Xit−1,Mit−1). Comparing this

set of variables with those that enter the right-hand side of (3.3) and already self-instrument, it is

evident that Mit has an extra source of variation coming from Xit (strictly speaking, Xit−1) which

contains exogenous independent variation from outside the production function. Using the firm’s

export orientation adjustment function along with its law of motion, we have that

Xit = Xit−1 +Xit−1

= Xt−1(Kit−1, Lit−1, Xit−1,Vit−1, ωit−1) +Xit−1

= Xt−1(Kit−1, Lit−1, Xit−1,Vit−1,M
−1
t−1(Kit−1, Lit−1, Xit−1,Mit−1)) +Xit−1, (3.6)

from where it can be easily seen that, conditional on the self-instrumenting variables (Kit, Lit,Kit−1,

Lit−1, Xit−1,Mit−1) in our model, Xit provides relevant independent (excluded) exogenous variation

for Mit originating from the exogenous, albeit unobservable, Vit−1. Therefore, we can use Xit as

an excluded valid instrument for Mit which ultimately enables us to identify production function

f(·) from model (3.3) on the basis of the following moment conditions

E[ζit + ηit| Kit, Lit, Xit,Kit−1, Lit−1, Xit−1,Mit−1] = 0, (3.7)

where all covariates except the endogenous materials Mit (instrumented by Xit) appearing in (3.3)

instrument for themselves.11 In other words, being a function of seven arguments (Kit, Lit,Mit,Kit−1,

11While, owing to their exogeneity, second- and higher-order lags can also be added to the conditioning set, these
additional instruments are however irrelevant for predicting Mit, conditional on the already included instrument set
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Lit−1, Xit−1,Mit−1), the conditional expectation E[yit| Ωit] from (3.3) has seven full-rank observable

sources of relevant exogenous variation (Kit, Lit, Xit,Kit−1, Lit−1, Xit−1,Mit−1) thereby meeting the

“rank condition” for identification.

Remark 2 Incidentally, our identification arguments based on the use of unobservable exogenous

variation in the endogenous regressor (originating from an export adjustment cost shifter) are, in

essence, along the lines of Matzkin’s (2004) “unobservable instrument” idea for the identification of

nonseparable nonparametric functions with scalar unobservables. The latter idea has also recently

been adapted in the context of the production function estimation by Ackerberg & Hahn (2015),

from whom we differ in that we do not require the assumption of “exogenous” Markov process for

ωit in order to accommodate learning effects of exporting and allow for an additional unobservable

shock ηit. We accomplish this by assuming that the nonparametric production function is additively

separable from both ωit and ηit in logs.

Technically, owing to its fully nonparametric nature, the identification of (3.3) requires addi-

tional restrictions on the distribution of data (as well as regularized estimation). First, we would

not have been able to identify our model if we were to use the information on exporting in the

form of a discrete export status dummy as commonly done in the productivity literature, since the

IV identification in nonparametric models generally requires an instrument to be as complex as

the endogenous variable it is meant to instrument (e.g., see Newey & Powell, 2003). In our case,

the continuous variable for materials Mit is instrumented using the firm’s export intensity Xit that

also has a continuous codomain. The second restriction is more nuanced. For concreteness, we

first rewrite our model of interest (3.3) ignoring its additivity as yit = ψ(Wit,Mit) + uit, where

ψ(·) ≡ f(·) + ϕ(·), uit ≡ ζit + ηit, and Wit = (Kit, Lit,Kit−1, Lit−1, Xit−1,Mit−1)
′ is a vector of

self-instrumenting exogenous covariates, and focus on the identification of ψ(·). Our identification

problem can then be viewed as that of the familiar nonparametric IV identification of the following

model:

yit = ψ(Wit,Mit) + uit, E[uit|Zit] = 0, Zit = (W ′
it, Xit)

′. (3.8)

Equivalently, taking the conditional expectation of equation (3.8), our function of interest ψ(·)

corresponds to any solution to the following integral Fredholm equation of the first kind:

r(z) =

∫
ψ(w,m)GM |Z(dm|z), (3.9)

with r(z) ≡ E[y|z] on the left-hand side being the reduced-form conditional mean function and the

integral on the right-hand side of equation being equal to E[ψ(w,m)|z], and where GM |Z is the

conditional cdf of Mit given Zit. Clearly, both r(z) and GM |Z are identifiable from the observable

data (yit,Mit, Z
′
it)

′, and the identification of ψ(·) thus depends on the uniqueness of solution to the

(Kit, Lit, Xit,Kit−1, Lit−1, Xit−1,Mit−1). As can be seen from (3.5), conditional on these covariates, the endogenous
Mit has only one source of “free” variation left which is the unobservable ζit.
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functional equation (3.9). By Proposition 2.1 in Newey & Powell (2003), this uniqueness condition

is satisfied, and hence ψ(·) is identified, if and only if the conditional expectation ofMit given Zit is

complete in Xit whereby E[ψ∗(w,m)|z] = 0 a.s. implies ψ∗(w,m) = 0 a.s. for all ψ∗(w,m). Such a

completeness condition is essentially a nonparametric analogue of the conventional rank condition

for linear models to ensure the association between Mit and Xit and has been widely used in the

literature on nonparametric IV identification (for references, e.g., see Freyberger, 2017). Following

Newey & Powell (2003), we can achieve identification of ψ(·) by relying on the L1-completeness12

property of the exponential family by assuming the conditional distribution ofMit given Zit belong

to this class of distributions (by their Theorem 2.2). Else, we can allow for a much broader class

of distributions by assuming an L2-completeness à la Hall & Horowitz (2005) and Darolles et al.

(2011) which imposes a second-moment condition on the joint distribution of data instead of a

weaker first-moment condition imposed by an L1-completeness (also see Andrews, 2017).

To see the intuition underlying the identification result more clearly, consider the following. We

assume yit is square-integrable with the observable data (yit,Mit, Z
′
it)

′ being characterized by its

joint cdf Gy,M,Z , dominated by the Lebesgue measure. For a given Gy,M,Z , define the function space

L2
G(χ) of real-valued square-integrable functions of χ ∈ {y,M,Z}, and recall that Z = (W ′, X)′.

Further, assume that E[y2|Z = z] < ∞ and r(z) ∈ L2
G(Z). Next, define the linear conditional-

expectation operator T:

T : L2
G(W,M) → L2

G(Z), ψ → Tψ = E[ψ(W,M)|Z], (3.10)

where T projects functions of (W,M) onto the space of functions of Z. Using this notation, the

analogue of our model in (3.9) is given by

r(z) = Tψ(w,m), (3.11)

from where it is evident that the solution for ψ(·) is unique if and only if T is nonsingular or

one-to-one, which the completeness condition is meant to ensure. The estimation of unknown ψ(·)

from (3.11) [or, equivalently, from (3.9)] is however non-trivial due an “ill-posed inverse” problem,

more on which in Section 4.

With function ψ(·) identified, by Lemma 1 in Gandhi et al. (2013), we can identify up to

an additive constant its additive components f(·) and ϕ(·), with former of the two being the

production function of interest. To see this intuitively, first note that, with ψ(·) = f(·) + ϕ(·)

identified, the conditional expectation of ψ(·) given Zit is unique almost surely, so that any other

additive nonparametric function f∗(·)+ϕ∗(·) satisfying our model’s assumptions must be such that

Pr [f∗(·) + ϕ∗(·) = f(·) + ϕ(·)] = 1 (also see Newey et al., 1999). Owing to the differentiability of

ψ(·) and f(·) and assuming the boundary of the support of (Kit, Lit,Mit,Kit−1, Lit−1, Xit−1,Mit−1)

has a probability measure zero, ψ(·) and its partial derivatives are uniquely identified at each

point in the interior of their support. Thus, differentiating ψ(·) with respect to the production

12Normally, referred to simply as “completeness” (for details, see Andrews, 2017).
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function covariates, we have that ∂ψ(·)/∂vit = ∂f∗(·)/∂vit = ∂f(·)/∂vit for each vit ∈ {Kit, Lit,Mit}

implying that f∗(·) and f(·) differ only by an additive constant with probability one. Hence,

production function f(·) is identified up to a constant (for more details, see Gandhi et al., 2013).

In summary, our model would have remained under-identified as in the traditional setup cri-

tiqued by Gandhi et al. (2017) [see why in Appendix A] had we not brought in an additional source

of exogenous relevant independent variation (related to the firm’s export behavior) from outside

the production function. Intuitively, the logic of proxying for the latent productivity using the

information on Mit, which already enters the production function on its own, is “circular”, and the

identification therefore requires an excluded valid instrument. Our identification strategy works

because of the underling structural model of the firm’s behavior discussed in Section 2, whereby

the firm decides whether to start/halt exporting abroad and/or to adjust the degree of its export

orientation (along with its input allocation decisions) in the dynamic profit maximization frame-

work summarized in Bellman equation (2.4). Such a conceptual framework guarantees that the

conditional demand for materialsMit is a function of the firm’s export intensity Xit which provides

an additional source of independent exogenous variation from outside the production function that

originates from Vit which, importantly, need not be observed for the estimation purposes.

Remark 3 In principal, the core idea of our approach to the structural identification of production

function f(·) can also be extended to the setting in which firms engage in production-related

decisions other than exporting, such as R&D investments studied by Doraszelski & Jaumandreu

(2013), so long as such (continuously measured) decisions just like Xit in our paper: (i) are subject

to adjustment frictions, (ii) contain independent exogenous variation, and (iii) are among the state

variables affecting the firm’s freely varying input choices.

We also caution the reader against potentially confusing the identification issue we discuss here

from that pointed out by Ackerberg et al. (2015) whose focus is on separable identifiability of

two additive unknown functions f(·) and ϕ(·) after conditioning the equation of interest (3.3) on

instruments. Such a problem may arise in the wake of potentially perfect functional dependence13

between an endogenous freely varying inputMit inside f(·) and the arguments of the proxy function

ϕ(·). In our model, we are able to separably identify these two functions because, conditional on

our instrument set (Kit, Lit, Xit,Kit−1, Lit−1, Xit−1,Mit−1), as can be seen from (3.5) the variable

Mit still has a source, albeit unobservable, of independent variation, namely ζit. Thus, our model

does not suffer from the perfect functional dependence problem à la Ackerberg et al. (2015) [for

more details, see Appendix B].

Lastly, we identify the persistent productivity ωit. Clearly, it is not identified from (3.3) since

we cannot isolate ζit from the composite error (ζit + ηit). Therefore, in order to identify ωit, we

consider the production process (3.1) where ωit is proxied by the contemporaneous inverted demand

13The analogue of “perfect functional dependence” in a linear parametric framework is the “perfect collinearity.”
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for intermediate inputs, i.e.,

yit = f(Kit, Lit,Mit) + g(Kit, Lit, Xit,Mit) + ηit, (3.12)

with g(·) ≡ M−1
t (·). Persistent productivity ωit = M−1

t (Kit, Lit, Xit,Mit) is then identified by

subtracting the already identified f(·) from both sides of (3.12) yielding the standard nonparametric

regression:

y∗it ≡ yit − f(Kit, Lit,Mit) = g(Kit, Lit, Xit,Mit) + ηit, (3.13)

such that

E[ηit| Kit, Lit, Xit,Mit] = 0. (3.14)

4 Estimation Procedure

We implement our identification strategy via a three-step estimation procedure.

Step 1. The first step concerns the estimation of an additive nonparametric function ψ(·) =

f(·) + ϕ(·) from its identifying integral equation (3.11) to which it is a unique solution under

the completeness assumption. This estimation is however non-trivial due to discontinuities in the

inverse mapping from r to ψ as eigenvalues of Tψ approach zero. This lack of continuity of the

estimator of ψ in the reduced-form estimators of r and T implies that small inaccuracies in the

latter may lead to large inaccuracies in the estimates of ψ. Consequently, consistency of ψ̂ does

not immediately follow from consistency of well-identified r̂ and T̂. Regularization methods are a

common approach to circumvent this “ill-posed inverse” problem, which we also pursue here.

Most regularization methods use the dual operator of T. Define such an operator as

T∗ : L2
G(Z) → L2

G(W,M), ϑ→ T∗ϑ = E[ϑ(Z)|W,M ], (4.1)

where T∗ does the opposite of what T does by projecting functions of Z onto the space of square-

integrable functions of (W,M). Applying this projector to (3.11) gives us

T∗r = T∗Tψ, (4.2)

from where it is apparent that the identification of ψ can equivalently be expressed in terms of

the non-singularity of T∗T. Heuristically, the unique solution to (4.2) is ψ = [T∗T]−1T∗r. While

this solution can be assumed to exist and be well-defined in the population, it is generally not

the case in the sample. Specifically, ψ is identifiable if and only if 0 is not an eigenvalue of T∗T

(also see Corollary 2.1 in Darolles et al., 2011). However, the smallest eigenvalues of the matrix

can get arbitrarily close to zero and therefore, in practice, the direct inversion of T∗T may lead to

an explosive, non-continuous solution. For more intuition, see Centorrino et al. (2017); Horowitz

(2014) also provides an excellent review of ill-posedness and regularization in economics.
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To bypass the ill-posedness, we regularize T∗T, which effectively entails choosing a regularization

(tuning) parameter to make the problem be well-posed. In essence, the regularization procedure

replaces T∗T with its continuous transformation to rule out explosive solutions. Several regular-

ization methods are available (see Carrasco et al., 2007, for review), with the Tikhonov (e.g., Hall

& Horowitz, 2005; Darolles et al., 2011) and Petrov-Galerkin (e.g., Blundell et al., 2007; Horowitz,

2011) regularizations perhaps being the most popular in the literature. In this paper, we adopt an

alternative Landweber-Fridman regularization technique with its primary appeal being that it is

iterative thereby not requiring direct inversion of a large-dimensional matrix T∗T, which is of par-

ticular importance to us given large values that n takes in our application. Recent applications of

the Landweber-Fridman regularization include Centorrino (2016), Centorrino et al. (2017), Florens

et al. (2018) and Centorrino et al. (2019).

The sample analogue of the identifying equation in (4.2) is

T̂∗r̂ = T̂∗T̂ψ, (4.3)

which defines the estimator of ψ as a solution of this large-dimensional system of equation. In

light of the ill-posed inverse problem, system in (4.3) is expected to be almost singular in the finite

sample, which is why we are to regularize it.

To obtain consistent estimates of r, T and T∗ to be used in (4.3), we employ series regressions.

We opt for linear sieves here mainly for computational ease, thereby assuming that functions in

L2
G(Z) and L2

G(W,M) can be approximated by a finite sum of basis functions. More concretely,

we use polynomials (in logs). Also, remember that Wit = (Kit, Lit,Kit−1, Lit−1, Xit−1,Mit−1)
′ and

Zit = (W ′
it, Xit)

′.

The projection of yit on Zit provides an estimator for the reduced-form r(Zit) ≡ E[yit|Zit].

Specifically, let {φ1 (·) , φ2 (·) , . . . } be a sequence of polynomial series (or the tensor product

thereof). Then, for each z, we approximate E[y|z] by φLn
(z)′ π, where, for any integer κ > 0,

we denote a κ× 1 vector of known basis functions φκ (v) = [φ1 (v) , . . . , φκ (v)]
′, and the unknown

parameter vector π is of dimension Ln. Ln controls the complexity of approximation and slowly

increases with the sample size n. The series regression

yit = φLn
(Zit)

′
π + eit, (4.4)

where eit is a conditional-mean projection error, is estimated via least squares. This yields the

estimator of r:

r̂ = ZLn
π̂ = ZLn

(Z ′
Ln

ZLn
)−1

Z
′
Ln

y, (4.5)

where ZLn
is the matrix of basis functions constructed by stacking up {φ′

Ln
(Zit)} in the ascending

order of index i first then index t; and so is the vector y but using yit.

To estimate T and T∗, recall that they are conditional expectation operators and, hence, can
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be estimated using linear smoothers. Following Centorrino et al. (2017), we approximate T via

T̂ = ZLn
(Z ′

Ln
ZLn

)−1
Z

′
Ln
, (4.6)

which is essentially a projection matrix onto the space of Z = [W X], once we fix Ln. Analo-

gously, the approximation of T∗ can be obtained from the polynomial series regression of r̂(Zit) on

(Wit,Mit), which yields

T̂∗ = MJn(M
′
JnMJn)

−1
M

′
Jn , (4.7)

where MJn is the matrix of basis functions constructed by stacking up {φ′
Jn(Wit,Mit)} in the

ascending order of index i first then index t, with φJn(Wit,Mit) denoting a Jn × 1 vector of the

tensor product of known polynomial series of (W ′
it,Mit)

′; and Jn → ∞ slowly as n→ ∞. Essentially,

for a fixed Jn, T̂
∗ is a projection matrix onto the space of [W M].

We select both smoothing parameters Ln and Jn via generalized cross-validation of Craven &

Wahba (1979):

L̄n = argmin
Ln

1
n ||(I− TLn

)d||2
[
1− 1

ntr{TLn
}
]2 and J̄n = argmin

Jn

1
n ||(I− T∗

Jn
)d||2

[
1− 1

ntr{T
∗
Jn
}
]2 , (4.8)

with d being the vector of left-hand-side variables.

Having obtained r̂, T̂ and T̂∗, we next proceed to the regularized estimation of unknown ψ.

Pre-multiplying both sides of (4.3) by a tuning parameter c such that c||T∗T|| < 1, to ensure

convergence of the iterative algorithm, we have

cT̂∗r̂ = cT̂∗T̂ψ, (4.9)

from where, by adding and subtracting ψ, we obtain a recursive solution that provides a basis for

the iterative algorithm:

ψ̂s+1 = ψ̂s + cT̂∗
(
r̂ − T̂ψ̂s

)
∀ s = 0, 1, 2, . . . . (4.10)

The choice of c is inconsequential and, since the largest eigenvalue of T∗T equals 1, any value

of c less than 1 would ensure convergence (for details, see Centorrino et al., 2017). Effectively, c

controls the size of an iterative step with the larger values resulting in fewer but coarser iterations

and, in contrast, values close to 0 yielding small iterative updates which, however, may require an

impractically long computational time. Following Florens et al. (2018), we set c = 0.5 to balance

computational speed and precision. Also, to improve over the MSE of ψ̂ in the finite sample, we

follow Centorrino et al.’s (2017) advice and update Ln and Jn for the estimation of operators T

and T∗ at each iteration. Specifically, the iterative algorithm is as follows:

1. Initiate the algorithm (for s = 0) with ψ̂0 = cT̂∗r̂ constructed using estimators in (4.5) and

(4.7) with the parameters Ln and Jn cross-validated via (4.8) setting d to y and r̂, respectively.
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2. For each s = 0, 1, 2, . . . , use the current estimate ψ̂s to update Ln and Jn to be used in the

construction of T̂ and T̂∗ by cross-validating them again, but this time, setting d respectively

equal to ψ̂s and
(
r̂ − T̂ψ̂s

)
, as suggested by the recursive solution.

3. Update the estimate of ψ via ψ̂s+1 = ψ̂s + cT̂∗
(
r̂ − T̂ψ̂s

)
with T̂ and T̂∗ constructed using

the newly cross-validated smoothing parameters.

4. Repeat steps (2)–(3) until the following residual-based convergence criterion is minimized in

s (s = 1, 2, . . . ):

RSS(s) = s
(
r̂ − T̂ψ̂s

)′ (
r̂ − T̂ψ̂s

)
, (4.11)

where we stop when it starts increasing.

Under relatively mild regularity conditions, the regularized estimator ψ̂ is consistent as n→ ∞

(e.g., see Johannes et al., 2013, Proposition 3.2) which helps ensure consistency of the least-squares

sieve estimators in the second and third steps.

Step 2. As an important byproduct of estimating an additive function ψ(·) = f(·)+ϕ(·), we also

obtain consistent estimates of the composite error term uit which, in addition to the i.i.d. noise,

includes the endogeneity-inducing unobservable productivity innovation ζit. With this information,

we can now separably recover production function f(·) from (3.3) via least squares. More concretely,

recognizing that the inconsistency of least-squares estimation of our main equation of interest (3.3)

[or, equivalently, equation (3.8)] is in essence due to the presence of an “omitted variable” ζit, we can

tackle this problem by proxying for the latter using the consistently estimated residuals ûit from Step

1, which effectively play a role of the control function u(ζit). Thus, we estimate f(·) via an additive

nonparametric least-squares regression of yit on (Kit, Lit,Mit)
′, (Kit−1, Lit−1, Xit−1,Mit−1)

′ and

ûit. Such a regression is no longer subject to endogeneity because the formerly omitted variation

in ζit is now being explicitly controlled for:

yit = f(Kit, Lit,Mit) + ϕ(Kit−1, Lit−1, Xit−1,Mit−1) + û(ζit) + eit, (4.12)

where eit is mean-independent of the regressors by construction.14 Also note that, as an alternative,

we can separably recover f(·) and ϕ(·) by regressing ψ̂it itself, which is now rid of the endogeneity-

inducing correlation with ζit, on (Kit, Lit,Mit)
′ and (Kit−1, Lit−1, Xit−1,Mit−1)

′.

We estimate (4.12) using sieve methods because of the relative ease with which the separability

between f(·) and ϕ(·) can be imposed. Specifically, we use the single-layer feed-forward artificial

neural network (ANN) sieves to approximate f(·) and ϕ(·):

f(·) ≈ αt,0 +
∑

r≥1

αt,rA
(
γ0t,r + γkt,rkit + γlt,rlit + γmt,rmit

)
(4.13a)

14Obviously, since uit = ζit + ηit, the proxy ûit also includes the estimate of random noise ηit. However, owing to the
i.i.d. nature of ηit, this should not affect the validity of our procedure because the inclusion of irrelevant regressors
is not to jeopardize consistency of the estimator, although one would expect a larger variance.
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ϕ(·) ≈ βt,0 +
∑

d≥1

βt,dA
(
δ0t,d + δkt,dkit−1 + δlt,dlit−1 + δXt,dXit−1 + δmt,dmit

)
, (4.13b)

where A(·) is the so-called “activation function”, which can be any known function (except poly-

nomial) of fixed finite degree (Hornik et al., 1989); r = 1, . . . , Rn and d = 1, . . . , Dn, and both Rn

and Dn increase slowly with the sample size n.

To better grasp the ANN sieve estimation procedure, consider the approximation of the pro-

duction function f(·) in (4.13a). Here, we essentially relate “input units” (kit, lit,mit), the so-called

“neurons”, to the “output unit” f by building a network in which input neurons send “signals” to Rn

“hidden intermediate units”, each of which produces an “activation”A
(
γ0t,r + γkt,rkit + γlt,rlit + γmt,rmit

)

that is then sent to the output unit f . In turn, the output unit treats these hidden intermediate

units as input units, the single index of whose signals are then transformed into the output via the

activation mapping C(·), i.e., f(·) = C
(
αt,0+

∑
r≥1 αt,rA (·)

)
. In this paper, we resort to the popu-

lar logistic specification of A(·), i.e., A(x) = (1+ exp{−x})−1, and set the activation mapping C(·)

to the identity link function. We specify a network with only a single layer of hidden intermediate

units. Further, since the information travels strictly in one direction from input units to the output

unit with no feedback loops, the network we build is said to be the “feed-forward network”. For

more details on the ANN sieves and their use in econometrics, we refer the reader to an excellent

discussion in White (1989), Kuan & White (1994a) and Kuan (2008).

The single-layer feed-forward ANN structure with a sigmoid activation function A(·) like the

logistic and the identity map C(·) that we use here can approximate any function to any desired

accuracy with the use of a sufficiently large number of hidden intermediate units regulating the

degree of approximation complexity (Hornik et al., 1989; White, 1989). We however note that

other sieves such as Hermite polynomials or B-splines are also valid alternatives for the nonpara-

metric estimation of f(·). Here, we choose the ANN sieves primarily due to the following three

reasons. First, ANN approximators possess a superior ability to accommodate nonlinearities and

non-separabilities between the elements of an approximated function (Hornik et al., 1989; Chen

& Ludvigson, 2009). Second, other approximators such as linear tensor product Fourier sieves or

spline sieves usually exhibit slower convergence rates requiring a higher degree of approximation

complexity to attain comparable accuracy (Kuan, 2008; Chen & Ludvigson, 2009). Lastly, ANN

sieves do not suffer from the “curse of dimensionality” in the same fashion as do nonparametric

series approximators like splines or Fourier sieves. Specifically, the degree of ANN approximation

depends only on the complexity of the network and not on the dimension of the covariate vector,

whereas splines or Fourier sieves are subject to the “curse of dimensionality” on both of these fronts

(Kuan & White, 1994b).

The approximated f(·) + ϕ(·) are estimated via nonlinear least-squares.15 A commonly used

algorithm for “training” ANN networks, i.e., for the estimation of “weights” (parameters) in (4.13),

is the recursive gradient-based error back-propagation, the mechanism of which in its spirit resem-

15Note that we can only identify the sum of αt,0 and βt,0.
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bles the learning process (White, 1989). However, gradient-based algorithms are meant for local

searches and are likely to fail to find global extrema. Therefore, in the estimation, we make use of

a more robust global-search simulated annealing algorithm, which has been found to outperform

traditional back-propagation in training feed-forward neural networks (Goffe et al., 1994; Sexton

et al., 1999). Just like earlier, we select smoothing parameters Dn and Rn via generalized cross-

validation. Since the estimating equation is nonlinear (in parameters) in this case, we use the

following generalized cross-validation function (also see Gao, 2007):

(D̄n, R̄n)
′ = argmin

(Dn,Rn)′

1
n ||ê(Dn, Rn)||

2

[
1− 1

nκ(Dn, Rn)
]2 , (4.14)

where ê(·) is the vector of residuals from (4.12), and κ(·) is the total number of parameters in the

ANN approximators effectively substituting for the trace of a projection matrix. Thus, we have the

estimator of the production function: f̂(·) =
∑

r≥1 α̂t,rA
(
γ̂0t,r + γ̂kt,rkit + γ̂lt,rlit + γ̂mt,rmit

)
.16

Step 3. Using the estimates of f(·) obtained in the second step, we next compute ŷ∗it = yit − f̂(·)

and proceed with the second-stage estimation of ωit from (3.13), where g(·) is also approximated

via the single-layer ANN sieve with the logistic activation function A(·):

g(·) ≈ θt,0 +
∑

b

θt,bA
(
ν0t,b + νkt,bkit + νlt,blit + νXt,bXit + νmt,bmit

)
, (4.15)

where b = 1, . . . , Bn and the number of hidden units Bn → ∞ slowly as n→ ∞ (cross-validated as

well). Here, we use the least-squares-like orthogonality conditions in (3.14), where the error term

ηit = ŷ∗it − g(·) is constructed using the ANN approximation above. This produces estimates of

productivity ω̂it = ĝ(·).

Consistency and limit normality of the estimators in Steps 2 and 3 are expected to follow from

the results in Hahn et al. (2018) and Chen et al. (2015).

Remark 4 Before applying our proposed estimator to the real data, we first examine our method-

ology in a small set of Monte Carlo experiments where we compare its performance to that of

the traditional estimator. The results are encouraging, and simulation experiments show that our

approach recovers the true parameters well, thereby lending strong support to the validity of our

identification strategy. As expected of a consistent estimator, the estimation becomes more stable

as the sample size grows. In contrast, consistent with Gandhi et al.’s (2017) critique, the under-

identified traditional proxy estimator exhibits non-vanishing biases in the estimates of production

function. To conserve space, we relegate the discussion of simulation experiments to Appendix D.

16The estimated intercept α̂t,0 + β̂t,0 is attributed in its entirety to the productivity proxy.
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4.1 Bias-Corrected Bootstrap Inference

For inference, we rely on Efron’s (1987) accelerated bias-corrected bootstrap percentile confidence

intervals, which are generally second-order accurate and provide means not only to correct for the

estimator’s finite-sample bias but also to account for higher-order moments (particularly, skewness)

in the sampling distribution. We approximate sampling distributions of the estimators via wild

residual block bootstrap that takes into account a panel structure of the data, with all the steps

bootstrapped jointly owing to a sequential nature of our estimation procedure. The bootstrap

algorithm is described in Appendix C. We repeat it B = 400 times. We then use the empirical

distribution of B bootstrap estimates of fit and ωit as well as the functionals thereof to construct

accelerated bias-corrected percentile confidence intervals as described below.

Let the estimand of interest be denoted by Q̂, e.g., the mean returns to scale defined as the

industry average of the firm-specific sums of partials of f̂it. We use the empirical distribution of B

bootstrap estimates
{
Q̂1, . . . , Q̂B

}
to estimate (1− a)× 100% confidence bounds for Q̂ as intervals

between the a1 × 100th and a2 × 100th percentiles of its bootstrap distribution with

a1 = Φ
(
φ̂0 +

(
φ̂0 + φa/2

)
/
[
1− ĉ

(
φ̂0 + φa/2

)])
(4.16)

a2 = Φ
(
φ̂0 +

(
φ̂0 + φ(1−a/2)

)
/
[
1− ĉ

(
φ̂0 + φ(1−a/2)

)])
, (4.17)

where Φ(·) is the standard normal cdf, φα is the (α × 100)th percentile of the standard normal

distribution,

φ̂0 = Φ−1
(
#
{
Q̂b < Q̂

}
/B
)

(4.18)

is a bias-correction factor measuring median bias, and ĉ is an acceleration parameter which, fol-

lowing the literature, is estimated via a scaled jackknife estimator of the skewness as follows (e.g.,

see Shao & Tu, 1995):

ĉ =

J∑

j=1

(
J∑

s=1

Q̂s − Q̂j

)3/(
6

[
J∑

j=1

(
J∑

s=1

Q̂s − Q̂j

)2]3/2)
, (4.19)

where Q̂j is the j(= 1, . . . , J)th jackknife estimate of Q.17 Note that both the acceleration and

bias-correction factors are different for each estimator, denoted here generically by Q̂. That is, the

bias-correction procedure is estimand-specific. Also, the estimated confidence intervals may not

contain the original estimates if the finite-sample bias is large.

Remark 5 The justification of the described bootstrap procedure for our estimator is complicated

given the complexity of our multi-step regularized estimation procedure, and establishing the va-

17We have tried different versions of jackknife with similar results. We settle on a delete-50T jackknife (i.e., leave-50-
cross-sections-out) which respects the panel structure of our data while yielding a reasonable number of subsamples
the estimation on which is not computationally prohibitive.
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lidity of such a bootstrap is not trivial and beyond the scope of our paper. We therefore call for

caution in practical implementation. Having said that, we investigate performance of the outlined

bootstrap procedure in Monte Carlo experiments in Appendix D. The simulations show a satisfac-

tory performance of our bootstrap confidence intervals in finite samples. The results indicate that

there may be size distortions for small n, which is common for nonparametric tests. However, for

a sample size modestly large enough, the estimated coverage is close to the correct coverage. The

intervals exhibit good power, which improves as n→ ∞ as anticipated of a consistent test.

5 Data

The data come from the Chinese Industrial Enterprises Database survey conducted by China’s

National Bureau of Statistics (NBS). This database covers all state-owned firms and all non-state-

owned firms with sales above 5 million yuan (about 0.6 million in U.S. dollar). The firms in the

database account for more than 90% of the gross industrial output value of the entire country.

The covered industries include mining, manufacturing and public utilities. In this paper, we limit

our analysis to manufacturing firms only. Specifically, we consider 28 two-digit China Standard

Industrial Classification (CSIC) manufacturing industries, the list of which is provided in Table E.1

in Appendix E. The same appendix also contains additional details about our data.

To mitigate potential distortionary impacts of the 1997–1998 Asian financial crisis and the

2007–2008 global economic and financial turmoil on our results, we choose the sample period from

1999 to 2006. The raw data start with about 160,000 firms in 1999 and grow to about 300,000

firms in 2006: a total of 615,652 unique firms.

The firm’s capital stock is defined as the self-reported net fixed asset deflated by the price index

of investment in fixed assets. Labor is measured as the total wage bill plus benefits deflated by the

GDP deflator. Materials are defined as the total intermediate inputs, including raw materials and

other production-related inputs, deflated by the purchasing price index for industrial inputs. The

output is defined as the gross industrial output value which, in line with (2.5), we deflate using

an export-intensity-weighted average of domestic consumer and export price indices available from

China Statistical Yearbooks. The price indices are obtained from the NBS and the World Bank.

Thus, the four variables are measured in thousands of real RMB. We exclude observations with

missing values for these key variables entering the firm’s production function. Following Guariglia

et al. (2011), we also truncate the top and the bottom 0.5th percentiles of these four variables to

rule out outliers, including the observations with negative values. The operable sample includes

328,130 unique firms with a total of 1,286,530 observations.

We measure the firm’s degree of export orientation using export intensity defined as the ratio

of the firm’s reported total export value to its total output value. The variable is bounded and lies

between zero and one by construction. Figure 1(a) plots a histogram of export intensity for the

entire sample which, as expected, is distinctly bimodal indicating that the industry is dominated

by the firms with predominantly domestic or foreign orientation. Figure 1(b) on the right plots the
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Figure 1. Empirical Distribution of Export Intensity, 1999–2006:
(a) All Firms; (b) Exporters Only

distribution exclusively for exporting firms.

We classify each firm as state-invested and/or foreign-invested if its equity includes state and/or

foreign capital. We also have information if the firm is reported to have received state subsidy.

Lastly, we define exporter firms as those with the reported export intensity greater than zero. See

Table E.2 in Appendix E for summary statistics of our data and a brief discussion thereof.

6 Results

This section reports the results on firm productivity for 28 two-digit CSIC manufacturing industries

in China. The nonparametric productivity estimates are obtained via the three-step estimation

procedure outlined in Section 4. Also note that, since our identification strategy requires the use

of first-order lags, in what follows we report the results for the 2000–2006 period, where the data

for 1999 are used up to proxy for latent productivity in the year 2000.

We first take a look at the returns to scale and scale efficiency in Chinese Manufacturing. The

discussion of these results is relegated to Appendix F. In what follows, we proceed to the analysis

of firm-level productivity, which is the primary focus of our paper.

6.1 Aggregate Productivity Growth

We construct the estimates of unobserved firm-level productivity (in logs) using the definition of the

gross production function (2.1), i.e., pit = ω̂it + η̂it, where ω̂it and η̂it are the third-step estimates

from (3.13) and (4.15). Thus, in what follows, we analyze the composite firm-level productivity

defined as the sum of both the persistent and random productivity. The left column of Table 1

reports estimates of the annual growth in the weighted-average aggregate productivity pt for the

entire manufacturing sector (all firms pooled across industries in our sample). Here, the aggregate

productivity is computed as the firm-output-weighted average of firm-level productivity measures
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Table 1. (Weighted) Aggregate Productivity
Growth Decomposition for all Industries

Year ∆pt ∆pt ∆covt

2001 0.004 0.006 –0.002
2002 0.008 0.014 –0.006
2003 0.044 0.041 0.002
2004 0.064 0.061 0.003
2005 0.060 0.062 –0.002
2006 0.051 0.047 0.005

Cum. 0.231 0.230 0.001

Notes: Reported are the annual
growth rates of the (weighted) ag-
gregate productivity pt and of its
two components: the (unweighted)
average productivity pt and the co-
variance between the firm-level out-
put and productivity covt.

for each year, i.e.,

pt =
∑

i

̟itpit, where ̟it ≡ Yit/
∑

j

Yjt ∀ t, (6.1)

with the corresponding annual aggregate productivity growth rates computed as the log difference,

i.e., ∆pt = pt − pt−1.

The average annual productivity growth rate in China’s manufacturing sector from 2000 to 2006

was around 3.85%. This included a period of unusually slow growth (2001–2002) following which

the aggregate productivity growth picked up in 2003 and was steadily in the 4.4–6.4% range. The

average post-2002 trend in the aggregate productivity level in our sample was fairly stable. We

observe a similar pattern across most individual two-digit CSIC industries, as can be seen in Figure

2 which plots the estimated aggregate productivity indices for all 28 individual industry groups18

along with that for all industries combined. From Figure 2, it is also apparent that productivity

growth has not been uniform across industries. Depending on the industry, the cumulative growth

(over the 6-year period) in aggregate productivity ranges from 3.1% (Communication and Computer

Equipment) to 41.1% (Nonferrous Metals) with the cumulative increase in the all-industry weighted

average amounting to 23.1%.

The documented growth in the (weighted) aggregate productivity can be attributed to two

primary sources: (i) a secular increase in the average productivity across firms in the industry and

(ii) the reallocation of fixed factors towards more productive firms which would enable the latter

to produce more output. To differentiate between these two sources, we decompose the growth in

the aggregate productivity (i.e., ∆pt) into two components à la Olley & Pakes (1996). To begin,

18Computed in a fashion analogous to that defined in (6.1) using data on firms in a given industry only.
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Figure 2. (Weighted) Aggregate Productivity Indices across Industries

we first decompose the aggregate productivity pt itself:

pt =
∑

i

̟itpit =
∑

i

[̟t + (̟it −̟t)] [pt + (pit − pt)]

= pt +
∑

i

(̟it −̟t) (pit − pt) ≡ pt + covt ∀ t, (6.2)

where pt = 1/nt
∑

i pit and ̟t = 1/nt are the unweighted average productivity and unweighted

output share (a uniform weight), respectively. According to the above decomposition, the aggregate

productivity pt is a sum of the (unweighted) average of firm-level productivity pt and a sample

covariance between the firm-level output and productivity covt ≡
∑

i (̟it −̟t) (pit − pt). From

(6.2), it immediately follows that ∆pt = ∆pt+∆covt ∀ t, where the average productivity growth ∆pt

represents a secular change in productivity capturing temporal shifts in the productivity distribution

via the change in its first moment, and ∆covt measures the reallocation of market share from less

productive to more productive firms thus capturing “reshuffling” within the joint distribution of

the productivity and market share. The larger the covariance term, the larger the output share of

more productive firms in the industry.

The decomposition results for the entire manufacturing sector are presented in Table 1 (columns

2 and 3). The empirical evidence indicates that the measured increase in the weighted aggregate

productivity in 2000–2006 can be attributed entirely to an increase in the average productivity pt.

The reallocation of resources towards more productive firms has been largely anemic and, in fact, in
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Table 2. Median (Log) Productivity Differentials by Category, 2000–2006

CSIC Export State Foreign Subsidy CSIC Export State Foreign Subsidy

13 –0.020 –0.254 –0.039 –0.056 27 0.037 –0.150 0.086 0.056
14 0.012 –0.285 0.021 0.040 28 –0.068 –0.192 –0.050 0.052
15 0.058 –0.198 0.110 0.056 29 –0.045 –0.149 0.004 –0.039
16 0.249 0.129 0.103 0.279 30 –0.080 –0.177 –0.013 0.009

17 –0.073 –0.120 –0.042 –0.002 31 0.043 –0.210 0.054 –0.014
18 –0.129 –0.076 –0.012 –0.011 32 –0.006 –0.192 0.064 0.006

19 –0.158 –0.088 –0.013 –0.008 33 –0.037 –0.195 –0.016 0.063
20 –0.090 –0.241 –0.081 –0.048 34 –0.089 –0.203 –0.002 –0.017
21 –0.079 –0.282 –0.030 –0.048 35 –0.041 –0.244 0.048 0.000

22 –0.001 –0.174 0.022 –0.012 36 0.004 –0.295 0.082 –0.005

23 0.076 –0.278 0.094 0.025 37 0.032 –0.197 0.094 0.026
24 –0.101 –0.170 0.022 0.001 39 –0.060 –0.165 0.018 0.031
25 0.022 –0.147 0.109 0.030 40 –0.037 –0.103 0.059 0.039
26 –0.009 –0.210 0.033 0.000 41 –0.060 –0.213 0.080 0.008

All –0.063 –0.180 0.001 0.004

Notes: Reported are the differences in the unconditional median productivity estimates of exporters vs. non-
exporters, state-invested vs. wholly privately owned, foreign-invested vs. wholly domestically owned, subsidized
vs. non-subsidized, respectively. All point estimates, except those in italic, are statistically significant at the
5% level.

some years has contributed negatively, albeit negligibly, towards the productivity growth in China’s

manufacturing. Cumulatively over our sample period, we find that the aggregate productivity

growth is entirely (23.0 out of 23.1% points) due to a rightward shift in the productivity distribution

reflective of an increase in the average firm productivity. This relative insignificance of the cross-

firm reallocation effect is especially interesting given multiple findings to the contrary for other

countries (e.g., Bernard et al., 2003; Bernard & Jensen, 2004). The unimportance of reallocation

for the productivity growth during our sample period may however be unique to the Chinese

manufacturing sector featuring a sizable presence of state-owned/invested firms that might be able

to shelter their market shares despite being significantly less productive (as we do document below)

by, say, relying on subsidies. For instance, similar findings pertaining to the Chinese manufacturing

have been documented by Hashiguchi (2015) who also reports negligible and negative reallocation

(or misallocation, in this case) effects. Relatedly, Brandt et al. (2013) also document a misallocation

of factors of production in China.

Since pooling all industries together may mask heterogeneous experiences of individual industry

groups, we also conduct a similar productivity decomposition for each individual two-digit CSIC

industry. These additional results are reported in Appendix F.

6.2 (Unconditional) Productivity Differentials

Table 2 reports the median estimates of raw (unconditional) productivity differentials across some

firm types. Specifically, we compare the median productivity estimates for firms along the following

indicators: whether a firm is an exporter, state-invested, foreign-invested or subsidized. We opt

27



to look at the median differentials in order to minimize distortionary effects of outliers.19 Con-

sistent with one’s expectations, we find that the state-invested firms tend to be less productive

than wholly privately owned firms with no state capital across all industries except one, with the

pooled all-industries median differential of –18%. When examining firms based on whether they are

foreign-invested or subsidized, the evidence on productivity differentials is more mixed, highlighting

heterogeneity across individual industries. We find that, in 16 out of 28 manufacturing industries

including such major recipients of inbound foreign direct investment like Computer Equipment

or Stationery, foreign-invested firms are statistically significantly more productive, at the median,

than their wholly domestically owned counterparts. In 8 industries that includes the also heav-

ily foreign-invested Apparel Production, the foreign-investment productivity premium is actually

statistically negative, with the rest of industries exhibiting no significant productivity differentials

across foreign and domestic firms. The corresponding pooled all-industries-combined median pre-

mium is estimated at statistically insignificant 0.1%. Similarly, we document mixed findings about

the median productivity differential by the subsidy tabulation: out of 28 industries, 8/10/10 exhibit

statistically negative/positive/zero productivity premium.

Of more interest are the results about productivity differentials by the exporter status of the

firm. While there is some heterogeneity in exporter/non-exporter productivity differential estimates

across industries, the overall finding is that exporting firms tend to exhibit statistically lower

productivity than non-exporting firms, at least at the unconditional median. We observe this in 17

industries, with the unconditional exporter productivity differential ranging from –0.9 to –15.8%.

Overall, the pooled median exporter premium estimate across all industries is –6.3%. The negative

exporter productivity differential may seem puzzling given the widely held view among economists,

whereby exporting firms are usually more productive than their domestically oriented counterparts

because they are exposed to tougher competition, which induces them to raise their productivity,

as well as they are more likely to enjoy productivity gains due to learning, quality and variety

effects, and the absorption of new technologies from abroad (Delgado et al., 2002; Pavcnik, 2002;

Melitz, 2003; Amiti & Konings, 2007; De Loecker, 2007, 2013). This seems to not apply to China’s

manufacturing sector. Similar findings of lower productivity levels exhibited by exporters in China

have also been reported by Lu et al. (2010), Lu (2010) and Dai et al. (2016), who provide various

plausible explanations for the phenomenon although their approaches to measuring productivity

differ from ours. In what follows, we therefore take a closer look at the exporter productivity

differential in China.

6.3 Conditional Exporter Productivity Differentials

Until now, the presented findings about the largely negative exporter productivity premium in

China’s manufacturing sector have relied on the comparison of unconditional medians of firm-level

productivity. Clearly, to allow for a more meaningful analysis of exporter productivity differentials,

19(Unconditional) mean differentials suggest qualitatively similar findings.
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Table 3. Median (Log) Exporter Productivity Premia
by Ownership Type, 2000–2006

Privately State- Foreign- Privately State- Foreign-

CSIC Owned Invested Invested CSIC Owned Invested Invested

13 –0.114 –0.099 –0.082 27 –0.085 –0.117 –0.085
14 –0.112 –0.074 –0.064 28 –0.091 –0.022 –0.048
15 –0.066 –0.014 –0.042 29 –0.145 –0.086 –0.101
16 –0.050 –0.064 0.126 30 –0.158 –0.048 –0.136
17 –0.119 –0.098 –0.112 31 –0.085 –0.103 –0.077
18 –0.156 –0.126 –0.135 32 –0.118 –0.140 –0.085
19 –0.166 –0.113 –0.145 33 –0.159 –0.138 –0.128
20 –0.120 –0.031 –0.081 34 –0.155 –0.104 –0.108
21 –0.170 –0.137 –0.160 35 –0.132 –0.086 –0.123
22 –0.089 –0.047 –0.084 36 –0.125 –0.097 –0.110
23 –0.129 –0.025 –0.104 37 –0.109 –0.079 –0.098
24 –0.165 –0.134 –0.149 39 –0.163 –0.112 –0.138
25 –0.123 –0.261 –0.023 40 –0.173 –0.072 –0.167
26 –0.118 –0.088 –0.084 41 –0.160 –0.079 –0.162

All –0.148 –0.115 –0.126

Notes: Reported are the conditional median estimates of the exporter productivity premium
tabulated by three equity type categories: wholly privately owned, state-invested and foreign-
invested firms. All point estimates, except those in italic, are statistically significant at the 5%
level.

it is imperative to also account for cross-firm differences in characteristics other than the exporter

status alone, which would enable us to study the exporter productivity premium conditional on

relevant firm controls.

Ownership Type. We first examine the exporter productivity differentials conditional on the

firm’s equity type. Specifically, for each two-digit CSIC industry group in our sample, we estimate

the following median regression:

Q0.5

[
pit| ·

]
= α0 + α1EXPit + α2STATEit + α3FOREIGNit +

α12EXPit × STATEit + α13EXPit × FOREIGNit +

α4SUBSIDYit + α5 log(Yit) + α6 log(Yit)
2 + λt,

where EXPit, STATEit, FOREIGNit and SUBSIDYit are indicator variables for the “exporter”,

“state-invested”, “foreign-invested” and “subsidized” types of firms, respectively. A wholly privately-

owned domestic firm is our reference group. In addition to time fixed effects λt, we also include the

log (and its square) of output to proxy for the firm size. Instead of the traditional mean regression,

we estimate conditional median regressions to minimize distortionary impacts of outliers to which

quantiles are fairly robust. Based on the results from these regressions, we compute the (condi-

tional) median exporter productivity premiums for each firm type as defined by the tabulation of

indicators for the exporter status and the state and foreign participation in firm equity.

Table 3 reports these premium estimates, with most being statistically significant at the 5%
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level. The major takeaway here is that, once we control for firm characteristics, exporters now

almost universally exhibit a statistically negative productivity premium across all manufacturing

industries no matter their ownership type. Among the 24 industries, Tobacco is the only one for

which we find no statistically significant evidence of the negative exporter productivity differential.

Pooling all industries together (but controlling for industry dummies), the conditional median

exporter productivity differential is estimated at –14.8, –11.5 and –12.6% for wholly privately-

owned, state-invested and foreign-invested firms, respectively.

Export Intensity. We next explore potential heterogeneity in the exporter productivity premium

along the intensive margin of exporting, whereby we differentiate firms based on their varying degree

of export intensity. To rationalize China’s exporter productivity puzzle, Dai et al. (2016) argue in

favor of differentiating between the “ordinary” and “processing” exports, where the latter is defined

as the assembly of tariff-exempted imported inputs into final goods for the purpose of subsequent

export to foreign markets. Given the exemption from input tariffs and the high labor intensity of

the assembly process, such processing exporters may be expected to be less productive than their

domestically oriented counterparts. Once these processing exporter firms (which also tend to be

foreign-invested) are accounted for, the productivity puzzle should be resolved: ordinary exporters

are then found to be more productive (Dai et al., 2016). While, due to data limitations, we cannot

differentiate between ordinary and processing exporter firms, we are however able to indirectly

capture this difference by differentiating between the exporters of lower and higher intensity. The

argument here is as follows. Processing exporter firms’ export intensity is reasonably expected

to be significantly higher than that of ordinary exporters who tend to sell in both the foreign

and domestic markets as opposed to being fully foreign-market-oriented. If the negative exporter

productivity differential is primarily driven by processing exporters, one would then expect to see it

largely vanish as the firm’s export intensity decreases. To investigate this, we estimate the following

median regression for each industry:

Q0.5

[
pit| ·

]
= γ0 + γ1STATEit + γ2FOREIGNit + γ3SUBSIDYit+∑

q

γ4qD
X
q,it + γ5 log(Yit) + γ6 log(Yit)

2 + λt,

where DX
q,it ≡ ✶

{
Q0.1(q−1)[X|X > 0] < Xit ≤ Q0.1q[X|X > 0]

∣∣∣ X > 0
}

∀ q = 1, . . . , 10 is the

indicator variable that takes a unit value if the exporter firm’s export intensity falls between the

(q− 1)th and qth deciles of the empirical distribution of X|X > 0. Note that, since these indicator

variables take zero values for non-exporting firms by construction, all 10 of them are included in

the regression. Thus, non-exporters serve as our reference group.

The corresponding exporter productivity differential estimates are reported in Table F.3 of

Appendix F. Most estimates are significantly different from zero at the 5% level. With the sole

exception of Tobacco industry just like earlier, we fairly consistently find an increasingly negative

productivity differential between non-exporters and exporter with the higher degree of export ori-
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Figure 3. Median (Log) Exporter Productivity Premia by Export Intensity Deciles

entation. This can be seen most prominently by looking at the results for the whole manufacturing

sector (the “All” row at the bottom of Table F.3). The (statistically significant) pooled exporter

productivity premium estimates decline from –7.1% for the first decile to –20.7% for the tenth

decile of the X|X > 0 distribution. Notably, the exporter productivity premium is negative for

exporters along the entire distribution of export intensity, indicating that even the likely-to-be or-

dinary exporters from the bottom deciles are less productive than the wholly domestically-oriented

non-exporters. At the disaggregated industry level, the evidence however is a bit less clear-cut,

with few premium estimates being statistically insignificant for exporters from the left tail of the

intensity distribution. But more broadly, the disaggregate data continue to lend support to the

premise of high-intensity exporters, which are more likely to be engaged in processing exports, be-

ing less productive than their low-intensity counterparts. Although, we largely fail to find empirical

evidence of low-export-intensity firms (that are more likely to partake in ordinary exports) exhibit-

ing a positive productivity differential over non-exporters. At most, some exporters of this kind

may be only as productive as their domestically-oriented counterparts. Our findings are succinctly

summarized in Figure 3 that plots the estimated exporter premiums for all individual industry

groups.
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7 Conclusion

Motivated by the longstanding interest of economists in understanding the nexus between firm pro-

ductivity and export behavior, we develop a novel structural framework for control-function-based

nonparametric identification of the gross production function and latent firm productivity in the

presence of endogenous export opportunities that is robust to recent unidentification critiques of

proxy estimators. We generalize the standard behavioral assumptions about the firm-level produc-

tion customarily assumed in the literature to explicitly formalize firms’ endogenous export decisions

along with their potential learning-by-exporting effects on productivity. We model exports in an

agnostic “input-allocation” paradigm in which the firm chooses the degree of its export orientation

along with inputs essentially letting us conceptualize the change in the former as another “invest-

ment”. We show that our structural framework provides a workable identification strategy, where

the firm’s degree of export orientation is shown to provide the needed (excluded) relevant indepen-

dent exogenous variation in endogenous freely varying inputs, thereby allowing us to successfully

identify the model.

In order to avoid model misspecification, our methodology employs the nonparametric formu-

lation not only for the control function but also for the production process itself. We estimate

our fully nonparametric IV model using the Landweber-Fridman regularization (to tackle the ill-

posedness) with the unknown functions approximated via artificial neural network sieves with a

sigmoid activation function which are known for their superior performance relative to other pop-

ular sieve approximators, including the polynomial series favored in the literature. We first study

our methodology in a small set of Monte Carlo experiments. The results are encouraging, and

simulation experiments show that our approach recovers the true parameters well, thereby lending

strong support to the validity of our identification strategy. As expected of a consistent estimator,

the estimation also becomes more stable as the sample size grows. We then apply our methodology

to the data on manufacturing firms from 28 industries in China during the 1999–2006 period to

take a fresh look at China’s exporter productivity puzzle.
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Appendix

A Under-identification Issues

Gandhi et al. (2017) show that the traditional control-function-based production function estima-

tors, which utilize freely varying inputs (such as materials Mit) to proxy for unobserved latent

productivity, suffer from an inherent under-identification. As shown in Section 3, our estimator

is immune to this problem owing to our ability to employ the firm’s export intensity Xit as an

additional source of relevant independent exogenous variation from outside the production function

to help us identify the latter. In what follows, we show why our model would have been under-

identified if we had adopted the standard conceptual framework by ignoring the firm’s export

decisions altogether. In that case, (i) the persistent productivity would evolve according to the

exogenous Markov process with no learning by exporting effects whereby ωit = E[ωit| ωit−1] + ζit,

and (ii) the conditional material demand function would be given by Mit = Mt(Kit, Lit, ωit). The

analogue of the production function in (3.3) is then:

yit = f(Kit, Lit,Mit) + ϕ(Kit−1, Lit−1,Mit−1) + ζit + ηit. (A.1)

Next, note that the endogenous Mit entering the production function f(·):

Mit = Mt(Kit, Lit, ωit) = Mt(Kit, Lit, ϕ(Kit−1, Lit−1,Mit−1) + ζit), (A.2)

is a function of the following observables (Kit, Lit,Kit−1, Lit−1,Mit−1) and the unobservable ζit.

Comparing these arguments of Mit with the variables entering f(·) directly as well as appearing

inside the proxy for productivity ϕ(·), it is evident that the only extra source of variation for Mit,

which has not already been included on the right-hand side of (A.1), is the unobservable ζit. In other

words, conditional on the already included self-instrumenting variables (Kit, Lit,Kit−1, Lit−1,Mit−1),

there is no other relevant exogenous variable that may be used to instrument for the endogenous

Mit because, for it to be relevant in predicting Mit, it would have to correlate with ζit, which is

the only source of “free” variation left in Mit. The correlation with ζit would however violate the

exogeneity requirement thereby invaliding the instrument. Notably, this conundrum also applies to

(weakly exogenous) excluded lags (of the second and higher order) of inputs which, following the

bulk of the literature, one may be tempted to utilize in hopes of identifying the model. As evident

from (A.2), any such additional (excluded) lag is irrelevant for predicting Mit once conditioned on

the already included (Kit, Lit,Kit−1, Lit−1,Mit−1). Therefore, Mit still lacks an excluded relevant

instrument from outside of the equation, and the production function f(·) in (A.1) is unidentified

under the standard structural assumptions.
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B Separable Identifiability Issues

Ackerberg et al.’s (2015) critique of control-function-based production function estimators effec-

tively boils down to one’s potential inability to separably identify the production and productivity

proxy functions due to the presence of endogenous freely varying inputs inside the production func-

tion. This problem occurs primarily when (i) labor is assumed to be a freely varying input (like

Mit) thereby becoming endogenous and (ii) one attempts to “control” for contemporaneous ωit

as opposed to lagged ωit−1, as originally done by Olley & Pakes (1996) and Levinsohn & Petrin

(2003). If we were to go this route, (i) the conditional material demand function would no longer

be a function of Lit, i.e., Mit = Mt(Kit, Xit, ωit), and (ii) unobserved ωit would be proxied by the

contemporaneous inverted demand for materials without making use of its Markovian nature. In

this case, the analogue of the production function in (3.3) is given by

yit = f(Kit, Lit,Mit) + ωit + ηit

= f(Kit, Lit,Mit) +M−1
t (Kit, Xit,Mit) + ηit

= f(Kit,Lt(Kit, Xit, ωit),Mit) +M−1
t (Kit, Xit,Mit) + ηit

= f
(
Kit,Lt

(
Kit, Xit,M

−1
t (Kit, Xit,Mit)

)
,Mit

)
+M−1

t (Kit, Xit,Mit) + ηit

= gt(Kit, Xit,Mit) +M−1
t (Kit, Xit,Mit) + ηit, (B.1)

where we have made use of the firm’s conditional demand for now freely varying labor Lit =

Lt(Kit, Xit, ωit) in the third line. From (B.1), it is obvious that the two unknown functions gt(·)

and M−1
t (·) are not separably identified since they depend on the same covariates.

However, this separable unidentifiability problem no longer applies if, instead of ωit, one were

to proxy for ωit−1 (like we do in our paper). Specifically, from

yit = f(Kit, Lit,Mit) + ht[ωit−1, Xit−1] + ζit + ηit

= f(Kit, Lit,Mit) + ϕ(Kit−1, Xit−1,Mit−1) + ζit + ηit

= f(Kit,Lt(Kit, Xit, ωit),Mt(Kit, Xit, ωit)) + ϕ(Kit−1, Xit−1,Mit−1) + ζit + ηit

= f (Kit,Lt (Kit, Xit, ϕ(Kit−1, Xit−1,Mit−1) + ζit) ,Mt (Kit, Xit, ϕ(Kit−1, Xit−1,Mit−1) + ζit))+

ϕ(Kit−1, Xit−1,Mit−1) + ζit + ηit (B.2)

it is evident that, conditional on exogenous covariates (Kit, Xit,Kit−1, Xit−1,Mit−1), the production

function f(·) is separably identified from the proxy function ϕ(·) because both endogenous inputs

Lit and Mit still vary independently from all arguments of ϕ(·) owing to the presence of ζit.

Based on the above results, it might appear that, in our model, we too could have allowed labor

to be freely varying. Unfortunately, while our model would still have been immune to Ackerberg

et al.’s (2015) critique in this case, we would however have faced the under-identification problem

à la Gandhi et al. (2017) not only with respect to Mit but also Lit. Since we only have one

valid excluded instrument (Xit), we generally would have been unable to identify our model in the
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presence of two endogenous freely varying inputs due to the failure to meet the order condition.

We are therefore bound to the assumption of quasi-fixity of labor.

C Bootstrap Algorithm

We approximate sampling distributions of the estimators via wild residual block bootstrap that

takes into account a panel structure of the data, with all the steps bootstrapped jointly owing

to a sequential nature of our estimation procedure. To make matters more concrete, we use the

following wild residual panel bootstrap algorithm:

1. Compute the three steps of our estimation procedure using the original data. Denote the

obtained estimates as ψ̂it = ψ̂(Kit, Lit,Mit,Kit−1, Lit−1, Xit−1,Mit−1) in the first step, f̂it =

f̂(Kit, Lit,Mit) and ϕ̂it = ϕ̂(Kit−1, Lit−1, Xit−1,Mit−1) in the second step, and ω̂it = ĝ(Kit, Lit,

Xit,Mit) in the third step, for all i = 1, . . . , n and t = 1, . . . , T . Let the residuals from

each of these three sequential steps be respectively denoted by {ûit = yit − ψ̂it}, {êit =

yit − f̂it − ϕ̂it − ûit} and {η̂it = yit − f̂it − ω̂it}. Recenter the residuals.

2. Generate bootstrap weights ξbi for all cross-sectional units i = 1, . . . , n from the Mammen

(1993) two-point mass distribution:

ξbi =





1+
√
5

2 with prob.
√
5−1
2
√
5

1−
√
5

2 with prob.
√
5+1
2
√
5
.

(C.1)

Next, for each observation (i, t) with i = 1, . . . , n and t = 1, . . . , T , generate a new bootstrap

first-step disturbance: ubit = ξbi ûit.

3. Generate a new bootstrap outcome variable. From the first step, we have ybit = ψ̂it+u
b
it for all

i = 1, . . . , n and t = 1, . . . , T . Recompute the first-step estimator using {ybit} in place of {yit}

and denote the obtained estimates as {ψ̂b
it} with the corresponding residuals {ûbit = yit− ψ̂

b
it}.

Use these residuals in the next step of the algorithm.

4. Recompute the second-step estimator using {ybit} in place of {yit} and {ûbit} in place of {ûit}.

Denote the obtained estimates as {f̂ bit} and {ϕ̂b
it}. Use these estimates in the next step of the

algorithm.

5. Recompute the third-step estimator using {ybit} in place of {yit} and {f̂ bit} in place of {f̂it}

and denote the obtained estimates as {ω̂b
it}.

6. Repeat steps 2 through 5 of the algorithm B times. Use the empirical distribution of B

bootstrap estimates of fit and ωit as well as the functionals thereof to construct accelerated

bias-corrected percentile confidence intervals as described in Section 4.1.
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D Monte-Carlo Experiments

In this section, we describe Monte Carlo experiments that evaluate the performance of our proposed

estimator and demonstrate its ability, owing to its use of the excluded exogenous variation in the

firm’s degree of export orientation, to successfully identify the production function. We then

compare its performance to that of the traditional proxy estimator à la Levinsohn & Petrin (2003)

based on the lagged instrumentation of endogenous materials. In addition, we also investigate the

finite-sample performance of our proposed procedure for bootstrap inference.

Our data generating process (DGP) is essentially a fusion of those used by Grieco et al. (2016)

and Gandhi et al. (2017). More specifically, we consider a balanced panel of n = {50, 100, 200, 400, 800}

firms operating during 10 time periods.20 Each panel is simulated 1,000 times. To simplify matters,

we dispense with labor and consider the production process with two inputs only: a quasi-fixed

capital and freely varying materials. We also let that the true technology take a simple constant-

input-elasticity Cobb-Douglas form:

Yit = Kα1

it M
α2

it exp{ωit + ηit}, (D.1)

where we assume decreasing returns to scale and set α1 = 0.25 and α2 = 0.65.

The productivity components are generated as follows. We model the persistent productivity

as a controlled AR(1) process:

ωit = ρ0 + ρ1ωit−1 + ρ2Xit−1 + ζit, (D.2)

where we set ρ0 = 0.2, ρ1 = ρ2 = 0.8, and ζit ∼ i.i.d. N(0, σ2ζ ) with σζ = 0.04. The initial level

of productivity ωi1 is drawn from U(1, 3) identically and independently distributed over i. The

random transitory shocks ηit are drawn from ηit ∼ i.i.d. N(0, σ2η) with ση = 0.07.

The exogenous export-associated cost shifter Vit is assumed to exhibit first-order Markov per-

sistence, i.e.,

Vit = ̺0 + ̺1Vit−1 + νit, (D.3)

where ̺0 = 0.2, ̺1 = 0.5, and νit ∼ i.i.d. N(0, σ2ν) with σν = 0.5. Note that the time-persistence in

Vit is unimportant, and making it be a white noise would have sufficed.

We assume the following about evolution of the firm’s state variables. Capital and the export

intensity, both quasi-fixed, are set to respectively evolve according to

Kit = Iit−1 + (1− δi)Kit−1 (D.4)

Xit = Xit−1 +Xit−1, (D.5)

20We have also experimented with 5 and 50 time periods. The results are qualitatively unchanged.
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with the corresponding decision rules taking the following forms:21

Iit−1 = Kβ1

it−1X
β2

it−1[exp{−Vit−1}]
β3 [exp{ωit−1}]

β4 (D.6)

Xit−1 = Φ(γ0 + γ1 logKit−1 + γ2Xit−1 − γ3Vit−1 + γ4ωit−1)−Xit−1, (D.7)

where β1 = 0.8, β2 = β3 = β4 = 0.1, γ0 = −1, γ1 = 0.1, γ2 = 0.5, γ3 = γ4 = 0.1 and Φ(·) is

the standard normal cdf. The firm-specific depreciation rates δi ∈ {0.05, 0.075, 0.10, 0.125, 0.15}

are distributed uniformly across i. The initial levels of capital Ki1 and export intensity Xi1 are

respectively drawn from U(10, 200) and U(0, 1) identically and independently distributed over firms.

A particular form of the export adjustment rule in (D.7) along with the chosen {γj ; j = 0, . . . , 4}

ensures that the firm’s export intensity stays bounded within the unit interval during the considered

time periods, given our data generating process. Also, note that (D.6)–(D.7) imply an intuitively

negative effect of the export-associated cost shifter Vit on both the investment and export intensity.

The optimal materials series are generated solving the firm’s static restricted profit maximization

problem along the lines of (2.5) after having already generated the series of (Kit, Xit, ωit) for each

firm and time period. The conditional demand for Mit is given by

Mit = argmax
Mit

{ [
PX
t Xit + PD

t (1−Xit)
]
Kα1

it Mα2

it exp{ωit}E − PM
t Mit

}

=

(
1

PM
t

[
PX
t Xit + PD

t (1−Xit)
]
α2K

α1

it exp{ωit}E

)1/(1−α2)

, (D.8)

where we normalize PM
t = E ∀ t and intentionally assume away any temporal variation in the

output prices: PX
t = 2 and PD

t = 1 for all t. Our decision to impose zero time variation in prices

is dictated by Gandhi et al.’s (2017) recent findings whereby, at least in theory, the time-series

variation in prices may help identify the production function even in the absence of an excluded

relevant exogenous variable (in our case, Xit subject to the exogenous variation from Vit).
22 By

suppressing any such variation in prices, we are therefore able to restrict the source of identification

of the production technology exclusively to the new element in the model, namely Xit.

Estimator. In Step 1 of our estimation procedure, we use the log-polynomial series of degree

2 to estimate r, T and T∗. We do not cross-validate to minimize computational burden of our

simulations. For the same reason, in Step 2, we approximate f(·) and ϕ(·) also using second-

degree log-polynomial sieves thereby ensuring the second-step estimator has a closed-form solution,

which obviates the need to numerically solve the least-squares optimization problem (as in the

case of nonlinear ANN sieves used in our empirical application). For each simulation repetition,

we compute the median, the root mean squared error (RMSE) and the mean absolute deviation

21For the sake of tractability, we follow Grieco et al. (2016) in postulating such policy rules instead of numerically
deriving them from each firm’s Bellman equation.

22Although their simulations suggest that the identification strategy based on temporal price variability performs
poorly in practice.
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Table D.1. Second-Step Estimates of Input Elasticities

IV in Step 1: Xit IV in Step 1: Mit−2

Capital Material Capital Material

n = 50

Median 0.2944 0.6031 0.7525 0.1107
RMSE 0.2614 0.1901 0.5283 0.5412
MAD 0.2142 0.1576 0.5016 0.5376

n = 100

Median 0.2673 0.6367 0.8141 0.0546
RMSE 0.1807 0.1261 0.5744 0.5962
MAD 0.1481 0.1061 0.5638 0.5948

n = 200

Median 0.2545 0.6486 0.8463 0.0288
RMSE 0.1226 0.0848 0.6017 0.6210
MAD 0.1004 0.0713 0.5956 0.6206

n = 400

Median 0.2463 0.6522 0.8610 0.0150
RMSE 0.0822 0.0587 0.6131 0.6348
MAD 0.0671 0.0484 0.6111 0.6347

n = 800

Median 0.2473 0.6528 0.8693 0.0082
RMSE 0.0546 0.0390 0.6201 0.6417
MAD 0.0455 0.0326 0.6188 0.6415

Notes: The true values of input elasticities are 0.25 for capital
and 0.65 for materials. T = 10 throughout.

(MAD) of observation-specific23 input elasticities (across firm-years) and report the medians of

these metrics over 1,000 simulations.

We first estimate the production function via our proposed estimator using Xit to instrument

for the endogenous Mit. The two-input analogues of (3.3) and (3.7) are

yit = f(Kit,Mit) + ϕ(Kit−1, Xit−1,Mit−1) + ζit + ηit, E[ζit + ηit| Kit, Xit,Kit−1, Xit−1,Mit−1] = 0,

with the corresponding second-step simulation results reported in the left panel of Table D.1. The

results are very encouraging and show that our approach recovers the true parameters well, thereby

lending strong support to the validity of our identification strategy. As expected of a consistent

estimator, the estimation becomes more stable with both the RMSE and MAD declining as the

sample size grows.

Expectedly, the proxy approach however fails to identify the input elasticities if, in line with the

convention in the literature, we employ exogenous but irrelevant higher-order lags such as Mit−2

to instrument for Mit instead of using Xit. The right panel of Table D.1 reports the results for this

23The estimates are observation-specific despite that our DGP assumes a constant-elasticity Cobb-Douglas technology
because our methodology estimates the unknown production function nonparametrically thereby delivering firm-
year-specific estimates of the gradients of f(·).
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Table D.2. Second-Step Estimates of Input Elasticities
for the DGP with no Exports

Capital Material

n = 50

Median 0.6524 0.0760
RMSE 0.4255 0.5759
MAD 0.4036 0.5718

n = 100

Median 0.6781 0.0391
RMSE 0.4408 0.6099
MAD 0.4264 0.6092

n = 200

Median 0.6987 0.0199
RMSE 0.4514 0.6295
MAD 0.4477 0.6292

n = 400

Median 0.7055 0.0105
RMSE 0.4572 0.6392
MAD 0.4553 0.6392

n = 800

Median 0.7099 0.0046
RMSE 0.4613 0.6452
MAD 0.4599 0.6452

Notes: The true values of input
elasticities are 0.25 for capital and
0.65 for materials. Both the DGP
and model feature no export-related
aspects; Mit is instrumented via
Mit−2 in Step 1.

model, i.e.,

yit = f(Kit,Mit) + ϕ(Kit−1, Xit−1,Mit−1) + ζit + ηit, E[ζit + ηit| Kit,Kit−1, Xit−1,Mit−1,Mit−2] = 0.

This model grossly overestimates the capital elasticity and produces near-zero estimates of the

material elasticity, showing no improvement in the estimation as n grows.

Lastly, to establish baseline for the under-identification problem in the model of firm production

under the standard structural assumptions, we also examine the consequences of completely ignoring

the exporting aspect of the firm’s production behavior on the estimation of production function

as oftentimes done in the literature. That is, we estimate the model assuming the more standard

conceptual framework which ignores the firm’s export decisions (including the learning by exporting

effects) altogether. Appendix A discusses such a model in detail. The corresponding data generating

process features no export-related aspects: we drop Xit from all equations and set ρ2 = β2 = β3 = 0

and PX
t = PX

t = 1. The estimating equation where, following the tradition, Mit−2 is employed to
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Table D.3. Coverage Probability and Width of the 95% Bootstrap
Confidence Intervals for Average Input Elasticities

Capital Material

n = 200

Coverage Prob. 0.8767 0.8567
Interval Width 0.2726 0.2307

n = 400

Coverage Prob. 0.9103 0.8970
Interval Width 0.1888 0.1597

n = 600

Coverage Prob. 0.9467 0.9233
Interval Width 0.1535 0.1283

Notes: T = 10 throughout.

instrument for Mit is given by

yit = f(Kit,Mit) + ϕ(Kit−1,Mit−1) + ζit + ηit, E[ζit + ηit| Kit,Kit−1,Mit−1,Mit−2] = 0,

with the corresponding results presented in Table D.2. In line with Gandhi et al.’s (2017) Monte-

Carlo evidence, this under-identified—due to the conditional irrelevance ofMit−2—proxy estimator

exhibits systematic biases in the estimates of production function, with the input elasticity estimates

being nowhere near the true values and no improvement therein as n increases.

Bootstrap Inference. Using the same DGP, we also investigate a finite-sample performance of

the accelerated bias-corrected bootstrap procedure that we employ for our proposed estimator. This

is of interest because of the complexity of our multi-step regularized estimation procedure, which

makes establishing the validity of such a bootstrap nontrivial. Just like earlier in this section, here

our focus is on unknown input elasticities, which are estimated in the second step of our estimation

procedure. Hence, we bootstrap only the first two stages, skipping step 5 of the bootstrap algorithm

described in Section 4.1 of the paper. The estimation details are unchanged and the same as those

used to populate the left panel of Table D.1.

We consider the 95% confidence intervals (i.e., a = 0.05) for the average elasticities of capital

and labor. We focus on the average elasticities because our methodology estimates the unknown

production function nonparametrically thereby delivering observation-specific estimates of the gra-

dients of f(·) despite that our DGP assumes a constant-elasticity Cobb-Douglas technology. We

average these estimates across firm-years to obtain scalar measures of elasticities denoted by f̄K

and f̄M that we then study against the true βK = 0.25 and βM = 0.65.

Of interest are both the size and power. Table D.3 reports coverage probabilities and the

median interval widths for n = {200, 400, 600} and fixed T = 10. To conserve computational

time, the number of simulations is set at S = 300 with B = 200 bootstrap replications per each

simulation. The coverage probability is estimated as the relative frequency (over S simulations)
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Figure D.1. Power of the Two-Sided Test for Average Input Elasticities
using the 95% Bootstrap Confidence Intervals

of the estimated 95% accelerated bias-corrected confidence interval containing the true elasticity

parameter. The reported interval widths are the medians (across S simulations) of the distances

between the upper and lower bounds of the estimated confidence intervals.

The results indicate that there may be size distortions for small n, which is quite common

for nonparametric tests. However, with the sample size growing, the estimated coverage of our

intervals approaches the correct coverage and, for n modestly large enough, the estimated rejection

probabilities seem close to the nominal size. The employed bootstrap intervals exhibit good power

that increases with the distance between the null and the true parameter value as can be seen

in Figure D.1 which plots power curves for the estimated confidence intervals. Here, power is

computed as the relative rejection frequency. Importantly, the power improves as the sample size

increases which is anticipated of a consistent test. We see this both in the shrinking intervals widths

(Table D.3) as well as in the increasing speed with which power curves attain unity (Figure D.1).

E Data

In this section, we provide additional details about construction of the data sample. The 28 two-

digit China Standard Industrial Classification (CSIC) manufacturing industries that we include on

our analysis are listed in Table E.1.

In 2002, the CSIC code system underwent slight changes at the two-digit level. The industry

codes for the manufacturing of electrical machinery and equipment, manufacturing of communi-

cation equipment, computers and other electronic equipment, and manufacturing of measuring

instruments and machinery for cultural activity and office work changed from 40, 41, 42 to 39, 40,

41, respectively. In addition, the original CSIC 43 industry (“other manufacturing”) was split into

two new, different industry groups. We match firm-year observations in the pre-2002 years with
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Table E.1. Manufacturing Industries

CSIC Description

13 Food Processing (from Agricultural Products)
14 Food
15 Beverages
16 Tobacco
17 Textile
18 Apparel and Other Fabric Products
19 Leather, Fur, Feather and Related Products
20 Timber
21 Furniture
22 Paper and Other Paper Products
23 Printing, Reproduction of Recording Media
24 (Office) Stationery, Educational and Sports Goods
25 Petroleum Refining, Coking and Processing of Nuclear Fuel
26 Raw Chemical Materials and Chemical Products
27 Medical and Pharmaceutical Products
28 Chemical Fiber
29 Rubber Products
30 Plastic Products
31 Nonmetal Mineral Products
32 Smelting and Pressing of Ferrous Metals
33 Smelting and Pressing of Nonferrous Metals
34 Metal Products
35 General Purpose Machinery
36 Special Purpose Machinery
37 Transport Equipment
39 Electric Machinery and Equipment
40 Communication Equipment, Computers and Other Electronics
41 Precision Machinery, Measuring Instruments and Meters

those classified in accordance with the new CSIC code (GB\T 4754 – 2002). Since the CSIC 42

and CSIC 43 industries did not exist in the old CSIC code (GB\T 4754 – 1994), we exclude them

from our analysis.

Table E.2 reports basic summary statistics for our data, including the sample mean and stan-

dard deviation estimates for key variables tabulated by the CSIC industry groups. The table clearly

points to significant heterogeneity across industries. For instance, the average firm size, as mea-

sured by the output value, ranges from 27.8 million RMB in the Printing industry to 97.4 million

RMB in Petroleum Refining. Industries with the largest fraction of firms participating in exports

include the manufacturing of Leather Products (64.6%), Apparel (66.1%) and Computers (53.3%).

Interestingly, the heaviest presence of the state capital is seen in the production of tobacco goods

(68.6%) with the second most state-invested industry being Printing (26.9%). Foreigners tend to

invest more in the production of Computers, Office Goods and Apparel: more than 20% of firms

in these industries reports having foreign capital in the equity.
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Table E.2. Data Summary Statistics, 1999–2006

CSIC Y K L M X|X > 0 Exporter State Foreign Subsidy

13 55,683 11,726 1,581 38,895 0.601 0.216 0.195 0.098 0.128
(91,049) (24,692) (2,870) (64,771) (0.412)

14 48,688 15,812 2,458 33,089 0.548 0.248 0.171 0.143 0.127
(85,595) (32,403) (4,330) (58,834) (0.439)

15 59,485 27,064 2,799 38,696 0.420 0.135 0.250 0.104 0.118
(99,480) (48,397) (4,812) (66,165) (0.434)

16 121,697 64,351 7,597 74,720 0.179 0.080 0.686 0.018 0.152
(158,099) (67,079) (7,413) (102,147) (0.278)

17 49,571 15,143 2,944 35,107 0.646 0.410 0.069 0.098 0.139
(76,274) (31,366) (4,534) (55,229) (0.379)

18 36,638 6,334 3,455 25,158 0.859 0.661 0.035 0.209 0.122
(59,243) (13,612) (4,478) (41,807) (0.299)

19 48,011 7,035 3,751 33,401 0.856 0.646 0.024 0.190 0.118
(76,481) (14,259) (5,557) (54,737) (0.316)

20 34,127 10,448 1,728 23,464 0.719 0.293 0.082 0.096 0.155
(56,708) (28,551) (2,762) (40,317) (0.375)

21 41,420 9,511 2,851 28,548 0.787 0.463 0.048 0.157 0.113
(65,747) (21,140) (4,726) (45,953) (0.367)

22 39,756 13,388 1,984 27,864 0.482 0.132 0.083 0.065 0.121
(63,213) (30,754) (3,209) (44,484) (0.407)

23 27,795 13,307 2,151 18,268 0.498 0.107 0.269 0.060 0.110
(53,211) (25,723) (3,697) (35,124) (0.417)

24 39,341 7,955 3,726 27,340 0.852 0.749 0.034 0.208 0.149
(61,771) (16,777) (5,423) (43,882) (0.304)

25 97,379 28,138 2,724 68,461 0.305 0.059 0.121 0.060 0.108
(145,996) (53,831) (4,681) (106,756) (0.375)

26 52,981 15,410 2,293 36,941 0.415 0.225 0.134 0.088 0.163
(87,251) (35,219) (4,027) (62,066) (0.359)

27 58,718 22,182 3,351 37,543 0.395 0.222 0.207 0.105 0.181
(87,346) (38,701) (5,346) (58,173) (0.365)

28 77,280 32,057 2,687 56,694 0.444 0.197 0.086 0.105 0.176
(113,607) (62,971) (4,322) (83,797) (0.378)

29 44,127 12,376 2,946 30,326 0.601 0.341 0.081 0.116 0.129
(78,259) (28,431) (4,616) (55,164) (0.409)

30 38,863 11,468 2,154 27,304 0.669 0.330 0.051 0.125 0.126
(63,048) (25,916) (3,413) (45,200) (0.402)

31 36,878 15,987 2,389 24,809 0.553 0.159 0.140 0.058 0.160
(57,787) (33,493) (3,591) (39,350) (0.420)

32 83,951 16,410 2,478 59,758 0.403 0.097 0.083 0.040 0.111
(130,908) (33,855) (4,249) (95,700) (0.365)

33 83,154 17,405 2,362 59,761 0.389 0.178 0.088 0.062 0.171
(126,831) (41,760) (4,221) (93,077) (0.368)

34 40,393 9,029 2,279 28,335 0.689 0.331 0.061 0.106 0.126
(71,140) (20,513) (3,650) (51,348) (0.386)

35 39,959 10,252 2,618 27,354 0.485 0.268 0.108 0.094 0.144
(69,351) (23,179) (4,227) (48,675) (0.397)

36 43,249 11,787 3,033 29,317 0.357 0.239 0.167 0.099 0.148
(74,656) (24,839) (5,080) (52,616) (0.362)

37 54,702 15,739 3,479 38,035 0.457 0.222 0.155 0.101 0.160
(93,397) (32,781) (5,546) (66,975) (0.397)

39 59,328 11,622 3,087 41,718 0.621 0.326 0.079 0.121 0.166
(99,034) (24,713) (4,929) (70,752) (0.410)

40 76,803 20,297 5,249 53,144 0.678 0.533 0.104 0.247 0.178
(121,183) (40,980) (7,087) (88,139) (0.394)

41 45,410 11,724 3,885 30,396 0.654 0.444 0.136 0.188 0.194
(79,157) (25,411) (5,739) (55,665) (0.412)

All 48,418 13,357 2,756 33,531 0.646 0.314 0.110 0.112 0.144
(82,518) (29,920) (4,487) (58,731) (0.403)

Notes: Reported are the sample means with sample standard deviations in parentheses. Y – the gross
output; K – capital stock; L – labor; M – materials; X – the export intensity. Y , K, L and M are
measured in thousands of RMB. X is unit-free proportions. “Exporter”, “State”, “Foreign” and “Subsidy”
are binary indicators equal to one if the firm is an exporter (Xit > 0), state-invested, foreign-invested and
subsidized, respectively.
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F Additional Results

F.1 Returns to Scale

We first take a look at the scale efficiency of manufacturing firms in China, where it is defined

as the industry’s attainment of the efficient firm scale size associated with (unitary) constant

returns to scale. Table F.1 reports the average estimates of the returns to scale exhibited by

firms across industries and years. We compute the firm-year-specific returns to scale as the sum

of log-derivatives of the gross production function f(·) estimated in the second step: RTSit =
∑

a∈{k,l,m} ∂f̂(Kit, Lit,Mit)/∂ait, where f̂(·) is the estimated sieve approximation given in (4.13).

The instance when the RTS estimate is significantly less than/equal to/greater than one corresponds

to decreasing/constant/increasing returns to scale.

From Table F.1, we observe that all confidence intervals for the industry-level mean RTS es-

timates include unity suggesting that an average firm in all manufacturing industries operated at

the constant returns to scale (at the 5% significance level) in 2000–2006. Thus, the manufacturing

sector in China is generally scale efficient. There is also some evidence that, in most industries, the

returns to scale have been increasing (albeit statically insignificantly) over the course of our sample

period. We now proceed to the analysis of firm-level productivity, which constitutes the primary

focus of our paper.

F.2 Industry-Level Productivity Growth

To explore potentially heterogeneous experiences of individual industry groups, we perform a pro-

ductivity growth decomposition for each individual two-digit CSIC industry.

Table F.2 reports the results, and they generally bolster the narrative whereby China’s manufac-

turing industries have experienced no tangible reallocation of factors from less to more productive

firms during the 2000–2006 period. The only notable exceptions are the Apparel and Metals (both

ferrous and nonferrous) industries which exhibited positive reallocation effects that contributed

at least 3.5% points to the cumulative aggregate productivity growth in these industries over 6

years. The Nonferrous Metals industry (CSIC 33) is the leader in this respect having experienced

a cumulative reallocation effect of 7.7% which amounted to slightly less than a fifth of the total

productivity improvement observed in the industry. In contrast, the majority of industries (17 out

of 28) experienced a worsening in allocation of productive factors with a cumulative decline in the

sample covariance of firm-level output and productivity, which attests to the reallocation of output

from more to less productive firms in these industries. For instance, in industries such as Printing,

Timber, Special Purpose Machinery, Communication Equipment and Measuring Instruments, this

reallocation effect shaved 8% points or more off the cumulative cumulative productivity growth.

In case of the Computer industry (CSIC 40), the total contribution of negative reallocation effects

is estimated at a non-negligible 11.4% which has brought the cumulative growth in the industry

productivity from 14.5 down to 3.1% only.
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Table F.1. Mean Returns to Scale Estimates across Industries, 2000–2006

CSIC 2000 2001 2002 2003 2004 2005 2006

13 0.885 0.887 0.889 0.890 0.889 0.888 0.888

(0.438, 1.561) (0.433, 1.545) (0.434, 1.547) (0.432, 1.532) (0.430, 1.508) (0.429, 1.532) (0.427, 1.520)

14 0.893 0.894 0.895 0.896 0.896 0.897 0.897

(0.668, 1.331) (0.658, 1.337) (0.637, 1.342) (0.626, 1.346) (0.611, 1.352) (0.617, 1.358) (0.610, 1.361)

15 0.881 0.881 0.884 0.885 0.891 0.890 0.891

(0.522, 1.313) (0.527, 1.306) (0.529, 1.309) (0.530, 1.312) (0.534, 1.311) (0.534, 1.320) (0.535, 1.318)

16 0.900 0.906 0.912 0.911 0.906 0.901 0.899

(0.748, 2.689) (0.751, 2.725) (0.758, 2.618) (0.765, 2.722) (0.753, 2.809) (0.746, 2.812) (0.747, 2.886)

17 0.891 0.892 0.894 0.894 0.896 0.894 0.895

(0.282, 1.457) (0.283, 1.457) (0.285, 1.466) (0.287, 1.469) (0.270, 1.473) (0.279, 1.497) (0.281, 1.487)

18 0.906 0.906 0.906 0.905 0.903 0.901 0.902

(0.669, 1.286) (0.671, 1.283) (0.674, 1.281) (0.673, 1.281) (0.673, 1.284) (0.676, 1.270) (0.671, 1.277)

19 0.883 0.886 0.886 0.889 0.889 0.889 0.889

(0.678, 1.219) (0.682, 1.218) (0.683, 1.219) (0.682, 1.217) (0.680, 1.225) (0.681, 1.228) (0.683, 1.224)

20 0.881 0.884 0.889 0.892 0.893 0.895 0.896

(0.385, 1.346) (0.382, 1.337) (0.392, 1.347) (0.393, 1.339) (0.394, 1.344) (0.394, 1.358) (0.399, 1.346)

21 0.902 0.903 0.904 0.904 0.904 0.905 0.907

(0.634, 2.304) (0.635, 2.322) (0.637, 2.268) (0.640, 2.272) (0.640, 2.327) (0.641, 2.397) (0.651, 2.363)

22 0.912 0.913 0.914 0.914 0.914 0.914 0.914

(0.770, 1.225) (0.770, 1.229) (0.771, 1.230) (0.772, 1.232) (0.767, 1.235) (0.775, 1.232) (0.774, 1.230)

23 0.909 0.910 0.911 0.911 0.913 0.911 0.912

(0.852, 1.008) (0.844, 1.013) (0.840, 1.017) (0.827, 1.028) (0.824, 1.043) (0.823, 1.037) (0.821, 1.048)

24 0.899 0.901 0.903 0.905 0.906 0.905 0.906

(0.719, 1.269) (0.720, 1.271) (0.733, 1.280) (0.734, 1.282) (0.734, 1.286) (0.731, 1.280) (0.734, 1.283)

25 0.896 0.900 0.899 0.902 0.902 0.903 0.904

(0.268, 1.487) (0.271, 1.487) (0.272, 1.479) (0.276, 1.464) (0.281, 1.457) (0.292, 1.459) (0.289, 1.447)

26 0.893 0.894 0.897 0.899 0.901 0.899 0.901

(0.409, 1.723) (0.402, 1.730) (0.405, 1.743) (0.406, 1.740) (0.406, 1.743) (0.412, 1.738) (0.414, 1.732)

27 0.879 0.881 0.883 0.883 0.884 0.884 0.884

(0.689, 1.161) (0.686, 1.168) (0.688, 1.168) (0.680, 1.177) (0.669, 1.191) (0.676, 1.185) (0.676, 1.187)

28 0.918 0.917 0.915 0.920 0.920 0.919 0.920

(0.681, 1.338) (0.681, 1.336) (0.681, 1.342) (0.685, 1.356) (0.685, 1.351) (0.689, 1.352) (0.687, 1.364)

29 0.905 0.904 0.907 0.909 0.909 0.909 0.910

(0.639, 1.419) (0.637, 1.425) (0.639, 1.421) (0.639, 1.423) (0.638, 1.433) (0.644, 1.432) (0.642, 1.434)

30 0.894 0.894 0.894 0.896 0.898 0.894 0.896

(0.367, 1.553) (0.366, 1.550) (0.366, 1.554) (0.367, 1.555) (0.368, 1.554) (0.369, 1.562) (0.371, 1.558)

31 0.901 0.902 0.903 0.903 0.904 0.904 0.905

(0.460, 1.986) (0.460, 1.971) (0.453, 1.922) (0.452, 1.913) (0.446, 1.847) (0.449, 1.828) (0.448, 1.840)

32 0.902 0.904 0.905 0.907 0.909 0.907 0.908

(0.390, 1.712) (0.389, 1.666) (0.410, 1.746) (0.423, 1.720) (0.426, 1.714) (0.424, 1.749) (0.425, 1.717)

33 0.903 0.905 0.906 0.906 0.908 0.904 0.907

(0.378, 1.508) (0.380, 1.505) (0.371, 1.499) (0.376, 1.505) (0.373, 1.505) (0.370, 1.512) (0.375, 1.504)

34 0.901 0.903 0.905 0.906 0.907 0.906 0.908

(0.680, 1.203) (0.682, 1.204) (0.683, 1.205) (0.683, 1.204) (0.682, 1.207) (0.684, 1.208) (0.683, 1.206)

35 0.902 0.905 0.908 0.910 0.912 0.908 0.910

(0.101, 1.751) (0.102, 1.739) (0.088, 1.732) (0.083, 1.720) (0.055, 1.723) (0.073, 1.757) (0.055, 1.737)

36 0.899 0.900 0.903 0.906 0.906 0.906 0.907

(0.572, 1.310) (0.572, 1.309) (0.574, 1.311) (0.571, 1.312) (0.566, 1.314) (0.573, 1.321) (0.573, 1.320)

37 0.906 0.907 0.908 0.909 0.909 0.908 0.908

(0.608, 1.439) (0.597, 1.443) (0.601, 1.441) (0.600, 1.444) (0.589, 1.445) (0.590, 1.448) (0.589, 1.445)

39 0.904 0.905 0.906 0.908 0.910 0.908 0.909

(0.755, 1.287) (0.755, 1.288) (0.758, 1.290) (0.756, 1.294) (0.757, 1.297) (0.768, 1.291) (0.759, 1.294)

40 0.884 0.887 0.890 0.891 0.892 0.889 0.891

(0.401, 1.376) (0.402, 1.379) (0.415, 1.376) (0.417, 1.371) (0.421, 1.359) (0.406, 1.404) (0.417, 1.391)

41 0.901 0.901 0.904 0.905 0.904 0.904 0.904

(0.599, 1.259) (0.600, 1.261) (0.600, 1.262) (0.601, 1.259) (0.592, 1.266) (0.605, 1.265) (0.601, 1.262)

All 0.898 0.899 0.901 0.902 0.903 0.901 0.902

(0.843, 1.411) (0.841, 1.423) (0.845, 1.425) (0.846, 1.432) (0.848, 1.460) (0.846, 1.509) (0.844, 1.504)

Notes: Reported are the average nonparametric estimates of the returns to scale with the 95% accelerated bias-corrected
percentile bootstrap confidence intervals in parentheses.
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Table F.2. (Weighted) Aggregate Productivity Growth Decomposition across Industries

Year ∆pt ∆pt ∆covt ∆pt ∆pt ∆covt ∆pt ∆pt ∆covt ∆pt ∆pt ∆covt

CSIC 13 CSIC 14 CSIC 15 CSIC 16

2001 0.015 0.029 –0.013 –0.017 0.009 –0.027 0.026 0.013 0.013 –0.067 –0.007 –0.060

2002 0.026 0.039 –0.013 0.030 0.044 –0.014 0.003 0.033 –0.030 0.072 0.058 0.014

2003 0.066 0.069 –0.003 0.042 0.046 –0.004 0.058 0.051 0.007 0.035 –0.030 0.064

2004 0.085 0.065 0.020 0.041 0.058 –0.017 0.057 0.080 –0.023 0.090 0.093 –0.003

2005 0.043 0.069 –0.027 0.089 0.084 0.006 0.088 0.087 0.000 0.034 0.037 –0.003

2006 0.041 0.045 –0.004 0.060 0.059 0.000 0.060 0.058 0.002 0.059 0.051 0.007

Cum. 0.277 0.316 –0.040 0.245 0.300 –0.055 0.292 0.323 –0.030 0.223 0.203 0.020

CSIC 17 CSIC 18 CSIC 19 CSIC 20

2001 0.002 –0.009 0.011 –0.021 –0.030 0.010 –0.016 –0.007 –0.009 –0.006 0.003 –0.009

2002 0.004 0.005 –0.001 –0.030 –0.031 0.001 –0.041 –0.028 –0.013 –0.027 0.017 –0.045

2003 0.034 0.022 0.012 0.003 –0.001 0.004 0.027 0.000 0.027 0.009 0.031 –0.022

2004 0.036 0.041 –0.004 0.045 0.039 0.006 0.026 0.027 –0.001 0.054 0.045 0.009

2005 0.062 0.067 –0.006 0.058 0.054 0.004 0.041 0.041 0.000 0.044 0.070 –0.027

2006 0.044 0.043 0.001 0.029 0.019 0.009 0.038 0.030 0.008 0.051 0.053 –0.002

Cum. 0.181 0.169 0.013 0.085 0.050 0.035 0.074 0.063 0.011 0.124 0.220 –0.096

CSIC 21 CSIC 22 CSIC 23 CSIC 24

2001 0.007 0.009 –0.002 0.012 0.009 0.003 0.009 0.009 0.000 –0.035 –0.024 –0.011

2002 –0.011 –0.007 –0.004 0.006 0.019 –0.013 0.018 0.034 –0.016 –0.023 –0.019 –0.003

2003 –0.007 0.007 –0.014 0.048 0.036 0.011 0.018 0.044 –0.026 0.019 0.007 0.012

2004 0.071 0.049 0.022 0.061 0.056 0.005 0.039 0.062 –0.023 0.015 0.039 –0.023

2005 0.003 0.044 –0.040 0.069 0.057 0.013 0.066 0.086 –0.019 0.065 0.046 0.018

2006 0.027 0.033 –0.006 0.042 0.044 –0.002 0.036 0.047 –0.011 0.011 0.015 –0.004

Cum. 0.090 0.134 –0.044 0.237 0.220 0.017 0.185 0.280 –0.094 0.052 0.064 –0.011

CSIC 25 CSIC 26 CSIC 27 CSIC 28

2001 0.007 0.020 –0.012 0.020 0.021 –0.001 –0.005 0.020 –0.024 0.007 –0.019 0.026

2002 0.050 0.015 0.035 0.018 0.023 –0.005 0.000 0.003 –0.003 0.016 0.028 –0.012

2003 0.084 0.096 –0.013 0.064 0.047 0.016 0.021 0.037 –0.016 0.060 0.083 –0.022

2004 0.054 0.093 –0.038 0.077 0.069 0.008 0.080 0.061 0.018 0.054 0.058 –0.004

2005 0.053 0.038 0.015 0.071 0.077 –0.006 0.080 0.066 0.014 0.092 0.073 0.019

2006 0.051 0.060 –0.009 0.062 0.055 0.007 0.049 0.037 0.012 0.033 0.045 –0.011

Cum. 0.299 0.322 –0.023 0.311 0.291 0.020 0.224 0.224 0.001 0.262 0.268 –0.005

CSIC 29 CSIC 30 CSIC 31 CSIC 32

2001 –0.015 –0.026 0.011 0.001 0.000 0.000 0.008 0.003 0.005 0.005 0.003 0.002

2002 0.013 0.028 –0.015 –0.011 –0.011 0.000 0.022 0.026 –0.004 0.034 0.038 –0.004

2003 0.041 0.041 –0.001 0.005 0.032 –0.027 0.066 0.048 0.018 0.100 0.077 0.023

2004 0.043 0.032 0.012 0.040 0.054 –0.014 0.066 0.066 0.000 0.118 0.104 0.014

2005 0.043 0.064 –0.021 0.055 0.057 –0.003 0.069 0.076 –0.007 0.081 0.052 0.029

2006 0.076 0.065 0.011 0.052 0.037 0.015 0.069 0.059 0.010 0.036 0.054 –0.018

Cum. 0.202 0.205 –0.003 0.142 0.170 –0.028 0.300 0.277 0.023 0.374 0.328 0.046

CSIC 33 CSIC 34 CSIC 35 CSIC 36

2001 0.024 0.022 0.002 0.003 0.002 0.001 0.011 0.009 0.002 –0.004 0.010 –0.015

2002 0.027 0.019 0.008 –0.005 0.007 –0.012 0.023 0.023 –0.001 0.027 0.037 –0.010

2003 0.080 0.038 0.042 0.041 0.038 0.003 0.060 0.057 0.003 0.008 0.069 –0.061

2004 0.087 0.099 –0.012 0.051 0.051 0.000 0.061 0.074 –0.013 0.064 0.072 –0.008

2005 0.093 0.057 0.037 0.059 0.054 0.005 0.062 0.061 0.002 0.070 0.074 –0.003

2006 0.101 0.099 0.001 0.041 0.041 0.001 0.055 0.052 0.003 0.065 0.055 0.010

Cum. 0.411 0.334 0.077 0.190 0.193 –0.003 0.272 0.275 –0.003 0.230 0.316 –0.086

CSIC 37 CSIC 39 CSIC 40 CSIC 41

2001 0.025 0.020 0.005 0.005 0.003 0.002 –0.007 0.013 –0.019 –0.037 0.002 –0.039

2002 0.034 0.027 0.007 –0.002 0.004 –0.007 –0.060 –0.019 –0.041 –0.017 0.004 –0.021

2003 0.026 0.052 –0.027 0.045 0.044 0.001 0.009 0.038 –0.029 0.054 0.044 0.010

2004 0.048 0.065 –0.017 0.053 0.051 0.002 0.066 0.070 –0.003 0.047 0.079 –0.032

2005 0.053 0.064 –0.011 0.067 0.054 0.012 0.014 0.017 –0.003 0.044 0.065 –0.021

2006 0.054 0.043 0.010 0.063 0.049 0.014 0.008 0.026 –0.018 0.059 0.037 0.022

Cum. 0.240 0.272 –0.032 0.230 0.205 0.025 0.031 0.145 –0.114 0.151 0.231 –0.080

Notes: Reported are the annual growth rates of the (weighted) aggregate productivity pt and of its two components: the
(unweighted) average productivity pt and the covariance between the firm-level output and productivity covt.
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F.3 (Conditional) Exporter Productivity Differentials by Export Intensity

Table F.3. Median (Log) Exporter Productivity Premia by Export Intensity, 2000–2006

CSIC D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

13 –0.053 –0.051 –0.067 –0.075 –0.111 –0.132 –0.149 –0.163 –0.183 –0.120
14 –0.070 –0.089 –0.075 –0.082 –0.088 –0.089 –0.093 –0.135 –0.119 –0.129
15 –0.029 0.003 –0.022 –0.034 –0.081 –0.062 –0.082 –0.040 –0.048 –0.071
16 –0.005 –0.006 –0.045 0.010 0.042 –0.067 –0.106 –0.095 –0.054 –0.195

17 –0.046 –0.073 –0.090 –0.101 –0.118 –0.129 –0.133 –0.149 –0.152 –0.159
18 –0.067 –0.119 –0.148 –0.157 –0.167 –0.170 –0.178 –0.173 –0.175 –0.179
19 –0.034 –0.106 –0.133 –0.168 –0.183 –0.188 –0.197 –0.195 –0.205 –0.204
20 –0.046 –0.059 –0.085 –0.116 –0.128 –0.152 –0.145 –0.144 –0.148 –0.153
21 –0.099 –0.107 –0.129 –0.146 –0.149 –0.195 –0.201 –0.203 –0.229 –0.204
22 –0.034 –0.020 –0.045 –0.045 –0.076 –0.089 –0.098 –0.151 –0.170 –0.170
23 –0.064 –0.069 –0.021 –0.094 –0.073 –0.091 –0.137 –0.199 –0.247 –0.192
24 –0.075 –0.120 –0.140 –0.174 –0.175 –0.190 –0.197 –0.191 –0.191 –0.189
25 –0.057 –0.168 –0.165 –0.143 –0.046 –0.047 –0.122 –0.100 –0.317 –0.119
26 –0.080 –0.063 –0.081 –0.087 –0.090 –0.107 –0.123 –0.135 –0.156 –0.176
27 –0.071 –0.066 –0.056 –0.071 –0.108 –0.133 –0.115 –0.118 –0.115 –0.051
28 –0.058 –0.021 –0.078 –0.062 –0.040 –0.096 –0.055 –0.107 –0.092 –0.126
29 –0.084 –0.060 –0.103 –0.105 –0.148 –0.142 –0.152 –0.184 –0.198 –0.192
30 –0.088 –0.091 –0.094 –0.125 –0.145 –0.178 –0.202 –0.201 –0.210 –0.224
31 –0.007 –0.018 –0.038 –0.054 –0.064 –0.099 –0.115 –0.128 –0.166 –0.158
32 –0.030 –0.056 –0.077 –0.096 –0.113 –0.137 –0.155 –0.152 –0.170 –0.145
33 –0.120 –0.097 –0.133 –0.124 –0.145 –0.170 –0.177 –0.172 –0.226 –0.193
34 –0.086 –0.087 –0.116 –0.134 –0.151 –0.164 –0.175 –0.175 –0.189 –0.195
35 –0.087 –0.094 –0.098 –0.107 –0.128 –0.130 –0.141 –0.156 –0.170 –0.158
36 –0.099 –0.111 –0.105 –0.107 –0.086 –0.110 –0.123 –0.133 –0.152 –0.177
37 –0.081 –0.074 –0.057 –0.087 –0.089 –0.094 –0.110 –0.134 –0.158 –0.154
39 –0.087 –0.103 –0.107 –0.135 –0.154 –0.188 –0.194 –0.210 –0.201 –0.226
40 –0.069 –0.097 –0.131 –0.150 –0.176 –0.189 –0.221 –0.217 –0.236 –0.242
41 –0.091 –0.082 –0.106 –0.144 –0.127 –0.175 –0.179 –0.203 –0.224 –0.242

All –0.071 –0.073 –0.096 –0.115 –0.138 –0.160 –0.177 –0.189 –0.203 –0.207

Notes: Reported are the conditional median estimates of the exporter productivity premium tabulated by
deciles of the empirical distribution of non-zero export intensity. All point estimates, except those in italic,
are statistically significant at the 5% level.
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