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Abstract: This study further examines the failure of game form recognition in preference

elicitation (Cason and Plott, 2014) by making elicitation more cognitively demanding through

a cognitive load manipulation. We hypothesized that if subjects misperceive one game for

another game, then by depleting their cognitive resources, subjects would misconceive the more-

cognitively demanding task for the less-cognitively demanding task at a higher rate. We find

no evidence that subjects suffer from a first-price-auction game-form misconception but rather

that once cognitive resources are depleted, subjects’ choices are better explained by random

choice. More cognitively able subjects are more immune to deviations from sub-optimal play

than lower cognitively able subjects.
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1 Introduction

Competing theories of neoclassical economics posit that preferences depend on the context

faced by an individual in a choice situation. In a well cited paper, Cason and Plott (2014)
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argue that because of mistakes, choices are masked as evidence of non-standard preferences.

To demonstrate how decision errors (which Cason and Plott (2014) call failure of game form

recognition - GFR or game form misconception - GFM) can mistakenly be regarded as subjects

having non-standard preferences, acting irrationally, or being affected by framing, they per-

formed an induced value experiment using the Becker-DeGroot-Marschak (BDM) mechanism

(Becker et al., 1964).

In their experiment, Cason and Plott (2014) asked student subjects to state an offer price for

selling back to the experimenter an endowed card worth $2 to the students. If the offer price was

lower or equal to a randomly drawn price, then the subject would receive the randomly drawn

price; otherwise the subject would redeem the card for $2. However, they found that only 16.7%

of subjects chose offers within 5 cents of the $2 induced value. Moreover, they showed that the

mistakes were not simply random departures from a correct understanding of the experimental

task, but rather they arose from a misconception of the rules of the BDM mechanism. Based

on the observed data patterns, they concluded that some subjects believed that the lowest offer

wins and would be paid the offer price; that is, they misconceived the BDM mechanism for a

first price auction (FPA). Cason and Plott (2014) acknowledge that many other misconceptions

are possible but that the FPA-GFM is consistent with what some subjects stated they should

be paid.

Following up on Cason and Plott (2014), Bull et al. (2019) suggest an additional test of the

game form misconception. If subjects do not bid optimally in the BDM mechanism because

they misconceive it for a FPA, then they should bid optimally in the FPA. They find that

subjects treated the two games as the same task when the tasks were presented simultaneously

and despite the fact that a warning was given to them that the tasks were different. Thus, the

simultaneous presentation of the two tasks did not result in better GFR.

Li (2017) provides a somewhat related explanation for the divergence of bids from the the-

oretical equilibrium value of a valuation task: although a mechanism may be strategy-proof

(i.e., the weakly-dominant strategy of every bidder is to reveal their private values), the mech-

anism may be cognitively complex which would render it a non-obviously strategy-proof task.

Complexity of a mechanism could vary between subjects depending on whether the subjects

can easily understand (or not) the mechanics of the task. Hence, the ability of the mechanism

to reveal an agent’s preference could depend more on the complexity of the mechanism for low

cognitive ability subjects. Related to this last point, Hassidim et al. (2017) report that many

studies find that individuals misrepresent their preferences at a higher rate when they are of

lower cognitive ability. In addition, Lee et al. (2017) find that subjects of higher cognitive ability

tend to bid closer to their induced value in a second price auction (SPA) and large overbids

are vastly the typical behavior of subjects with low cognitive ability. Li (2017) also compares

the SPA and the ascending clock auction (which is strategically equivalent to the SPA) and
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finds that subjects play the dominant strategy at significantly higher rates under the obviously

strategy-proof ascending clock auction, compared to the SPA which is just strategy-proof (but

not obviously strategy-proof).1

It is then possible that low cognitive ability can be a detrimental factor in truthful preference

revelation, consistent with the view in Choi et al. (2014) that the choices that some people make

may be different from the choices they would make if they had the skills or knowledge to make

better decisions. The role of intelligence or cognitive ability has been the subject of many

studies (see for example Brañas Garza and Smith, 2016; Rustichini, 2015, and citations therein)

and some of the stylized facts from this literature suggest that people of high cognitive ability

are more risk-tolerant, more patient, and less prone to anchoring effects than those with lower

cognitive ability (see Deck and Jahedi, 2015, and citations therein).

Similar to Bull et al. (2019), we use both a BDM and a FPA in order to test the base

result of Cason and Plott (2014) that subjects in a BDM bid as if they participate in a FPA.

However, because the two valuation tasks differ in their rules and complexity, subjects may

require different cognitive resources to fully comprehend each of them. In order to exogenously

manipulate cognitive resources, we employ a cognitive load manipulation by requiring subjects

to memorize strings of different lengths while they are making choices. Imposing a burden on

working memory has been shown to have adverse effects on performance in a variety of tasks

that involve logic or reasoning (see Deck and Jahedi, 2015, and citations therein). Our design

is not intended to test competing theories of framing like the endowment effect, anchoring,

attraction to the maximum or expectations of trade that could explain data patterns. This

would necessitate a different set of experiments which is beyond the scope of the main purpose

of our paper which is to examine the specific GFM set forth as an explanation in Cason and

Plott (2014).

Moreover, bids from the FPA allow us to test whether subjects in the FPA bid optimally.

Our unique contribution is that by manipulating cognitive load, we are able to study the causal

effect of cognitive resources on bidding behavior. Our hypothesis is that when less cognitive

resources are available, subjects would be moved further away from truthful revelation of their

induced values and that the BDM task would be more adversely affected than the FPA. Our

1A mechanism is obviously strategy-proof (OSP) if it has an equilibrium in obviously dominant strategies.
A strategy Si is obviously dominant if, for any deviating strategy S′

i, the best possible outcome from S′
i is no

better than the worst possible outcome from Si. As can be seen in Table A7 in the Electronic Supplementary
Material, neither the BDM mechanism nor the FPA are OSP mechanisms. For both mechanisms, the best
possible outcome for b 6= 5 (b 6= 6.5 in the FPA) is better than the worst possible outcome for b = 5 (b = 6.5 in
the FPA). Although both mechanisms are not OSP, there is a widespread belief that the price mechanism of the
FPA (paying what you bid) is simpler and more transparent than the price mechanism of the BDM (paying a
random draw). For example, Google Ads, an online advertising platform developed by Google where advertisers
pay to display brief advertisements, services, video content etc., uses auctions to determine which search ads are
displayed on the search results page as well as ad’s rank position. Google Ads recently switched to an FPA from
an SPA, citing reasons such as reducing complexity and increasing transparency for the switch (Bigler, 2019).
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experimental design is a simple 2 × 2 between-subjects design where we vary the elicitation

mechanism (BDM vs. FPA) and the level of cognitive load (high vs. low).

We find no evidence that subjects misperceive the BDM task for a FPA. While placing

subjects under high cognitive load leads to poorer performance and larger deviations from

induced value in the BDM task, this is not because subjects misconceive the BDM for a FPA at

a higher rate but rather because the choice process of a bid becomes in effect a random choice.

Moreover, the probability of submitting sub-optimal bids in the BDM task is larger for subjects

with low cognitive ability, while subjects with high cognitive ability are largely unaffected. We

also find that the FPA is rather immune to the high cognitive load treatment and the probability

of submitting sub-optimal offers does not vary with the level of cognitive ability. This result

corroborates well with the perception of the FPA as less cognitively demanding. Furthermore,

results are robust to a number of robustness checks: integrating risk aversion in the analysis,

accounting for attention/comprehension of instructions as well as to checks of whether subjects

understand the payoff mechanism.

The next section describes the experimental design. In Section 3 we first present evidence of

whether the cognitive load treatment was difficult enough and whether it had measurable effects

on a set of unrelated tasks (i.e., we present some manipulation checks). We then fit structural

models to allow us to distinguish between the optimal offer model under the BDM and the

FPA offer model. We also examine how deviations from optimal offers differ with respect to the

interacting effect of cognitive abilities and the cognitive load treatments. The results section

concludes with a few robustness checks. We then discuss the importance of our findings and

further recommendations for future research in the last section.

2 Experimental design

In May 2018, we recruited 269 subjects from the undergraduate population of the Agri-

cultural University of Athens in Greece to participate in a computerized experiment at the

Laboratory of Behavioral and Experimental Economics Science (LaBEES-Athens). Subjects

were recruited using ORSEE (Greiner, 2015). Although subjects participated in group sessions,

there was no interaction between subjects and the group sessions only served as a means to

economize on resources. Subjects were randomly allocated to one of the cells of a 2×2 experi-

mental design and each subject was only exposed to one of them (i.e, we did a between subjects

design). Table 1 shows the number of subjects allocated to each of the treatments. The number

of recruited subjects was dictated by sample size calculations that can be found in the Electronic

Supplementary Material.

When subjects arrived at the lab, they were given a consent form to sign. They were

then randomly assigned to one of the PC private booths. All instructions were computerized,
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Table 1: Experimental design

LCL HCL Total
FPA 67 66 133
BDM 66 70 136
Total 133 136 269

Note: BDM stands for the BeckerDeGrootMarschak mechanism; FPA stands for the First Price auction;
HCL (LCL) stands for the High (Low) cognitive load treatment.

interactive, and included examples for each type of task that would appear in the experiment

(see Experimental Instructions section in the Electronic Supplementary Material), with the

exception of the valuation task where a practice and examples were not provided. Subjects

were told that they will be given the opportunity to sell a card and earn more money but that

the rules of selling the card will be given in detail when they reach the respective stage. We

wanted to avoid subjects thinking through the task by the time they are actually confronted

with it, so that if the cognitive load treatment has any meaningful effect we would be able to

observe it. If the mechanics of the valuation task were known before subjects were exposed to

the cognitive load treatment, then the treatment would be rendered ineffective by construction.

Subjects were instructed to raise their hand and ask any questions in private and that the

experimenter (one of the authors) would then share his answer with the whole group. Subjects

received a show-up fee of e3 and a fee of e3 for completing the experiment so that each subject

would receive e6 with certainty upon successful completion of the experiment, which lasted

about an hour. They could also earn additional money during the experiment from one of

the randomly drawn tasks, and so the average of total payouts was e10.6 (S.D.=3.07, min=6,

max=14).

In total, subjects played 8 periods and in every period they went through one of the fol-

lowing decision tasks: 1) a valuation task, 2) an arithmetic (addition) task, 3) an arithmetic

(multiplication) task, and 4) a click-a-button task. The valuation task was repeated twice as in

Bull et al. (2019) and Cason and Plott (2014) since we intended to closely follow their design.

Every other decision task was also repeated twice to match the repetitions of the valuation task.

Subjects were not provided with any kind of feedback between periods for any of the tasks. Fig-

ure 1 shows sample screen shots illustrating the various decision tasks which are described in

the next subsections in more detail.

2.1 Cognitive load manipulation

Cognitive load was manipulated by means of an incentivized string memorization task.

While number memorization tasks have often been used in the literature (Benjamin et al., 2013;

Deck and Jahedi, 2015; Drichoutis and Nayga, 2017), we used letters instead of numbers to
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avoid potential anchoring effects in the valuation task (Furnham and Boo, 2011). Specifically,

in each period and just before the main decision task, a letter or a string of six letters appeared

for four seconds on the participant’s computer screen (see Figure 1a and 1b for sample screen

shots). Subjects were then asked to keep this letter/string in their memory and recall it after

the main decision task (see Figure 1h for a sample screen shot). If they recalled (typed) the

letter/string correctly within a time limit of ten seconds, their memorization payoff for the

period was e8. Otherwise it was e0. Subjects in the high cognitive load (HCL) treatment

were shown six-letter strings while subjects in the low cognitive load (LCL) treatment were

shown one letter to memorize. Letters (and strings) where drawn randomly in each period and

independently from other subjects.

6



Figure 1: Sample screen shots of various tasks

(a) Memorize string in the HCL treatment (b) Memorize letter in the LCL treatment

(c) Valuation task (selection of bid) (d) Valuation task (posted price revealed)

(e) Multiplication task (f) Addition task

(g) Click-a-button task (h) Recall number
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2.2 The valuation task

Given that both Cason and Plott (2014) and Bull et al. (2019) used paper and pencil

experiments, we tried to simulate their paper task as close as possible with a computer interface.

In Cason and Plott (2014) and Bull et al. (2019), subjects were given a card with a front and

a back side. Subjects would first state their offer for selling the card worth $2 to them in the

front side of the card. They were then instructed to turn around the card only after writing

down a price and removing a tape to reveal the posted price.

To simulate this paper card, we showed on the computer screen two equally sized boxes, one

on the left side of the screen (simulating the front side of the card) and one on the right side of

the screen (simulating the right side of the card). Figures 1c and 1d show example screens of

the valuation task. The left side box would contain the instructions (we used similar wording

to Cason and Plott (2014) and Bull et al. (2019)) for selling the card as well as a radioline that

subjects could click on in order to state their offer price. The radioline was anchored from e0 to

e8 and was complemented with a series of buttons that could be used to add/subtract amounts

of money to make more refined choices.

The right side of the card had a rectangle colored area (simulating the tape) that covered

the randomly drawn price. Once subjects submitted and confirmed their offer, the buttons for

making refined offers would disappear and the radioline was effectively inaccessible, preventing

subjects from modifying their bid. At the same time, the rectangle area would disappear to

reveal the posted price. After the posted price was revealed, subjects were asked to answer

two questions taken verbatim from Cason and Plott (2014) and Bull et al. (2019) that reveal

subjects’ perception of the valuation task.

Our choice to scale up the induced value from $2 to e5 was dictated by the fact that

incentives in the main decision task had to be proportional to the certain payoff of subjects’

participation. Cason and Plott (2014) and Bull et al. (2019) did not pay show up or participation

fees because they did their valuation task to introductory classes with students. Our need to

measure cognitive ability and precisely control the cognitive load procedure made the use of a

computer laboratory environment necessary. The randomly drawn price was selected to be in

the [0, 8] interval and subjects were made aware of this.

The instructions between the BDM mechanism and the FPA were similar with the only

difference being in this phrase: Subjects assigned to the BDM mechanism were told ‘. . . you can

sell your card at the posted price’ while subjects at the FP auction were told ‘. . . you can sell

your card at your offer price’. If we denote the offer price chosen by the subject as b and the

randomly drawn posted price as p, then the choice of an induced value of IV = 5 and an interval

of posted prices of [0, 8] determines the optimal offers as follows: i) in the BDM mechanism the

expected payoff is E[π] = IV × Prob(b > p) + E(p|p > b) × Prob(p > b) which simplifies to
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E[π] = 5×b/8+( b+8
2
)×(1−b/8). Therefore, expected payoff is maximized when ∂E[π]/∂b = 0 or

when bBDM = 5, ii) in the FPA the expected payoff is E[π] = IV ×Prob(b > p)+b×Prob(p > b)

which simplifies to E[π] = 5 × b/8 + b × (1 − b/8). Therefore, expected payoff is maximized

when ∂E[π]/∂b = 0 or when bFPA = 6.5.

2.3 Arithmetic and click-a-button tasks

We used the manipulation checks of Drichoutis and Nayga (2017) in order to identify whether

the letter/string memorization task actually manipulates cognitive load. The tasks were meant

to differ in terms of difficulty in order to assess the severity of the manipulation on decision

making. Similar to Drichoutis and Nayga (2017) and Deck and Jahedi (2015), in the multipli-

cation arithmetic task, subjects had to multiply two numbers. In the addition arithmetic task,

subjects had to add two numbers.2 Subjects had to indicate their answer by clicking the right

choice from a list of randomly determined possible choices that were shown in two columns in

an ordered manner; i.e., from low values to high values (see Figures 1e and 1f). The correct

answer was set randomly to one of the buttons. In the click-a-button task, subjects simply had

to click a button (see Figure 1g). The arithmetic and click-a-button tasks were set with a time

limit of 11 seconds after which subjects would be forced out if they had not made a decision.

2.4 Cognitive ability

A cognitive load manipulation might have a differential effect on subjects with varying levels

of working-memory capacity. Since working-memory capacity has been shown to be strongly

correlated with general cognitive ability (Colom et al., 2004; Gray et al., 2003), we first measured

the cognitive ability of all subjects using the Raven’s Standard Progressive Matrices (RSPM)

test which is used to assess mental ability associated with abstract reasoning and is considered

a nonverbal estimate of fluid intelligence (Gray and Thompson, 2004). The RSPM test consists

of 60 items and it took subjects on average 20 minutes to complete. Subjects were not provided

with any feedback regarding their performance in the RSPM test. The RSPM test allows us to

sum correct responses and form a measure of cognitive ability that we can then use to assess

the effect of working-memory capacity on behavioral tasks’ performance.

2.5 Payoffs and payments

Participants were paid for one randomly drawn period (out of 8 periods) and for only one of

the (randomly determined) tasks in the randomly selected period (i.e., either the memorization

2In the multiplication arithmetic task, subjects had to multiply a one-digit integer m1 ∼ U{5, . . . , 9} and a
two-digit integer m2 ∼ U{13, . . . , 19}. In the addition arithmetic task, subjects had to add a one-digit integer
a1 ∼ U{1, . . . , 9} and a two-digit integer a2 ∼ U{11, . . . , 99}.
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task or the decision task; depending on the period that was randomly drawn, the decision task

could be either the valuation task or the addition task or the multiplication task or the click-

a-button task). This was clearly explained beforehand in the instructions (see Experimental

Instructions - Screen 2 in the Electronic Supplementary Material).

Similar to Deck and Jahedi (2015) and Drichoutis and Nayga (2017), we set the payoff as-

sociated with memorization higher than the payoff for the decision tasks, so that participants

(even the ones with limited working memory capacity) would devote their attention to memo-

rization and would not skip this task. Subjects would earn e8 if they recalled the letter/string

correctly and e5 for a correct answer in either the multiplication task, the addition task or the

click-a-button task. Our payoff scheme increases the likelihood that the cognitive load manip-

ulation would be effective. In the valuation task, subjects could earn e5 (the Induced Value

of the card) if their bid was higher than the randomly drawn price; they could also earn the

posted price (their offer price) if their offer was lower than the posted price under the BDM

mechanism (FPA).

3 Results

Before we present our results, it is useful to check whether our data show particular imbalance

in terms of the observable characteristics of our subjects. While many researchers use statistical

tests to check for balance of observable characteristics between treatments, the literature points

to some pitfalls of this procedure (e.g., Briz et al., 2017; Deaton and Cartwright, 2016; Ho

et al., 2007; Moher et al., 2010; Mutz and Pemantle, 2015). Following this literature, we report

in Table 2 normalized differences (Imbens and Rubin, 2016; Imbens and Wooldridge, 2009) for

all pairwise comparisons of treatment cells. For each subpanel of the table, we report in the

lower diagonal normalized differences in location; i.e., normalized differences in means: |x̄1 −

x̄2|/
√

(s21 + s22)/2 where x̄j and s2j (j = 1, 2) are the group means and variances, respectively.

The upper diagonal parts report measures of differences in dispersion: ln(s1/s2) (Imbens and

Rubin, 2016). The dispersion difference measure indicates smaller differences in dispersion when

its value is closer to zero. Cochran and Rubin’s (1973) rule of thumb is that the normalized

difference in location should be less than 0.25. Combining information from these two measures

can give us some indication whether some characteristics systematically appear as particularly

unbalanced. For example, age appears to have a bit larger normalized difference in means for a

few cells of the table but the corresponding differences in dispersion are not problematic. More

importantly, the Raven score variable which is important for our analysis, is not unbalanced.

Sections 3.1 and 3.2 establish that the memorization task was difficult to perform and that

the memorization task affects tasks where reasoning is required (this is our manipulation check).

The reader can directly skip to Section 3.3 where results for the bidding behavior are presented.
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Table 2: Pairwise normalized differences between treatment cells for observable characteristics

FPA BDM
LCL HCL LCL HCL

Gender
FPA

LCL 0.075 0.107 0.053
HCL 0.272 0.031 -0.022

BDM
LCL 0.340 0.067 -0.053
HCL 0.216 0.055 0.122

Age
FPA

LCL -0.096 -0.001 -0.087
HCL 0.541 0.095 0.008

BDM
LCL 0.479 0.085 -0.086
HCL 0.217 0.312 0.241

Household
size

FPA
LCL 0.304 -0.252 0.009
HCL 0.185 -0.556 -0.295

BDM
LCL 0.185 0.358 0.261
HCL 0.149 0.016 0.315

Income
FPA

LCL -0.041 -0.104 -0.006
HCL 0.076 -0.063 0.036

BDM
LCL 0.095 0.021 0.099
HCL 0.056 0.130 0.148

Raven score
FPA

LCL 0.378 0.099 -0.092
HCL 0.248 -0.279 -0.469

BDM
LCL 0.236 0.015 -0.191
HCL 0.077 0.145 0.144

Notes: HCL (LCL) stands for the high (low) cognitive load treatment. For each subpanel of this table,
the lower diagonal part shows normalized differences in location whereas the upper diagonal part shows
normalized differences in dispersion.
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3.1 Difficulty of the memorization task

We next explore whether the memorization task was difficult enough to have any meaningful

effects. The top panel in Table 3 shows the frequency of correctly recalling the letter/string

overall as well as after each task. It is obvious that success rate of recalling the string is

significantly lower under cognitive load. Subjects are able to correctly recall the string one

third of the times under load while they are successful almost every time when they just have to

memorize a single letter in the low cognitive load treatment. A χ2 test rejects the null for all rows

of the top panel of Table 3 (p-value < 0.001) indicating that memorizing and correctly recalling

a six letter string was significantly more difficult than memorizing and correctly recalling just

one letter.

The difficulty of recalling the letter/string also exhibits some variation between tasks. For

example, under low cognitive load, subjects almost perfectly recall the letter after the Click-a-

button task (99.25%) while they fail to do so after the BDM/FPA (valuation) task (93.98%).

A Fisher’s exact test rejects the null of equality of success rates between tasks (p-value <

0.003). Similarly, when under high cognitive load, subjects perform significantly worse after the

multiplication task (22.79%) than after the Click-a-button task (45.22%). A χ2 test rejects the

null of equality of success rates between tasks (p-value < 0.001) under the HCL treatment.

Table 3: Success rate in the recall task

HCL LCL

Success rate

Combined over all tasks 36.21% 96.62%

After. . .

Multiplication 22.79% 95.49%
Addition 42.65% 97.74%
Click-a-button 45.22% 99.25%
Valuation task 34.19% 93.98%

Success rate

All 6 letters 36.21% -
5 letters 9.01% -
4 letters 9.38% -

3 letters or less 14.98% -
Did not submit

anything
30.42% -

Notes: HCL (LCL) stands for the high (low) cognitive load treatment. Differences between treatments (HCL
vs. LCL) are statistically significant (p-value < 0.001) for all rows of the top panel of the table based on a
χ2 test.

The lower panel in Table 3 breaks down the percentage of successful recalls based on the

count of letters subjects correctly typed (for example, if a subject was required to memorize

‘MΛKTMΠ’ but then typed ‘MΛKTΣΛ’, then this subject would have correctly typed four

out of six letters). Table 3 shows that 54.60% of the times subjects correctly recalled 4 or more

letters (= 36.21% + 9.01% + 9.38%) while 14.98% of the times subjects typed 3 letters or less
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correctly. 30.42% of the times (331 times out of 2152), subjects did not submit anything at

all. This number is disproportionately shared between the Valuation task (35.65%) and the

Multiplication task (31.42%) (versus 16.92% for the Addition task and 16.01% for the Click-a-

button task), indicating that after a more demanding task it is more likely that subjects did

not submit anything.3

In the Electronic Supplementary Material we present additional analysis where we estimate

a logit model for the success/failure of recalling the memorized letter/string. This analysis

supports the results above and generally establishes that the memorization task was indeed

difficult to perform.

3.2 Manipulation checks

This section examines whether the memorization task was successful in loading the working

memory of subjects so that it will result in worse outcomes in tasks where reasoning is required.

Table 4 compares the success rates in each of the multiplication, addition, and click-a-button

decision tasks. As shown, the memorization task successfully reduced success rates in the mul-

tiplication and addition tasks but had a negligible impact on the click-a-button. The reduction

in success rates was larger in the multiplication task than in the addition task.4 A one sided

proportions test indicates that success rate in each decision task is lower under cognitive load,

results in rejection of the null (for α = 10%) for the multiplication and addition tasks but not

for the click-a-button task.

Table 4: Success rate in decision tasks

HCL LCL p-value
Multiplication 44.85% 51.50% 0.061
Addition 84.92% 89.10% 0.075
Click-a-button 98.53% 99.25% 0.214

Notes: HCL (LCL) stands for the high (low) cognitive load treatment. Last column shows p-values comparing
the two treatment for all rows of the table based on a one-sided proportions test.

In the Electronic Supplementary Material we present additional analysis where we run a

3On further reflection, subjects not submitting a string (i.e., submitting an empty field) could be due to one
of the following reasons. Either a subject decides not to put much effort in recalling the string and clicks the
button to proceed to the next screen or the subject puts some effort in recalling the string until time is up and
does not have time to click on submit. We find that 28 choices (8.46% of choices that did not submit a string in
the high cognitive load treatment) coming from 13 subjects submit an empty field before the time expires. This
might be an indication that the vast majority of choices (91.54%) from subjects that did not submit a string
(but could have typed a string and were just not fast enough to submit it) were putting some effort in the recall
task.

4Table A8 in the Electronic Supplementary Material compares the reduction in success rate of correctly
solving each of the three manipulation tasks with other studies that use number memorization techniques instead
of letter memorization.
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Figure 2: Marginal effects from Logit model (1) in Table A2 (with 95% and 90% CI)

logit regression of success/failure at the decision tasks, pooling data together from the three

tasks (standard errors are clustered at the individual level) in order to econometrically control

for the influence of observable characteristics and to explore the joint influence of the treatment

variable and decision tasks.

Figure 2 graphs the marginal effects for cognitive load for the three decision tasks from the

logit model (shown in the Electronic Supplementary Material). As shown, subjects are 7.3% less

likely to correctly solve the multiplication task and 3.4% less likely to correctly solve the addition

task when under cognitive load. On the other hand, cognitive load does not have a significant

effect on the click-a-button task. Moreover, the positive effect of the Period variable in Table A2

indicates improved performance in these decision tasks as the experiment progresses. Note that

the Raven score has a positive and statistically significant effect, indicating that subjects of

higher cognitive ability are able to perform better in the decision tasks.

All in all, the results presented in this section show that the treatment was effective in

inducing the desired effect according to our manipulation check. A significant treatment effect

shows up even in the task where low reasoning is required (addition task) but not in a task

where no reasoning is required (click-a-button task). Furthermore, we found that the effect

increases in magnitude in a task involving high reasoning such as the multiplication task.
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3.3 Descriptive analysis of bids

We first start by analyzing bidding behavior with simple graphs to gain some initial insights.

Figure 3 depicts the histograms of bids per treatment in widths of 20 cents. Bars with thick outer

lines depict overall frequency of bids around 4% of optimal offers for the BDM (e5±0.20 cents)

and the FPA (e6.5±0.26 cents). The BDM treatment under low cognitive load (Figure 3a)

echoes the results of Cason and Plott (2014) and Bull et al. (2019) in the sense that the BDM

does not provide reliable measures of preferences.5 In this treatment, the percent of offers

within a range of 4% around the price of e6.5 (the optimal offer of the FPA) is barely 2.27%,

indicating a very low proportion of subjects that potentially suffer from a FPA-GFM (i.e., they

misperceive the BDM mechanism for a FPA).

Figure 3b indicates that subjects that bid in the BDM mechanism under high cognitive load

show a somewhat different behavior. The proportion of bids around the offer of e5 drops to

5% from 15.15% (a 67% decrease; statistically significant according to a proportions test, p-

value= 0.005) while the proportion of offers around the e6.5 offer increases from 2.27% to 10.71%

(a 371.8% increase; statistically significant according to a proportions test, p-value= 0.005).

Given that optimal offers around e6.5 become much higher, this might be an indication that

the HCL treatment causes some FPA-GFM.

Examining behavior under the FPA is a useful comparison. Subjects in the FPA under

low cognitive load (Figure 3c) exhibit a similar pattern in terms of proportion of offers around

the e5 (not statistically significant according to a proportions test, p-value= 0.398) and the

e6.5 bid with the BDM mechanism under high cognitive load (differences are not statistically

significant according to a proportions test, p-value= 0.782). This result further reinforces the

intuition that high cognitive load induces a FPA-GFM.

The last figure (Figure 3d) shows that in contrast to the FPA under LCL, applying high

cognitive load in the FPA slightly increases offers around e5 and decreases offers around e6.5,

although none of the differences is statistically significant (p-value= 0.144 for the proportion

around e5 and p-value=0.174 for the proportion around e6.5). Moreover, as we show mo-

mentarily, the FPA-LCL and FPA-HCL bid distributions are indistinguishable in statistical

terms.

Figure 4 shows kernel density estimates by treatment as well as the results of a Kolmogorov-

Smirnov test comparing the bid distributions. Eye balling the graphs and the Kolmogorov-

Smirnov tests support our discussion above: the bid distribution under the BDM mechanism

is statistically different than the bid distribution under the FPA when subjects are exposed to

5In Bull et al. (2019) 7.9% of subjects make an optimal offer within 5 cents of the $2 induced value in Period
1 (16.7% in Cason and Plott (2014)) and 13.5% do so in Period 2 (31.1% in Cason and Plott (2014)). The
proportion of subjects in our experiment bidding within 5 cents of the optimal offer in the BDM are similar to
Bull et al. (2019): 7.58% bid within 5 cents of the optimal offer in Period 1 and 16.67% in P2. Improvement of
outcomes in Period 2 is consistent with previous studies.
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Figure 3: Histograms of bids in e0.2 widths

(a) BDM, LCL (b) BDM, HCL

(c) FPA, LCL (d) FPA, HCL

Notes: Bars with thick outer line indicate bids ±4% around the optimal offers of e5 and e6.5. HCL (LCL)
stands for the high (low) cognitive load treatment.
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Figure 4: Kernel density estimates of bids

(a) LCL

Note: Kolmogorov-Smirnov p-value = 0.003

(b) HCL

Note: Kolmogorov-Smirnov p-value = 0.247

a LCL (Figure 4a) but the difference is muted under HCL (Figure 4b). This particular result

indicates that a cognitive load manipulation may be able to turn on and off a FPA-GFM (if

subjects really suffer from a FPA-GFM).

3.4 Optimal BDM mechanism offers or first-price game form mis-

conceptions?

Although it is tempting to attribute differences in bid distributions that were described in the

previous section to FPA-GFM, we might ask whether subjects’ offers in the BDM mechanism

are consistent with a model of optimal offers or with a first-price misconception model. To

answer this question, we use maximum likelihood methods to fit our data in a model where

subjects choose to maximize their expected expected payoff but make logit errors (Cason and

Plott, 2014, also fitted similar models). Subjects’ probability of submitting an offer bj can be

defined as:

Prob(offer = bj) =
eλE[π|bj ]

∑k=1
n eλE[π|bk]

(1)

In this model the λ term bounds the cases where subjects are insensitive to differences in

expected payoffs (λ = 0) or where subjects choose the offer that maximizes their expected payoff

with the highest probability (λ → ∞). A higher level of λ indicates a better fit, requiring less

noise to characterize subject’s choices according to that particular model.

In Equation 1, if we use Eopt[π] = IV × Prob(b > p) + E(p|p > b) × Prob(b < p) then λ

characterizes the optimal offers model of no misconceptions under the BDM mechanism. On

the other hand, if we use Egfm[π] = IV × Prob(b > p) + b× Prob(b < p) then the estimated λ
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characterizes the first price misconception model under the BDM mechanism. We then define

the log-likelihood function as:

lnLm(λ; yi) =
∑

i

ln
yie

λEm[π|bj ]

∑k=1
n eλEm[π|bk]

(2)

where m stands for the optimal model (m = opt) or the FPA-GFM model (m = gfm) using

the corresponding expected payoff expressions and yi is an indicator that the offer is bj.
6

With risk averse bidders, optimal offers in a FPA deviate from the risk-neutral offer price of

e6.5. With varying levels of risk, the optimal offer will be different for each subject. To show

this, assume a Constant Relative Risk Aversion utility function U(x) = x1−r

1−r
(where r is the

coefficient or relative risk aversion). We can write the expected utility of a bidder submitting

an offer b as:

EU(b; r, p) =
IV 1−r

1− r
× Prob(b > p) +

b1−r

1− r
× Prob(p > b) (3)

which can be rewritten as:

EU(b; r, p̄) =
IV 1−r

1− r

b

p̄
+

b1−r

1− r
(1−

b

p̄
) (4)

Given an induced value of IV = 5, a maximum randomly drawn price of p̄ = 8 and setting
∂EU
∂b

= 0 gives:

51−r + (1− r)b−r(8− b)− b1−r = 0 (5)

If we plug in r = 0 in Equation 5 we get b = 6.5, which is the optimal offer of the FPA

under risk neutrality. We can then replace expected payoff in Equation 2 with Expected utility

as defined in Equation 4:

lnLRA(λ; yi) =
∑

i

ln
yie

λEU [π|bj ]

∑k=1
n eλEU [π|bk]

(6)

Equation 6 bounds equation 2 as a special case for r = 0. Since we wanted to have the

minimum amount of differences in the experimental design with respect to previous studies that

examined FPA-GFM, in our experiment we did not elicit subjects’ risk preferences. Nevertheless,

we were able to match our data with data from a Holt and Laury (2002) risk preference elicitation

task and a payoff-varying risk preference task (Kechagia and Drichoutis, 2017) (which is a scaled

up version of the payoff varying task of Drichoutis and Lusk (2016)). The risk preferences

6Because the expression in the denominator of Equation 1 becomes extremely large when one uses the
lowest possible division of 1 cent (i.e., the expression involves the summation of 801 summands), the maximum
likelihood estimations are performed with yi indicating offers being in a bin within 19 cents of bj , which the
lowest division that our estimation software would accommodate given the length of the expression involved.
Cason and Plott (2014) use a similar strategy.
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data come from an incentivized web survey that is being administered annually since 2017 to

the student population of the university (administered online through the Qualtrics platform).

Thus, we were able to match 156 subjects from the 2018 wave (the experiment described in this

paper was conducted 2 months after the 2018 Qualtrics survey). We also matched an additional

24 subjects with risk preferences data from the 2017 wave and 23 more subjects from the 2019

wave. Consequently, we were able to match subjects from this experiment with risk preferences

measures for the 75.46% of our sample.7, 8

There are two ways to integrate risk preferences in the analysis. First, we can estimate

structural econometric models that allow us to calculate and predict a relative risk aversion

(RRA) coefficient for each subject. This comes with the advantage that even for subjects

that we do not have their risk preferences data, we can use the predictions for r based on the

estimated parameters of the model. The Electronic Supplementary Data describes in detail

how we went about the estimation and prediction of a RRA coefficient for each subject.9 We

can then use maximum likelihood methods to estimate the λ parameter in Equation 6. The

statistical specification allows for the possibility of correlation between responses by the same

subject.

Second, we can jointly estimate the r and λ parameters by stacking together choices made in

the risk preferences task and the valuation task. The downside is that since we cannot match all

subjects with the risk preferences data, we have to restrict our sample to the matched data. The

Electronic Supplementary Material describes how we formulate the joint log-likelihood function

in this case. Because results are similar when we use the predictions for r, we confine results

from the joint estimation of r and λ in the Electronic Supplementary Material.

Table 5 shows the estimates from the sub-sample exposed to the BDM mechanism task.

Model (1) shows the parameter estimates for λ from a model where the expected payoff expres-

sion is that of the optimal offer under the BDM mechanism. Model (2) shows the estimates

when subjects are assumed to misconceive the expected utility expression in the BDM mecha-

nism for that of the FPA, while model (3) presents the estimates from a mixture specification.

In the mixture specification, we allow some choices to be consistent with the FPA-GFM model

with probability πGFM and consistent with the optimal offer model of BDM with probability

7In the web survey, subjects are given a e2 fixed fee for completing a questionnaire and a series of risk and
time preferences tasks. A randomly drawn choice from the risk preferences task is added to their fixed fee and is
then bank-transferred to subject’s preferred bank account. Money are paid via the ‘Pay a friend’ service of the
bank ‘Eurobank’ which allows transferring money to subject’s preferred bank account without knowing subject’s
account number, only by using an email address or a mobile phone number. All transactions were ordered as
soon as a task was completed and 88.44% of the ordered transactions went through. A dummy variable in the
estimations controls for this fact.

8While the literature points to potential effects of cognitive load on risk version, Drichoutis and Nayga (2017)
show that the meta-analytic effect from a set of four studies (Benjamin et al., 2013; Deck and Jahedi, 2015;
Gerhardt et al., 2016; Olschewski et al., 2018) is actually a null effect.

9We find that subjects are, on average, characterized by risk aversion (r̄ = 0.591, min= 0.258, max= 0.788).
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1 − πGFM . Both models (2) and (3) are estimated with the restriction that r = 0 i.e., risk

neutrality is imposed. Models (4) and (5) relax the risk neutrality assumption by using the

values of r we predict from an independent estimation of risk preferences as described in the

Electronic Supplementary Material.

Table 5: Maximum likelihood estimates of logit choice error parameter λ for optimal offers,
first price auction misconception and mixture models

Risk neutrality Risk aversion
Optimal
model

FPA-GFM
model

Mixture
model

FPA-GFM
model

Mixture
model

(1) (2) (3) (4) (5)
λ
Constant 1.202∗∗∗ 0.285∗∗∗ 1.105∗ 0.385∗∗ 1.170∗∗∗

(0.436) (0.093) (0.666) (0.181) (0.441)
HCL treatment -1.140∗∗ -0.219∗ -1.039 -0.385∗∗ -1.108∗∗

(0.533) (0.126) (0.671) (0.181) (0.537)
πGFM

Constant - - 0.084 - 0.088
- - (0.294) - (0.256)

HCL treatment - - 0.915∗∗∗ - -0.088
- - (0.294) - (0.256)

N (Subjects) 272 (136)
Log-likelihood -1011.551 -1012.372 -1010.748 -1015.772 -1011.465
AIC 2027.103 2028.744 2029.496 2035.545 2030.931
BIC 2034.314 2035.955 2043.919 2042.757 2045.354

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01.

Considering first the non-mixture models, it is obvious that the optimal offer model under

the BDM exhibits a better fit across all models according to information criteria. Under low

cognitive load, the λ parameter is estimated to be 1.202 and is significantly different than zero,

indicating that subjects are not completely insensitive in how they choose their offer i.e., each

bid value does not have the same probability of being offered. However, under high cognitive

load, the overall value of the λ parameter goes down to 0.062 (= 1.202 − 1.140) which is

not statistically significantly different than zero (p-value= 0.840). This is an indication that

cognitive load causes a shift in the direction of making subjects choose all feasible offers with

equal probability. The interpretation from the FPA-GFM model (model (2)) is similar, albeit

the λ parameter is estimated to be significantly lower than the optimal offer model under BDM.

Note that results from model (2) are very similar to results from model (4) where risk neutrality

is relaxed.

The mixture model provides additional insights as per the model that best describes subjects’

behavior. The probability that subjects’ choice are better described by the FPA-GFM model
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under low cognitive load is not significantly different than zero (πGFM = 0.085; p-value = 0.774)

indicating that under low cognitive load, the optimal offer model for the BDM mechanism

better describes subjects’ behavior than the FPA-GFM model. In fact, this coefficient is very

close to the one where risk neutrality is relaxed (model (5)). Although the high cognitive

load treatment causes a significant increase in the estimated probability parameter that goes

up from 0.084 to 0.999 in model (2) (= 0.084 + 0.915), indicating that the FPA-GFM model

is the sole characterization of subjects behavior under HCL, the result is not robust to risk

aversion.10 From model (5) we infer that once risk neutrality is relaxed, the coefficient for the

HCL treatment goes down to zero.

This is not a trivial change in inferences because a null coefficient for πGFM suggests that the

optimal model is the sole characterization of subjects bidding choices under the BDMmechanism

treatment. To further explore the role of risk in the estimated probability πGFM of a FPA-GFM,

we estimated mixture models as in Table 5 but we assumed a value for r between 0 and 0.99

with steps of 0.01 (albeit we assumed that all subjects have the exact same r value). That is,

we assumed varying levels of risk, ranging from risk neutraltity (r = 0) to high risk aversion

(r = 0.99). Figure 5 graphs the estimated πGFM for the LCL and HCL treatments. Consistent

with Table 5, for risk neutrality and low levels of risk aversion (r < 0.5), the πGFM for the LCL

treatment is estimated close to zero while the πGFM for the HCL treatment is estimated close

to 1 giving rise to this dual characterization of subjects’ bid choices when varying the cognitive

load. However, for values of r greater than 0.5, then πGFM is indistinguishable from zero for

both the LCL and HCL treatments leaving the optimal model as the sole characterization of

subjects’ bidding choices under the BDM mechanism (πGFM for the HCL treatment gradually

shifts from 1 to 0 in the range of r values between 0.4 and 0.5).11

Overall, results from Table 5 indicate that the BDM optimal offer model fits our data better

that every other model we tried, including a mixture specification where we let the data be

determined by multiple models and estimate the probability of being consistent with one model

or the other.

As a comparison, we also estimated a model where we assume that subjects in the BDM

mechanism treatment suffer from FPA-GFM and pool the data together with the FPA treatment

in order to estimate the λ values for each cell of our design. We use the interaction of the

dummies of the treatments to allow us to estimate differential λ values for each cell. Results

10This probability is statistically different than zero (p-value< 0.001) but not different than 1 (p-value=
0.358).

11We note that this is not a general result which occurs when one integrates risk aversion in the analysis but
rather a particular feature of our data. When we do the same exercise using Cason and Plott’s (2014) data,
we find that the estimated misconception probability of around 0.65 (as shown in column (1) of their Table 5)
remains robust for values of r ranging from risk neutrality (r = 0) to high levels of risk aversion (r = 0.99).
Figure A2 in the Electronic Supplementary Material depicts πGFM for various levels of r using the Cason and
Plott (2014) dataset and our estimation routines.
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Figure 5: Probability of FPA-GFM by cognitive load and relative risk aversion coefficient

Note: LCL (HCL) stands for the low (high) cognitive load treatment.

are as follow (for the risk neutral case): λFPA
LCL = 0.411 (p-value < 0.001), λFPA

HCL = 0.224

(p-value = 0.013), λBDM
LCL = 0.285 (p-value = 0.002), λBDM

HCL = 0.070 (p-value = 0.436).12 Note

that inducing high cognitive load in the BDM treatment drives the value of λ down to zero

(indicating that subjects choose offers with equal probability). This result echoes the estimated

effect of the HCL treatment across all models of Table 5. The FPA treatment fits the data

better than the BDM treatment (assuming that subjects in the BDM treatment think they

are playing a FPA) since the estimated λ exhibits higher values than the BDM. A test that

λFPA
LCL = λFPA

HCL = λBDM
LCL does not reject the null (χ2 = 1.67, p-value = 0.435) but rejects the null

at the 10% significance level that λFPA
LCL = λFPA

HCL = λBDM
LCL = λBDM

HCL (χ2 = 6.62, p-value = 0.085).

3.5 Deviations from optimal bidding

In this section we explore how the treatments interact with cognitive ability (as proxied

by the Raven score) to determine deviations from optimal offers when at the same time we

control for observable characteristics. One way to explore this is by forming a measure of

absolute deviations from the optimal offer for each valuation task. Since the optimal offers in

the BDM mechanism and the FPA are different (e5 and e6.5, respectively), similar absolute

deviations from the optimal offer will reflect different deviations of relative size in each valuation

task. To account for this fact, we form a relative measure of deviations from the optimal

12Estimated values for λ when we relax the risk neutrality assumption are very close to the risk neutral
estimates: λFPA

LCL = 0.605 (p-value = 0.007), λFPA
HCL = 0.286 (p-value = 0.059), λBDM

LCL = 0.384 (p-value = 0.033),
λBDM
HCL ≈ 0 (p-value = 0.963)
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offer as: Relative bid deviation =
∣

∣

∣

Bid−Optimal offer
Optimal offer

∣

∣

∣
. We then run random effects regressions

with clustered standard errors, with the relative bid deviations as the dependent variable. The

independent variables include all the two-way interactions terms between the treatment variables

and the Raven score variable to capture differential treatment effects that are mediated by

subjects’ level of cognitive ability. We also included a Period dummy, a set of demographic

variables and a ‘no-misconceptions’ dummy. The no-misconceptions dummy was constructed

based on the stated perceived payoff that subjects reported once the posted price was revealed

in the valuation task when they were asked to state how much money they think they might

receive based on the outcome of the task. The dummy is coded as 1 if subjects stated they

will receive the posted price in the BDM mechanism or if they will receive the offer price in the

FPA. Coefficient estimates from this model are reported in Table 6 (model (1) column). Since

these coefficients are hard to interpret due to the presence of multiple interaction terms in the

model, we present the marginal effect of the HCL treatment in graphical form in Figure 6a by

valuation task and a range of values of cognitive ability. The range of values for cognitive ability

are roughly the observed range of values in our sample.

Figure 6a shows that the effect of cognitive load under the FPA is not statistically significant

for any value of the Raven score. On the other hand, subjects in the BDM treatment exhibit

larger deviations when they are of low cognitive ability. For example, subjects in the lower range

of the Raven score exhibit 17.5% larger deviations from the optimal offer under cognitive load

but much lower relative deviations when they are of higher cognitive ability. In the extreme case

where subjects are of very high cognitive ability, the effect of cognitive load is not statistically

different from zero.13

Another way to analyze our data is by forming a dummy variable on whether a subject

submitted a bid around ±1% of the optimal offer. Because of the binary nature of the dependent

variable, we estimated a random effects Logit regression with clustered standard errors on the

same set of independent variables as in model (1). Results are shown in model (2) of Table 6

albeit we focus on the graphical representation of the Marginal Effect of the HCL treatment

in Figure 6b. Results are in accordance with results from model (1). The treatment effect of

the HCL treatment is not distinguishable or different from zero in the FPA task for all levels

of cognitive ability. However, in the BDM mechanism task subjects are significantly less likely

to submit a bid around ±1% of the optimal offer. The effect is larger when subjects are of

13We can also relax the assumption of risk neutrality in the FPA by plugging in the estimated RRA coefficient
r (the procedure to estimate r was described in the previous section) in equation 5, and solve the equation for
b. Thus, the relative measure of bid deviation can also be constructed using an optimal offer that is conditioned
on the level of risk aversion. Given subjects’ risk aversion, we calculated the average optimal offer in the FPA
to be e6.45 with a range of [6.43, 6.48] for the subjects of our sample. Since deviations from the risk neutral
offer of 6.5 are so small, results using the risk averse optimal offer do not produce any meaningful changes in
our results. Therefore, these results are confined to the Electronic Supplementary Material (see Figures A3, A5
and A7).
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Table 6: Deviations from optimal offers: Random effects regression (Model 1), Random effects
Logit regressions around ±1% of optimal offers (Model 2), Penalized ML Logit regression

around ±1% of optimal offers (Model 3)

% absolute bid de-
viation from opti-
mal offer

Deviation from op-
timal offer ±1%

Deviation from op-
timal offer ±1% -
PML

(1) (2) (3)
Constant 1.034∗∗∗ -6.440 -5.720

(0.329) (5.451) (5.108)
HCL treatment 0.303 -8.902∗∗ -7.772

(0.312) (4.491) (5.097)
BDM -0.798∗∗∗ 10.317∗∗ 9.620∗∗

(0.310) (4.765) (4.809)
Raven score -0.012∗∗ 0.100 0.089

(0.005) (0.083) (0.081)
HCL treatment × BDM 0.053 -0.314 -0.268

(0.060) (0.898) (0.781)
BDM×Raven score 0.016∗∗∗ -0.182∗∗ -0.171∗

(0.006) (0.091) (0.091)
HCL treatment × Raven score -0.004 0.154∗ 0.134

(0.006) (0.082) (0.093)
No misconceptions 0.107∗∗∗ -0.007 -0.001

(0.024) (0.382) (0.370)
Period -0.039∗∗ 0.064 0.059

(0.015) (0.363) (0.348)
Demographics Yes Yes Yes
lnσ2 -1.787

(5.584)
N 538 538 538
Log-likelihood - -120.255 -98.967
AIC - 268.510 223.933
BIC - 328.540 279.675

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. PML stands for penalized
maximum likelihood.
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Figure 6: Marginal effects of HCL treatment by Valuation mechanism and Raven score (with
95% and 90% confidence intervals)

(a) ME from RE regression (b) ME from RE Logit

(c) ME from PML Logit

Notes: ME stands for Marginal Effect; RE stands for Random Effects; PML stands for Penalized Maximum
Likelihood
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low cognitive ability (e.g., 24.9% less likely when they are of very low cognitive ability) but the

effect becomes smaller for more cognitively able subjects. In fact, for subjects with very high

cognitive ability, the effect of cognitive load is not statistically significantly different from zero.

Because we rather arbitrarily chose ±1% as the critical percent around an optimal offer

to construct our dummy dependent variable, in the Electronic Supplementary Material we

present additional figures that show that the marginal effect of the HCL treatment, as shown

in Figure 6b, is robust to alternative definitions of the dependent variable as large as ±8%

around the optimal offer (see Figure A4). For larger percentages we cannot detect statistically

significant effects anymore.

Model (3) tackles a problem that might arise when one of the categories of the dependent

variable is less frequent as in the case where we consider a ±1% range around the optimal offer.

In this case, just 35 out of 538 cases are classified as optimal offers. The problem with this

definition of an optimal offer is that maximum likelihood estimation (PMLE) suffers from small-

sample bias and the bias depends on the number of cases in the less frequent of the two categories.

Firth’s (1993) method to address this problem is the Penalized maximum likelihood estimation

(which is considered similar to King and Zeng’s (2017) rare events Logit). Marginal effects from

model (3) for the HCL treatment shown in Figure 6c show that results are robust even if we

estimate the Logit model via the PMLE. The Electronic Supplementary Material shows that

results for the marginal effect of the HCL treatment are robust to alternative definitions of the

dependent variable as large as ±8% around the optimal offer (see Figure A6).

3.6 Perceived payoffs and instructions comprehension

Subjects were provided with detailed instructions about the bidding rules in the BDM mech-

anism and the FPA task. However, given that subjects had to read these instructions concur-

rently with performing the memorization task, it is likely that some of them decided to skip

the instructions in order to focus on the string memorization task. Furthermore, their level of

understanding may have been adversely affected due to the fact that string memorization was

performed concurrently with the valuation task (although we would expect this to be affected

more in the HCL treatment). Note, that all the other instructions about the rules of the exper-

iment, payoffs, and trial rounds was shown before starting with the cognitive load treatment.

The instructions for the BDM mechanism/FPA task were purposefully given concurrent with

the memorization task for the reasons explained in Section 2.

In order to scrutinize subjects’ attention to the instructions, we posed three questions related

to the instructions at the end of the experiment by asking subjects to state: 1) how carefully

they read the instructions in the BDM mechanism/FPA task on a scale from 1 to 5, anchored

by ‘not careful at all’ and ‘very careful’ 2) how well they understood the instructions in the
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BDM mechanism/FPA task on a scale from 1 to 5, anchored by ‘not well at all’ and ‘very well’

and 3) whether they decided to follow one of these mutually exclusive actions: a) to focus on

the instructions and not memorize the letter/string, b) to focus on letter/string memorization

and not pay attention to the instructions, c) to read the instructions while exerting effort in

memorizing the letter/string.

Table 7 shows frequencies for each level of the Likert scales for the three questions men-

tioned above. In general, most subjects stated they carefully read and well comprehended the

instructions. There is not much difference between the BDM/FPA task but there is a marked

shift in the distribution of responses in the HCL treatment in terms of reading and compre-

hension of instructions. A Fisher’s exact test rejects the null that responses in the ‘carefully

read instructions’ question are spread equally across the treatment cells (p-value = 0.005) but

does not reject the null in the comprehension of instructions question (p-value = 0.147). The

statistical significant result for carefully reading the instructions is fully driven by the HCL

treatment (which is to be expected just by eye-balling Table 7).14

Table 7: Comprehension of instructions in the BDM mechanism/FPA task

Question/Scale LCL HCL
FPA BDM FPA+BDM FPA BDM FPA+BDM

Carefully read instructions
for the BDM (FPA) task

1 = Not careful at all 1 0 1 0 0 0
2 1 0 1 1 1 2
3 5 3 8 14 17 31
4 23 33 56 27 26 53
5 = Very careful 37 30 67 24 26 50

How good did subject
comprehend instructions in
the BDM (FPA) task

1= Not well at all 2 0 2 1 1 2
2 0 0 0 1 0 1
3 5 6 11 6 12 18
4 27 39 66 38 33 71
5 = Very well 33 21 54 20 24 44

During the experiment, subject was . . .
1= . . . focused on reading instructions for the
BDM (FPA) task

4 3 7 12 14 26

2= . . . focused on memorizing the string 1 0 1 6 7 13
3= . . . paid attention in reading instructions for
the BDM (FPA) task as well as memorizing the
string

62 63 125 48 49 97

Notes: HCL (LCL) stands for the high (low) cognitive load treatment. Table shows frequencies.

The responses to the final question in this set of questions show that very few subjects

decided to focus on either just reading the instructions for the valuation task or just memorizing

the letter/string. Most subjects focused on both concurrent tasks, although there is a shift of

14Fisher’s exact test p-value is < 0.001 when we compare the HCl vs. LCL treatments but is 0.716 when we
compare the BDM vs. FPA. In terms of comprehension of instructions, binary comparisons of treatments do
not show any statistically significant result either: Fisher’s exact test p-value is 0.327 (0.402) when we compare
the HCL vs. LCL (BDM vs. FPA) treatments.
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responses under the HCL treatment indicating that more subjects decided to focus on one of the

two tasks when under cognitive load. Fisher’s exact test p-value is < 0.001 when we compare

the HCL vs. LCL treatments and is close to 1 when we compare the BDM vs. FPA treatments.

Furthermore, since we recorded time responses of subjects in the valuation task (we recorded

time until subjects finalize their bid and time until they exited the valuation task), we run

random effects regressions (with clustered standard errors at the individual level) of time on

the treatment dummies as well as on dummies for the levels of the instructions-related variables

described above. Results are exhibited in Table 8. A few things are noteworthy in this table.

First, it is evident that subjects in the second period spend significantly less time reading the

instructions, submitting a bid, and exiting the valuation stage. For example, they spend about

53 seconds less in submitting a bid and about 75 seconds less to complete the valuation task.

Moreover, more cognitively able subjects spend more time submitting a bid (which includes

reading the instructions) and completing the valuation task. With respect to the instructions-

related variables, only the dummies indicating carefully reading the instructions are significantly

affecting time spent. For example, a subject stating she read the instructions ‘very carefully’

spent 39.5 seconds more reading the instructions and deciding a bid than a subject stating she

was ‘not careful at all’ in reading the instructions.

To take into account attention to instructions, we rerun the main analysis described in

Sections 3.4 and Section 3.5 using a restricted sample of subjects; i.e., the union of subjects

that stated to carefully read and comprehend the instructions at a moderate level or better

and those that stated they paid attention in both reading the instructions and memorizing the

letter/string. This restricts our sample to 221 subjects (111 in the BDM treatment). Results

are confined to the Electronic Supplementary Material (Table A10 and Figure A8) but can be

briefly summarized as follows: a) the BDM optimal offer model is the best fitting model for

the restricted sample while a mixture specification indicates that the BDM optimal offer model

is the sole characterization of subjects’ choices and b) the effect of cognitive load in the FPA

treatment does not vary with cognitive ability, while subjects in the BDM treatment exhibit

larger deviations from optimal offers (as well as they are more likely to deviate from optimal

offers) when they are of low cognitive ability.

In addition to subjects’ stated attention and comprehension to instructions at the valuation

stage, we also asked subjects (after submitting their bid and seeing the posted price) to indicate:

a) whether their bid is lower or greater than the posted price and b) if they stated that their bid

is lower than the posted price, to write down how much they think they will be paid. Table 9

categorizes subjects’ stated payoffs by valuation task and treatment. As can been seen, in most

cases, subjects stated that they will either be paid the posted price (which is correct under the

BDM mechanism) or their offer price (which is correct under the FPA task).15 For eight cases

15For a handful of cases, subjects also stated that they thought they will be paid an amount equal to the
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Table 8: Random effects regressions of time spent in valuation stage

(1) (2)
Time to submit a bid Total time to exit the valuation stage

Constant 19.123 (25.951) 69.205∗∗ (34.468)
BDM -0.746 (2.778) 3.256 (3.617)
HCL treatment -1.858 (3.006) -1.717 (3.938)
2nd Period -53.354∗∗∗ (2.286) -75.550∗∗∗ (2.904)
Raven score 0.856∗∗∗ (0.252) 0.810∗∗ (0.335)
Carefully read instructions

2 10.713 (7.343) 36.775∗∗∗ (14.232)
3 20.358∗∗ (10.372) 37.825∗∗∗ (12.260)
4 33.388∗∗∗ (11.118) 54.090∗∗∗ (13.870)
5 = Very careful 39.483∗∗∗ (10.934) 61.387∗∗∗ (13.569)

Instructions comprehension
2 -33.712∗∗∗ (10.362) -4.632 (12.105)
3 -2.569 (10.083) -5.437 (9.599)
4 -3.497 (10.598) -4.293 (10.351)
5 = Very well -5.963 (11.114) -12.001 (10.791)

Focused on . . .
. . . reading instructions 3.481 (6.128) 5.021 (7.259)
. . .memorization task -3.242 (4.728) 1.931 (9.863)

Male -0.839 (3.110) 0.903 (4.043)
Age -0.622 (0.941) -1.955∗ (1.170)
N 538

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. HCL (LCL) stands for the high
(low) cognitive load treatment. Base categories are: Carefully read instructions: 1 = not at all; Instructions
comprehension: 1 = not well at all; Focused on: reading instructions & memorizing the letter/string.
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(7.08% of the BDM cases), subjects incorrectly stated that they will be paid their offer price

under the BDM. These are the cases that are directly revealed to have a FPA-GFM and are

equally spread among the two treatments. Similarly, there are only four cases in the FPA task

that they incorrectly stated they will be paid the posted price and these are all cases under the

high cognitive load treatment.

Table 9: Perceived payoffs by valuation task and treatment

Perceived payoff is . . . BDM FPA
LCL HCL LCL HCL

Offer price 4 4 45 40
Posted price 50 46 - 4
Posted price + induced value - 2 - -
Posted + Offer price 2 1 - 1
Posted - Offer price - - - 4
Other 2 2 4 3
Total 58 55 49 52

Notes: HCL (LCL) stands for the high (low) cognitive load treatment. Table shows frequencies.

Table 10 tabulates subjects’ perception about whether their bid was lower/greater than the

posted price with whether the bid was actually lower/greater than the posted price as well as

the mean perceived and actual payoff by treatment group. The upper right part and lower left

part of the table indicate cases where subjects incorrectly stated their bid is lower or greater

than the posted price. A comparison of perceived and actual payoff for those that correctly

stated their bid to be smaller than the posted price shows that these are very close and no

significant differences between treatments can be observed. Pulling together all responses and

doing a t-test of whether actual payoffs are equal to perceived payoffs, we fail to reject the null

of no difference (p-value = 0.632). We get similar non-statistically significant results if we do

the test by treatment or by period.

We then rerun the main analysis described in Sections 3.4 and Section 3.5 further restricting

our sample to those subjects that did not misperceive the magnitude of their bid with respect to

the posted price. This reduces our sample to 208 subjects (104 in the BDM treatment). Results

are shown in the Electronic Supplementary Material (Table A11 and Figure A9). None of our

conclusions changes.

sum of the posted price and the induced value, or equal to the posted price plus the offer price, or equal to the
posted price minus the offer price, or they stated an amount that cannot be assigned to one of the categories.
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Table 10: Tabulation of subjects perception about their bid and actual bid (in relation to
posted price) and average perceived payoffs (in relation to actual payoffs)

Bid < Posted price Bid > Posted price

Subject perceives that . . . Treatments N
Perceived
Payoff

Actual
Payoff

N
Actual
Payoff

Bid < Posted price
HCL

BDM 55 5.53 5.45 12 4.58
FPA 49 3.64 3.47 4 3.06

LCL
BDM 55 6.08 6.23 4 6.66
FPA 48 4.06 3.88 2 1.56

Bid > Posted price
HCL

BDM 0 - - 73 5.00
FPA 3 4.27 5.00 76 5.00

LCL
BDM 3 3.61 5.00 70 5.00
FPA 1 8.00 5.00 83 5.00

Notes: HCL (LCL) stands for the high (low) cognitive load treatment. The upper right part and lower left
part of the table show cases for which subjects incorrectly state their bid is greater or lower than the posted
price.

4 Discussion and conclusions

In this study, we focused on the increasingly important issue related to failure of game form

recognition in the BDM mechanism as shown by Cason and Plott (2014). Building on the work

of Bull et al. (2019) that added a First-Price Auction task on top to the BDM mechanism task

as an additional test of the game form misconception, we examine whether limiting cognitive

resources of subjects would exacerbate game form misconception in the BDM. We hypothesized

that because the BDM mechanism and the FPA differ in their difficulty of understanding the

rules, the BDM task would be more severely affected under higher cognitive load.

Our results suggest that although the BDM mechanism was far from accurate in revealing

subjects’ true preferences, we do not find that offers in this task are consistent with a FPA

misconception model. This result remains robust even when we take into account in the analysis

additional issues such as subjects’ risk aversion, comprehension of instructions, and payoffs

of the valuation task as well as subjects’ involvement with the valuation task. Interestingly,

what we do find is that when subjects are placed under high cognitive load, their decision

process is equivalent to random choice of an offer since their choices are consistent with a model

where subjects choose all offers with equal probability. This only occurs however, in the BDM

mechanism task since subjects in the FPA do make offers consistent with maximizing their

expected payoff.

Moreover, we find that the effect of cognitive load in the FPA treatment does not vary

with cognitive ability. Subjects in the BDM treatment however, exhibit larger deviations from

optimal offers and they are more likely to deviate from optimal offers when they are of low

cognitive ability. Subjects with higher cognitive ability are unaffected by high cognitive load.
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The FPA is also immune to the high cognitive load treatment, leaving the BDM as a questionable

mechanism for accurate measurement of subjects’ preferences.

We agree with Cason and Plott (2014) that choices cannot always be interpreted reliably as

revealing preferences. However, with our data we do not find support that a FPA-misconception

is occurring in the low cognitive load condition. By inducing a high cognitive load, we are giving

the best chances for a FPA-game form misconception to occur, but we do not see this happening

as well. Instead, we find that subjects are better characterized as choosing randomly from the

set of all offer prices rather than mis-perceiving the BDM mechanism for a FPA. We agree with

Bull et al. (2019) that subjects have poor optimizing skills, resulting in very noisy data that is

especially pronounced in the BDM task under the HCL treatment.

One particular feature of our experiment is that everything was computerized and as such,

the flow of the experiment, instructions and even the bidding process were likely easier than the

paper and pencil experiments of Cason and Plott (2014) and Bull et al. (2019). It is possible

that a paper and pencil administration of the experiments could induce some higher cognitive

load than our LCL treatment; and if this is the case, their experiments could be seen perhaps

as falling in between our LCL and HCL treatments in terms of cognitive resources depletion.

Our results suggest that choices made in environments that are cognitively demanding or in

environments that can deplete cognitive resources are prone to eliciting randomness in choices

rather than revealing preferences. However, our results also point to the fact that different mech-

anisms may be more or less susceptible to elicitation of random choices rather than preferences.

If anything, our study builds on the accumulated literature pointing to problems with prefer-

ence revelation using the BDM mechanism (Banerji and Gupta, 2014; Horowitz, 2006; Karni

and Safra, 1987; Mazar et al., 2013; Rosato and Tymula, 2016; Urbancic, 2011; Vassilopoulos

et al., 2018).
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Screen 2

Screen 3
(note: text in brackets indicates different text used in the high/low cognitive load treatments)
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Screen 4

Screens 5-21
(note: this screen was repeated as many times as the consonant letters of the Greek alphabet i.e., 17

times)
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Screen 22
(note: subjects in the low cognitive load treatment were shown one letter instead of a string of letters)

Screen 23
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Screen 24

Screen 25
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Screen 26

Screen 27
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Screen 28

Screen 29
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Sample screen shots of the Valuation task
(note: text in brackets indicates differences in the BDM and First Price auction treatments)

(Stating an offer)
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(Finalized offer and posted price revealed)

Additional results: Difficulty of the memorization task

In order to explore the differences in recall success while taking into account the influence of
other control variables, we estimate a logit model for the success/failure of recalling the mem-
orized letter/string, with clustered standard errors to take into account the multiple responses
given by the same subject and to allow for correlation between responses.3

Table A1 exhibits the results from a logit regression where success/failure is the dependent
variable (model (1)) and a model that interacts the HCL treatment dummy with the tasks to
explore differential effects. Model (2) supports the existence of a differential effect of cognitive
load on recall success. Because interaction terms complicate the interpretation of the interacted
variables in non-linear models, Figure A1 presents graphically the marginal effects for cognitive
load and the task dummies. We focus on Figure A1b which shows how difficult memorizing a
string was. Subjects exhibit a statistically significant lower probability of recalling the string
correctly in the six letter string condition (HCL treatment) than in the one letter condition
(LCL treatment). There is some variation between tasks: successfully recalling the string was
less likely after the multiplication task than after the click-a-button task.4

3The robust estimator of variance relaxes the independence assumption and requires only that the observa-
tions be independent across the clusters. It involves a slight modiffication of the robust (or sandwich) estimator
of variance which requires independence across all observations (StataCorp, 2013, pp. 312).

4Figure A1a shows that the effect of the various decision tasks do not differ with respect to probability
of correct recall when under LCL with the exception of the Click-a-button task where subjects have a 3.6%
higher probability of recalling the letter correctly. When under HCL, subjects are more likely to recall the string
correctly after the Click-a-button task (compared to the multiplication task) than after the addition task (19.6%
more likely) and after the valuation task (11.2% more likely). Overall, Figure A1a indicates that the probability
of correctly recalling the string is higher after less demanding decision tasks.
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Table A1: Logit regressions of recall success (clustered standard errors)

Without interactions With interaction terms
(1) (2)

Constant 3.539∗ (1.942) 3.749∗ (1.978)
Task: Addition 0.891∗∗∗ (0.169) 0.720 (0.533)
Task: Click-a-button 1.045∗∗∗ (0.164) 1.836∗∗∗ (0.664)
Task: Valuation 0.417∗∗∗ (0.156) -0.306 (0.365)
HCL treatment -4.152∗∗∗ (0.237) -4.414∗∗∗ (0.366)
Addition × HCL treatment - - 0.222 (0.565)
Click-a-button × HCL treatment - - -0.787 (0.690)
Valuation × HCL treatment - - 0.881∗∗ (0.402)
Raven score 0.007 (0.021) 0.007 (0.021)
Period 0.367∗∗∗ (0.097) 0.367∗∗∗ (0.097)
Demographics Yes Yes
N 2152 2152
Log-likelihood -834.202 -830.342
AIC 1690.405 1688.684
BIC 1752.820 1768.123

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base category is the
multiplication task.

The Period variable is positive and statistically significant, indicating that subjects perform
better as the experiment progresses.
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Figure A1: Marginal effects from Logit model with interaction terms in Table A1 (with 95%
and 90% CI)

(a) Marginal effect of tasks conditional on cognitive
load

(b) Marginal effect of cognitive load conditional on
eash task

Additional results: Manipulation checks

Table A2 shows a logit regression of success/failure at the decision tasks, pooling data
together from the three tasks (standard errors are clustered at the individual level) in order
to econometrically control for the influence of observable characteristics and to explore the
joint influence of the treatment variable and decision tasks. Table A2 shows the results of
two specifications, with and without interaction terms. Information criteria favor the model
without interaction terms (as well as the fact that none of the interaction terms is statistically
significant).
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Table A2: Logit regressions of success/failure in the decision tasks

Without interaction terms With interaction terms
(1) (2)

Constant 1.450 (1.505) 1.665 (1.631)
Task: Addition -2.610∗∗∗ (0.432) -2.799∗∗∗ (0.745)
Task: Multiplication -4.652∗∗∗ (0.428) -4.897∗∗∗ (0.734)
HCL treatment -0.305∗∗ (0.147) -0.664 (0.873)
Task: Addition×HCL treatment - - 0.298 (0.914)
Task: Multiplication×HCL treatment - - 0.402 (0.901)
Raven’s test score 0.056∗∗∗ (0.016) 0.056∗∗∗ (0.016)
Period 0.380∗∗∗ (0.145) 0.379∗∗∗ (0.145)
Demographics Yes Yes
N 1614 1614
Log-likelihood -596.533 -596.389
AIC 1213.066 1216.777
BIC 1266.930 1281.415

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base category is the Click-a-button
task.

Theory and econometrics of risk preferences

We assume a constant relative risk aversion (CRRA) utility function U(M) = M1−r

1−r
, where

M is a monetary payoff and r is the relative risk aversion (RRA) coefficient. Assuming that
Expected Utility Theory (EUT) describes subjects’ risk preferences, then the expected utility
of lottery i can be written as EUi =

∑

j=1,2 pi(Mj)U(Mj) where p(Mj) are the probabilities
for each outcome Mj that are induced by the experimenter in the lottery tasks (see Table A3).
We assume subjects have some latent preferences over risk which are linked to observed choices

via a probabilistic model function of the general form: Pr(B) = F
(

µ (VB−VA)
D

)

. Pr(B) is the

probability of choosing lottery B (the right hand side lottery in the risk preference tasks),
µ is a structural ‘noise parameter’ (sometimes called a scale or precision parameter) used to
allow some errors from the perspective of the deterministic model and VA, VB are the decision-
theoretic representations of values associated with lotteries A and B i.e., Vj = EUj for j = A, B.
F : R → [0, 1] is an increasing function with F (0) = 0.5 and F (x) = 1−F (−x), which is to say
that this function takes any argument between ±∞ and transforms it to a number between 0
and 1 i.e., a probability. The F function comes into two flavors in the respective literature: the
cumulative standard normal distribution function Φ (the probit link) and the standard logistic
distribution function Λ with Λ(ζ) = 1/(1 + e−ζ) (the logit link). D adjusts the scale parameter
in heteroskedastic models.

One class of models can be derived when we restrict D = 1. This is a class of homoskedas-
tic latent index models also known as Fechnerian or Strong utility models (see Drichoutis
and Lusk, 2014). The model with the logit link is equivalent to Pr(B) = Λ (µ(VB − VA)) =

exp(µVB)
exp(µVA)+exp(µVB)

. Another type of the homoskedastic class of models, called Luce or Strict util-

ity models, uses the difference between the logarithm of values: Pr(B) = Λ (µ(ln[VB]− ln[VA]))

which is equivalent to Pr(B) = (VB)µ

(VA)µ+(VB)µ
.
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Table A3: The lottery tasks

Holt and Laury (2002) task Payoff-varying task
Lottery A Lottery B Lottery A Lottery B

p e p e p e p e p e p e p e p e

0.1 2 0.9 1.6 0.1 3.85 0.9 0.1 0.5 1 0.5 1 0.5 1.2 0.5 0.2
0.2 2 0.8 1.6 0.2 3.85 0.8 0.1 0.5 1.2 0.5 1 0.5 1.5 0.5 0.2
0.3 2 0.7 1.6 0.3 3.85 0.7 0.1 0.5 1.4 0.5 1 0.5 1.8 0.5 0.2
0.4 2 0.6 1.6 0.4 3.85 0.6 0.1 0.5 1.6 0.5 1 0.5 2.2 0.5 0.2
0.5 2 0.5 1.6 0.5 3.85 0.5 0.1 0.5 1.8 0.5 1 0.5 2.9 0.5 0.2
0.6 2 0.4 1.6 0.6 3.85 0.4 0.1 0.5 2.0 0.5 1 0.5 3.5 0.5 0.2
0.7 2 0.3 1.6 0.7 3.85 0.3 0.1 0.5 2.2 0.5 1 0.5 4.6 0.5 0.2
0.8 2 0.2 1.6 0.8 3.85 0.2 0.1 0.5 2.4 0.5 1 0.5 6.8 0.5 0.2
0.9 2 0.1 1.6 0.9 3.85 0.1 0.1 0.5 2.6 0.5 1 0.5 9.2 0.5 0.2
1 2 0 1.6 1 3.85 0 0.1 0.5 2.8 0.5 1 0.5 15 0.5 0.2

A second class of models, the heteroskedastic class, can be derived when D 6= 1. Wilcox
(2008, 2011) proposed a ‘contextual utility’ error specification which adjusts the scale parameter
by D = Vmax − Vmin to account for the range of possible outcome utilities. D is defined as the
maximum utility Vmax over all prizes in a lottery pair, minus the minimum utility Vmin over all
prizes in the same lottery pair. It changes from lottery pair to lottery pair, and thus it is said
to be contextual. Contextual utility maintains that the error specification is mediated by the

range of possible outcome utilities in a pair, so that Pr(B) = F
(

µ (VB−VA)
Vmax−Vmin

)

.

Another heteroskedastic model which has received some attention in economics lately (Hey
et al., 2010; Wilcox, 2015) is prescribed by Decision Field Theory (DFT) (Busemeyer and
Townsend, 1992, 1993). DFT allows the decision maker’s attention to switch from one event
to another across choice pairs. This variability on focus on events is caused by a random
difference which Busemeyer and Townsend (1993) name a valence difference. The variance
of this valence difference in the case of lotteries with just two outcomes is given by D2 =
w(p1)(VA1 − VB1)

2 + (1 − w(p1))(VA2 − VB2)
2 − (VA − VB)

2 where VA1, VA2, VB1 and VB2 are
the representations of values associated with the first and second outcome of lottery A and
B, respectively; VA and VB are the representations of values associated with lottery A and B,
respectively. Note that when lotteries are certainties, such as in the last row of the HL task,
then D = 0 and Pr(B) = 1, that is the subject always chooses the dominating lottery. This
also implies that the last row of the HL task must be excluded from estimation under DFT.

After defining the decision theoretical models and error specifications, the log-likelihood
function can then be written as: lnL(wi) =

∑N
i=1

[

(lnZ|wi = 1) + (ln(1− Z)|wi = −1)
]

, where
Z = Prj and j indexes the different error models (j =FP, FL, STRICT, CP, CL, DFTP,
DFTL).5 wi = 1 denotes the choice of lottery B and wi = −1 denotes the choice of the A lottery
in the risk preference task i. Subjects were allowed to express indifference between choices and
were told that if that choice was selected to be played out, the computer would randomly choose
one of the two options for them and that both choices had equal chances of being selected. The

5FP and FL stand for the Fechner error with a probit and a logit link, respectively. CP and CL stand for
contextual utility with a probit and a logit link, respectively. DFTP and DFTL stand for Decision Field theory
with a probit and a logit link respectively. STRICT stands for Luce error or Strict utility.
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likelihood function for indifferent choices is constructed such that it implies a 50/50 mixture of
the likelihood of choosing either lottery so that: lnL(wi) =

∑N
i=1

[

(lnZ|wi = 1)+(ln(1−Z)|wi =
−1) + (1

2
lnZ + 1

2
ln(1 − Z)|wi = 0)

]

where wi = 0 denotes the choice of indifference. We can
then use standard numerical methods to maximize the log-likelihood function.

In order to select between the competing stochastic models, we used Akaike’s and Bayesian
information criteria (AIC and BIC). AIC and BIC do not reveal how well a model fits the data
in an absolute sense, i.e., there is no null hypothesis being tested. Nevertheless, these measures
offer relative comparisons between models on the basis of information lost from using a model
to represent the (unknown) true model.6

Table A4: Akaike and Bayesian Information criteria by error story

AIC AIC corrected BIC

Fechner
Logit 3886.875 3887.125 4025.671
Probit 3928.770 3929.021 4067.567

Contextual utility
Logit 3695.817 3696.068 3834.613
Probit 3715.654 3715.905 3854.451

Decision Field Theory
Logit 3698.825 3698.950 3792.689
Probit 3756.337 3756.462 3850.202

Strict utility 3898.062 3898.313 4036.859

As shown in Table A4, the Contextual utility model with a logit link (CL) is the preferred
model according to AIC and Decision Field Theory with a logit link (DFTL) is the preferred
model according to BIC. Because DFTL produces very close AIC values to CL, we use DFTL
to estimate the parameters of the model. However, the predicted values for r of the CL model
are extremely close to those of the DFTL model (pairwise correlation coefficient is 0.996) which
renders selection of one model over the other a trivial task. Results from estimating the DFTL
model are shown in Table A5. We use these estimates to predict the coefficient of relative risk
aversion for 203 subjects and predict out of sample the r values for the rest of the 66 subjects.

6Drichoutis and Lusk (2016) have shown that AIC and BIC are in agreement in terms of model selection
with more complex selection criteria such as Vuong’s (1989) test, Clarke’s (2003) test or the out-of-sample log
likelihood (OSLLF) criterion (Norwood et al., 2004).
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Table A5: Estimates for r and µ given the Decision Field theory stochastic assumption

r µ
Constant 0.713 (0.546) 2.935∗∗∗ (0.176)
Male -0.134∗ (0.077)
Accepted payment 0.070 (0.112)
Age -0.014 (0.021)
Household size 0.028 (0.037)
Income group:

Income2 -0.012 (0.182)
Income3 0.062 (0.148)
Income4 0.116 (0.146)
Income5 0.080 (0.139)
Income6 0.060 (0.144)
Income7 -0.145 (0.299)

N 3857
Log-likelihood -1834.412

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01.

Joint estimation of r and λ

We can write the conditional log-likelihood from the valuation task as (see the ‘optimal offers
under risk section’ in the paper):

lnLm(λ; yi) =
∑

i

ln
yie

λEUm[π|bj ]

∑k=1
n eλEUm[π|bk]

(7)

and the conditional log-likelihood from the risk preferences task as:

lnLRA(wi) =
N
∑

i=1

[

(lnZ|wi = 1) + (ln(1− Z)|wi = −1) + (
1

2
lnZ +

1

2
ln(1− Z)|wi = 0)

]

(8)

The joint likelihood of the risk preferences choices and the valuation task can then be written
as:

lnL(λ, r, µ; y, w) = lnLRA + lnLm (9)

Sample size calculations

Our per treatment sample size was decided based on sample size calculations and served as
a stopping rule for this experiment when we achieved the minimum necessary per treatment
sample. Assuming α = 0.05 (Type I error) and β = 0.20 (Type II error), the per group
(treatment) minimum sample size required to compare two means µ0 and µ1, with common
variance of σ2 in order to achieve a power of at least 1− β is given by (Diggle et al. (2002) pp.
30; Liu and Wu (2005); Kupper and Hafner (1989)):
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n =
2(z1−α/2 + z1−β)

2(1 + (M − 1)ρ)

M(µ0−µ1

σ
)2

(10)

To take into account the repeated measurement, the formula includes the number of repeated
measurements M (in our case it is M = 2) as well as a value for the correlation ρ between
observations for the same subject. For α = 0.05 and β = 0.20 the values of z1−α/2 and z1−β are
1.96 and 0.84, respectively. To calculate a minimum sample size, one needs to feed the above
formula with values for σ and the minimum meaningful difference d = µ0 − µ1. To specify the
necessary parameters to feed the above formula, we looked at the values for σ reported in Table
1 in Bull et al. (2019) which range from 0.9 to 1.15. In addition, we used values for ρ spanning
the range from 0.1 to 0.7 (larger values of correlation are unlikely unless all subjects submit
(almost) the same bid in Period 2 as in Period 1 or bids in Period 2 vary uniformly among
subjects). The minimum effect size we considered was a difference of 50 cents.

Table A6 shows the result of equation 10 for various values of σ, ρ and d. It is evident that
the lower the minimum meaningful difference d, the higher the correlation between periods ρ
and the higher the standard deviation σ, a larger sample size is needed to detect the desired
effect size with 80% power. Our per cell sample size can likely detect a minimum meaningful
difference of 50 cents for various values of σ and ρ. We can also detect smaller differences than
50 cents but one would need to restrict the range of assumed values for σ and ρ.

Table A6: Per treatment sample size calculations for different values of σ, ρ and d

σ = 0.9 σ = 1 σ = 1.15

d = 0.50
ρ = 0.1 28 35 46
ρ = 0.5 38 47 62
ρ = 0.7 43 53 71

d = 0.55
ρ = 0.1 23 29 38
ρ = 0.5 32 39 51
ρ = 0.7 36 44 58

d = 0.60
ρ = 0.1 19 24 32
ρ = 0.5 26 33 43
ρ = 0.7 30 37 49

Additional tables
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Table A7: Possible outcomes under different bidding strategies

b ≤ posted price b > posted price max Payoff min Payoff
b < 5 [0, 8] 5 8 0

BDM b = 5 [5, 8] 5 8 5
b > 5 (5, 8] 5 8 5

b < 6.5 [0, 6.5) 5 6.5 0
FPA b = 6.5 6.5 5 6.5 5

b > 6.5 (6.5, 8] 5 8 5

Table A8: Comparing success rate in the recall task with other studies

HCL LCL

Multiplication
Deck and Jahedi (2015) 55.90% 71.60%

Drichoutis and Nayga (2017) 40.58% 53.68%
This study 44.85% 51.50%

Addition
Deck and Jahedi (2015) 96.90% 97.80%

Drichoutis and Nayga (2017) 87.21% 91.70%
This study 84.92% 89.10%

Click-a-button
Drichoutis and Nayga (2017) 99.30% 99.42%

This study 98.53% 99.25%

Notes: HCL (LCL) stands for the high (low) cognitive load treatment.

Table A9: Maximum likelihood estimates of logit choice error parameter λ for first price
auction misconception and mixture models (risk neutrality assumed away)

Joint estimation with r
FP-GFM model Mixture model

(1) (2)
λ
Constant 0.302∗ 1.138∗∗

(0.181) (0.512)
HCL treatment -0.253 -0.851

(0.252) (0.640)
πGFM

Constant ≈0.000
(<0.001)

HCL treatment ≈0.000
(<0.001)

r
Constant 0.872 0.893

(0.858) (0.853)
Male -0.117 -0.120

(0.114) (0.114)
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Accepted payment 0.107 0.112
(0.189) (0.194)

Age -0.016 -0.017
(0.030) (0.030)

Household size 0.025 0.025
(0.050) (0.049)

Income
Income2 0.046 0.062

(0.188) (0.188)
Income3 -0.017 -0.019

(0.181) (0.178)
Income4 -0.052 -0.045

(0.164) (0.162)
Income5 -0.046 -0.047

(0.151) (0.148)
Income6 -0.120 -0.120

(0.153) (0.150)
Income7 -0.074 -0.068

(0.257) (0.258)
µ 2.948∗∗∗ 2.944∗∗∗

(0.247) (0.247)
N [Subjects] 2205 [105] 2205 [105]
Log-likelihood -1631.639 -1724.777
AIC 3289.278 3481.555
BIC 3363.358 3572.730

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01.

18



Table A10: Maximum likelihood estimates of logit choice error parameter λ for optimal offers,
first price auction misconception and mixture models (sample restricted to those with good

stated understanding of instructions)

Risk neutrality Risk aversion
Optimal
model

FPA-GFM
model

Mixture
model

FPA-GFM
model

Mixture
model

(1) (2) (3) (4) (5)
λ
Constant 1.361∗∗∗ 0.326∗∗∗ 1.253∗ 0.470∗∗ 1.304∗∗∗

(0.441) (0.094) (0.641) (0.194) (0.461)
HCL treatment -1.038∗ -0.199 -1.104 -0.379 -0.992∗

(0.595) (0.144) (0.704) (0.255) (0.578)
πGFM

Constant 0.097 0.155
(0.257) (0.256)

HCL treatment 0.734 -0.092
(1.212) (0.569)

N 222 222 222 222 222
Log-likelihood -820.949 -821.469 -819.848 -825.211 -820.652
AIC 1645.899 1646.938 1647.696 1654.422 1649.304
BIC 1652.704 1653.743 1661.307 1661.227 1662.915

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01.
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Table A11: Maximum likelihood estimates of logit choice error parameter λ for optimal offers,
first price auction misconception and mixture models (sample restricted to those with good

stated understanding of instructions and payoffs)

Risk neutrality Risk aversion
Optimal
model

FPA-GFM
model

Mixture
model

FPA-GFM
model

Mixture
model

(1) (2) (3) (4) (5)
λ
Constant 1.553∗∗∗ 0.361∗∗∗ 1.504∗∗∗ 0.574∗∗∗ 1.493∗∗∗

(0.429) (0.089) (0.533) (0.193) (0.482)
HCL treatment -0.864 -0.123 -1.102∗ -0.305 -0.882

(0.621) (0.154) (0.620) (0.287) (0.622)
πGFM

Constant 0.052 0.172
(0.191) (0.260)

HCL treatment 0.534 0.171
(0.331) (0.396)

N 208 208 208 208 208
Log-likelihood -764.013 -764.225 -761.925 -767.770 -763.067
AIC 1532.027 1532.451 1531.850 1539.540 1534.133
BIC 1538.702 1539.126 1545.200 1546.215 1547.484

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01.
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Additional figures
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Figure A2: Probability of FPA-GFM for various relative risk aversion coefficients using Cason
and Plott’s (2014) data and a mixture model specification

Figure A3: Marginal effects of HCL treatment from RE regression of bid deviations by
Valuation mechanism and Raven score (with 95% and 90% confidence intervals; Risk aversion

taken into account)

Notes: ME stands for Marginal Effect; RE stands for Random Effects; PML stands for Penalized Maximum
Likelihood
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Figure A4: Marginal effects of HCL treatment by Valuation mechanism and Raven score for
various % deviations from optimal offer (based on estimations from a random effects Logit

regression)

Notes: ME stands for Marginal Effect; HCL (LCL) stands for High (Low) Cognitive Load.
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Figure A5: Marginal effects of HCL treatment by Valuation mechanism and Raven score for
various % deviations from optimal offer (based on estimations from a random effects Logit

regression; Risk aversion taken into account)

Notes: ME stands for Marginal Effect; HCL (LCL) stands for High (Low) Cognitive Load.
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Figure A6: Marginal effects of HCL treatment by Valuation mechanism and Raven score for
various % deviations from optimal offer (based on estimations from Penalized Maximum

Likelihood Logit regressions)

Notes: ME stands for Marginal Effect; HCL (LCL) stands for High (Low) Cognitive Load.

25



Figure A7: Marginal effects of HCL treatment by Valuation mechanism and Raven score for
various % deviations from optimal offer (based on estimations from Penalized Maximum

Likelihood Logit regressions; Risk aversion taken into account)

Notes: ME stands for Marginal Effect; HCL (LCL) stands for High (Low) Cognitive Load.
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Figure A8: Marginal effects of HCL treatment by Valuation mechanism and Raven score
(with 95% and 90% confidence intervals; sample restricted to those with good stated

understanding of instructions)

(a) ME from RE regression (b) ME from RE Logit

(c) ME from PML Logit

Notes: ME stands for Marginal Effect; RE stands for Random Effects; PML stands for Penalized Maximum
Likelihood
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Figure A9: Marginal effects of HCL treatment by Valuation mechanism and Raven score
(with 95% and 90% confidence intervals; sample restricted to those with good stated

understanding of instructions and payoffs)

(a) ME from RE regression (b) ME from RE Logit

(c) ME from PML Logit

Notes: ME stands for Marginal Effect; RE stands for Random Effects; PML stands for Penalized Maximum
Likelihood
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