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Abstract

In this paper, I incorporate a Schumpeterian mechanism of creative destruction in a medium-scale DSGE
framework. In the model, a sector of profit-maximizing innovators invests in R&D and endogenously gen-
erates productivity gains, ultimately determining the economy’s growth rate. I estimate the model using
Bayesian methods on U.S. data of the last 25 years (1993q1-2018q4) in order to disentangle the key forces
underlying the productivity slowdown experienced by the US economy since the early 2000s. In contrast
with the previous literature, I exploit Fernald (2014) data on TFP, factor utilization and labour quality
to discipline the production function, and find that the bulk of the TFP slowdown is due to a decrease in
innovation’s ability to generate TFP gains. These findings challenge the view of a large part of the literature,
according to which the recent TFP dynamics in the US are mostly driven by demand slumps and/or liquidity

crunches.
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1. Introduction

During the last decade, the US economy experienced a significant slowdown in the Total Factor Productivity
growth rate (henceforth, TFP). This phenomenon is not limited to the US economy, but involves the bulk of
the developed world economies. Figure 1 provides a snapshot of the global dimension of the TFP slowdown: in
France, Germany, Japan, and the UK, TFP started decelerating in the mid-2000s and did not catch up with
the pre-crisis trend since then. A number of influential empirical works attributes the cause of the occurrence
of the TFP slowdown to the recent Global Financial Crisis. Ball (2014), Hall (2014), and Reifschneider et al.
(2015) argue that potential output declined consequently to the Great Financial Crisis due to the decline in
capital accumulation and slower TFP growth and estimate sizable potential output losses. This deep downturn
of potential output produced a marked gap between data and the theoretical predictions provided by pre-crisis
standard macroeconomic models. Whereas conventional DSGE models predicted a reversion of GDP to the
pre-crisis trend, as Guerron-Quintana and Jinnai (2019) point out, in 2017 (10 years after the beginning of the
Global Financial Crisis) there was still no sign of reversion to the pre-crisis trend in most of the major developed
economies.

In the attempt of explaining the TFP slowdown within the context of standard macroeconomic models,
an important, growing literature is developing models of the business cycle in which stochastic shocks to the
fundamentals of the economy can permanently affect potential output by temporarily hampering the process
of technological development. Amongst the most notable contributions, Bianchi, Kung, and Morales (2019),
Guerron-Quintana and Jinnai (2019), and Anzoategui et al. (2019) develop DSGE models featuring mechanisms
of endogenous TFP. In this class of models a demand slump, or a liquidity crunch, can dampen the innovation
process and generate the TFP slowdown that we observe in the data. However, two crucial testable implications
common to all the explanations provided by these models fail when the theoretical implications are confronted
with the data. First, as argued in Fernald (2015), the TFP slowdown started before the beginning of the
recession (see Figure 1). Hence, if the productivity slowdown had to be attributed to a demand or a liquidity
contraction, the TFP slowdown should have followed, not preceded the Global Financial Crisis. Second, both
the demand-side and the liquidity crunch explanation imply that R&D-based innovation proxies should have
sharply (or persistently) dropped consequently to the Great Recession, in order to generate such a persistent
slowdown. By contrast, as I show in Figure 2, R&D-to-GDP rose in the US during the Global Financial Crisis,
and the R&D-to-TFP ratio exhibited only a short contraction?.

In order to rationalize these facts, in this work, I develop and estimate a model of the US business cycle
featuring R&D efficiency and effectiveness frictions, and argue that the productivity slowdown is due to a

decrease in the ability of innovations to produce aggregate TFP gains?.

ITypically, following Jones (1995), the semi-endogenous growth literature, adopted R&D-to-TFP as a standard proxy to evaluate
the innovation effort with respect to the level of technological development of a country. Accordingly, in quantitatively realistic
semi-endogenous Schumpeterian growth models, productivity gains are a function of the R&D-to-TFP ratio (in levels). Another
parallel stream of literature, including Young (1998) and Peretto (1998) (scale-effect free fully-endogenous growth models) argue
that TFP gains are a function of R&D investment levels. Nevertheless, the same considerations hold even when real R&D investment
growth is considered.

28everal works in the empirical literature suggests that the recent productivity dynamics in the US might be driven by a
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FIG.1 - THE GLOBAL DIMENSION OF THE TFP SLOWDOWN
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Source: Bergeaud, Cette, and Lecat (2016). Shaded regions are US NBER recessions.

FIG.2 - R&D-TO-TFP AND R&D-TO-GDP RATIOS (1993-2017)
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In blue: R&D-to-TFP ratio in the US (from the Federal Reserve Bank of St. Francisco, on the left-hand axis, 2008=100).
In red: R&D-to-GDP Ratio (rom the Bureau of Economic Analysis, on the right-hand axis).

Shaded regions are US NBER recessions.

decrease of innovation’s productivity potential, as for instance Gordon (2012) or Bloom (2017), although these two works study
the phenomenon from a long-run perspective.
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In the model, I introduce novel supply-side friction and innovation-specific shocks that affect the process
of technological development of the economy at different stages. Namely, the model features R&D adjustment
costs in terms of innovation probability and allows for shocks on a) the R&D investment-specific technology, that
affects the capacity of R&D investment of generating innovation, and b) the innovation step i.e. the capability
of innovation of generating productivity gains. The presence of this friction implies that the effectiveness of
investments in technological activities is affected by sudden changes in the amount of R&D invested. Namely,
when a firm decides to adjust the level of its investment in R&D, the marginal probability of innovation per
unit of R&D investment decreases. This feature captures the idea, as in Terry (2015), that R&D is less effective
when volatile. The presence of this friction generates very persistent R&D dynamics (relatively to GDP).
Hence, this feature is able to rationalize why the R&D-to-GDP ratio rose during the Great Recession although
the incentive to innovate collapsed. Relying on a more sophisticated identification structure, and imposing a
greater amount of discipline on the production function, I find that the bulk of the TFP slowdown has to be
attributed to a decrease in the ability of R&D investment to generate productivity gains, as in the narrative
of Gordon (2012), who identifies the cause of the TFP slowdown in the scarcity of substantial, path-breaking
innovations (unrelated to the Global Financial Crisis).

Whereas in standard DSGE models as Smets and Wouters (2003) and Christiano, Eichenbaum and Evans
(2005) potential output follows a predetermined exponential path®, in the model presented in Section 3, it can
be affected by innovation-specific disturbances and by all the forces that conventionally in standard models drive
the business cycle. In the model, I introduce a Schumpeterian growth engine in a standard DSGE model, by
modeling that mechanism of creative destruction that, in the words of Schumpeter (1942), "is the essential fact
about capitalism". The endogenous TFP mechanism provides a transmission channel from stochastic shocks
hitting the economy to the innovation sector, in which endogenous entry and exit firm dynamics give rise to
creative destruction cycles.

The introduction of a Schumpeterian growth engine in a DSGE model is appealing for three main reasons.
First, Schumpeterian growth theory "can account for several interesting facts about competition and growth
which no other growth theory can explain" (Aghion et al. 2014). Second, the Schumpeterian growth theory can
rely on the support of a set of empirical micro-level studies including Liu (1993), Campbell (1998), and Brandt et
al. (2011), that show the process of creative destruction to be one of the leading forces underlying productivity
gains. Third, the recent US TFP slowdown was accompanied by a slowdown in business dynamism. Figure
3 shows that the rate of creation of new establishments and the productivity improvements in the US on the
1993-2018 period, slowed down in parallel to the TFP. This evidence is of great relevance for the validation of
the Schumpeterian interpretation of the TFP slowdown, since Schumpeterian growth theory predicts that TFP
gains should materialize jointly with the appearance of new players on the market. Deeper microfoundations
based on creative destruction mechanisms might thus be essential for a more realistic characterization of recent

potential output dynamics. Compared to the previous works as Anzoategui et al. (2019), this paper shifts the

3Except for the presence of standard TFP shocks



focus on the innovation efficiency /effectiveness issue*, which is often neglected in the DSGE model literature,
although regarded as a crucial issue in the empirical literature (as for instance in Bloom et al. (2018)). For
these reasons, in the model, the development and the adoption of new technologies, as well as firms’ entry
and exit dynamics, are endogenized in a Schumpeterian innovation sector, giving rise to creative destruction
cycles. In this framework, therefore, standard DSGE theory is reconciled with the endogenous growth literature

tradition.

FIG.3 - NEW FIRM BIRTH RATES AND TFP DYNAMICS IN THE US (1993-2018)
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(a) Blue Solid Line: New Firm Birth Rates in the US (Source: BLS, on the left-hand axis, in % on the total number of firms).
(b) Black Dotted Line: Utilization-Adjusted % TFP gains (From Fernald 2014, on the Right-Hand Axis)
(c) Red Solid Line: Utilization-Adjusted % TFP gains filtered with a HP-filter (A = 100, RHA, correlation with (a): 0.61)

(d) Red Dashed Line: Utilization-Adj. % TFP gains filtered with a 5-years centered moving average (RHA, correl. with (a): 0.61)

The model I will present in Section 3 is based on the Smets and Wouters (2007) workhorse, and embeds a
simple and highly tractable endogenous TFP growth mechanism & la Benigno and Fornaro (2018), that connects
productivity gains to innovators’ incentive to innovate. In a nutshell, the model exhibits the following features:
(i) productivity is driven by research and development investment; (ii) the development and adoption of new
technologies is determined by the optimizing behavior of a sector of innovators; (iii) price and wages dynamics
are affected by nominal and real rigidities; (iv) stochastic shocks to fundamentals stochastically hit the economy.
The model is estimated with Bayesian techniques using data on seven standard observables of the US business
cycle (GDP, consumption, physical capital investment, investment in R&D, inflation, worked hours, and the
policy rate) and three observables from the Fernald (2014) database (TFP, labour quality, and factor utilization).

The use of the last three series is crucial in the exercise as they allow to impose a rigorous discipline on the

41 refer here to amount of innovation produced per unit of R&D as innovation efficiency (number of patents/R&D) and to the
amount of TFP gains produced with a given amount of innovation as innovation effectiveness (ATFP / number of patents) .
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production function, and assure that the concept of productivity in the model, is the same adopted by the
empirical literature. The model does not feature any kind of financial frictions® due to two main reasons. First,
as documented by Veugelers and Kalcik (2018), the bulk of the R&D activities are typically performed by large
firms®, which are only marginally affected by liquidity constraints. Second, studies like Hao and Haffe (1993) or
Altomonte et al. (2016), show that financial conditions do not affect the amount of R&D investment performed
by large firms.

The remainder of the paper is organized as follows: in Section 2 I review the literature connected to the
paper, in Section 3 I describe the general equilibrium conditions that characterize the economy, in Section 4 I
describe the set of measurement equations, the solution, the identification, and the estimation techniques, in

Section 5 I discuss the main results, and in Section 6 I conclude and discuss the main policy implications.

2. Related Literature

This paper builds on the modern endogenous TFP literature, which typically borrows endogenous productivity
growth mechanisms from the theoretical endogenous growth literature of the early 1990s and incorporates them
into DSGE models. This paper, in particular builds on the seminal contribution of Aghion and Howitt (1992),
who develop a theoretical framework in the spirit of the Schumpeterian idea of creative destruction.

The paper relates to the literature incorporating endogenous TFP determination mechanisms into general
equilibrium models., which takes its first steps with the seminal contribution of Comin and Gertler (2006), who
combine endogenous mark-ups and the Romer (1990) expanding variety growth engine into an RBC model.
More recently, a number of authors have incorporated endogenous TFP mechanisms in general equilibrium
models featuring nominal and real frictions. Bianchi et al. (2019) develop and estimate a DSGE featuring an
endogenous TFP channel that relies on a human capital accumulation mechanism. Queralté (2019) introduces
financial frictions in an endogenous TFP augmented DSGE model in order to explain the TFP drops that
followed 1997-1998 crisis in South Korea. Guerron-Quintana and Jinnai (2019) propose a DSGE model with
endogenous TFP & la Romer (1990) featuring a credit channel & la Kiyotaki and Moore (2012). Anzoategui et
al. (2019) estimate a New Keynesian DSGE model featuring the ZLB and a knowledge diffusion mechanism &
la Comin and Gertler (2006).

Another strand of literature focuses on the policy implications of endogenous TFP. Annicchiarico et al.
(2011), Annicchiarico and Rossi (2013), Annicchiarico and Pelloni (2019) analyze the implications for optimal
monetary policy of the presence of an endogenous TFP channel. ITkeda and Kurozomi (2019) study optimal
operational interest rules in an endogenous TFP model augmented with financial frictions. Cozzi et al. (2017)
show that a fully-fledged DSGE model augmented with a creative destruction engine can empirically outper-
form standard models. Bonciani and Oh (2019) show that uncertainty shocks might affect medium-term TEFP

dynamics by dampening investment in R&D. Eventually, this paper relates to the news shocks literature follow-

5Note that this is not equivalent to say that in the model financial shocks are irrelevant for TFP dynamics determination.
6 According to Veugelers and Kalcik (2018), in 2015, the firms within the top 1% of global R&D spenders accounted for the 27%
of global R&D expenditure, the top 10% accounted for the 71%.
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ing Beaudry and Portier (2006). R&D based models with endogenous TFP, similarly to news shocks, produce
expectations of future productivity gains once a unit of R&D is invested (see Miranda-Agrippino et al. (2018)
for an application with R&D and patent application data). The core mechanism of this paper is inspired by the
work of Benigno and Fornaro (2018), who build on Aghion and Howitt (1992) in order to develop a stagnation
trap model combining elements from the Zero Lower Bound and the Schumpeterian Growth literature.

This paper methodologically contributes to the literature by developing and estimating a Schumpeterian
DSGE with detailed production function data, such as the TFP, utilization, and labour quality. This novel
identification strategy allows disentangling for the effect of technological and non-technological TFP shocks.
No previous study in the literature about DSGE models with endogenous TFP is concerned about comparing
and matching the identified productivity series with the empirical estimates, and disentangling the technological
component of TFP improvements from non-technological factors at play. This paper contributes to the literature
by analyzing the role of R&D efficiency frictions within the TFP slowdown process within the context of a full-
blown DSGE model, and showing that the ability of innovation to generate sustained TFP gains played an

important role in the TFP slowdown.

3. The Model

In this section, I describe a medium-sized Schumpeterian DSGE model whose core structure is to a large extent
based on Smets and Wouters (2007, henceforth SW). The SW structure is extended to allow for endogenous
productivity dynamics, through the introduction of a sector of innovators a la Benigno and Fornaro (2018).0n
one hand, the Smets and Wouters (2007) structure allows giving the model an important quantitatively realistic
dimension, so that the model is of straightforward interest for policymakers willing to implement endogenous
TFP considerations into their policy evaluation process. On the other hand, the introduction of an endogenous
TFP engine & la Benigno and Fornaro (2018) provides theoretical microfoundations useful to evaluate the impact
of standard Smets and Wouters (2007) shocks and frictions on TFP dynamics, and to disentangle the sources
of TFP cyclical fluctuations.

The SW building blocks are equation wise preserved in their original fashion, so that the model here pre-
sented nests the SW economy. This approach allows for straightforward comparison with the baseline SW
during empirical exercises. The economy features four different categories of producers: (i) intermediate goods
producers, (ii) semi-finished good producers, (iii) innovators, and (iv) final good producers. This sophistication
of the market structure aims to mimic the complexity of the present-day supply chain, in which good production
is the result of the assembling of several technological and non-technological components. Intermediate pro-
ducers operate in a monopolistically competitive setup and use labour and capital services in order to produce
a continuum of varieties of the intermediate good. Semi-finished good producers are in perfect competition
and aggregate intermediate goods in order to sell them to the innovators. Innovators operate in a monopolisti-

cally competitive environment with free access to R&D and produce a continuum of varieties of the innovative
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good. Eventually, a perfectly competitive sector of good producers aggregate innovative goods and sell them to

households.

2.1 Households
Households maximize an intertemporal utility function in consumption Cj;, hours worked L;;, bonds By, invest-
ment I;;, the capital utilization rate Ui’%, and the technology adoption rate Uf}. As standard in medium scale
DSGE exhibiting wage rigidities, each household is a monopolistically competitive supplier of a differentiated
type of labour. h is the external habit parameter, R; the rate of return of bonds, R} the capital rental rate,
R{ the technology adoption cost, P, the price level, T; is a lump sum tax, th is a lump-sum transfer to the
innovators, W/ the hourly wage, K; the stock of physical capital, A; the stock of adopted technologies, a; is the
rental rate respectively of the capital and the technology stock, D{ rms and Din™ are the amount of dividends
distributed by the firms and the innovators, ¢ is the capital depreciation rate and S is the investment convex
adjustment cost function, where S(1)=1 and S”>0. The households’ intertemporal decision problem can be

formulated as:
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The shock on bonds’ risk premia € captures inefficiencies in credit supply or temporary fluctuations in agents’
risk aversion. € is an investment-specific technology shock, which leads to fluctuations in physical capital
investment adjustment cost. Both €2 and ¢! follow an AR(1) process in logs such that Ine? = p,Ine’_; + n?
and Ine! = p;Inei_; +n¢ where n’~N (0,03) and ni~N (0,0;). Similarly, the utilization rate € is subject to
an exogenous disturbances so that Ine} = p, Ine} ; +n}* where n{'~N (0,0,). This feature aims to capture
the effect of productive capacity under-utilization due to exogenous reasons, such as strikes, malfunctions, or

production scheduling inefficiencies.

2.2 Intermediate Good Producers

The standard intermediate good is produced by a sector of firms using labour and capital:

Jp et
Yi = ef Ay K5 (Q' L) (4)

I assume the absence of a fixed cost and introduce a labour quality adjustment Q! in order to bring the
8



specification of the production function as close as possible to Fernald (2014). The stochastic disturbance
€7 is an exogenous productivity shock that aims at capturing non-technological, unexplained business cycle
frequency fluctuations in TFP, as cross-sectoral reallocation or measurement errors. A; is the endogenous,
technological component of TFP, which is determined by the stock of technology A; and its adoption rate U.
The labour quality disturbance captures the idea that TFP is affected by exogenous variations in workers’ skills
and education and finds its one-to-one empirical counterpart in the Aaronson and Sullivan (2001) labour quality
series used in Fernald (2014), i.e. QL = eiq. The exogenous TFP shock and the labour quality shock follow
AR(1) exogenous processes such that where Inel = p,Inel_; +n! and ni~N (0, 0;) where i—,q.

As standard in literature, the intermediate good producers fix prices according to Calvo pricing with partial
indexation. Let 1/3; be the newly set price, and Xf: s a state variable that assumes value 1 when s = 0 and value

Hleﬂ";ililﬂ'ii% when s > 0. Firms optimize prices according to the following objective function:

oo
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Let &, be the probability of being allowed to reoptimize prices, ¢, the price indexation coefficient and = =

fol G’ (1;’5) %di, the Calvo pricing scheme implies the following equation for the aggregate price index:
t t
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2.3 Employment Agencies
As standard in the literature, a labour union sets wages and sells labour to an employment agency. The
employment agency acquires the differentiated labour services from the workers’ union and supplies labour to

the standard intermediate good producers by maximizing the following objective function:

1
max WtLt—/ WitLitdi (8)

st [/01 H (%’:;a) dz} —1 )

Wy and W, are the prices of the composite and intermediate labour, and H is the Kimball aggregator, strictly
increasing and concave with H(1)=1. The stochastic process €}’ captures changes in the elasticity of demand
for labour which result in a wage markup shock and follows an exogenous process such that Ine€}’ = p,€e” | +n;°

where n;'~N (0,0,). Let W; be the newly set price, and X}, a state variable that assumes value 1 when s =0

L

and value II{ = 7', msw; * when s > 0, the labour unions optimization problem under Calvo prices with

t4+1—1

partial indexation assume the following formulation:
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Let &, be the probability of being allowed to reoptimize wages, ¢, the indexation coefficient the resulting

aggregate wage index is:

Wit
Wi

L T—tq % w
T e W g T
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2.4 Semi-Finished Good Producers
The semi-finished good producers manufacture a unit of the intermediate good Y; using a continuum of i

varieties. They maximize profits according to the following objective function:

1
0

LY
st. | G2, )di=1 (14)
0 v, "
t

In the constraint of the optimization problem, G is the Kimball aggregator, which guarantees that the demand
for the standard intermediate good Y; is decreasing in its relative price, while the elasticity of demand is a
positive function of the relative price. G has the properties of being strictly increasing and concave, with
G(1)=1. The stochastic process €/ captures changes in the elasticity of demand which result in a mark-up shock
and follow an AR(1) process such that In€e} = p,In€e? | +n? where n/~N (0,0,). The semi-finished goods are

then sold to the innovation sector.

2.5 Innovators
A continuum of innovators produces the technological good by employing one unit of the semi-finished good, i.e.
Y;: = Y;. One might think of technological goods as "patents" developed by innovators in order to improve the
production technology used by the intermediate producers”. As in Benigno and Fornaro (2018), one innovator
emerges as a leader in every period for each sector j and holds the monopoly position for a single period.
Therefore, only those who developed a successful innovation are allowed to produce and sell to the final good
producers. The technological good will be priced with a mark-up p; >1 upon the cost of the final good, where
= % and o is the elasticity of substitution of the final good producers’ sector. The price of the technological

component Pj; will be therefore equal to ,Uj?t and the innovators’ profit in nominal terms can be computed as:

I, = PyY — PY, = (14 w;)PY, — PY, = p; BY: (15)

The innovation sector operates in two different stages in each period. During the first one, all players invest a

"Remind that the representative household is the owner of both type of firms, and therefore allocates resources among the
different kinds of firms as a global planner.
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given amount of R&D according to their incentive to innovate. With probability ¥ ;;, each player will develop an
innovation and emerge as a leader in the sector 7. In the second phase, in each sector, an innovator is randomly
selected according to the distribution of the individual probability of innovations and acts as a competitive
monopolist®. I assume the probability of innovation to depend on the amount of R&D expenditure invested
by the innovator j normalized by the current stock of technology, as a variant of the semi-endogenous growth

literature tradition, following Jones (1995):

¢RD
J, J'f
T, = 2) Z<]‘) elb 16
Jt (At Jj,tfl t ( )

The normalization by the productivity level implies that R&D investment will be less productive as the
economy advances on the quality ladder - and allows to rule out the R&D scale effect, assuring the respect of
the balanced growth path conditions. I assume decreasing returns to R&D, where ¢rp represents a "stepping-
on-toes" parameter as in Jones and Williams (1998), and convex R&D investment adjustment cost, where Z is
a convex adjustment cost function? The "stepping-on-toes" effect captures inefficiencies due to the congestion
effects, research duplication, knowledge theft, etc. The R&D adjustment cost instead captures the idea, as
in Terry (2015), that R&D investment is less effective when volatile.  Furthermore, I assume the innovation
probability to be affected by a stochastic shock to the adjustment cost €/*”, which follows an AR(1) process such
that Ine?*P = pgrp Inel*s] + nEP. This shock aims to capture variations in the amount of innovation produced
per unit of R&D. Due to the assumption of free access to R&D, the level of R&D investment is determined by

the following zero-profit condition!®:

Willy = Jj (17)

Similarly as in Benigno and Fornaro (2018), this condition states that the expected profit of innovating and
becoming a leader is equal to the amount of R&D invested by the firm. By replacing the individual components,

one can obtain that:

S—a AN Jj RD
‘LLthY;g T Z | —— €4 :Ptth (18)

jt Jjt-1
This equation states that the greater will be the profit innovators can achieve by successfully developing a new
vintage of the technological good, the greater will be the amount of R&D they perform ''. As standard in the

literature, I impose the symmetric equilibrium, i.e. every firm invests the same amount in R&D, and through

8 A more natural alternative might be here assuming a fixed number of lags. For instance, Terry (2015) assume a lag of 1 period.

Nevertheless, assuming a number k of lags delivers unrealistic responses exhibiting kinks at the k-th period, whereas assuming
contemporaneous productivity gains and R&D adjustment frictions delivers very gradual, smoothed productivity gains as in the
reduced form evidence by Miranda-Agrippino et al. (2019).
Jj
Jjt—1
S(.)=1,5(.) >1,and S”(.) > 1, and implies that economies characterized by higher equilibrium R& D-to-GDP ratios, will incur
in higher marginal adjustment costs.

)2¢RD

9 Adjustment costs here take the form of (1 + v - with ¥gp > 1/2. This functional form in equilibrium yields

10Tn order to preserve tractability, I assume the innovation sector to be financed via a frictionless lump-sum transfer th from the
household sector.
HFor simplicity, I assume here that the price of the R&D investment good maps one-to-one with the consumption good.
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the symmetry assumption, obtaining:

Jt ) o }/t < Jt > "
— = =7 € 19
(At At Jt—l K ( )

This condition establishes the aggregate amount of R&D expenditure, which in turn determines the probability
of innovation in each sector W;. By the law of large numbers, in a fraction ¥; of the sectors a player will develop
an innovation at every period. Each innovation will allow for a productivity gain 7, in a given sector, while
the non-innovating sectors will maintain the productivity level of the previous period. The term €} represents a
stochastic shock to the innovation step - i.e. the productivity gain triggered by the occurrence of an innovation.
This disturbance, therefore, aims to capture fluctuations in the impact in terms of productivity of technological

innovations. The technological stock will thus evolve according to the following law:

At+1 = (1 — \I/t)(]. — (Sa)At + \I/t (1 + ’yaég) At (20)

The first term at the right-hand side of the equation represents the structural TFP level that will characterize
the (1— ;) sectors that will not innovate, whose productivity level will deteriorate by (1—d,). The second term
of the sum represents the structural productivity level which will characterize the ¥; sectors that will innovate,
whose productivity level will increase by (14 v4€¢). The latter will be determined by a fixed innovation step =,
and by a stochastic shock €f that follows an AR(1) process in logs so that Inef = p, Inef ; +n¢. By rearranging
the previously described terms, I obtain the productivity growth path to be defined by this simple law:

A1

= (1 - 5(1) + \Ilt((sa + P)’aeffl) (21)

2.6 Final Good Producers
A perfectly competitive sector of final good producers operates aggregating a continuum of varieties of the

innovative good according to the following production function:
1o, Faa

v ([ vnTe) e

0

Final good producers maximize their profits subject to the previously stated production function, taking as

given all intermediate goods prices P;; and the final good price P;. Hence, their maximization problem is:

1
maz PY2 — / PjiY;dj (23)
0

From the maximization problem, one can find the associated input demand functions, i.e.:
Py d
ve=(5) 2
where Y,? is the aggregate demand. Combining with the zero profit condition P,Y; = fol P, Y, di, one can obtain
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the aggregate price index:

1

1 f—
P = ( / P};f’dj) (25)
0

As standard in the literature, the central bank follows a nominal interest rate rule in order to stabilize output

2.7 Government Policies

and inflation, such that:

R, <Rt1>”‘ RW)(YH Yi/Yei ) o, (26)
ox —y * UF uF €
R* \ R* ™/ \Y YOV, '

The stochastic process €] captures the monetary policy shock and follows an exogenous process such that
Ine; = p,Inel_; +n where n°~N (0,0;). The government budget constraint is expressed as:
By

PG+ Bi_1 =T + — (27)
Ry

Government spending as a ratio of the steady-state output ¢/ = gth is a random shock which captures the
impact of fiscal policy shock and can be described with Ine{ = pyIne! | + prppTF P, + 1 where n{~N (0, 0,)

and TF P, is defined as the Solow residual. '2

2.8 Aggregate Resource Constraints
Finally, the aggregate resource constraint assures that the amount of resources produced in the economy equals

the total amount of resources demanded by the agents:

Yt:C’t—|—It+Jt—|—Gt—|—a(uf)fQ_1—|—a(uf)[lt_1 (28)

2The adjustment for TFP is due to the fact that, as in Smets and Wouters (2007), the shock to the aggregate resource constraint
has to capture the (unmodeled) additional contribution to aggregate demand given by the net export component in the data.
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4. Solution, Calibration, and Estimation

The model is stationarized by dividing the trending variables by the stock of available technologies A;.
Therefore, in the system of equilibrium conditions (in Appendix B), all the trending variables are normalized
by the technology A;, which represents the potential level of TFP. As standard in the literature, I solve the
model by computing a first-order approximate solution around the deterministic steady-state and estimate the
model using Bayesian techniques. The estimation database is composed of a standard set of quarterly time
series for the U.S. economy, augmented with the production function series constructed as in Fernald (2014):
real GDP, real consumption, real gross capital formation (except R&D expenditures), worked hours, real wages,
the GDP deflator, the Wu-Xia (2016) Federal Funds Rate, real investment in R&D, TFP, factor utilization,
and labour quality. The GDP, consumption, gross capital formation, and R&D investment have been extracted
from the Bureau of Economic Analysis database. Net investment is defined as gross fixed capital formation less
investment in R&D. Consumption and investment are normalized by the GDP deflator. Inflation is computed
as the first difference of the log of the GDP deflator. Hours worked, real wages are extracted from the Bureau
of Labour Statistics database for the Non-Farm Business Sectors. Additionally to the standard adjustment by
BLS average weekly hours, T adjust by labour effort as in Basu et al. (2006). Therefore, both labour utilization
and effort are jointly observed with labour supply'®. Real wages are obtained by deflating nominal wages by
the GDP price deflator. Aggregate variables are normalized by the working-age population over 16. Instead
of the standard Federal Funds Rate, I estimate the model using the Wu-Xia (2016) Shadow Rate, which has
the perk of integratinge additional information about unconventional monetary policy measures implemented
by the Federal Reserve. As the Shadow Rate is not constrained at the Zero Lower Bound, its use (i) allows to
circumvent the estimation bias implied by the ZLB, (ii) provides relevant information regarding the conditions
of the credit market, and (iii) prevents the onset of a stagnation trap a la Benigno and Fornaro (2018). I
eventually discipline the production function using the 3 series constructed using Fernald (2014) methodology.
The use of these series is crucial for the paper. In the rest of the literature concerning general equilibrium
models with endogenous TFP, no other paper disciplines the production function. Without using those, there
is no guarantee that the productivity estimates are empirically realistic. By contrast, this paper uses the most
conventional TFP estimates available in the data and treats the estimation dataset in order to maximize the
compatibility between the productivity concept in the empirical and the DSGE models literature.

The productivity concept used for estimation is a variant of the one used by Fernald (2014) with constant
labour and capital shares, as these are typically fixed in general equilibrium models. As I show in Section C of
the Appendix (Figure 8), the fixed share assumption has a negligible impact on the productivity estimates. The
capital utilization series is constructed following the Basu, Fernald, and Kimball (2013) methodology, which
includes adjustments in capital’s workweek and workers’ effort. Finally, labour quality series is constructed

following Aaronson and Sullivan (2001) in order to account for fluctuations in workers’ skills and education .

13 Typically DSGE model estimation is performed with hours worked series adjusted for labour utilization only. See for instance
Smets and Wouters (2007) or Anzoategui et al. (2019).
MLabour quality, utilization, and TFP series are available on the website of the Federal Reserve Bank of St. Francisco
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Further details about the sources of the data and the construction of the dataset are available in Section A of
the Appendix.

The TFP model-consistent definition, therefore, includes (a) an exogenous disturbance €7, accounting for
measurement mismatches, reallocation effects, exogenous disturbances not captured by the mode, (b) the tech-
nology adoption rate U?, (c) the stock available technologies A, (d) capital utilization U*, (e) labour quality
@', and reads as follows:

TFP, = 8 (U A) ™ (UN* (@) ™ (29)

As standard in the literature, I calibrate one sub-set of structural parameters and estimate the remainder.
I calibrate o = 0.35, i.e. the empirical mean of the labour share of output between 1993q1 and 2018q4. I
calibrate the coefficient of intertemporal risk-aversion and the inverse of the Frisch elasticity to 1. The physical
capital stock quarterly depreciation rate d is calibrated to 2.5% as in Smets and Wouters (2007). Concerning
the knowledge obsolescence parameter d,, there is a fundamental disagreement in the empirical estimates.
Conventionally, the literature assumes an annual R&D depreciation of 15% (see Hall et al. 2010). Nevertheless,
Hall (2010) shows that estimates can range from 0% (when using a production function approach) to between 20
and 40% (when using a market valuation approach). Diewert and Huang (2011) obtain sector-specific estimates
ranging from 1% for the chemical sector to 29% for the manufacturing sector, whereas Warusawitharana (2015)
estimates a depreciation rate of 32% using a structural estimation methodology. T adopt a conservative approach
and assume an annual depreciation of 15%, which corresponds to a quarterly R&D depreciation of 3.6%. The
steady-state government spending to GDP ratio G/Y is calibrated to 18%, the steady-state price mark-up Dp
to 1 (consistently with the absence of fixed costs in the production function), the steady-state wage mark-up
¢ to 1.5, the curvature of the Kimball aggregator for the non-intermediate goods and the labour market to
10, and the steady-state of R&D investment to GDP ratio to its historical mean on the sample 1993q1-2018q4
(0.027). Additional details about the calibration are provided in the Appendix (Table 1).

In the Appendix, I present the prior distributions, and the estimated posterior distributions of the structural
parameters in Table 2, and the parameter estimates relative to the shock processes in Table 3. Prior distributions
are borrowed from Smets and Wouters (2007), except for the newly estimated parameters. For the stepping-on-
toes parameter in the innovation probability, I set the prior mean equal to 0.35, following Jones and Williams
(1998). For the R&D adjustment cost curvature parameter, the empirical literature provides little guidance®®.
I thereby set the prior mean to 2 in order to have a prior featuring quadratic adjustment costs.

The structural parameters estimates are generally in line with the literature. Few differences emerge when
the estimates are compared to the baseline Smets and Wouters (2007) estimates. I find a high degree of capital
investment adjustment costs (¢;,=>5.78). The Calvo price updating probability ¢, is 0.92, signaling stronger
nominal rigidities with respect to SW, while the wage updating probability (, is 0.36. The price inflation

indexation coeflicient ¢, is 0.35, whereas the wage indexation coefficient ¢,, is 0.50. There are not many surprises

(https://www.frbsf.org/economic-research/indicators-data/total-factor-productivity-tfp/)
15Note that, as the functional form of the R&D adjustment cost is not equivalent to physical capital adjustment costs, and as
they are a cost in terms of innovation performance, the physical capital adjustment parameter can not represent a benchmark.
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among the Taylor Rule parameter estimates: the Federal Reserve responds vigorously to inflation (pr = 1.54),
mildly to output (0.21 in levels and 0.02 in differences), and is highly inertial (p, = 0.89) in setting the Federal
Funds Rate. Eventually, the steady-state growth rate of the economy -~ is strikingly lower than in previous
works reflecting the presence of a protracted TFP slowdown in the sample.

Concerning the newly estimated parameters, the stepping-on-toes parameter ¢rp is 0.34, in line with the
empirical estimates, the R&D adjustment cost curvature parameter ¢; is 1.06 suggesting a mild degree of non-
linearity in the adjustment cost function. In the Appendix, in Table 2, I present the estimates for the shock
process parameters. The exogenous TFP, and the utilization shocks are found to be very persistent. I find a
high persistence of government spending shocks, as standard in the literature, and a moderate persistence of
risk premium shocks. I find labour quality fluctuations to be very persistent, reflecting the fact that changes in
workers’ skills and education occur at a relatively low frequency. As for the capital utilization shock, the high
persistence might be reflecting that capital utilization is highly affected by demand fluctuations whereas, in the
model, it is mostly exogenous'®. A potentially promising explanation for the high-persistence of exogenous TFP
shocks is that they could mostly capture the effect of sectoral reallocations, which induce persistent changes in

productivity. Mark-ups, monetary policy, and the innovation step shocks are instead not particularly persistent.

5. Results

In Figure 4, I show that the smoothed innovation probability closely tracks the number of PCT patent
applications in the US (correlation is 0.70). This result suggests that the (unobserved) concept of probability
of innovation in the model, is strongly related to the amount of innovation produced by the US economy, which
suggests that the innovation dynamics are well identified. The model is thereby able to correctly predict the
number of patents developed in the US in the economy on the base of the investment in R&D and aggregate
TFP gains. The probability of innovation ¥y, in the model, is the probability with which in a given sector, a
player will emerge as a technological leader. As explained in Section 3, by the law of large numbers, this implies
that W, is also equal to the fraction of sectors in the economy in which an innovation is developed. Given that
the economy features a fixed number of sectors, the innovation probability is thereby in the model a proxy for
the amount of innovation produced in the economy and finds its natural empirical counterpart in the number
of patents developed in the US economy. Patent application data are thus an appealing empirical proxy for
the amount of innovation developed in the economy. Furthermore, Kogan et al. (2016) show patents to be an
important predictor of future productivity gains and Miranda-Agrippino et al. (2019) estimate a VAR using
the number of patent applications as a proxy of news about productivity. In order to isolate the sub-sample
of high-potential patents only, in this paper I make use of the PCT (Patent Cooperation Treaty) applications
originated in the US between 2000 and 2019 rather than the US Patent Office patent application data. A PCT

application assures the inventor the priority to register an item in each of the 152 national patent offices of

16Utilization fluctuations in the data are much wider than those implied by the baseline SW endogenous utilization feature, hence
the bulk of the utilization fluctuations is explained by the utilization shock. I leave to future research the challenge of providing a
data-consistent theory of endogenous fluctuations in capital utilization.
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the contracting states. Hence, a PCT patent application is a signal of the intention of the inventor to enforce
the patent on a global scale, or at least in several countries. As enforcing a patent at an international level
requires a much greater investment (in each country the patent should undergo a standard approval process
at standard fees), these applications are likely to concern high-profitability patents only, and therefore high
productivity potential patents only. It is important here to note that, despite the profitability of a patent might
not be directly related to its innovative content!”, standard TFP accounting techniques imply that higher profits

mechanically translate into higher productivity in the statistics.

FIG.4 - INNOVATION PROBABILITY AND PATENT APPLICATIONS
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Solid line: Smoothed Innovation Probability in % deviations from the deterministic steady state (left-hand axis), Dotted Line:

number of PCT applications originated in the USPTO (in tens of thousands, right-hand axis). Correlation is 0.70.

In Figure 5, I consider three kinds of shock affecting TFP in the model: an exogenous TFP shock, an
innovation step shock, and a R&D investment technology shock. Interestingly, the innovation step shock has
very similar dynamics to the VAR evidence presented in Miranda-Agrippino et al. (2019): the TFP gain
following an innovation shock is smooth and concentrated during the first 5 quarters, GDP rises during the first
12 quarters and experiences a slow contraction since then, consumption rises slowly and steadily, hours worked

shortly contract in the beginning and then recover exhibiting hump-shaped dynamics, and investment and R&D

17As for instance, in the notorious cases of Amazon’s "one-click purchase" (1999) or Apple’s iPhone "round corner" (2012)
patents.
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response is smooth and persistent. The main finding here is that different kinds of innovation shock, imply a
different balance between wealth effects on consumption and labour, and can accordingly be contractionary
or expansionary on the labour market. In particular, I show that static shocks acting on the production
function imply labour market contractions, whereas technological shocks acting through the endogenous TFP
channel produce labour market expansion. This happens because R&D technology and innovation step shocks
produce large and persistent TFP which, in addition to consumption wealth effects, trigger sustained increases
in investment that more than counter the negative labour wealth effect. Therefore these results are of potential
interests for the debate about the labour market response to technological shocks, featuring papers like Gali
(1999) or Basu et al (2006).

The endogenous TFP channel represents an additional source of persistence in the business cycle. In order to
show this property of the model, in Figure 6, I consider a dynamic impulse response to a 0.1 standard deviation
monetary policy shock for the endogenous TFP model described in Section 3 and the corresponding exogenous

TFP counterpart'®

. The TFP response to a 0.1 standard deviations shock is sizable and relatively persistent.
It follows that the model suggests the presence of strong spillovers to from the business cycle to TFP. The
variable which appears being most affected is inflation. This occurs because TFP drops are deflationary in the
model, as they imply a negative wealth effect in consumption and reduce the marginal productivity of physical
capital, therefore dampening investment. Due to this amplification effect, monetary policy is found to be a
much more powerful stabilization tool compared to standard models, with very persistent effects. In Figure 7,
I show the unconditional variance decomposition analysis of the core variables of the business cycle. I group the
shocks featured in the model in 4 classes: (i) demand shocks (risk premium, government spending, investment-
specific technology and monetary policy shocks), (ii) technological shocks (exogenous TFP, innovation step,
and R&D technology shocks), (iii) mark-up shocks (on wages and prices), (iv) labour quality and utilization
shocks. Output fluctuations in the model are mostly driven by demand shocks, as in the New Keynesian models
tradition. Demand shocks account for about the 70% of output fluctuations. Technological shocks for about
the 15%, and another 15% is explained by labour quality, utilization, and mark-up shocks. The relevance of
technological shocks is instead greater for consumption, due to the presence of large wealth effects, whereas
investment is mostly driven by demand shocks. Wages are largely explained by mark-up shocks,whereas prices
mostly by demand shocks. In the model, the missing deflation puzzle is significantly reduced. The reason is
that many of the newly introduced shocks affect at once demand and supply with the same sign, therefore they
can produce large fluctuations in aggregate fluctuations with limited inflation response. Hence, a smaller, more
realistic amount of price mark-up shocks is required in order to explain price dynamics in the aftermath of the

Great Financial Crisis.

18The exogenous TFP version is a version of the model presented in Section 3 without R&D and an endogenous TFP channel. T
calibrate the estimated parameters to the values presented in Tables 1-2-3 of the Appendix.
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FIG.5 - DYNAMIC RESPONSE OF THE ECONOMY
TO SEVERAL TYPE OF INNOVATION SHOCKS
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FIG.6 - DYNAMIC RESPONSE TO A MONETARY POLICY SHOCK WITH AND WITHOUT ENDOGENOUS TFP
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The labour market and the interest rate are primarily driven by demand shocks, and only marginally affected
by technological shocks. Eventually, TFP dynamics are mostly driven by technological shocks (responsible for
about two-thirds of their fluctuations), with only a limited contribution of demand shocks (about 10%). This
result is at the core of the paper, being consistent on many dimensions with the empirical observations (as
explained in Section 1) but in stark contrast with the rest of the recent literature concerning DSGE model
with endogenous TFP. In the Figures from 10 to 12, in Section D of the Appendix, I show the historical
decompositions of different classes of shocks. In Figure 10, I show the contributions of demand shocks to TFP
dynamics in the US. I find that the effect of demand and financial shocks, like risk premium and investment-
specific shocks, is sizable in the short-run. In particular, I find financial shocks to be more important to explain

productivity dynamics during recessions.

FIG.7 - UNCONDITIONAL VARIANCE DECOMPOSITION (in percent)
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I find the investment-specific shock to be important factors underlying the productivity contraction that pre-
ceded the dot-com recession in 2001 and approximately one-third of the sharp TFP contraction occurred in
2008. Nevertheless, the risk premium and investment-specific shocks do not have the persistence necessary to
explain the persistent stagnation of TFP. Furthermore, financial shocks do not appear being able to explain
productivity during expansions, and do not explain TFP dynamics in the aftermath of the Great Financial Cri-
sis. In Figure 11, I show the contributions of technological shocks to TFP dynamics. As previously mentioned,
the bulk of the TFP slowdown is explained by a persistent drop by in the ability of innovation of producing
TFP gains. This idea was explored in works like Gordon (2012) and Bloom et al. (2017), both identifying the
loss of productivity-enhancement potential of innovation as the cause of the productivity slump. I obtain that

the R&D specific shock is providing a positive contribution in the last years of the sample, meaning that more
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innovation is being produced for the same amount of R&D investment, which is in turn consistent with the fact
that the number of patents in the US has a positive trend. The contribution of exogenous TFP shocks is also
quite relevant, reflecting the presence of strong sectoral reallocation phenomena, as extensively documented by

the empirical literature.

6. Conclusion

In this paper, I developed a New Keynesian Dynamic Stochastic General Equilibrium model featuring a
creative destruction based mechanism of endogenous TFP growth. I estimated the model with U.S. data
(1993q1-2016q4) using Bayesian methods and performed several empirical exercises in order to shed light on the
TFP slowdown that occurred in the U.S. in the 2000s. I showed that the model is able to match the number
of PCT patent applications that originated in the US from 2000 to 2019, a fact that would suggest that the
model is quantitatively and qualitatively realistic. Furthermore, the innovation step shock exhibits dynamics
consistent with the patent application VAR evidence from Miranda-Agrippino et al. (2019).

With respect to other studies relying on DSGE frameworks (as for instance Anzoategui et al. 2019), the
introduction of the creative destruction based endogenous-TFP mechanism implies quantitatively similar TFP
responses and provides a quantitatively similar amplification effect to stochastic shocks hitting the fundamentals
of the economy. The sophistication of the innovation process allows to shed light on the heterogeneous sources of
the productivity dynamics and to illustrate the effect of their spillovers on the macro aggregates. In particular,
it allows explaining why some classes of productivity shocks have an expansionary effect on the labour market
and others have a contractionary effect. The answer provided by this paper is that shocks to the innovation
sector are expansionary because they imply persistent investment increase which adds up to large consumption
wealth effects. By contrast, exogenous TFP shocks contract the labour market, being the negative wealth effect
prevalent due to the lack of persistence of TFP. On the other hand, the presence of supply spillovers from
demand shocks, implies that inflation is less volatile and that the missing deflation puzzle is less marked than
in standard models.

In the historical and conditional variance decomposition analysis, I show that technological shocks are
responsible for the bulk of TFP fluctuations, whereas demand shocks play a limited role. In particular, demand
shocks are important to explain TFP contraction during recessions, but are not able to explain productivity
booms and too short-lived to explain persistent slowdowns. These striking findings are in stark contrast with
the rest of the literature although being consistent with many stylized facts and empirical works: (i) the TFP
slowdown began before the Great Financial Crisis and is still currently ongoing, (ii) R&D-to-GDP ratio and
R&D-to-TFP ratios did not drastically drop during and after the financial crisis yet TFP did, and (iii) a big
role of the slowdown is played by the inability of investment in new technologies of generating sustained TFP
gains (widely documented by Gordon 2012 and Bloom et al. 2017).

The results of the analysis performed in this paper challenge the view that the TFP slowdown was generated
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by demand or financial shocks and support the hypothesis that innovation specific factors played a crucial role
instead. The estimates suggest that innovation-specific shocks to the technological sector are more important
to interpret TFP dynamics and typically generate much more persistent TFP dynamics compared to demand
shocks. The interpretation provided by this paper suggests that the TFP slowdown might be much more long-
lasting than what predicted by previous models, and raises significant concerns about the sustainability of the

US growth path in the coming years.
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Appendix

A. Data and Sources!?

Real GDP: Real Gross Domestic Product, Billions of Chained 2009 Dollars, Quarterly, Seasonally Adjusted
Annual Rate in the United States. Normalized by the population over 16 years and expressed in 100*A(log).

Source: Bureau of Economic Analysis.

Real Consumption: Real Personal Consumption Expenditures, Billions of Dollars, Quarterly, Seasonally
Adjusted Annual Rate in the United States. Normalized by the population over 16 years and expressed in

100*A(log). Source: Bureau of Economic Analysis.

Real Net Investment: Real Fixed Private Investment, Billions of Dollars, Quarterly, Seasonally Adjusted
Annual Rate in the United States less Research and Development Investment, Billions of Dollars, Quarterly,
Seasonally Adjusted Annual Rate in the United States. Normalized by the population over 16 years and

expressed in 100*A(log). Source: Bureau of Economic Analysis.

Real R&D Investment: Real Research and Development Investment, Billions of Dollars, Quarterly,
Seasonally Adjusted Annual Rate. Normalized by the population over 16 years and expressed in 100*A(log).

Source: Bureau of Economic Analysis.

Real Wages: Real Non-Farm Business Sector, Compensation Per Hour, Index 2009=100, Quarterly, Sea-
sonally Adjusted. Deflated via the GDP deflator. Expressed in 100*A(log).

Source: Bureau of Labour Statistics.

Inflation: Implicit Price Deflator, Index 2009=100, Quarterly, Seasonally Adjusted. Expressed in A(log).

Source: Bureau of Economic Analysis.

Hours Worked: Civilian Employment divided by Civilian Noninstitutional Population. Adjusted by Fer-
nald (2014) utilization series - including adjustment for Average Weekly Hours and Labour Effort. Source:

Bureau of Labour Statistics, Federal Reserve Bank of St. Francisco.

Federal Funds Rate: Wu-Xia (2016) Shadow Federal Funds Rate. Source: Federal Reserve Bank of

Atlanta.

Capital Utilization: From Fernald (2014). Follows Basu, Fernald, Fisher, and Kimball (2013) and includes
adjustments in workers’ effort and capital’s workweek (BLS). Sources: Federal Reserve Bank of St. Francisco,

BLS.

Labour Quality: From Fernald (2014). Follows Aaronson and Sullivan (2001) methodology. Source:

Federal Reserve Bank of St. Francisco.

19All the real variables are deflated using the GDP deflator.
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B. General Equilibrium Conditions?’
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14 - R&D Investment Euler Equation

15 - Probability of Innovation
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C. TFP Series Used in the Estimation

FIG.8 - FIXED SHARES TFP (as in the estimation) AND VARIABLE SHARES TFP (as in Fernald 2014)
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TFP Log Differences in the US (1993-2018). Annual data. Sources: Fernald (2014), Author’s computations.

Shaded regions are NBER recessions.
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E. Which shocks drive TFP?

FIG.9 - CONTRIBUTION OF DEMAND SHOCKS TO TFP DYNAMICS (1993-2018)

0.5
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Black solid line: Smoothed TFP 1993-2018, annual data. Dashed blue line: investment technology shock. Dashed red line: risk
premium shock. Dashed green line: government spending shock.

FIG.10 - CONTRIBUTION OF TECHNOLOGICAL SHOCKS TO TFP DYNAMICS (1993-2018)

% Deviations from TFP Deterministic Steady State

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017

Black solid line: Smoothed TFP 1993-2018, annual data. Dashed blue line: innovation step shock.

Dashed red line: exogenous TFP shock. Dashed green line: RD efficiency shock.

FIG.11 - CONTRIBUTION OF UTILIZATION AND LABOUR QUALITY TO TFP DYNAMICS (1993-2018)
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Black solid line: Smoothed TFP 1993-2018, annual data.

Dashed cyan line: labour quality. Dashed magenta line: utilization.
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Table 1: Calibrated Parameters

Parameter Interpretation Value Target

Q@ Capital Share 0.35 Empirical Mean

Oc Coefficient of Relative Risk Aversion 1.5 Standard

oy Inverse of Labour Frisch Elasticity 1 Standard

Ok Capital Depreciation 2.5% Smets and Wouters (2007)
b Knowledge Depreciation 3.6%  Standard (Annual 15%)
Ap Curvature Kimball Aggregator (Prices) 10 Smets and Wouters (2007)
Aw Curvature Kimball Aggregator (Wages) 10  Smets and Wouters (2007)
Op Steady-State Price Mark-Up 1 No Fixed Costs

Dw Steady-State Wage Mark-Up 1.5 Smets and Wouters (2007)
GY Exogenous Govt Spending-to-GDP in Steady State 18% Smets and Wouters (2007)
JY R&D-to-GDP in Steady State 2.7% Empirical Mean
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Table 2: Structural Parameter Estimates

Parameter Posterior Prior

Mean 90 % Confidence Interval Distribution Mean St.Deviation

Consumption Habits h 0.853 [0.815 ; 0.884] B 0.7 0.1
Capital Adjustment Costs zZ7 5.781 [4.303 ; 6.977] N 4 1

Price Updating Probability Cp 0.924 [0.905 ; 0.941] B 0.5 0.1
Wage Updating Probability Cw 0.361 [0.301 ; 0.417] B 0.5 0.1
Wage Indexation b 0.501 [0.283 ; 0.727] B 0.5 0.15
Price Indexation tp 0.348 [0.107 ; 0.535] B 0.5 0.15
Utilization Cost zh 0.792 [0.738 ; 0.838] B 0.5 0.15
Adoption Cost z¢ 0.465 [0.387 ; 0.534] B 0.5 0.15
Agg. Demand Response to TFP prrpp  0.036 [0.010 ; 0.072] N 0.5 0.25
MP Response to Inflation Pr 1.544 [1.241 ; 1.901] N 1.5 0.25
MP Inertia Pr 0.886 [0.859 ; 0.916] B 0.750 0.1
MP Response to Output (Level) p, 0.206 [0.159 ; 0.270] N 0.125 0.05
MP Response to Output (Diff) pg, 0.022 [0.002 ; 0.039] N 0.125 0.05
TFP Growth Rate in S.S. ol 0.186 [0.114 ; 0.252] N 0.4 0.1
Stepping-on-Toes Parameter ¢rp  0.343 [0.279 ; 0.401] B 0.35 0.1
Curvature R&D Adj Costs Nrp  1.062 [1.000 ; 1.162] N 2 1

Legend: N=Normal, B=Beta, G=Gamma, [G=Inverse Gamma,
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Table 3: Shock Parameter Estimates

Parameter Posterior Prior
Mean 90 % Confidence Interval Distribution Mean St.Deviation

Risk Premium AR(1) Pb 0.398 [0.283 ; 0.533] B 0.5 0.2
Govt Spending AR(1) Pg 0.935 [0.910 ; 0.954] B 0.5 0.2
Investment Tech AR(1) pgs  0.867 [0.819 ; 0.926] B 0.5 0.2
Monetary Policy AR(1) Pms 0.643 [0.555 ; 0.715] B 0.5 0.2
Price Mark-Up AR(1) Pp 0.306 [0.105 ; 0.558] B 0.5 0.2
Wage Mark-Up AR(1) pw  0.752 [0.626 ; 0.883] B 0.5 0.2
R&D Efficiency AR(1) Pj 0.811 [0.743 ; 0.863] B 0.5 0.2
Exogenous TFP AR(1) pe 0.922 [0.861 ; 0.962] B 0.5 0.2
Innovation Step AR(1) Pa 0.481 [0.404 ; 0.571] B 0.5 0.2
Labour Quality Shock AR(1) p;;  0.808 [0.706 ; 0.904] B 0.5 0.2
Utilization Shock AR(1) Pu 0.861 [0.818 ; 0.903] B 0.5 0.2
Innovation Step St.Dev o, 264 [2.153 ; 2.971] IG 0.1 2
Exogenous TFP St.Dev o., 0.736 [0.662 ; 0.804] 1G 0.1 2
Risk Premium St.Dev o,  0.176 [0.144 ; 0.219] 1G 0.1 2
Govt Spending St.Dev oe, 0.619 [0.530 ; 0.702] 1G 0.1 2
Investment Tech St.Dev Oe,, 0.382 [0.314 ; 0.436] 1G 0.1 2
Monetary Policy St.Dev O, 0.103 [0.089 ; 0.118] 1G 0.1 2
Price Mark-Up St.Dev o, 0.106 [0.077 ; 0.122] 1G 0.1 2
Wage Mark-Up St.Dev Oc, 0.535 [0.461 ; 0.641] 1G 0.1 2
R&D Efficiency St.Dev o, 291 [2.805 ; 2.998] IG 0.1 2
Labour Quality St.Dev oq, 0414 [0.368 ; 0.450] 1G 0.1 2
Capital Utilization St.Dev o, 0.573 [0.481 ; 0.651] IG 0.1 2

Legend: N=Normal, B=Beta, G=Gamma, IG=Inverse Gamma
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