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Abstract

This paper considers multiple changes in the factor loadings of a high di-

mensional factor model occurring at dates that are unknown but common to

all subjects. Since the factors are unobservable, the problem is converted to

estimating and testing structural changes in the second moments of the pseudo

factors. We consider both joint and sequential estimation of the change points

and show that the distance between the estimated and the true change points is

Op(1). We find that the estimation error contained in the estimated pseudo fac-

tors has no effect on the asymptotic properties of the estimated change points

as the cross-sectional dimension N and the time dimension T go to infinity

jointly. No N -T ratio condition is needed. We also propose (i) tests for the

null of no change versus the alternative of l changes (ii) tests for the null of l

changes versus the alternative of l+ 1 changes, and show that using estimated

factors asymptotically has no effect on their limit distributions if
√
T/N → 0.

These tests allow us to make inference on the presence and number of structural

changes. Simulation results show good performance of the proposed procedure.

In an application to US quarterly macroeconomic data we detect two possible

breaks.
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1 INTRODUCTION

High dimensional factor models have played a crucial role in business cycle analysis,

consumer behavior analysis, asset pricing and macroeconomic forecasting, see for

example, Ross (1976), Lewbel (1991), Bernanke, Boivin and Eliasz (2005) and Stock

and Watson (2002a, 2002b), to mention a few. This has been enhanced by the

increasing availability of big data sets. However, as the time span of the data becomes

longer, there is a substantial risk that the underlying data generating process may

experience structural changes. Inference ignoring these changes would be misleading.

This paper considers multiple changes in the factor loadings of a high dimensional

factor model, occurring at dates that are unknown but common to all subjects. We

propose a joint estimator of all the change points as well as a sequential estimator

of the change points that estimates these change points one by one. Based on the

estimated change points, we are able to consistently determine the number of factors

and estimate the factor space in each regime. We also propose tests for (i) the null

of no change versus the alternative of some fixed number of changes and (ii) tests

for the null of l changes versus the alternative of l + 1 changes. The latter allows us

to consistently determine the number of changes. These tests are easy to implement

and critical values tabulated in Bai and Perron (1998, 2003) can be used directly to

make inference on the presence as well as the number of structural changes.

Stock and Watson (2009) and Bates, Plagborg-Møller, Stock and Watson (2013)

argue that as long as the magnitude of the loading breaks converges to zero sufficiently

fast, existing estimators ignoring loading breaks are still consistent. Recently, several

tests on the stability of the factor loadings in high dimensional factor models have

been proposed, including Breitung and Eickmeier (2011), Chen, Dolado and Gonzalo

(2014), Han and Inoue (2015) and Cheng, Liao and Schorfheide (2016). Recent

contributions on estimating high dimensional factor models with loading instability

include Baltagi, Kao and Wang (2017), Cheng et al. (2016), Massacci (2017) and Bai,

Han and Shi (2016). All of these papers consider the case with a single change. The

number of factors is explicitly allowed to change in the former two papers. The change

point estimator of Bai et al. (2016) is consistent (hence more accurate than those of
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the former two papers), but it does not allow the number of factors to change.

This paper tackles multiple changes in high dimensional factor models1. We start

by estimating the number of factors and factor space ignoring structural changes.

Since the factor model with changes in the loadings can be equivalently written as

another factor model with stable loadings but pseudo factors, this would allow us to

identify the equivalent model with stable loadings and give us the estimated pseudo

factors. A key observation is that the mean of the second moment matrix of the

pseudo factors have changes at exactly the same dates as the loadings. Estimating

and testing multiple changes in the latter can be converted to estimating and testing

multiple changes in the former. This conversion is crucial because the true factors are

unobservable and not estimable without knowing the change points. It is also worth

pointing out that after this conversion we are using the estimated pseudo factors, not

the pseudo factors themselves. That is to say, the data contains estimation error. We

will show that this estimation error has a different effect on testing and estimating

structural changes. Once the estimated change points are available, they are plugged

in to split the sample and estimate the number of factors and factor space in each

regime, which are further used to construct the test for l versus l + 1 changes.

In the regression setup, influential work on multiple changes include Bai and

Perron (1998) and Qu and Perron (2007). This paper differs from these seminal

papers in several respects. First, to estimate and test structural changes, this paper

utilizes estimated pseudo factors rather than the raw data. Second, the estimated

pseudo factors have a multivariate time series setup, while Bai and Perron (1998) have

a regression setup. Third, the estimated pseudo factors contain estimation error and

we show that to eliminate the effect of estimation error, for testing structural changes

we need
√
T
N
→ 0 as N and T go to infinity jointly, but no N -T (T -N) ratio condition

is needed for estimating change points. The latter is rare in the high dimensional

econometrics literature since very few papers require no N -T (T -N) ratio condition2.

1In testing the joint hypothesis of stability of both factor loadings and the factor augmented
forecasting equation, Corradi and Swanson (2014) also consider the alternative of multiple changes.

2For example, Bai and Ng (2006) require
√
T
N → 0 where estimated factors are used to augment

forecasting and vector autoregression. Various N -T ratio conditions are also needed in Bai (2009)
where estimated factors are used to control the interactive effects in panel data.
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This paper is also closely related to Han and Inoue (2015), Baltagi et al. (2017) and

Ma and Su (2018). Han and Inoue (2015) propose Wald and LM type tests for single

change in a factor model. These tests can not be extended to cases with multiple

changes directly since they are based on the difference of the second moments of

factors between two subsamples. This paper solves this issue by considering likelihood

ratio type tests. This paper also contains results on estimating change points, which

is not covered in Han and Inoue (2015). Baltagi et al. (2017) propose an estimator

for a single change point in a factor model and prove that the distance between the

estimated and the true change point is Op(1), and this Op(1) error asymptotically has

no effect on the estimated number of factors and factor space in each regime. This

paper differs from Baltagi et al. (2017) in two respects. First, for the multiple changes

case, although the distance between the estimated and the true change points are still

Op(1), the proof is different. This is because when analyzing the location of one change

point, the locations of the previous and the next change point are unknown3. Second,

this paper also studies the testing procedure to determine the presence and number

of structural changes, which is not covered in Baltagi et al. (2017). Ma and Su

(2018) propose an adaptive fused group Lasso method to estimate and test multiple

structural changes in factor models. Their method follows from the Lasso literature

while our method follows from converting the original high dimensional setup to a

fixed dimensional setup. Their estimator of the changes points is consistent, but

their method requires the number of factors to be stable. Our method allows (i) the

number of factors to change as well as (ii) more general type of changes. Allowing

the number of factors to change is important and has been considered by Stock and

Watson (2012) and Cheng et al. (2016). The latter found that given macroeconomic

and financial indicators have a factor representation, one new factor that captures

financial comovement emerges at the beginning of the Great Recession.

Throughout the paper, ‖A‖ = (trAA′) 12 denotes the Frobenius norm, p→, d→ and

⇒ denotes convergence in probability, convergence in distribution and weak conver-

gence of stochastic process respectively, vech(A) denotes the half vectorization of

matrix A, E(·) denotes the expectation, δNT = min{
√
N,
√
T} and (N, T ) → ∞ de-

3Obviously, the single change case does not have this issue.
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notes N and T going to infinity jointly. The rest of the paper is organized as follows:

Section 2 introduces the model setup, notation and preliminaries. Section 3 considers

both joint estimation and sequential estimation of the change points and also the sub-

sequent estimation of the number of factors and factor space in each regime. Section

4 proposes test statistics for multiple changes, derives their asymptotic distributions

and discusses how to determine the number of changes. Section 5 presents simula-

tion results. Section 6 provides an empirical application to US macroeconomic data.

Section 7 concludes. All the proofs are relegated to the appendix.

2 NOTATION AND PRELIMINARIES

2.1 The Model

Consider the following high dimensional factor model with L changes in the factor

loadings:

xit = f
′
0,tλ0,i + f

′
−0,tλκ,i + eit, (1)

with kκ−1,0 + 1 ≤ t ≤ kκ,0, for κ = 1, ..., L + 1, i = 1, ..., N and t = 1, ..., T, where

f0,t and f−0,t are r− q and q dimensional vectors of factors without and with changes
in the loadings respectively. Let ft = (f ′0,t, f

′
−0,t)

′. λ0,i and λκ,i are factor loadings

of subject i corresponding to f0,t and f
′
−0,t in the κ-th regime, respectively, and let

λ0κ,i = (λ
′
0,i, λ

′
κ,i)

′. eit is the error term allowed to have temporal and cross-sectional

dependence as well as heteroskedasticity. For κ = 1, ..., L, kκ,0 are change points

(k0,0 = 0 and kL+1,0 = T ), τκ,0 =
kκ,0
T
are change fractions and considered fixed in

the asymptotic analysis. When there is no change in all factor loadings, let λi and Λ

denote the factor loading and the factor loading matrix.

In matrix form, the model can be expressed as follows:

Xκ∗ = F0κ∗Λ
′
0 + F−0κ∗Λ

′
κ + Eκ∗, for κ = 1, ..., L+ 1. (2)

Xκ∗ = (xkκ−1,0+1, ..., xkκ,0)
′ and Eκ∗ = (ekκ−1,0+1, ..., ekκ,0)

′ are both of dimension (kκ,0−
kκ−1,0)×N . F0κ∗ = (f0,kκ−1,0+1, ..., f0,kκ,0)′ and F−0κ∗ = (f−0,kκ−1,0+1, ..., f−0,kκ,0)′ are of
dimensions (kκ,0−kκ−1,0)×(r−q) and (kκ,0−kκ−1,0)×q respectively. Here we use ”κ∗”
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to denote that the sample split is based on the true change points. Λ0 = (λ0,1, ..., λ0,N)
′

and Λκ = (λκ,1, ..., λκ,N)
′ are of dimensions N × (r− q) and N × q respectively. Also,

let Fκ∗ = (F0κ∗, F−0κ∗) = (fkκ−1,0+1, ..., fkκ,0)
′ and Λ0κ = (Λ0,Λκ) = (λ0κ,1, ..., λ0κ,N)

′.

2.2 Equivalent Representation

First note that in model (1), changes in the number of factors are allowed for, and

incorporated as a special case of changes in the loadings by allowing Λκ to contain

some zero columns for some κ. Second, for each factor considered in model (1), its

loadings are nonzero for at least one κ, otherwise it would be totally irrelevant. Third,

zero columns are allowed to appear at different locations of Λκ for different κ. This

means that both emerging as well as disappearing factors are possible. Note that

for this case we can still identify the break point, although we may not be able to

identify whether the true model has both emerging and disappearing factors or the

same factors with different loadings in two regimes.

To derive the equivalent representation, define Λ−0 as follows: Starting from the

first column of Λ1, if it is nonzero and linearly independent with Λ0, put it in Λ−0.

If the second column of Λ1 is nonzero and linearly independent with Λ0 and the first

column, put it in Λ−0. In general, if the j-th column of Λκ is nonzero and linearly

independent with Λ0 and those columns are already in Λ−0, put it in Λ−0. Repeat

this procedure for all κ and j.

Let Γ = (Λ0,Λ−0) and r̄ denote the number of columns in Γ. From the definition

of Λ−0 it is easy to see that (1) Γ is full column rank, (2) the j-th column of Λκ is

allowed to be the same as the j-th column of Λκ−s for some positive integer s, i.e.,

the factor loadings are allowed to switch back to their previous values after one or

more breaks, (3) Λ0κ = ΓRκ for some r̄ × r dimensional Rκ because Λ0κ = (Λ0,Λκ),
columns of Λ0 are all included in Γ, and columns of Λκ are either included in Γ or

linear combinations of columns in Γ.4

Let Gκ∗ = (gkκ−1,0+1, ..., gkκ,0)
′ = Fκ∗R

′
κ. It follows that gt = Rκft if kκ−1,0 + 1 ≤

4Zero columns of Λκ are also linear combinations of columns in Γ.
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t ≤ kκ,0, and

Xκ∗ = Fκ∗Λ
′
0κ + Eκ∗ = Fκ∗R

′
κΓ

′ + Eκ∗ = Gκ∗Γ
′ + Eκ∗, (3)

which is a factor model with stable loadings Γ and r̄ dimensional pseudo factors gt.

Equation (3) generalizes the equivalent representation in Baltagi et al. (2017) to cases

with multiple changes.

Remark 1 The identification condition for the κ-th change point is ΣG,κ 6= ΣG,κ+1.
This is satisfied since ΣG,κ = RκΣFR

′
κ and Rκ 6= Rκ+1.

Remark 2 To ensure the uniqueness (up to a rotation) of the equivalent represen-

tation, here we show that as long as 1
kκ,0−kκ−1,0

∑kκ,0
t=kκ−1,0+1

ftf
′
t − ΣF

p→ 0 for each κ

and
∥∥ 1
N
Γ′Γ− ΣΓ

∥∥→ 0 for some positive definite ΣF and ΣΓ,
1
T

∑T
t=1 gtg

′
t − ΣG

p→ 0

for some positive definite ΣG. First, it is not difficult to see that ΣG =
∑L+1

κ=1 (τκ,0 −
τκ−1,0)ΣG,κ, where ΣG,κ = RκΣFR

′
κ is positive semidefinite for all κ. Thus for any r̄

dimensional vector v, v′ΣGv = 0 implies v
′ΣG,κv = 0 for all κ, which further implies

v′Rκ = 0 for all κ. Since the r̄ × r(L + 1) matrix (R1, ..., RL+1) has rank r̄, v has to
be zero, and therefore ΣG is positive definite.

Remark 3 Break in the intercept of xit is absorbed into a break in the loadings. Break

in the variance of xit could be due to a break in the variance-covariance of factors, or

a break in the factor loadings, or a break in the error variance. Our method cannot

distinguish between a break in the factor loadings and a break in the factor variance,

but can distinguish between these two possibilities and a break in the error variance,

because our method only detects the breaks in the second moment matrix of the pseudo

factors.

3 ESTIMATING MODELS WITH MULTIPLE CHANGES

In this section, we propose a joint estimator for all change points as well as a sequential

estimator which estimates the change points one by one, assuming the number of

breaks is known. How to determine the number of breaks will be discussed in the next
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section. For both estimators, we show that the distance between the estimated and

the true change points is Op(1). In economic studies, the estimated change points may

provide guidance for uncovering the underlying factors or mechanism of the structural

change, or analyzing the effect of economic policy. The estimated change points also

have important implications for factor-augmented forecasting, which will be discussed

at the end of this section.

Based on the estimated change points, we can split the sample and estimate the

number of factors and the factor space in each regime. As discussed extensively in

the literature, consistently estimated factors can be helpful for business cycle analysis,

asset pricing and other issues. In this paper, the estimated factors will be used to

construct a test for l versus l + 1 breaks.

3.1 Joint Estimation of the Change Points

We first introduce the estimation procedure, and then impose assumptions to study

the asymptotic properties of the proposed estimators.

3.1.1 Estimation Procedure

The estimation procedure is as follows:

1. Using any consistent estimator, e.g., Bai and Ng (2002), Ahn and Horenstein

(2013) to estimate the number of factors ignoring structural changes, i.e., to

estimate the number of pseudo factors. Denote this estimator by r̃.

2. Estimate the first r̃ factors using the principal component method. Let g̃t, t =

1, ..., T be the estimated factors5.

3. For any partition (k1, ..., kL), split the sample into L+1 subsamples, estimate the

second moment matrix of gt in each subsample as Σ̃κ =
1

kκ−kκ−1
∑kκ

t=kκ−1+1
g̃tg̃

′
t

and calculate the sum of squared residuals,

S̃(k1, ..., kL) =
∑L+1

κ=1

∑kκ

t=kκ−1+1
[vech(g̃tg̃

′
t − Σ̃κ)]′[vech(g̃tg̃′t − Σ̃κ)]. (4)

5The change points estimator also can be based on ĝt, where (ĝ1, ..., ĝT )
′ = Ĝ = G̃VNT =

(g̃1, ..., g̃T )
′VNT and VNT is a diagonal matrix that contains the first r̄ largest eigenvalues of

1

NTXX
′.
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Then estimate the change points by minimizing the sum of squared residuals,

(k̃1, ..., k̃L) = argmin S̃(k1, ..., kL). (5)

The underlying mechanism is as follows:

1. Since model (2) has an equivalent representation (3), r̃ is consistent for r̄, g̃t

is asymptotically close to J ′gt for some rotation matrix J , and J
′gt is asymp-

totically close to J ′0gt, where J
p→ J0 = Σ

1
2
ΓΦV

− 1
2 , with V being the diagonal

matrix of eigenvalues of Σ
1
2
ΓΣGΣ

1
2
Γ and Φ the corresponding eigenvector matrix.

2. The second moment matrix of gt has breaks at the same points as the factor

loadings.

3. The second moment matrix of J ′0gt has breaks at the same points as gt.

More precisely, let E(ftf
′
t) = ΣF for all t, then Σκ = J ′0ΣG,κJ0 is the mean of

J ′0gtg
′
tJ0. Let yt = vech(J

′
0gtg

′
tJ0−Σκ) for t = kκ−1,0+1, ..., kκ,0 with κ = 1, ..., L+1 and

zt = vech(g̃tg̃
′
t−J ′0gtg′tJ0) for t = 1, ..., T , it follows that vech(g̃tg̃′t) = vech(Σκ)+yt+zt

for t = kκ−1,0 + 1, ..., kκ,0 and κ = 1, ..., L+ 1. Since ΣG,κ 6= ΣG,κ+1, Σκ = J ′0ΣG,κJ0 6=
J ′0ΣG,κ+1J0 6= Σκ+1. Thus vech(g̃tg̃′t) is a multivariate process with L mean shifts and
extra error zt. We will show that to asymptotically eliminate the effect of zt, this

requires (N, T )→∞ and no N-T ratio condition is needed.

Remark 4 Through estimating the number of pseudo factors, we are essentially se-

lecting relevant moment conditions from a large number of candidates. The model

with r̃ = r̄ has the strongest identification strength for the unknown change points.

If r̃ > r̄, no information would be lost, but extra noise would be brought in by the

extra estimated factors. If r̃ < r̄, change point estimation would be based on a subset

of vech(g̃tg̃
′
t), thus identification of the change points would be weaker or even totally

lost.

3.1.2 Assumptions

The assumptions are as follows:

8



Assumption 1 E ‖ft‖4 < M < ∞, E(ftf ′t) = ΣF for all t. ΣF is positive definite

and 1
kκ,0−kκ−1,0

∑kκ,0
t=kκ−1,0+1

ftf
′
t−ΣF = op(1) for κ = 1, ..., L+1. Note that when there

is no break, L = 0, k0,0 = 0 and k1,0 = T .

Assumption 2 ‖λ0κ,i‖ ≤ λ̄ < ∞ for κ = 1, ..., L + 1, and
∥∥ 1
N
Γ′Γ− ΣΓ

∥∥ = O( 1√
N
)

for some positive definite matrix ΣΓ. When there is no break, ‖λi‖ ≤ λ̄ < ∞ and
∥∥ 1
N
Λ′Λ− ΣΛ

∥∥ = O( 1√
N
) for some positive definite matrix ΣΛ.

Assumption 3 There exists a positive constant M <∞ such that:

1. E(eit) = 0 and E |eit|8 ≤M for all i and t,

2. E(eitejs) = τ ij,ts for all i, j and t, s, and
1
NT

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 |τ ij,ts| ≤M,

3. E
∣∣∣ 1√

N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣
4

≤M for all s, t.

Assumption 4 There exists an M <∞ such that:

1. E( e
′

set
N
) = γN(s, t) and

∑T
s=1 |γN(s, t)| ≤M for all t,

2. E(eitejt) = τ ij,t with |τ ij,t| ≤ τ ij for some τ ij and for all t, and
∑N

j=1 |τ ji| ≤M
for all i.

Assumption 5 The largest eigenvalue of 1
NT
EE ′ is Op(

1
δ2NT
).

Assumption 6 When there is no break, the eigenvalues of ΣFΣΛ are distinct. When

there are breaks, the eigenvalues of ΣGΣΓ are distinct.

Assumption 7 Define εt = vech(ftf
′
t − ΣF ),

1. The data generating process of the factors is such that the Hajek-Renyi inequal-

ity6 applies to the process {εt, t = kκ−1,0+1, ..., kκ,0} and {εt, t = kκ,0, ..., kκ−1,0+
1} for κ = 1, ..., L+ 1,

6Hajek-Renyi inequality is crucial for pinning down the order of the estimation error in the
estimated change points, see the Appendix A for more details.
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2. There exist δ > 0 and M < ∞ such that for κ = 1, ..., L + 1 and for all

kκ−1,0 < k < l ≤ kκ,0, E(
∥∥∥ 1√

l−k
∑l

t=k+1 εt

∥∥∥
4+δ

) < M .

Assumption 8 There exists M <∞ such that:

1. E( sup
0≤k<l≤T

1
l−k
∑l

t=k+1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣
2

) ≤M for all s,

2. E( sup
0≤k<l≤T

1
l−k
∑l

t=k+1

∥∥∥ 1√
N

∑N
i=1 γieit

∥∥∥
2

) ≤M .

Assumption 1 requires the law of large numbers to be applicable to factors within

each regime, thus ft can be dynamic and contain lags. Note that the second moment

matrix of the factors is assumed to be stationary over time. Assumption 2 requires

the factor loadings to be uniformly bounded and 1
N
Γ′Γ (or 1

N
Λ′Λ) converges to its

limit at the speed O( 1√
N
). Assumptions 3 and 4 allow for both temporal and cross-

sectional dependence as well as heteroskedasticity. Assumption 5 is the key condition

for determining the number of factors and is required in almost all existing methods.

For example, Onatski (2010) and Ahn and Horenstein (2013) assume E = AεB, where

ε is an i.i.d. T ×N matrix and A and B characterize the temporal and cross-sectional

dependence and heteroskedasticity. This is a sufficient but not necessary condition for

Assumption 5. Also note that once Assumption 5 is imposed, Assumption D in Bai

(2003) is not needed. In other words, for the purpose of determining the number of

factors, factors could be correlated with the errors. Assumption 6 ensures uniqueness

of the principal component estimator in large samples.

Assumption 7 imposes a further requirement on the factor process. Instead of

assuming a specific data generating process, we require the Hajek-Renyi inequality

to be applicable to the second moment process of the factors, so that Assumption 7

is in its most general form. Processes that satisfy Assumption 7 include martingale

difference, mixing process and linear process, see Bai (1996). Hajek-Renyi inequality

is a more powerful tool than the functional CLT for calculating the stochastic order of

sup-type terms. It allows us to calculate the order of sup
m≤k≤T

∣∣∣ck
∑k

t=1 xt

∣∣∣ while FCLT

only allows us to calculate the order of sup
τ≤k/T≤1

∣∣∣T−
1
2

∑k
t=1 xt

∣∣∣, i.e., for Hajek-Renyi
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inequality the supremum is taken with respect to all k while for FCLT the supremum

is taken with respect to the fraction.

Assumption 8 imposes further constraints on the errors. Assumption 3(3) and

Assumption F3 in Bai (2003) imply that the summands are uniformly Op(1). As-

sumption 8 strengthens this condition such that the supremum of the average of

these summands is Op(1).

Remark 5 The assumptions above are the same as or similar to the assumptions in

Bai (2003). Assumptions 1, 2, 3, 4 and 6 correspond to Assumptions A, B, C, E and

G in Bai (2003), respectively. Assumption 5 replaces Assumption D, and Assumption

8 strengthens Assumption F3 in Bai (2003).

3.1.3 Asymptotic Properties of the Joint Estimator

First note that due to the consistency of r̃ for r̄, treating r̄ as known does not affect

the asymptotic properties of the change point estimator7. Define τ̃ ι = k̃ι/T as the

estimated change fraction, we first show that τ̃ ι is consistent.

Proposition 1 Under Assumptions 1-8, τ̃ ι− τ ι0 = op(1) for ι = 1, ..., L as (N, T )→
∞.

Remark 6 For change points estimation, a key observation is that for any possible

region of the change points O, P ((k̃1, ..., k̃L) ∈ O) is controlled by P ( min
(k1,...,kL)∈O

S̃(k1, ..., kL)−

S̃(k10, ..., kL0) ≤ 0). The proof of Proposition 1 utilizes this observation.

Proposition 1 establishes the consistency of the estimated change fraction, and

serves as an intermediate step for the following theorem.

Theorem 1 Under Assumptions 1-8, k̃ι−kι0 = Op(1) for ι = 1, ..., L as (N, T )→∞.

Theorem 1 implies that no matter how large T is, the possible change points

are narrowed to a bounded interval of the true change points. Note that the ex-

tra error zt has no effect (asymptotically) on our estimator of the change points as

7The proof of the consistency of r̃ for r̄ is omitted since under Assumptions 1-5, assumptions in
Bai and Ng (2002) are satisfied.
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long as (N, T ) → ∞. No N-T ratio condition is needed. This is different from

factor-augmented forecasting and factor-augmented vector autoregression (FAVAR),

in which
√
T
N
→ 0 is required to asymptotically eliminate the effect of using estimated

factors.

Remark 7 Identification of the change points relies on observations within a local

region of the true change points and consequently the extra error zt will not accumu-

late as T → ∞. In contrast, factor-augmented forecasting and FAVAR relies on all
observations and consequently the extra error zt will accumulate as T → ∞. This is
why zt asymptotically has no effect on the estimated change points and no N-T ratio

condition is needed.

Remark 8 The limiting distribution of k̃ι−kι0 has the same form as the single change
case. This is because k̃ι also minimizes the sum of squared residuals for the subsample

t = k̃ι−1 + 1, ..., k̃ι+1. Since k̃ι−1 − kι−1,0 and k̃ι+1 − kι+1,0 are both Op(1), k̃ι has the
same limiting distribution as the minimizer of the subsample t = kι−1,0 + 1, ..., kι+1,0.

3.2 Sequential Estimation of the Change Points

This section considers sequential estimation of the change points one by one, each

time treating the model as if there is only one change point. The first two steps

are the same as the joint estimation while the third step is slightly adjusted: For

any partition k1, split the sample into two subsamples, estimate the second mo-

ment matrix of gt in each subsample and calculate the sum of squared residuals,

S̃(k1) =
∑2

κ=1

∑kκ
t=kκ−1+1

[vech(g̃tg̃
′
t − Σ̃κ)]′[vech(g̃tg̃′t − Σ̃κ)], then k̂1 = argmin S̃(k1).

Compared to joint estimation, the main advantage of sequential estimation is that it

does not require knowing the number of changes8. Instead, together with sequential

testing, it allows us to determine the number of changes.

In what follows, we show that the distance between the sequentially estimated

and the true change points is also Op(1). First, define S0(τ) as the reduction in

the sum of squared residuals when yt = 0 and zt = 0 is plugged in. If yt and zt

8Sequential estimation is also computationally simpler.
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are indeed zero for all t, the estimated change fraction should be equal to τ among

τ 1,0, ..., τL,0 that leads to the largest reduction in the sum of squared residuals. To

simplify the analysis, we require S0(τ ι,0) to be different for different ι, and without

loss of generality, we assume:

Assumption 9 S0(τ 1,0) < ... < S0(τL,0).

In general, yt and zt are not zero for all t, but asymptotically this does not affect

the result.

Proposition 2 Under Assumptions 1-9, τ̂ 1 − τ 1,0 = op(1) as (N, T )→∞.

Similar to the joint estimation, Proposition 2 can be refined to:

Theorem 2 Under Assumptions 1-9, k̂1 − k1,0 = Op(1) as (N, T )→∞.

Again, no N-T ratio condition is needed to eliminate the effect of the extra error

zt. Once k̂1 is available, we can plug it in and estimate k2,0. Since k̂1 − k1,0 = Op(1),
it can be shown that this is asymptotically equivalent to plugging in k1,0, in which

case the problem is reduced to estimating the first change point with observations

t = 1, ..., k1,0 removed
9. Thus k̂2 − k2,0 will also be Op(1). Using this argument

sequentially, we have

Theorem 3 Under Assumptions 1-9, k̂ι − kι,0 = Op(1) for ι = 1, ..., L as (N, T ) →
∞.

Note that Theorems 1-3 require the change fractions τκ,0 to be positive and dif-

ferent. Theorems 1-3 no longer hold if kκ,0 − kκ−1,0 = o(T ).
9In the general case, k̂1 could converge to the change point in the middle of the sample. Then

the problem is reduced to estimating the first change point for subsamples t = 1, ..., k1,0 and t =

k1,0+1, ..., T and taking k̂2 as the one leading to the largest reduction in the sum of squared residuals.

13



3.3 Estimating the Number of Factors and the Factor Space

Once the change points estimators are available, we plug them in and estimate the

number of factors and factor space in each regime. If true change points are plugged

in, consistency of the estimated number of factors and convergence rate of the esti-

mated factor space are well established. Thus the main concern is the effect of using

estimated change points. We show that although the estimated change points are

inconsistent, this effect is asymptotically negligible.

Let r̃κ and rκ be the estimated (using the method in Bai and Ng (2002) or Ahn

and Horenstein (2013)) and the true number of factors in the κ-th regime.

Theorem 4 Under Assumptions 1-2 and 5, with k̃κ−kκ,0 = Op(1) and k̃κ−1−kκ−1,0 =
Op(1), we have lim

(N,T )→∞
P (r̃κ = rκ) = 1.

Next, let uκ be some positive integer, F̃
uκ
κ be

√
T times the eigenvectors cor-

responding to the first uκ eigenvalues of XκX
′
κ, H

uκ
κ = 1

N
Λ′0κΛ0κ

1
k̃κ−k̃κ−1

FκF̃
uκ
κ and

F̂ uκκ = F̃ uκκ V
uκ
NT,κ, where Xκ = (xk̃κ−1+1, ..., xk̃κ)

′, Fκ = (fk̃κ−1+1, ..., fk̃κ)
′and V uκNT,κ is

the diagonal matrix that contains the first uκ eigenvalues of XκX
′
κ.

Theorem 5 Under Assumptions 1-4, with k̃κ − kκ,0 = Op(1) and k̃κ−1 − kκ−1,0 =
Op(1), we have

1

k̃κ − k̃κ−1

∑k̃κ

t=k̃κ−1+1

∥∥∥f̂uκt −Huκ′
κ ft

∥∥∥
2

= Op(
1

δ2NT
). (6)

The convergence rate Op(
1

δ2NT
) is crucial to eliminate the effect of using estimated

factors in factor-augmented forecasting and FAVAR. In the next section we will use

the estimated factors to construct a test for l versus l+1 changes. We show that the

rate Op(
1

δ2NT
) is also crucial in eliminating the effect of using estimated factors on the

limiting distribution of the test statistic.

Remark 9 The proof for Theorem 4 and Theorem 5 are similar to the single change

case, see Baltagi et al. (2017).

Remark 10 Theorem 4 and Theorem 5 rely on k̃ι− kι0 = Op(1). Consistency of the
estimated change fractions is not enough.
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3.4 Implications for Factor-augmented Forecasting

Consider the following factor-augmented regression model:

yt+h = α
′ft + β

′Wt + εt+h, (7)

where Wt contains some observable regressors relevant for forecasting, ft contains

unobservable factors and will be estimated from xit, and h is the lead time between

the dependent variable and information available. When there is no break, ft will

be replaced by the estimated factors to estimate α and β, and forecasts can be con-

structed based on the estimated factors, WT , α̂ and β̂. When there are breaks in

factor loadings, we have two choices to handle the breaks.

The first choice is to plug in the estimated change points and estimate the factor

space in each regime. Let uκ in Theorem 5 be the true number of factors. Theorem

5 implies that using f̂t is equivalent to using H
′
κft in the κ-th regime. Since yt+h =

α′(H−1
κ )

′H ′
κft + β

′Wt + εt+h in the κ-th regime and Hκ is different for different κ, we

need to allow α to have breaks at the estimated break points (k̃1, ..., k̃L) in estimating

the forecasting model.

The second choice is to ignore the breaks and obtain the estimated pseudo factors

g̃t, and then use g̃t to construct forecasts. Since g̃t − J ′gt is asymptotically negligible
and gt = Rκft for kκ−1,0 + 1 ≤ t ≤ kκ,0, this is equivalent to using J

′Rκft for

kκ−1,0 + 1 ≤ t ≤ kκ,0.
If there is no zero column in Λκ and columns in Λ0 and all Λκ are linearly inde-

pendent, then there exists an r̄ dimensional θ such that θ′J ′Rκ = α′ for all κ. For

example, if Λ0 = 0 and there are two breaks, we have θ = (α
′, α′, α′)′. Thus for this

case, equation (7) can be written as yt+h = θ
′J ′gt+ β

′Wt+ εt+h, and there is no need

to consider structural breaks for the forecasting model.

If there is no zero column in Λκ but columns in Λ0 and Λκ are linearly dependent,

then using g̃t will induce breaks in the forecasting model. For example, if Λ0 = 0,

there is only one break and Λ2 = 2Λ1, then gt = ft and gt = 2ft in the first and the

second regime respectively. It follows that yt+h = α
′gt+β

′Wt+εt+h in the first regime

and yt+h =
1
2
α′gt + β

′Wt + εt+h in the second regime. Thus for this case we need to
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allow α to have breaks at (k̃1, ..., k̃L).

If there are zero columns in Λκ, then α and β are not identifiable even if we know

the change points, because when a certain column of Λκ is zero, the corresponding

factor can not be estimated. However, it is also high likely that this factor does not

appear in the forecasting model either. If this is true, then we need to allow α to

have breaks when we estimate the forecasting model10.

In summary, since we do not know the specific form of structural breaks in the

factor loadings, we need to consider breaks in α for the forecasting model. The

number and locations of breaks of α are the same as those of the factor loadings. We

can also use g̃t for ft and apply Bai and Perron’s test directly to (7) to detect and

estimate the change points of α. The change points estimated in this way also have

bounded errors. Also, it’s worth pointing out that using g̃t (or f̂t) and the full sample

to construct forecasts is better than simply using the last subsample because the full

sample estimator of β is more accurate.

4 TESTING MULTIPLE CHANGES

In this section we propose two tests for multiple changes. The first one tests no change

(L = 0) versus some fixed number of changes (L = l). The second one tests l versus

l + 1 changes, and together with sequential estimation of the change points, can be

used to determine the number of changes.

Our testing procedure is the same as Bai and Perron (1998), but the construction

of the test statistics are slightly different, because our tests are based on a vector

(multivariate) process. The main concern is the effect of using estimated factors on

the asymptotic and finite sample performance of the test statistics.

4.1 Construction of the Test for L = 0 versus L = l

First, estimate the number of factors and then estimate the factor space by principal

components. Under the null, let f̃t be the estimated factors, UNT be the diagonal

matrix that contains the r largest eigenvalues of XX ′, H = 1
N
Λ′Λ 1

T
F ′F̃U−1NT be the

10This also applies when we use f̂t to estimate the forecasting model.
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rotation matrix, H0 be the probability limit of H and z∗t = vech(f̃tf̃
′
t − H ′

0ftf
′
tH0).

Under the alternative, we follow the same notation as the last section. It follows

that under the null vech(f̃tf̃
′
t) is a multivariate time series (vech(H

′
0ftf

′
tH0)) with

stable mean (vech(Ir))
11 and extra error z∗t , while under the alternative vech(g̃tg̃

′
t) is

a multivariate time series with l mean shifts and extra error zt. Thus we can base

the test on the difference between the restricted and unrestricted sum of squared

normalized error.

Let Ω = lim
T→∞

V ar(vech( 1√
T

∑T
t=1(H

′
0ftf

′
tH0− Ir))) be the long run covariance ma-

trix of vech(H ′
0ftf

′
tH0−Ir) and Ω̃(F̃ ) = Υ̃0(F̃ )+

∑T−1
j=1 ker(

j
dT
)[Υ̃j(F̃ )+Υ̃j(F̃ )

′] be the

HAC estimator ofΩ using the estimated factors F̃ , where Υ̃j(F̃ ) =
1
T

∑T
t=j+1 vech(f̃tf̃

′
t−

Ir̃)vech(f̃t−j f̃
′
t−j − Ir̃)′, ker(·) is some kernel function and dT is the bandwidth. For

simplicity, we will suppress Ω̃(F̃ ) as Ω̃. It follows that the restricted sum of squared

normalized error is

SSNE0 =
∑T

t=1
vech(f̃tf̃

′
t −

1

T

∑T

t=1
f̃tf̃

′
t)
′Ω̃−1vech(f̃tf̃

′
t −

1

T

∑T

t=1
f̃tf̃

′
t), (8)

and for any partition (k1, ..., kl), the unrestricted sum of squared normalized error is

SSNE(k1, ..., kl) =
∑l+1

ι=1

∑kι

t=kι−1+1
vech(f̃tf̃

′
t −

1

kι − kι−1
∑kι

t=kι−1+1

f̃tf̃
′
t)
′Ω̃−1vech(f̃tf̃

′
t −

1

kι − kι−1
∑kι

t=kι−1+1
f̃tf̃

′
t). (9)

Let FNT (τ 1, ..., τ l;
r̃(r̃+1)
2
) = 2

lr̃(r̃+1)
[SSNE0−SSNE(k1, ..., kl)] and Λε = {(τ 1, ..., τ l) :

|τ ι+1 − τ ι| ≥ ε, τ 1 ≥ ε, τ l ≤ 1− ε} for some prespecified ε > 0, the test statistic is

sup
(τ1,...,τ l)∈Λε

FNT (τ 1, ..., τ l;
r̃(r̃ + 1)

2
).

For the kernel function ker(·) and bandwidth dT , we consider three popular choices:

1. Bartlett kernel with dT = O(T
1
3 ).

2. Parzen kernel with dT = O(T
1
5 ).

11It is not difficult to see that E(H ′
0ftf

′
tH0) = H

′
0ΣFH0 = Ir.
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3. Quadratic spectral kernel with K1T
1
5 ≤ dT ≤ K2T

1
5 for some K1, K2 > 0.

4.2 Construction of the Test for L = l versus L = l + 1

First, we estimate l change points and plug them in to estimate the number of factors

and factor space in each regime. Then testing L = l versus L = l + 1 is equivalent

to testing no change versus a single change in each regime jointly. The main concern

is the effect of using estimated change points and estimated factors on the limiting

distribution and consistency of the test statistic.

Let k̃1, ..., k̃l be the estimated change points and r̃ι be the estimated number of

factors in the ι-th regime. Under the null, let F̃ι = (f̃ι,k̃ι−1+1, ..., f̃ι,k̃ι)
′ be the estimated

factors, Hι be the rotation matrix, Hι0 be the limit of Hι, UιNT be the eigenvalue ma-

trix, Uι be the limit of UιNT , Fι = (fι,k̃ι−1+1, ..., fι,k̃ι)
′ and Fι0 = (fι,kι−1,0+1, ..., fι,kι0)

′.

Note that fι,t is rι dimensional and contains the factors that appear in the ι-th regime.

Under the alternative, there are l+ 1 changes and the l estimated change points will

be close to (Op(1)) the l points that allow the greatest reduction in the sum of

squared normalized errors. Without loss of generality, suppose k̃ι−1 − kι−1,0 = Op(1)
and k̃ι − kι+1,0 = Op(1) for some ι. In this case, the ι-th regime contains an extra

change point12 kι,0 but can be equivalently represented as having no changes but with

pseudo factors gιt, where gιt = Aι1ft for t ∈ [k̃ι−1 + 1, ..., kι0] and gιt = Aι2ft for

t ∈ [kι0 + 1, ..., k̃ι]. For this regime, we denote the estimated factors as g̃ιt and define
G̃ι, Gι, Gι0, Jι, Jι0, VιNT and Vι correspondingly as F̃ι, Fι, Fι0, Hι, Hι0, UιNT and Uι.

For the other regimes, we maintain the same notation. It follows that under the null

vech(f̃ιtf̃
′
ιt) is a multivariate time series with stable mean and extra error z

∗
ιt for all ι

while under the alternative vech(g̃ιtg̃
′
ιt) is a multivariate time series with a mean shift

and extra error zιt for some ι. Again, the test is based on the difference between the

restricted and unrestricted sum of squared normalized error.

Let Ωι = lim
T→∞

V ar(vech( 1√
kι,0−kι−1,0

∑kι,0
t=kι−1,0+1

(H ′
ι0fιtf

′
ιtHι0 − Irι))) be the long

run covariance matrix of vech(H ′
ι0fιtf

′
ιtHι0 − Irι) and Ω̃ι be the HAC estimator of Ωι

12When k̃ι−1 < kι−1,0 or k̃ι > kι+1,0, the ι-th regime also contains the change point kι−1,0 or kι+1,0,

but with k̃ι−1 − kι−1,0 = Op(1) and k̃ι − kι+1,0 = Op(1) these two are asymptotically ignorable.
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using F̃ι and with kernel function ker(·) and bandwidth dT . The test statistic is

FNT (l + 1 |l ) = SSNE(k̃1, ..., k̃l)− min
1≤ι≤l+1

inf
k∈Λι,η

SSNE(k̃1, ..., k̃ι−1, k, k̃ι, ..., k̃l), (10)

where SSNE(k̃1, ..., k̃l) is the restricted sum of squared normalized error and equals

∑l+1

ι=1
SSNEι(k̃ι−1, k̃ι) =

∑l+1

ι=1

∑k̃ι

t=k̃ι−1+1
vech(f̃ιtf̃

′
ιt −

1

k̃ι − k̃ι−1

∑k̃ι

t=k̃ι−1+1

f̃ιtf̃
′
ιt)
′Ω̃−1ι vech(f̃ιtf̃

′
ιt −

1

k̃ι − k̃ι−1

∑k̃ι

t=k̃ι−1+1
f̃ιtf̃

′
ιt),(11)

SSNE(k̃1, ..., k̃ι−1, k, k̃ι, ..., k̃l) is the unrestricted sum of squared normalized error

and equals

∑ι−1

κ=1
SSNEκ(k̃κ−1, k̃κ) + SSNEι(k̃ι−1, k, k̃ι) +

∑l+1

κ=ι+1
SSNEκ(k̃κ−1, k̃κ), (12)

with Λι,η = {k : k̃ι−1 + (k̃ι − k̃ι−1)η ≤ k ≤ k̃ι − (k̃ι − k̃ι−1)η}.

4.3 Asymptotic Properties of the Test Statistics

Assumption 10 There exists M <∞ such that:

1. E(
∥∥∥ 1√

NT

∑kι,0
s=kι−1,0+1

∑N
i=1 fs[eiseit − E(eiseit)]

∥∥∥
2

) ≤M for all t and ι = 1, ..., L+

1,

2. E(
∥∥∥ 1√

NT

∑kι,0
t=kι−1,0+1

∑N
i=1 ftλ

′
0ι,ieit

∥∥∥
2

) ≤M for ι = 1, ..., L+ 1,

3. E(
∥∥∥ 1√

N

∑N
i=1 λ0ι,ieit

∥∥∥
2

) ≤M for all kι−1,0 < t ≤ kι,0 and ι = 1, ..., L+ 1.

Assumption 11 For any ε > 0 and ι = 1, ..., L+ 1,

1. sup
(kι,0−kι−1,0)ε≤k−kι−1,0≤(kι,0−kι−1,0)(1−ε)

∥∥∥ 1√
NT

∑k
t=kι−1,0+1

∑N
i=1 ftλ

′
0ι,ieit

∥∥∥ = Op(1),

2. sup
(kι,0−kι−1,0)ε≤k−kι−1,0≤(kι,0−kι−1,0)(1−ε)

∥∥∥ 1√
NT

∑kι,0
t=k+1

∑N
i=1 ftλ

′
0ι,ieit

∥∥∥ = Op(1).

19



Assumption 12 For ι = 1, ..., L+ 1, Ωι is positive definite and

1
√
kι,0 − kι−1,0

∑kι−1,0+(kι,0−kι−1,0)τ

t=kι−1,0+1
vech[Ω

− 1
2

ι (H ′
ι0fιtf

′
ιtHι0 − Irι)]⇒ W rι(rι+1)

2

(τ),

where W rι(rι+1)
2

(·) is an rι(rι+1)
2

dimensional vector of independent Wiener processes

on [0, 1].

Assumption 13 For ι = 1, ..., L+1, let Ω̃(FιHι0) be the HAC estimator of Ωι using

FιHι0, Ω̃(FιHι0) is consistent for Ωι. When L = 0, Ω̃(FH0) is consistent for Ω.

Assumption 14 For ι = 1, ..., L + 1, the eigenvalues of ΣF,ιΣΛ,ι are distinct, the

eigenvalues of ΣG,ιΣΓι are also distinct. (ΣF,ι = plim 1
kι,0−kι−1,0

∑kι,0
t=kι−1,0+1

fιtf
′
ιt,

ΣG,ι = plim 1
kι,0−kι−1,0 gιtg

′
ιt, ΣΛι = plim 1

N
ΛιΛι′, ΣΓι = plim 1

N
ΓιΓι′, Λι contains the

nonzero factor loadings of the ι-th regime, Γι contains the linearly independent vectors

of factor loadings of the ι-th and (ι+ 1)-th regime.)

Note that when L = 0, k0,0 = 0 and k1,0 = T , λ0ι,i is replaced by λi in Assumptions

10 and 11, and in Assumption 12 fιt, Ωι and rι is replaced by ft, Ω and r respectively.

Assumption 10 corresponds to and slightly weakens Assumption F in Bai (2003).

Assumption 11 requires the term in ‖·‖ to be uniformly Op(1). This is not restrictive
since all summands have zero means. Assumptions 10 and 11 are satisfied by various

mixing processes. Assumptions 12 requires the functional central limit theorem to

be applicable to vech(H ′
ι0fιtf

′
ιtHι0 − Irι) in each regime. Assumptions 13 requires

the HAC estimator of Ωι to be consistent if factors were observable. Assumptions 14

ensures that for each regime, no matter whether there is break or not, the principal

component estimator is unique in large samples.

4.3.1 Asymptotic Properties of the Test for L = 0 versus L = l

Now we are ready to present the limiting distribution:

Theorem 6 Under Assumptions 1-6, 10-13 and L = 0, with
√
T
N
→ 0 and dT

δNT
→ 0

as (N, T )→∞,

sup
(τ1,...,τ l)∈Λε

FNT (τ 1, ..., τ l;
r̃(r̃ + 1)

2
)
d→ sup

(τ1,...,τ l)∈Λε
F (τ 1, ..., τ l;

r(r + 1)

2
),
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where F (τ 1, ..., τ l;
r(r+1)
2
) = 2

lr(r+1)

∑l
ι=1

∥∥∥∥τ ιW r(r+1)
2

(τ ι+1)−τ ι+1W r(r+1)
2

(τ ι)

∥∥∥∥
2

τ ιτ ι+1(τ ι+1−τ ι) .

Note that
√
T
N
→ 0 and dT

δNT
→ 0 are needed to eliminate the effect of the extra

error z∗t . This is different from the results in the last section but similar to the results

in the factor-augmented forecasting and FAVAR. Intuitively, testing for structural

changes relies on all the observations and consequently z∗t will accumulate in the test

statistic as T →∞ and dT →∞.
We next consider the consistency of the proposed test. Under the alternative,

the process vech(g̃tg̃
′
t) has l mean shifts and extra error zt. Thus vech(g̃tg̃

′
t) is not

properly demeaned in calculating the restricted SSNE. On the other hand, the test

statistic can be written as 2
lr̃(r̃+1)

[SSNE0− min
(τ1,...,τ l)∈Λε

SSNE(k1, ..., kl)] and by taking

the minimum for (τ 1, ..., τ l) ∈ Λε, it ensures vech(g̃tg̃′t) is properly demeaned. Thus
under the alternative the test statistic will diverge as (N, T )→∞.

Theorem 7 Under Assumptions 1-8 and L = l, with dT
T
→ 0 as (N, T ) → ∞,

sup
(τ1,...,τ l)∈Λε

FNT (τ 1, ..., τ l;
r̃(r̃+1)
2
)
p→∞.

The test discussed above is designed for a given number of changes under the al-

ternative. When the number of changes is misspecified, the test may not be powerful.

For example, test for 0 versus 2 changes should be more powerful than the test for 0

versus 1 change when the true DGP contains two changes. Following Bai and Perron

(1998), we consider the UDmax and WDmax tests when the number of changes under

the alternative is unknown. Let c(q, α, l) be the asymptotic critical value of the test

for 0 versus l changes with degree of freedom q and significance level α. Given the

maximum possible number of changesM , UDmax is simply the maximum of the tests

for 0 versus l changes with l ≤ M while WDmax is the weighted maximum of the

tests for 0 versus l changes with weights c( r̃(r̃+1)
2
, α, 1)/c( r̃(r̃+1)

2
, α, l). With Theorem

6, the limiting distributions of both tests have the same form as in Bai and Perron

(1998).

Remark 11 Comprehensive critical values for Theorem 6 and the UDmax and WD-

max tests are tabulated in Bai and Perron (2003).
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Remark 12 Since r̃ is consistent for r and r̄ under the null and the alternative

respectively, in the asymptotic analysis we can treat r and r̄ as known.

Remark 13 Now consider the finite sample effect of r̃ 6= r(or r̄) on the performance
of the test. Underestimation of the number of factors will not affect the size of the

test but will decrease the power, because under the null the degrees of freedom r̃(r̃+1)
2

(and consequently the critical value) adjust automatically with the estimated number

of factors r̃, while under the alternative important second moment conditions of the

pseudo factors will be lost. Overestimation of the number of factors will not signifi-

cantly affect the power because all second moment conditions are utilized. However,

overestimation will make the test undersized if the errors are stationary, because under

the null it will magnify the degrees of freedom but will not magnify the test statistic.

If the errors are heteroscedastic, overestimation may introduce breaks from the errors.

4.3.2 Asymptotic Properties of the Test for L = l versus L = l + 1

If the true change points were plugged in, Theorem 6 implies that for each regime the

effect of using estimated factors can be eliminated if
√
T
N
→ 0 and dT

δNT
→ 0. When the

estimated change points are plugged in, we show based on Theorem 4 and Theorem

5 that the result still holds if
√
T
N
→ 0 and dT

T
1
4
→ 0.

Theorem 8 Under Assumptions 1-6, 10-14 and L = l, with k̃ι − kι,0 = Op(1)

for all ι,
√
T
N
→ 0 and dT

T
1
4
→ 0, we have FNT (l + 1 |l ) d→ sup

1≤ι≤l+1
Fι, where Fι =

sup
η≤τ≤(1−η)

1
τ(1−τ)

∥∥∥W rι(rι+1)
2

(τ)− τW rι(rι+1)
2

(1)
∥∥∥
2

and Fι is independent with each other

for different ι.

Critical values can be obtained via simulations and here they are related to the

number of factors in each regime. In case the number of factors is stable, we have:

Corollary 1 If rι = r for all ι, lim
(N,T )→∞

P (FNT (l+1 |l ) ≤ x) = G r(r+1)
2

,η
(x)l+1, where

G r(r+1)
2

,η
(x) is the c.d.f. of sup

η≤τ≤(1−η)

1
τ(1−τ)

∥∥∥W r(r+1)
2

(τ)− τW r(r+1)
2

(1)
∥∥∥
2

.
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We next consider the consistency of FNT (l + 1 |l ). Since

FNT (l + 1 |l ) = sup
1≤κ≤l+1

sup
k∈Λκ,η

[SSNEκ(k̃κ−1, k̃κ)− SSNEκ(k̃κ−1, k, k̃κ)]

≥ SSNEι(k̃ι−1, k̃ι)− SSNEι(k̃ι−1, kι0, k̃ι)

and under the alternative SSNEι(k̃ι−1, k̃ι) is not properly demeaned, FNT (l + 1 |l )
will diverge as (N, T )→∞.

Theorem 9 Under Assumptions 1-5, 10-11, 14 and L = l + 1, with
∣∣∣k̃ι − kι+1,0

∣∣∣ =

Op(1) and
∣∣∣k̃ι−1 − kι−1,0

∣∣∣ = Op(1) for some ι and dT
T
→ 0, we have FNT (l+1 |l )

p→∞.

Remark 14 Since r̃ι is consistent for rι under the null, in the asymptotic analysis

we can treat rι as known.

Remark 15 For the finite sample effect of r̃ι on FNT (l + 1 |l ), the discussion in
Remark 13 also applies here.

4.4 Determining the Number of Changes

The sequential test FNT (l+1 |l ) allows us to determine the number of changes. First,
estimate l change points, either jointly or sequentially, where l could be suggested by

some prior information or just zero. Next, perform the test FNT (l+1 |l ). If rejected13,
estimate l+ 1 change points, either jointly or sequentially, and then perform the test

FNT (l+ 2 |l + 1). Repeat this procedure until the null can not be rejected. Let L̂ be
the estimated number of changes, it is not difficult to see that lim

(N,T )→∞
P (L̂ < L) = 0

and lim
(N,T )→∞

P (L̂ ≥ L+ 1) = α. let α→ 0 as (N, T )→∞, then L̂ will be consistent.

Remark 16 For the error accumulation issue of our multi-step testing procedure,

note that the estimator of the number of factors and the factor space is robust to

bounded error of k̃ι−kι,0, and as explained in Remarks 13 and 15, our test is to some
degree robust to r̃ι 6= rι.
13It can be shown that the test is also consistent when L > l + 1.
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5 MONTE CARLO SIMULATIONS

This section presents simulation results to evaluate the finite sample properties of our

proposed estimation and testing procedures. The number of simulations is 1000.

5.1 Data Generating Process

The factors are generated by

ft,p = ρft−1,p + ut,p for t = 2, ..., T and p = 1, ..., 3,

where ut = (ut,1, ut,2, ut,3)
′ is i.i.d. N(0, I3) for t = 2, ..., T and f1 = (f1,1, f1,2, f1,3)

′

is i.i.d. N(0, 1
1−ρ2 I3) so that the factors are stationary. The idiosyncratic errors are

generated by:

ei,t = αei,t−1 + vi,t for i = 1, ..., N and t = 2, ..., T ,

where vt = (v1,t, ..., vN,t)
′ is i.i.d. N(0,Ω) for t = 2, ..., T and e1 = (e1,1, ..., eN,1)

′ is

N(0, 1
1−α2Ω) so that the idiosyncratic errors are stationary. Ω is generated as Ωij =

β|i−j| so that β captures the degree of cross-sectional dependence of the idiosyncratic

errors. In addition, ut and vt are mutually independent for all t.

For factor loadings, we consider two different setups. Setup 1 contains no struc-

tural change and λi is i.i.d. N(0,
1
3
I3) across i. Setup 1 will be used to evaluate

the size of the tests for multiple changes. Setup 2 contains two structural changes

and hence three regimes. In the first and the second regime, the last element of λ1,i

and λ2,i are zeros for all i while the first two elements of λ1,i and λ2,i are both i.i.d.

N(0, 1
2
I2) across i. In the third regime, λ3,i is i.i.d. N(0,

1
3
I3) across i. Also, λ1,i, λ2,i

and λ3,i are independent. Thus in Setup 2 the number of factors in the three regimes

are 2, 2, 3 respectively and the number of pseudo factors is 7. Setup 2 will be used to

evaluate the performance of the estimated change points and the estimated number

of factors in each regime. Setup 3 also contains two structural changes while λ1,i, λ2,i

and λ3,i are all i.i.d. N(0,
1
3
I3) across i and independent of each other. Setup 3 will

be used to evaluate the power of the tests for multiple changes and the probabilities
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of selecting the correct number of changes. Once factors, loadings and errors are

available, the data is generated as:

Setup 1: xit = f
′
tλi + eit,

Setup 2 and 3: xit = f
′
tλκ,i + eit, if [Tτκ−1,0] + 1 ≤ t ≤ [Tτκ,0] for κ = 1, 2, 3,

where (τ 1,0, τ 2,0) = (0.3, 0.7) are the change fractions. Finally, all factor loadings are

independent of the factors and the idiosyncratic errors.

5.2 Estimating the Change Points

We first estimate the number of pseudo factors using ICp1 in Bai and Ng (2002) with

the maximum number of factors rmax = 12. When using other criterion, e.g., ICp2,

ICp3 in Bai and Ng (2002) and ER, GR in Ahn and Horenstein (2013), the results are

similar, and hence omitted. Once estimated pseudo factors are available, the change

points are estimated as in equation (5) with minimum sample size of each regime

T × 0.1.
Figures 1 and 2 are the histograms of the jointly estimated change points for

(N, T ) = (100, 100) and (N, T ) = (100, 200) respectively. Each figure includes four

subfigures corresponding to (ρ, α, β) = (0, 0, 0), (0.7, 0, 0), (0, 0.3, 0) and (0, 0, 0.3)

respectively. In all subfigures, more than 95 percent of the mass is concentrated

within a (-8,8) neighborhood of the true change points. This confirms our theoretical

result that k̃κ − kκ,0 = Op(1). Figures 1 and 2 also show that the performance of

the estimated change points deteriorates when ρ increases from 0 to 0.7 while serial

correlation and cross-sectional dependence of the errors seems to have no effect. This

is also in line with the theoretical predictions because the errors affect the estimation

of the pseudo factors and not the estimation of the change points directly.
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5.3 Estimating the Number of Factors in Each Regime14

The number of factors in each regime is estimated using ICp2 in Bai and Ng (2002)

and ER and GR in Ahn and Horenstein (2013), with maximum number of factors 8.

We consider various (N, T ) combinations and representative (ρ, α, β) combinations.

These should cover the most empirically relevant cases. The results are shown in Table

1. x/y denotes the frequency of underestimation and overestimation is x% and y%

respectively. In all cases, the probability of underestimation plus overestimation, x+y

is significantly smaller than the probability that the estimated change points differ

from the true change points. This implies Op(1) deviation from the true change points

does not significantly affect r̃1, r̃ 2 and r̃ 3. Also, when the size of each subsample is

large enough, x and y are both zeros. This further confirms our theoretical result

that r̃1, r̃ 2 and r̃ 3 are robust to Op(1) estimation error of the change points.

5.4 Testing Multiple Changes

Now we present the results for the various tests of multiple changes. Table 2 reports

size of the test for 0 versus l changes with l = 1, 2, 3, size of the UDmax and WDmax

tests and the probabilities of selecting changes when the data is generated under

Setup 1. We consider two methods of estimating the number of changes, L̂1 and

L̂2. L̂1 is obtained by the sequential procedure as discussed in Section 4.4 while L̂2

is obtained by using WDmax to test the presence of at least one change first and

then performing the sequential procedure starting from 1 versus 2 changes. Table 3

reports the power of the test for 0 versus l changes with l = 1, 2, 3, the power of the

UDmax and WDmax tests, the power of the test for 1 versus 2 changes, the size of the

test for 2 versus 3 changes and the probabilities of selecting changes when the data

is generated under Setup 3. For both tables, we consider (N, T ) = (100, 100) and

(100, 200) with ε = 0.05, 0.10, 0.15, 0.20 and 0.25, and (ρ, α, β) = (0, 0, 0), (0.7, 0, 0)

and (0.7, 0.3, 0.3). We delete the case T = 100 and ε = 0.05 to ensure the sample size

of each regime is at least 10.

14The finite sample performance of the estimated factor space should be similar to that of the
single change case, which are evaluated in Baltagi et al. (2016).
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Note that in calculating the HAC estimator of the covariance matrix of the second

moments of the estimated factors, Bartlett kernel is used with bandwidth T 1/3 for

testing 0 versus l changes and 2×T 1/5 for testing l versus l+1 changes15. In estimating
the number of factors at the very beginning, ICp3

16 is used except for the case

(N, T ) = (100, 100) and (ρ, α, β) = (0.7, 0.3, 0.3). In that case, ICp3 overestimates

too much, thus we switch to ICp1. The critical values are obtained from Bai and

Perron (2003) with nominal size of 5%.

First consider the size properties. Table 2 shows that overall, all tests are slightly

undersized. The undersizing phenomenon is quite obvious when T = 100 and ρ = 0.

This is in line with previous findings, see Diebold and Chen (1996). When T increases

to 200, the empirical size gets closer to the nominal size 5%. It is also easy to see that

when ρ = 0.7 and ε = 0.05, the tests are significantly oversized. Thus we recommend

choosing ε at least 0.10 when the factors have serial correlation. Once T is large

enough to guarantee the accuracy of the estimated factors, serial and cross-sectional

dependence of the errors do not seem to affect the size of the various tests.

Now consider the power properties. Powers of the tests for 0 versus l changes are

good in all cases. WDmax has good power except when T = 100 and ε = 0.25, and

is more powerful than UDmax. When T = 200, test for 1 versus 2 changes has good

power, thus the probabilities of selecting the correct number of changes is always close

to 1. However, the power decreases a lot when T = 100, and thus L̂1 and L̂2 tend to

underestimate the number of changes. This is because when T = 100, the sample size

of each regime is too small to be robust to the estimation error of the change points.

We also conduct simulations gradually increasing T and find that when T increases to

140, the performance is as good as T = 200. Of course, the power also depends upon

the location of the change points. We suggest that, for each regime, the sample size

should be at least 40. Finally, when T = 100 serial and cross-sectional dependence of

the errors decrease the power. This is again caused by small T . In summary, results

15For Bartlett kernel, the condition on the bandwidth is dT = O(T
1/3). We simply choose dT =

T 1/3. For testing l versus l+1 changes, since Theorem 8 requires dT

T
1

4

→ 0, we choose dT = 2×T 1/5.
For space limitations, finite sample performances of different bandwidth choices are not carried out.
16As discussed in Section 3.1.1, less conservative criterion is recommended in estimating the num-

ber of factors in the first step.
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in both tables are consistent with our theoretical derivation and show the usefulness

of the proposed testing procedure.

6 APPLICATION

In this section we apply the proposed method to detect breaks in Stock and Watson

(2009)’s US macroeconomic data set. The original data set contains 108 monthly and

79 quarterly time series of US nominal and real variables, including prices, interest

rates, money and credit aggregates, stock prices, exchange rates, etc, ranging from

1959:Q1 to 2006:Q4. The transformed data is a balanced panel of standardized vari-

ables with N = 109 and T = 190, ranging from 1959:Q3 to 2006:Q4, see Stock and

Watson (2009) for the details of data description and transformation.

We use WDmax to detect the presence of at least one break. The trimming

parameter ε equals 0.1. Using Bai and Ng (2002)’s IC1, IC2 and IC3, the estimated

number of pseudo factors r̃ equals 4, 2 and 10 respectively. Using Ahn and Horenstein

(2013)’s ER or GR estimator, r̃ equals 1. At significance level 5%, WDmax fails to

reject the null when r̃ = 4, 2, and 1 and reject the null when r̃ = 10. UDmax

also rejects the null when r̃ = 10. To check the robustness, we set the trimming

parameter ε to be 0.05 and 0.15. The results are the same. We also set r̃ manually

with maximum 12. We find that WDmax always fails to reject the null when r̃ ≤ 5,
and always rejects the null when r̃ ≥ 6. As discussed in Remark 13, under the null a
larger r̃ (i.e., overestimating the number of factors) will make the test even less likely

to reject the null, while under the alternative, a smaller r̃ (i.e., underestimating the

number of factors) may make the test fail to reject the null. Therefore, we conclude

there exists at least one break17.

We then use the sequential test FNT (l + 1 |l ) to determine the number of breaks,
starting from 1 versus 2 breaks. We find that FNT (2 |1) rejects the null but FNT (3 |2)
fails to reject the null, thus we conclude there are two breaks. The estimated break

points are 1979:Q1 and 1983:Q4. The first break could be due to the impact of the

17The detected breaks may also come from the idiosyncratic noises if the number of factors is
overestimated. Since this section is mainly for illustration, further empirical evidence to support the
presence of breaks in the factor loadings is out of scope.
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Iranian revolution on the oil price and US inflation, which at least partially motivated

the Federal Reserve to tighten monetary policy. This break is also detected by Chen

et al. (2014) and Ma and Su (2018). The second break could be due to the great

moderation, and is also considered by Stock and Watson (2009) and Ma and Su

(2018). The estimated number of factors in three regimes is 3, 3, 4 respectively.

Decomposing the breaks into breaks in loadings of old factors and emergence of new

factors and identifying the extra factor is beyond the scope of this paper.

7 CONCLUSIONS

This paper studies a high dimensional factor model with multiple changes. The main

issues tackled are the estimation of change points, tests for the presence of multi-

ple changes and tests for determining the number of changes. Our strategy is based

on the second moments of the estimated pseudo factors and we show that estima-

tion errors contained in the estimated factors have different effects on estimating and

testing structural changes. Simulation studies confirm the theoretical results and

demonstrate its good performance. An application to U.S. macroeconomic dataset

illustrates our procedure for testing and estimating structural breaks. A natural next

step is to use bootstrap to fix the undersizing issue when T is less than 100, as

discussed in Diebold and Chen (1996). It will be also interesting to apply our theo-

retical results to study the financial market comovement during crises, as discussed in

Bekaert, Ehrmann, Fratzscher and Mehl (2014) and Belvisi, Pianeti and Urga (2015).
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(ρ, α, β) = (0, 0, 0), (τ 1, τ 2) = (0.3, 0.7) (ρ, α, β) = (0.7, 0, 0), (τ 1, τ 2) = (0.3, 0.7)

(ρ, α, β) = (0, 0.3, 0), (τ 1, τ 2) = (0.3, 0.7) (ρ, α, β) = (0, 0, 0.3), (τ 1, τ 2) = (0.3, 0.7)

Figure 1: Histogram of estimated change points for (N, T ) = (100, 100), r1 = 2, r2 =
2, r3 = 3, r̄ = 7
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(ρ, α, β) = (0, 0, 0), (τ 1, τ 2) = (0.3, 0.7) (ρ, α, β) = (0.7, 0, 0), (τ 1, τ 2) = (0.3, 0.7)

(ρ, α, β) = (0, 0.3, 0), (τ 1, τ 2) = (0.3, 0.7) (ρ, α, β) = (0, 0, 0.3), (τ 1, τ 2) = (0.3, 0.7)

Figure 2: Histogram of estimated change points for (N, T ) = (100, 200), r1 = 2, r2 =
2, r3 = 3, r̄ = 7
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Table 1: Estimated number of factors in each regime for r1 = 2, r2 = 2, r3 = 3, r̄ = 7

N T ICp2 GR ER
r̃1 r̃ 2 r̃ 3 r̃1 r̃ 2 r̃ 3 r̃1 r̃ 2 r̃ 3

ρ = 0, α = 0, β = 0
100 100 0/0 0/1 1/0 1/0 1/0 5/0 1/0 0/0 3/0
100 200 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 200 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 300 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

ρ = 0.7, α = 0, β = 0
100 100 4/4 0/10 1/2 1/2 3/5 12/0 1/0 1/6 6/0
100 200 0/0 0/2 0/0 0/1 0/0 0/0 0/0 0/1 0/0
200 200 0/0 0/3 0/0 0/0 0/1 0/0 0/0 0/1 0/0
200 300 0/0 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0

ρ = 0, α = 0.3, β = 0
100 100 0/0 0/1 2/0 3/0 1/0 11/0 1/0 1/0 7/0
100 200 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 200 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 300 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

ρ = 0, α = 0, β = 0.3
100 100 0/0 0/0 1/0 1/0 1/0 6/0 1/0 0/0 4/0
100 200 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 200 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 300 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
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Table 2: Size of tests and probabilities of selecting changes

ε l|0 Dmax L̂1 L̂2
1 2 3 U W 0 1 2 0 1 2

N = 100, T = 100, ρ = 0, α = 0, β = 0
0.10 0.4 0.2 0.1 0.4 0.2 99.6 0.4 0 99.8 0.2 0
0.15 0.1 0 0 0.1 0.1 99.9 0.1 0 99.9 0.1 0
0.20 0 0 0 0 0 100 0 0 100 0 0
0.25 0.1 0 0 0 0 99.9 0.1 0 100 0 0

N = 100, T = 200, ρ = 0, α = 0, β = 0
0.05 1.8 1.8 1.7 1.6 1.4 98.2 1.8 0 98.6 1.4 0
0.10 0.2 0.2 0.5 0.3 0.1 99.8 0.2 0 99.9 0.1 0
0.15 0.6 0.5 0.2 0.7 0.2 99.4 0.6 0 99.8 0.2 0
0.20 0.4 0.3 0.1 0.4 0 99.6 0.4 0 100 0 0
0.25 0.9 0.4 0 0.7 0.2 99.1 0.9 0 99.8 0.2 0

N = 100, T = 100, ρ = 0.7, α = 0, β = 0
0.10 2.3 2.6 3.0 2.5 2.2 97.7 2.3 0 97.8 2.2 0
0.15 0.9 1.8 1.0 1.1 1.2 99.1 0.9 0 98.8 1.2 0
0.20 0.9 1.3 0.5 0.9 0.6 99.1 0.9 0 99.4 0.6 0
0.25 0.8 1.3 0 0.7 0.1 99.2 0.8 0 99.9 0.1 0

N = 100, T = 200, ρ = 0.7, α = 0, β = 0
0.05 12.7 25.9 23.4 15.9 17.5 87.3 11.8 0.8 82.5 16.1 0.13
0.10 5.3 8.4 8.8 6.4 7.5 94.7 5.1 0.2 92.5 7.2 0.3
0.15 4.5 5.9 4.2 5.1 5.2 95.5 4.5 0 94.8 5.0 0.2
0.20 3.4 4.2 4.0 3.3 3.4 96.6 3.4 0 96.6 3.4 0
0.25 3.6 3.5 0.3 2.8 2.1 96.4 3.6 0 97.9 2.1 0

N = 100, T = 100, ρ = 0.7, α = 0.3, β = 0.3
0.10 2.0 2.5 3.1 2.5 2.4 98.0 2.0 0 97.6 2.4 0
0.15 0.8 2.0 1.0 1.0 1.1 99.2 0.8 0 98.9 1.1 0
0.20 1.0 1.4 1.6 1.0 0.7 99.0 1.0 0 99.3 0.7 0
0.25 0.8 1.3 0.1 0.6 0.1 99.2 0.8 0 99.9 0.1 0

N = 100, T = 200, ρ = 0.7, α = 0.3, β = 0.3
0.05 12.5 26.8 23.8 16.3 17.8 87.5 11.7 0.7 82.2 16.5 1.2
0.10 5.4 8.0 8.2 6.2 7.3 94.6 5.2 0.2 92.7 7.0 0.3
0.15 4.6 5.6 4.2 5.3 5.3 95.4 4.6 0 94.7 5.2 0.1
0.20 3.7 4.0 1.9 3.6 3.2 96.3 3.7 0 96.8 3.2 0
0.25 3.6 3.5 0.3 2.9 2.1 96.4 3.6 0 97.9 2.0 0.1
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Table 3: Power of tests and probabilities of selecting changes for L = 2

ε l|0 Dmax l + 1|l L̂1 L̂2
1 2 3 U W 2|1 3|2 0 1 2 0 1 2

N = 100, T = 100, ρ = 0, α = 0, β = 0
0.10 100 100 100 98.4 100 23.4 0 0 76.6 23.4 0 76.6 23.4
0.15 100 100 100 23.1 100 12.4 0 0 87.6 12.4 0 87.6 12.4
0.20 100 100 100 4.9 99.9 9.6 0 0 90.4 9.6 0.1 90.3 9.6
0.25 100 100 100 3.6 3.7 11.1 0 0 88.9 11.1 96.3 3.3 0.4

N = 100, T = 200, ρ = 0, α = 0, β = 0
0.05 100 100 100 100 100 100 0.5 0 0 99.5 0 0 99.5
0.10 100 100 100 100 100 100 0 0 0 100 0 0 100
0.15 100 100 100 100 100 100 0 0 0 100 0 0 100
0.20 100 100 100 100 100 100 0 0 0 100 0 0 100
0.25 100 100 100 100 100 100 0 0 0 100 0 0 100

N = 100, T = 100, ρ = 0.7, α = 0, β = 0
0.10 100 100 100 98.9 100 41.9 0.1 0 58.1 41.8 0 58.1 41.8
0.15 100 100 100 28.7 100 23.3 0 0 76.7 23.3 0 76.7 23.3
0.20 100 100 100 5.9 100 15.8 0 0 84.2 15.8 0 84.2 15.8
0.25 100 100 100 4.3 4.3 15.5 0 0 84.5 15.5 95.7 3.6 0.7

N = 100, T = 200, ρ = 0.7, α = 0, β = 0
0.05 100 100 100 100 100 100 3.9 0 0 96.1 0 0 96.1
0.10 100 100 100 100 100 100 0.4 0 0 99.6 0 0 99.6
0.15 100 100 100 100 100 100 0.1 0 0 99.9 0 0 99.9
0.20 100 100 100 100 100 100 0 0 0 100 0 0 100
0.25 100 100 100 100 100 100 0 0 0 100 0 0 100

N = 100, T = 100, ρ = 0.7, α = 0.3, β = 0.3
0.10 97.3 98.5 99.9 78.5 97.7 37.0 0.3 2.7 60.6 36.5 2.3 60.9 36.6
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ESTIMATING AND TESTING HIGH DIMENSIONAL FACTOR

MODELS WITH MULTIPLE STRUCTURAL CHANGES

APPENDIX (not intended for publication)

A HAJEK-RENYI INEQUALITY

Hajek-Renyi inequality is applicable to various settings, including i.i.d., martingale

difference, martingale, vector-valued martingale, mixingale and linear process, also

see Bai (1996) for more details. For a sequence of independent random variables

{xt, t = 1, ...} with Ext = 0 and Ex2t = σ2t , Hajek and Renyi (1955) proved that for
any integers m and T ,

P ( sup
m≤k≤T

ck

∣∣∣
∑k

t=1
xt

∣∣∣ > M) ≤ 1

M2
(c2m

∑m

t=1
σ2t +

∑T

t=m+1
c2tσ

2
t ), (A-1)

where {ck, k = 1, ...} is a sequence of nonincreasing positive numbers. It is easy
to see that if σ2t ≤ σ2 for all t and ck =

1
k
, P ( sup

m≤k≤T

∣∣∣ 1k
∑k

t=1 xt

∣∣∣ > M) ≤ 2σ2

M2
1
m
,

thus sup
1≤k≤T

∣∣∣ 1k
∑k

t=1 xt

∣∣∣ = Op(1) and sup
Tτ≤k≤T

∣∣∣ 1k
∑k

t=1 xt

∣∣∣ = Op(
1√
T
). If ck =

1√
k
,

P ( sup
m≤k≤T

∣∣∣ 1√
k

∑k
t=1 xt

∣∣∣ > M) ≤ σ2

M2 (1+
∑T

k=m+1
1
k
), thus sup

1≤k≤T

∣∣∣ 1√
k

∑k
t=1 xt

∣∣∣ = Op(
√
log T )

since
∑T

k=1
1
k
−log T converges to the Euler constant and sup

Tτ≤k≤T

∣∣∣ 1√
k

∑k
t=1 xt

∣∣∣ = Op(1)

since
∑T

k=m+1
1
k
=
∑T

k=1
1
k
−
∑Tτ

k=1
1
k
→ log T − log Tτ = log 1

τ
.

B PROOF OF PROPOSITION 1

Proof. For any ε > 0 and η1 > 0, ..., ηL > 0, define D = {(k1, ..., kL) : (τ ι0 − ηι)T ≤
kι ≤ (τ ι0+ηι)T for ι = 1, ..., L}, we need to show P ((k̃1, ..., k̃L) ∈ Dc) < ε as (N, T )→
∞. Since Dc = ∪Lι=1{(k1, ..., kL) :for κ = 1, ..., L, either kκ < (τ ι0−ηι)T or kκ > (τ ι0+
ηι)T} = ∪Lι=1Dc

(ι), it suffices to show P ((k̃1, ..., k̃L) ∈ Dc
(ι)) < ε as (N, T )→∞ for all ι.

Since (k̃1, ..., k̃L) = argmin S̃(k1, ..., kL), S̃(k̃1, ..., k̃L) ≤ S̃(k1,0, ..., kL,0) ≤
∑T

t=1(yt +

zt)
′(yt + zt). If (k̃1, ..., k̃L) ∈ Dc

(ι), then min
(k1,...,kL)∈Dc

(ι)

S̃(k1, ..., kL) = S̃(k̃1, ..., k̃L). Thus

(k̃1, ..., k̃L) ∈ Dc
(ι) implies min

(k1,...,kL)∈Dc
(ι)

S̃(k1, ..., kL) ≤
∑T

t=1(yt + zt)
′(yt + zt) and it

1



suffices to show P ( min
(k1,...,kL)∈Dc

(ι)

S̃(k1, ..., kL) −
∑T

t=1(yt + zt)
′(yt + zt) ≤ 0) < ε as

(N, T )→∞.
For any given partition (k1, ..., kL), let Σ̃ι =

1
kι−kι−1

∑kι
t=kι−1+1

g̃tg̃
′
t and at =

vech(Σκ − Σ̃ι) for t ∈ [kι−1 + 1, kι] ∩ [kκ−1,0 + 1, ..., kκ,0], ι, κ = 1, ..., L+ 1. It follows
vech(g̃tg̃

′
t − Σ̃ι) = at + yt + zt and

S̃(k1, ..., kL) =
∑L+1

ι=1

∑kι

t=kι−1+1
[vech(g̃tg̃

′
t − Σ̃ι)]′[vech(g̃tg̃′t − Σ̃ι)]

=
∑T

t=1
(yt + zt)

′(yt + zt) +
∑T

t=1
a′tat + 2

∑T

t=1
a′t(yt + zt).(A-2)

Thus it suffices to show P ( min
(k1,...,kL)∈Dc

(ι)

[
∑T

t=1 a
′
tat + 2

∑T
t=1 a

′
t(yt + zt)] ≤ 0) < ε

as (N, T ) → ∞. Since min
(k1,...,kL)∈Dc

(ι)

[
∑T

t=1 a
′
tat + 2

∑T
t=1 a

′
t(yt + zt)] ≤ 0 implies

min
(k1,...,kL)∈Dc

(ι)

∑T
t=1 a

′
tat ≤ 2 sup

(k1,...,kL)∈Dc
(ι)

∣∣∣
∑T

t=1 a
′
t(yt + zt)

∣∣∣, it suffices to show that the

left hand side dominates the right hand side asymptotically.

Consider the left hand side first. For any (k1, ..., kL) ∈ Dc
(ι), there exists κ

∗ such

that kκ∗−1 < (τ ι0 − ηι)T and kκ∗ > (τ ι0 + ηι)T , thus for t ∈ [(τ ι0 − ηι)T, τ ι0T ],
at = vech(Σ̃κ∗ −Σι) and for t ∈ [τ ι0T + 1, (τ ι0 + ηι)T ], at = vech(Σ̃κ∗ −Σι+1). So for
any (k1, ..., kL) ∈ Dc

(ι),

∑T

t=1
a′tat

≥
∑τ ι0T

t=(τ ι0−ηι)T
a′tat +

∑(τ ι0+ηι)T

t=τ ι0T+1
a′tat

≥ ηιT [vech(Σ̃κ∗ − Σι)′vech(Σ̃κ∗ − Σι) + vech(Σ̃κ∗ − Σι+1)′vech(Σ̃κ∗ − Σι+1)]

≥ ηιT
vech(Σι − Σι+1)′vech(Σι − Σι+1)

2
, (A-3)

where the last inequality is due to (x−a)2+(x− b)2 = 2(x− a+b
2
)2+ (a−b)2

2
for any x.

Thus min
(k1,...,kL)∈Dc

(ι)

∑T
t=1 a

′
tat ≥ ηιT vech(Σι−Σι+1)

′vech(Σι−Σι+1)
2

. Next, the right hand side
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is no larger than

∣∣∣∣
∑L+1

κ=1

∑kκ,0

t=kκ−1,0+1
vech(Σκ)

′(yt + zt)

∣∣∣∣ (A-4)

+ sup
(k1,...,kL)∈Dc

(ι)

∣∣∣∣
∑L+1

ι=1

∑kι

t=kι−1+1
vech(Σ̃ι)

′(yt + zt)

∣∣∣∣ . (A-5)

For the first term,

∣∣∣∣
∑L+1

κ=1

∑kκ,0

t=kκ−1,0+1
vech(Σκ)

′yt

∣∣∣∣

≤
∑L+1

κ=1

∣∣∣∣
∑kκ,0

t=kκ−1,0+1
vech(Σκ)

′yt

∣∣∣∣ ≤
∑L+1

κ=1
‖Σκ‖

∥∥∥∥
∑kκ,0

t=kκ−1,0+1
yt

∥∥∥∥

≤
∑L+1

κ=1
‖Σκ‖ ‖J0‖2 ‖Rκ‖2

∥∥∥∥
∑kκ,0

t=kκ−1,0+1
(ftf

′
t − ΣF )

∥∥∥∥ = op(T ), (A-6)

where the last equality follows from Assumption 1; and

∣∣∣∣
∑L+1

κ=1

∑kκ,0

t=kκ−1,0+1
vech(Σκ)

′zt

∣∣∣∣ ≤
∑L+1

κ=1
‖Σκ‖

∥∥∥∥
∑kκ,0

t=kκ−1,0+1
zt

∥∥∥∥ = op(T ), (A-7)

where the last equality follows from Lemma 5. For the second term, define bt =

vech(Σκ) for t ∈ [kκ−1,0+1, ..., kκ,0], κ = 1, ..., L+1, then vech(g̃tg̃′t) = bt+ yt+ zt for
all t and vech(Σ̃ι) =

1
kι−kι−1

∑kι
t=kι−1+1

vech(g̃tg̃
′
t) =

1
kι−kι−1

∑kι
t=kι−1+1

(bt + yt + zt). It

follows that the second term is no larger than

sup
(k1,...,kL)∈Dc

(ι)

∣∣∣∣
∑L+1

ι=1

1

kι − kι−1
(
∑kι

t=kι−1+1
bt)

′(
∑kι

t=kι−1+1
(yt + zt))

∣∣∣∣

+ sup
(k1,...,kL)∈Dc

(ι)

∣∣∣∣
∑L+1

ι=1

1

kι − kι−1
(
∑kι

t=kι−1+1
(yt + zt))

′(
∑kι

t=kι−1+1
(yt + zt))

∣∣∣∣

≤ (L+ 1)( sup
1≤kι−1<kι≤T

∥∥∥∥∥

∑kι
t=kι−1+1

(yt + zt)
√
kι − kι−1

∥∥∥∥∥

2

+

sup
1≤kι−1<kι≤T

∥∥∥∥∥

∑kι
t=kι−1+1

bt
√
kι − kι−1

∥∥∥∥∥
sup

1≤kι−1<kι≤T

∥∥∥∥∥

∑kι
t=kι−1+1

(yt + zt)
√
kι − kι−1

∥∥∥∥∥
)

= (L+ 1)(B2 + AB). (A-8)

For term A, we have A ≤ sup
1≤kι−1<kι≤T

∑kι
t=kι−1+1

‖bt‖√
kι−kι−1

≤ sup
1≤kι−1<kι≤T

√∑kι
t=kι−1+1

‖bt‖2 ≤

3



√∑T
t=1 ‖bt‖

2 = O(
√
T ). For term B, we have B2 ≤ 2 sup

1≤kι−1<kι≤T

∥∥∥∥

∑kι
t=kι−1+1

yt√
kι−kι−1

∥∥∥∥
2

+

2 sup
1≤kι−1<kι≤T

∥∥∥∥

∑kι
t=kι−1+1

zt√
kι−kι−1

∥∥∥∥
2

= 2B21 + 2B
2
2 . B1 = op(

√
T ), since

B1 ≤
∑L+1

κ=1
sup

kκ−1,0<k<l≤kκ,0

∥∥∥∥
1√
l − k

∑l

t=k+1
yt

∥∥∥∥

≤
∑L+1

κ=1
‖J0‖2 ‖Rκ‖2 sup

kκ−1,0<k<l≤kκ,0

∥∥∥∥
1√
l − k

∑l

t=k+1
εt

∥∥∥∥ , (A-9)

and by Assumption 7,

E( sup
kκ−1,0<k<l≤kκ,0

∥∥∥∥
1√
l − k

∑l

t=k+1
εt

∥∥∥∥
4+δ

)

≤
∑kκ,0−1

k=kκ−1,0

∑kκ,0

l=k+1
E(

∥∥∥∥
1√
l − k

∑l

t=k+1
εt

∥∥∥∥
4+δ

) ≤ T 2M. (A-10)

Using Lemma 5, B2 = op(
√
T ). Taking together, the right hand side is op(T ) and

thus dominated by the left hand side.

C PROOF OF THEOREM 1

Proof. From Proposition 1, we know that for any ε > 0 and η1 > 0, ..., ηL > 0,

P ((k̃1, ..., k̃L) ∈ Dc) < ε as (N, T ) → ∞. Thus to show k̃ι − kι0 = Op(1) for any

given 1 ≤ ι ≤ L, we need to show for any ε > 0 and η1 > 0, ..., ηL > 0, there

exist C > 0 such that P ((k̃1, ..., k̃L) ∈ D,
∣∣∣k̃ι − kι0

∣∣∣ > C) < ε as (N, T ) → ∞. By
symmetry, it suffices to show P ((k̃1, ..., k̃L) ∈ D, k̃ι < kι0 − C) < ε as (N, T ) → ∞.
Define D(C)(ι) = D ∩ {kι < kι0 − C}. Since (k̃1, ..., k̃L) = argmin S̃(k1, ..., kL),

S̃(k̃1, ..., k̃L) ≤ S̃(k̃1, ..., kι0, ..., k̃L). Thus if (k̃1, ..., k̃L) ∈ D(C)(ι),

min
(k1,...,kL)∈D(C)(ι)

[S̃(k1, ..., kL)− S̃(k1, ..., kι0, ..., kL)]

≤ S̃(k̃1, ..., k̃L)− S̃(k̃1, ..., kι0, ..., k̃L) ≤ 0.

4



Therefore it suffices to show P ( min
(k1,...,kL)∈D(C)(ι)

[S̃(k1, ..., kL) − S̃(k1, ..., kι0, ..., kL)] ≤
0) < ε as (N, T )→∞.
We then show that the event min

(k1,...,kL)∈D(C)(ι)
[S̃(k1, ..., kL)− S̃(k1, ..., kι0, ..., kL)] ≤ 0

is just the event min
(k1,...,kL)∈D(C)(ι)

S̃(k1,...,kL)−S̃(k1,...,kι0,...,kL)
|kι−kι0| ≤ 0. Conditioning on the for-

mer, for any (k∗1, ..., k
∗
L) ∈ D(C)(ι), argmin

(k1,...,kL)∈D(C)(ι)
[S̃(k1, ..., kL)−S̃(k1, ..., kι0, ..., kL)] =

(k∗1, ..., k
∗
L) implies S̃(k

∗
1, ..., k

∗
L) − S̃(k∗1, ..., kι0, ..., k∗L) ≤ 0, and this further implies

S̃(k∗1 ,...,k
∗

L)−S̃(k∗1 ,...,kι0,...,k∗L)
|k∗ι−kι0|

≤ 0. It follows that min
(k1,...,kL)∈D(C)(ι)

S̃(k1,...,kL)−S̃(k1,...,kι0,...,kL)
|kι−kι0| ,

which is not larger than
S̃(k∗1 ,...,k

∗

L)−S̃(k∗1 ,...,kι0,...,k∗L)
|k∗ι−kι0|

, has to be nonpositive. Note that

the above argument holds for any (k∗1, ..., k
∗
L) ∈ D(C)(ι), thus the former implies the

latter. Similarly, the latter also implies the former. Therefore, it suffices to show

P ( min
(k1,...,kL)∈D(C)(ι)

S̃(k1,...,kL)−S̃(k1,...,kι0,...,kL)
|kι−kι0| ≤ 0) < ε as (N, T )→∞.

Next, decompose S̃(k1, ..., kL)− S̃(k1, ..., kι0, ..., kL) as

[S̃(k1, ..., kL)− S̃(k1, ..., kι, kι0, ..., kL)] (A-11)

−[S̃(k1, ..., kι0, ..., kL)− S̃(k1, ..., kι, kι0, ..., kL)]. (A-12)

Term (A-11) equals

∑kι+1

t=kι+1
[vech(g̃tg̃

′
t − Σ̃ι+1)]′[vech(g̃tg̃′t − Σ̃ι+1)]

−
∑kι0

t=kι+1
[vech(g̃tg̃

′
t − Σ̃∆ι )]′[vech(g̃tg̃′t − Σ̃∆ι )]

−
∑kι+1

t=kι0+1
[vech(g̃tg̃

′
t − Σ̃∗ι+1)]′[vech(g̃tg̃′t − Σ̃∗ι+1)]

= K1 −K2 −K3, (A-13)

5



and term (A-12) equals

∑kι0

t=kι−1+1
[vech(g̃tg̃

′
t − Σ̃∗ι )]′[vech(g̃tg̃′t − Σ̃∗ι )]

−
∑kι

t=kι−1+1
[vech(g̃tg̃

′
t − Σ̃ι)]′[vech(g̃tg̃′t − Σ̃ι)]

−
∑kι0

t=kι+1
[vech(g̃tg̃

′
t − Σ̃∆ι )]′[vech(g̃tg̃′t − Σ̃∆ι )]

= L1 − L2 − L3, (A-14)

where Σ̃∆ι =
∑kι0
t=kι+1

g̃tg̃′t
kι0−kι , Σ̃∗ι =

∑kι0
t=kι−1+1

g̃tg̃′t

kι0−kι−1 and Σ̃∗ι+1 =
∑kι+1
t=kι0+1

g̃tg̃′t

kι+1−kι0 . Note that

L3 = K2, thus (K1−K2−K3)− (L1−L2−L3) = (K1−K3)− (L1−L2). Replacing
Σ̃∗ι+1 by Σ̃ι+1, K3 is magnified, thus K1−K3 ≥

∑kι0
t=kι+1

[vech(g̃tg̃
′
t−Σ̃ι+1)]′[vech(g̃tg̃′t−

Σ̃ι+1)]; and replacing Σ̃
∗
ι by Σ̃ι, L1 is magnified, thus L1 − L2 ≤

∑kι0
t=kι+1

[vech(g̃tg̃
′
t −

Σ̃ι)]
′[vech(g̃tg̃

′
t − Σ̃ι)]. Taken together,

(K1 −K3)− (L1 − L2)

≥
∑kι0

t=kι+1
[vech(g̃tg̃

′
t − Σ̃ι+1)]′[vech(g̃tg̃′t − Σ̃ι+1)]

−
∑kι0

t=kι+1
[vech(g̃tg̃

′
t − Σ̃ι)]′[vech(g̃tg̃′t − Σ̃ι)]

=
∑kι0

t=kι+1
vech(Σι − Σ̃ι+1)′vech(Σι − Σ̃ι+1)

−
∑kι0

t=kι+1
vech(Σι − Σ̃ι)′vech(Σι − Σ̃ι)

+2
∑kι0

t=kι+1
vech(Σι − Σ̃ι+1)′(yt + zt)

−2
∑kι0

t=kι+1
vech(Σι − Σ̃ι)′(yt + zt)

= K∆1 − L∆1 +K∆2 − L∆2, (A-15)

thus it suffices to show P ( min
(k1,...,kL)∈D(C)(ι)

K∆1−L∆1+K∆2−L∆2
|kι−kι0| ≤ 0) < ε as (N, T )→∞.

We consider the case kι−1 < kι−1,0 and kι+1 > kι+1,0. In case kι−1 ≥ kι−1,0 or kι+1 ≤
kι+1,0, the proof is easier and therefore omitted. Plug in Σ̃ι+1 =

1
kι+1−kι

∑kι+1
t=kι+1

(yt +

zt) + vech(
1

kι+1−kι [(kι0 − kι)Σι + (kι+1,0 − kι0)Σι+1 + (kι+1 − kι+1,0)Σι+2]) and Σ̃ι =
1

kι−kι−1
∑kι

t=kι−1
(yt+zt)+vech(

1
kι−kι−1 [(kι−1,0−kι−1)Σι−1+(kι−kι−1,0)Σι]), and denote

φkι−1,kι = vech(
1

kι−kι−1 (kι−1,0 − kι−1)(Σι−1 − Σι)) and φkι,kι+1 = vech(
1

kι+1−kι [(kι+1,0 −

6



kι0)(Σι+1 − Σι) + (kι+1 − kι+1,0)(Σι+2 − Σι)]), we have

1

kι0 − kι
K∆1 = [φkι,kι+1 +

∑kι+1
t=kι+1

(yt + zt)

kι+1 − kι
]′[φkι,kι+1 +

∑kι+1
t=kι+1

(yt + zt)

kι+1 − kι
],(A-16)

1

kι0 − kι
L∆1 = [φkι−1,kι +

∑kι
t=kι−1

(yt + zt)

kι − kι−1
]′[φkι−1,kι +

∑kι
t=kι−1

(yt + zt)

kι − kι−1
],(A-17)

1

kι0 − kι
K∆2 = −2[φkι,kι+1 +

∑kι+1
t=kι+1

(yt + zt)

kι+1 − kι
]′
∑kι0

t=kι+1
(yt + zt)

kι0 − kι
, (A-18)

1

kι0 − kι
L∆2 = 2[φkι−1,kι +

∑kι
t=kι−1

(yt + zt)

kι − kι−1
]′
∑kι0

t=kι+1
(yt + zt)

kι0 − kι
. (A-19)

For (k1, ..., kL) ∈ D(C)(ι) and ηι and ηι+1 small enough,

∥∥φkι,kι+1
∥∥

≥ kι+1,0 − kι0
kι+1 − kι

‖vech(Σι+1 − Σι)‖ −
kι+1 − kι+1,0
kι+1 − kι

‖vech(Σι+2 − Σι)‖

≥ 1

1 +
ηι+1+ηι
τ ι+1,0−τ ι0

‖vech(Σι+1 − Σι)‖ −
ηι+1

ηι+1 + τ ι+1,0 − τ ι0
‖vech(Σι+2 − Σι)‖

≥ 1

2
‖vech(Σι+1 − Σι)‖ , (A-20)

and for ηι−1 and ηι small enough,

∥∥φkι−1,kι
∥∥ =

kι−1,0 − kι−1
kι − kι−1

‖vech(Σι−1 − Σι)‖ ≤
ηι−1

τ ι0 − τ ι−1,0 − ηι
‖vech(Σι−1 − Σι)‖

(A-21)

is arbitrarily small.

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥
1

kι+1 − kι
∑kι+1

t=kι+1
(yt + zt)

∥∥∥∥

≤ 1

τ ι+1,0 − τ ι0
( sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥
1

T

∑kι0

t=kι+1
(yt + zt)

∥∥∥∥

+

∥∥∥∥
1

T

∑kι+1,0

t=kι0+1
(yt + zt)

∥∥∥∥+ sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥
1

T

∑kι+1

t=kι+1,0+1
(yt + zt)

∥∥∥∥)

= op(1), (A-22)
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where we have used

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥
1

T

∑kι0

t=kι+1
yt

∥∥∥∥ = op(1),

∥∥∥∥
1

T

∑kι+1,0

t=kι0+1
yt

∥∥∥∥ = op(1),

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥
1

T

∑kι+1

t=kι+1,0+1
yt

∥∥∥∥ = op(1), (A-23)

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥
1

T

∑kι0

t=kι+1
zt

∥∥∥∥ = op(1),

∥∥∥∥
1

T

∑kι+1,0

t=kι0+1
zt

∥∥∥∥ = op(1),

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥
1

T

∑kι+1

t=kι+1,0+1
zt

∥∥∥∥ = op(1). (A-24)

The first three terms follow from Hajek-Renyi inequality, which is proved in Lemma

1 to be applicable to yt within each regime while the last three terms follow from

Lemma 5. Similarly,

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥
1

kι − kι−1
∑kι

t=kι−1
(yt + zt)

∥∥∥∥ = op(1), (A-25)

using Lemma 5 and

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥
1

T

∑kι−1,0

t=kι−1+1
yt

∥∥∥∥ = op(1), (A-26)

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥
1

T

∑kι

t=kι−1,0+1
yt

∥∥∥∥ = op(1). (A-27)

Finally,

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥
1

kι0 − kι
∑kι0

t=kι+1
(yt + zt)

∥∥∥∥

≤ sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥
1

kι0 − kι
∑kι0

t=kι+1
yt

∥∥∥∥+ sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥
1

kι0 − kι
∑kι0

t=kι+1
zt

∥∥∥∥

= Op(
1√
C
) + op(1), (A-28)

the first term follows from Hajek-Renyi inequality while the second terms follows from

Lemma 5. Taken together and choosing sufficiently large C, the result follows.
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D PROOF OF PROPOSITION 2

Proof. To simplify calculation, consider the case with two breaks. For any ε > 0

and η > 0, define Wη = {k1 : (τ 1,0 − η)T ≤ k1 ≤ (τ 1,0 + η)T}, we need to show
P ((k̂1 ∈ W c

η ) < ε as (N, T ) → ∞. Since k̂1 = argmin S̃(k1), S̃(k̂1) ≤ S̃(k1,0). If

k̂1 ∈ W c
η , then min

k1∈W c
η

S̃(k1) = S̃(k̂1). Thus k̂1 ∈ W c
η implies min

k1∈W c
η

S̃(k1) ≤ S̃(k1,0) and

it suffices to show P ( min
k1∈W c

η

S̃(k1)− S̃(k1,0) ≤ 0) < ε as (N, T )→∞.
For k1 < k1,0, after some calculation, we have:

S̃(k1)− S̃(k1,0) = Π1(k1)− Π(k1,0) + Ψ1(k1)−Ψ(k1,0), (A-29)

where

Π1(k1)− Π(k1,0)

=
k1,0 − k1

(T − k1)(T − k1,0)
‖vech[(T − k1,0)(Σ1 − Σ2) + (T − k2,0)(Σ2 − Σ3)]‖2 ,(A-30)

Ψ1(k1)

= 2ϕ1′k1

∑k1,0

ι=k1+1
(yt + zt) + 2ϕ

2′
k1

∑k2,0

ι=k1,0+1
(yt + zt) + 2ϕ

3′
k1

∑T

ι=k2,0+1
(yt + zt)

−2[(k1,0 − k1)ϕ1k1 + (k2,0 − k1,0)ϕ
2
k1
+ (T − k2,0)ϕ3k1 ]

′ 1

T − k1
∑T

ι=k1+1
(yt + zt)

−
∥∥∥∥
1√
k1

∑k1

ι=1
(yt + zt)

∥∥∥∥
2

−
∥∥∥∥

1√
T − k1

∑T

ι=k1+1
(yt + zt)

∥∥∥∥
2

, (A-31)

Ψ(k1,0) = 2ϕ2′k1,0

∑k2,0

ι=k1,0+1
(yt + zt) + 2ϕ

3′
k1,0

∑T

ι=k2,0+1
(yt + zt)

−2[(k2,0 − k1,0)ϕ2k1,0 + (T − k2,0)ϕ
3
k1,0
]′

1

T − k1,0
∑T

ι=k1,0+1
(yt + zt)

−
∥∥∥∥∥

1
√
k1,0

∑k1,0

ι=1
(yt + zt)

∥∥∥∥∥

2

−
∥∥∥∥∥

1
√
T − k1,0

∑T

ι=k1,0+1
(yt + zt)

∥∥∥∥∥

2

,(A-32)
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ϕ1k1 =
1

T − k1
vech[(k2,0 − k1,0)(Σ1 − Σ2) + (T − k2,0)(Σ1 − Σ3)], (A-33)

ϕ2k1 =
1

T − k1
vech[(k1,0 − k1)(Σ2 − Σ1) + (T − k2,0)(Σ2 − Σ3)], (A-34)

ϕ3k1 =
1

T − k1
vech[(k1,0 − k1)(Σ3 − Σ1) + (k2,0 − k1,0)(Σ3 − Σ2)]. (A-35)

Since 1−τ2,0
1−τ1,0 ‖vech(Σ2 − Σ3)‖

2 ≤ τ1,0
τ2,0

‖vech(Σ1 − Σ2)‖2, (1 − τ 2,0)2 ‖vech(Σ2 − Σ3)‖2

is smaller than (1 − τ 1,0)2 ‖vech(Σ1 − Σ2)‖2, and thus for k1 ∈ W c
η and k1 < k1,0,

Π1(k1) − Π(k1,0) ≥ cT for some c. On the other hand, sup
k1∈W c

η ,k1<k1,0

Ψ1(k1) = op(T )

and Ψ(k1,0) = op(T ) due to the following:

1.
∥∥ϕ1k1

∥∥,
∥∥ϕ2k1

∥∥ and
∥∥ϕ3k1

∥∥ are uniformly bounded for k1 ∈ W c
η and k1 < k1,0.

2. Using Hajek-Renyi inequality, sup
k1∈W c

η ,k1<k1,0

∥∥∥
∑k1,0

ι=k1+1
yt

∥∥∥, sup
k1∈W c

η ,k1<k1,0

∥∥∥
∑T

ι=k1+1
yt

∥∥∥,
∥∥∥
∑k2,0

ι=k1,0+1
yt

∥∥∥ and
∥∥∥
∑T

ι=k2,0+1
yt

∥∥∥ are all Op(
√
T ), sup

k1∈W c
η ,k1<k1,0

∥∥∥ 1√
k1

∑k1
ι=1 yt

∥∥∥ is

Op(
√
log T ) and sup

k1∈W c
η ,k1<k1,0

∥∥∥ 1√
T−k1

∑T
ι=k1+1

yt

∥∥∥ is Op(1).

3. Using Lemma 5, sup
1≤k<l≤T

∥∥∥
∑l

ι=k+1 zt

∥∥∥ and sup
1≤k<l≤T

∥∥∥ 1√
l−k
∑l

ι=k+1 zt

∥∥∥
2

are both

op(T ).

For k1,0 + 1 < k1 ≤ k2,0, after some calculation, we have:

S̃(k1)− S̃(k1,0) = Π2(k1)− Π(k1,0) + Ψ2(k1)−Ψ(k1,0), (A-36)

where

Π2(k1)− Π(k1,0)

= (k1 − k1,0)[
k1,0
k1
‖vech(Σ2 − Σ1)‖2 −

(T − k2,0)2
(T − k1)(T − k1,0)

‖vech(Σ3 − Σ2)‖2]

≥ (k1 − k1,0)[
k1,0
k2,0

‖vech(Σ2 − Σ1)‖2 −
T − k2,0
T − k1,0

‖vech(Σ3 − Σ2)‖2], (A-37)
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Ψ2(k1) = 2ϕ4′k1

∑k1,0

ι=1
(yt + zt) + 2ϕ

5′
k1

∑k1

ι=k1,0+1
(yt + zt) + 2ϕ

6′
k1

∑k2,0

ι=k1+1
(yt + zt)

+2ϕ7′k1

∑T

ι=k2,0+1
(yt + zt)− 2[k1,0ϕ4k1 + (k1 − k1,0)ϕ

5
k1
]′
1

k1

∑k1

ι=1
(yt + zt)

−2[(k2,0 − k1)ϕ6k1 + (T − k2,0)ϕ
7
k1
]′

1

T − k1
∑T

ι=k1+1
(yt + zt)

−
∥∥∥∥
1√
k1

∑k1

ι=1
(yt + zt)

∥∥∥∥
2

−
∥∥∥∥

1√
T − k1

∑T

ι=k1+1
(yt + zt)

∥∥∥∥
2

, (A-38)

ϕ4k1 =
k1 − k1,0
k1

vech(Σ1 − Σ2), ϕ5k1 =
k1,0
k1
vech(Σ2 − Σ1), (A-39)

ϕ6k1 =
T − k2,0
T − k1

vech(Σ2 − Σ3), ϕ7k1 =
k2,0 − k1
T − k1

vech(Σ3 − Σ2). (A-40)

The term in the bracket is positive, thus for k1 ∈ W c
η and k1,0 + 1 < k1 ≤ k2,0,

Π2(k1)−Π2(k1,0) ≥ Tc for some c. Using the same argument as in the previous case,
sup

k1∈W c
η ,k1,0+1<k1≤k2,0

Ψ2(k1) = op(T ).

For k2,0 < k1 ≤ T , after some calculation, we have:

S̃(k1)− S̃(k1,0) = Π3(k1)− Π3(k1,0) + Ψ3(k1)−Ψ3(k1,0). (A-41)

By symmetry, Π3(k1)−Π3(k2,0) has a similar expression asΠ1(k1)−Π1(k1,0) and is pos-
itive. ThusΠ3(k1)−Π3(k1,0) ≥ Π3(k2,0)−Π3(k1,0) = (k2,0−k1,0)[k1,0k2,0

‖vech(Σ2 − Σ1)‖2−
T−k2,0
T−k1,0 ‖vech(Σ3 − Σ2)‖

2].

Ψ3(k1) = 2ϕ8′k1

∑k1,0

ι=1
(yt + zt) + 2ϕ

9′
k1

∑k2,0

ι=k1,0+1
(yt + zt) + 2ϕ

10′
k1

∑k1

ι=k2,0+1
(yt + zt)

−2[k1,0ϕ8k1 + (k2,0 − k1,0)ϕ
9
k1
+ (k1 − k2,0)ϕ10k1 ]

′ 1

k1

∑k1

ι=1
(yt + zt)

−
∥∥∥∥
1√
k1

∑k1

ι=1
(yt + zt)

∥∥∥∥
2

−
∥∥∥∥

1√
T − k1

∑T

ι=k1+1
(yt + zt)

∥∥∥∥
2

, (A-42)

and similarly sup
k1∈W c

η ,k1>k2,0

Ψ3(k1) = op(T ).
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E PROOF OF THEOREM 2

Proof. Using similar argument as proving Theorem 1, it suffices to show for any

ε > 0 and η > 0, there exist C > 0 such that P ( min
k1∈Wη ,|k1−k1,0|>C

S̃(k1)−S̃(k1,0)
|k1−k1,0| ≤ 0) < ε

as (N, T )→∞.
First consider the case k1 < k1,0. Note that

S̃(k1) =
∑k1

t=1
[vech(g̃tg̃

′
t − Σ̃k1)]′[vech(g̃tg̃′t − Σ̃k1)]

+
∑T

t=k1+1
[vech(g̃tg̃

′
t − Σ̃∗k1)]

′[vech(g̃tg̃
′
t − Σ̃∗k1)], (A-43)

where Σ̃k1 =
1
k1

∑k1
t=1 g̃tg̃

′
t and Σ̃

∗
k1
= 1

T−k1
∑T

t=k1+1
g̃tg̃

′
t. Replacing Σ̃k1,0 by Σ̃k1 and

Σ̃∗k1,0 by Σ̃
∗
k1
in the expression of S̃(k1,0), S̃(k1,0) is magnified. Thus

S̃(k1)− S̃(k1,0)
|k1 − k1,0|

≥ 1

|k1 − k1,0|
{
∑k1,0

t=k1+1
[vech(g̃tg̃

′
t − Σ̃∗k1)]

′[vech(g̃tg̃
′
t − Σ̃∗k1)]

−
∑k1,0

t=k1+1
[vech(g̃tg̃

′
t − Σ̃k1)]′[vech(g̃tg̃′t − Σ̃k1)]}. (A-44)

The right hand side equals

vech(Σ1 − Σ̃∗k1)
′vech(Σ1 − Σ̃∗k1)− vech(Σ1 − Σ̃k1)

′vech(Σ1 − Σ̃k1)

+2vech(Σ1 − Σ̃∗k1)
′
∑k1,0

t=k1+1
(yt + zt)

k1,0 − k1
− 2vech(Σ1 − Σ̃k1)′

∑k1,0
t=k1+1

(yt + zt)

k1,0 − k1
= Ξ1 − Ξ2 + Ξ3 − Ξ4. (A-45)
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Plug in Σ̃k1 and Σ̃
∗
k1
, we have

Ξ1 =

∥∥∥∥vech[
k2,0 − k1,0
T − k1

(Σ1 − Σ2) +
T − k2,0
T − k1

(Σ1 − Σ3)]
∥∥∥∥
2

+

∥∥∥∥∥

∑T
t=k1+1

(yt + zt)

T − k1

∥∥∥∥∥

2

−2vech[k2,0 − k1,0
T − k1

(Σ1 − Σ2) +
T − k2,0
T − k1

(Σ1 − Σ3)]′
∑T

t=k1+1
(yt + zt)

T − k1
= Ξ11 + Ξ12 − Ξ13, (A-46)

Ξ2 =

∥∥∥∥
1

k1

∑k1

t=1
(yt + zt)

∥∥∥∥
2

, (A-47)

Ξ3 = 2vech[
k2,0 − k1,0
T − k1

(Σ1 − Σ2) +
T − k2,0
T − k1

(Σ1 − Σ3)]′
1

k1,0 − k1
∑k1,0

t=k1+1
(yt + zt)

−2[ 1

T − k1
∑T

t=k1+1
(yt + zt)]

′ 1

k1,0 − k1
∑k1,0

t=k1+1
(yt + zt), (A-48)

Ξ4 = −2[ 1
k1

∑k1

t=1
(yt + zt)]

′ 1

k1,0 − k1
∑k1,0

t=k1+1
(yt + zt). (A-49)

If vech[k2,0−k1,0
T−k1,0 (Σ1−Σ2)+

T−k2,0
T−k1,0 (Σ1−Σ3)] = 0, then Σ1−Σ2 =

T−k2,0
T−k1,0 (Σ2−Σ3), then

τ1,0
τ2,0

‖vech(Σ1 − Σ2)‖2 = τ1,0(1−τ2,0)2
τ2,0(1−τ1,0)2 ‖vech(Σ2 − Σ3)‖

2 < (1−τ2,0
1−τ1,0 ) ‖vech(Σ2 − Σ3)‖

2,

this contradicts with Assumption 9. Thus Ξ11 > c for some c. Using Hajek-Renyi in-

equality for yt in each regime and Lemma 5 for zt, sup
k1∈Wη ,k1<k1,0−C

∥∥∥ 1
T−k1

∑T
t=k1+1

(yt + zt)
∥∥∥,

sup
k1∈Wη ,k1<k1,0−C

∥∥∥ 1
k1

∑k1
t=1(yt + zt)

∥∥∥ and sup
k1∈Wη ,k1<k1,0−C

∥∥∥ 1
k1,0−k1

∑k1,0
t=k1+1

zt

∥∥∥ are all op(1)

while sup
k1∈Wη ,k1<k1,0−C

∥∥∥ 1
k1,0−k1

∑k1,0
t=k1+1

yt

∥∥∥ is Op( 1√
C
). Thus for sufficiently large C, all

the other terms are dominated by Ξ11.

Next consider the case k1 > k1,0. Using the same argument as the case k1 < k1,0,

S̃(k1)− S̃(k1,0)
|k1 − k1,0|

≥ 1

|k1 − k1,0|
{
∑k1

t=k1,0+1
[vech(g̃tg̃

′
t − Σ̃k1)]′[vech(g̃tg̃′t − Σ̃k1)]

−
∑k1

t=k1,0+1
[vech(g̃tg̃

′
t − Σ̃∗k1)]

′[vech(g̃tg̃
′
t − Σ̃∗k1)]}, (A-50)
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and the right hand side equals

vech(Σ2 − Σ̃k1)′vech(Σ2 − Σ̃k1)− vech(Σ2 − Σ̃∗k1)
′vech(Σ2 − Σ̃∗k1)

+2vech(Σ2 − Σ̃k1)′
∑k1

t=k1,0+1
(yt + zt)

k1 − k1,0
− 2vech(Σ2 − Σ̃∗k1)

′
∑k1

t=k1,0+1
(yt + zt)

k1 − k1,0
= Ξ̇1 − Ξ̇2 + Ξ̇3 − Ξ̇4. (A-51)

Plug in Σ̃k1 and Σ̃
∗
k1
, we have

Ξ̇1 =

∥∥∥∥
k1,0
k1
vech(Σ2 − Σ1)

∥∥∥∥
2

+

∥∥∥∥
1

k1

∑k1

t=1
(yt + zt)

∥∥∥∥
2

−2vech[k1,0
k1
(Σ2 − Σ1)]′

1

k1

∑k1

t=1
(yt + zt)

= Ξ̇11 + Ξ̇12 − Ξ̇13, (A-52)

Ξ̇2 =

∥∥∥∥
T − k2,0
T − k1

vech(Σ2 − Σ3)
∥∥∥∥
2

+

∥∥∥∥
1

T − k1
∑T

t=k1+1
(yt + zt)

∥∥∥∥
2

−2vech[T − k2,0
T − k1

(Σ2 − Σ3)]′
1

T − k1
∑T

t=k1+1
(yt + zt)

= Ξ̇21 + Ξ̇22 − Ξ̇23, (A-53)

Ξ̇3 = 2vech[
k1,0
k1
(Σ2 − Σ1)]′

1

k1 − k1,0
∑k1

t=k1,0+1
(yt + zt)

−2[ 1
k1

∑k1

t=1
(yt + zt)]

′ 1

k1 − k1,0
∑k1

t=k1,0+1
(yt + zt), (A-54)

Ξ̇4 = 2vech[
T − k2,0
T − k1

(Σ2 − Σ3)]′
1

k1 − k1,0
∑k1

t=k1,0+1
(yt + zt)

−2[ 1

T − k1
∑T

t=k1+1
(yt + zt)]

′ 1

k1 − k1,0
∑k1

t=k1,0+1
(yt + zt). (A-55)

For k1 ∈ Wη, Ξ̇11 − Ξ̇21 ≥
∥∥∥ τ1,0
τ1,0+η

vech(Σ2 − Σ1)
∥∥∥
2

−
∥∥∥ 1−τ2,0
1−τ1,0−ηvech(Σ2 − Σ3)

∥∥∥
2

. Thus

by Assumption 9, Ξ̇11− Ξ̇21 ≥ c for some c > 0 if η is sufficiently small. Again, using
Hajek-Renyi inequality for yt in each regime and Lemma 5 for zt, all the other terms

are dominated by Ξ̇11 − Ξ̇21 for sufficiently large C.
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F PROOF OF THEOREM 6

Proof. Since r̃ is consistent for r, we can treat r as known. It is not difficult to see

that

SSNE0 =
∑T

t=1
vech(f̃tf̃

′
t − Ir)′Ω̃−1vech(f̃tf̃ ′t − Ir)

−Tvech( 1
T

∑T

t=1
f̃tf̃

′
t − Ir)′Ω̃−1vech(

1

T

∑T

t=1
f̃tf̃

′
t − Ir), (A-56)

and for any partition (k1, ..., kl),

SSNE(k1, ..., kl) =
∑T

t=1
vech(f̃tf̃

′
t − Ir)′Ω̃−1vech(f̃tf̃ ′t − Ir)−

∑l+1

ι=1
(kι − kι−1)

vech(

∑kι
t=kι−1+1

f̃tf̃
′
t

kι − kι−1
− Ir)′Ω̃−1vech(

∑kι
t=kι−1+1

f̃tf̃
′
t

kι − kι−1
− Ir).(A-57)

Let F ∗NT = SSNE0 − SSNE(k1, ..., kl), it follows that

F ∗NT =
∑l+1

ι=1
vech(

∑kι
t=kι−1+1

(f̃tf̃
′
t − Ir)√

kι − kι−1
)′Ω̃−1vech(

∑kι
t=kι−1+1

(f̃tf̃
′
t − Ir)√

kι − kι−1
)

−vech(
∑T

t=1(f̃tf̃
′
t − Ir)√
T

)′Ω̃−1vech(

∑T
t=1(f̃tf̃

′
t − Ir)√
T

)

=
∑l+1

ι=1
D(kι−1 + 1, kι)−D(1, T )

=
∑l+1

ι=2
{D(kι−1 + 1, kι)− [D(1, kι)−D(1, kι−1)]}

=
∑l

ι=1
F ∗NT (ι+ 1). (A-58)

After some algebra, we have

F ∗NT (ι+ 1) =
T 3

kιkι+1(kι+1 − kι)
vech[

kι+1
T

∑kι
t=1(f̃tf̃

′
t − Ir)√
T

− kι
T

∑kι+1
t=1 (f̃tf̃

′
t − Ir)√
T

]′

Ω̃−1vech[
kι+1
T

∑kι
t=1(f̃tf̃

′
t − Ir)√
T

− kι
T

∑kι+1
t=1 (f̃tf̃

′
t − Ir)√
T

]

=
T 3

kιkι+1(kι+1 − kι)
B(τ ι, τ ι+1; F̃ )

′Ω̃−1B(τ ι, τ ι+1; F̃ ). (A-59)
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Next, using four facts listed below, we have

sup
(τ1,...,τ l)∈Λε

∑l

ι=1

T 3

kιkι+1(kι+1 − kι)
B(τ ι, τ ι+1; F̃ )

′(Ω̃−1 − Ω−1)B(τ ι, τ ι+1; F̃ )

≤ 1

ε3

∥∥∥Ω̃−1 − Ω−1
∥∥∥ sup
(τ1,...,τ l)∈Λε

∑l

ι=1

∥∥∥B(τ ι, τ ι+1; F̃ )
∥∥∥
2

= op(1)Op(1) = op(1),(A-60)

sup
(τ1,...,τ l)∈Λε

∑l

ι=1

T 3

kιkι+1(kι+1 − kι)
B(τ ι, τ ι+1; F̃ )

′Ω−1[B(τ ι, τ ι+1; F̃ )−B(τ ι, τ ι+1;FH0)]

≤ l ‖Ω−1‖
ε3

sup
(τ1,...,τ l)∈Λε

∥∥∥B(τ ι, τ ι+1; F̃ )
∥∥∥ sup
(τ1,...,τ l)∈Λε

∥∥∥B(τ ι, τ ι+1; F̃ )−B(τ ι, τ ι+1;FH0)
∥∥∥

= Op(1)op(1) = op(1). (A-61)

It follows that F ∗NT =
∑l

ι=1
T 3

kιkι+1(kι+1−kι)B(τ ι, τ ι+1;FH0)
′Ω−1B(τ ι, τ ι+1;FH0)+op(1),

where op(1) is uniform and by Assumption 12 the first term converges weakly to
∑l

ι=1
1

τ ιτ ι+1(τ ι+1−τ ι)

∥∥∥τ ιW r(r+1)
2

(τ ι+1)− τ ι+1W r(r+1)
2

(τ ι)
∥∥∥
2

.

1.
∥∥∥Ω̃−1 − Ω−1

∥∥∥ = op(1) if dT
δNT

→ 0.

2. sup
(τ1,...,τ l)∈Λε

∥∥∥B(τ ι, τ ι+1; F̃ )−B(τ ι, τ ι+1;FH0)
∥∥∥ = op(1) if

√
T
N
→ 0.

3. sup
(τ1,...,τ l)∈Λε

‖B(τ ι, τ ι+1;FH0)‖ = Op(1).

4. sup
(τ1,...,τ l)∈Λε

∥∥∥B(τ ι, τ ι+1; F̃ )
∥∥∥ = Op(1).

Fact (1) follows from Lemma 8.

Proof of (2): Note that

B(τ ι, τ ι+1; F̃ )−B(τ ι, τ ι+1;FH0)

= B(τ ι, τ ι+1; F̃ )−B(τ ι, τ ι+1;FH) +B(τ ι, τ ι+1;FH)−B(τ ι, τ ι+1;FH0)

= vech[
kι+1
T

1√
T

∑kι

t=1
(f̃tf̃

′
t −H

′

ftf
′
tH)−

kι
T

1√
T

∑kι+1

t=1
(f̃tf̃

′
t −H ′ftf

′
tH)]

+vech[
kι+1
T

1√
T

∑kι

t=1
(H

′

(ftf
′
t − ΣF )H −H ′

0(ftf
′
t − ΣF )H0)

−kι
T

1√
T

∑kι+1

t=1
(H

′

(ftf
′
t − ΣF )H −H ′

0(ftf
′
t − ΣF )H0)]. (A-62)
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It is not difficult to see

sup
(τ1,...,τ l)∈Λε

∥∥∥B(τ ι, τ ι+1; F̃ )−B(τ ι, τ ι+1;FH)
∥∥∥

≤ 2 sup
Tε≤k≤T (1−ε)

∥∥∥∥
1√
T

∑k

t=1
(f̃tf̃

′
t −H ′ftf

′
tH)

∥∥∥∥ = Op(
√
T

δ2NT
) (A-63)

by Lemma 7, and

sup
(τ1,...,τ l)∈Λε

‖B(τ ι, τ ι+1;FH)−B(τ ι, τ ι+1;FH0)‖

≤ 2 sup
Tε≤k≤T (1−ε)

∥∥∥∥
1√
T

∑k

t=1
(H

′

(ftf
′
t − ΣF )H −H ′

0(ftf
′
t − ΣF )H0)

∥∥∥∥ = op(1)(A-64)

by part (2) of Lemma 6 and Assumption 12.

Proof of (3): Note that B(τ ι, τ ι+1;FH0) = vech[kι+1
T

1√
T

∑kι
t=1(H

′
0ftf

′
tH0 − Ir) −

kι
T

1√
T

∑kι+1
t=1 (H

′
0ftf

′
tH0 − Ir)], it is not difficult to see sup

(τ1,...,τ l)∈Λε
‖B(τ ι, τ ι+1;FH0)‖ ≤

2 sup
Tε≤k≤T (1−ε)

∥∥∥ 1√
T

∑k
t=1(H

′
0ftf

′
tH0 − Ir)

∥∥∥, which is Op(1) by Assumption 12.

Proof of (4): It follows directly from (2) and (3).

G PROOF OF THEOREM 7

Proof. Under the alternative, the estimated number of factors converges to the

number of pseudo factors and the estimated factors are pseudo factors, gt. First note

that sup
(τ1,...,τ l)∈Λε

[SSNE0 − SSNE(k1, ..., kl)] ≥ SSNE0 − SSNE(k1,0, ..., kl0), thus it

suffices to show the latter goes to infinity in probability.

SSNE(k1,0, ..., kl0) =
∑T

t=1
vech(g̃tg̃

′
t)
′Ω̃−1vech(g̃tg̃

′
t)−

∑l+1

ι=1
(kι0 −

kι−1,0)vech(

∑kι0
t=kι−1,0+1

g̃tg̃
′
t

kι0 − kι−1,0
)′Ω̃−1vech(

∑kι0
t=kι−1,0+1

g̃tg̃
′
t

kι0 − kι−1,0
),(A-65)

SSNE0 =
∑T

t=1
vech(g̃tg̃

′
t)
′Ω̃−1vech(g̃tg̃

′
t)

−Tvech(
∑T

t=1 g̃tg̃
′
t

T
)′Ω̃−1vech(

∑T
t=1 g̃tg̃

′
t

T
). (A-66)
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Thus similar to (A-59), SSNE0 − SSNE(k1,0, ..., kl0) can be written as

∑l

ι=1

T 3

kι0kι+1,0(kι+1,0 − kι0)
vech(

kι+1,0
T

1√
T

∑kι0

t=1
g̃tg̃

′
t −

kι0
T

1√
T

∑kι+1,0

t=1

g̃tg̃
′
t)
′Ω̃−1vech(

kι+1,0
T

1√
T

∑kι0

t=1
g̃tg̃

′
t −

kι0
T

1√
T

∑kι+1,0

t=1
g̃tg̃

′
t)
′ ≥ 1

ρmax(Ω̃)

∑l

ι=1

T 3

kι0kι+1,0(kι+1,0 − kι0)

∥∥∥∥∥
vech(

kι+1,0
T

∑kι0
t=1 g̃tg̃

′
t√

T
− kι0
T

∑kι+1,0
t=1 g̃tg̃

′
t√

T
)

∥∥∥∥∥

2

,(A-67)

where ρmax(Ω̃) is the maximal eigenvalue of Ω̃. Note that
kι+1,0
T

∑kι0
t=1 g̃tg̃

′

t√
T

−kι0
T

∑kι+1,0
t=1 g̃tg̃′t√

T
=

(kι+1,0−kι0)kι0
T
3
2

(
∑kι0
t=1 g̃tg̃

′

t

kι0
−

∑kι+1,0
t=kι0+1

g̃tg̃′t

kι+1,0−kι0 ), thus SSNE0−SSNE(k1,0, ..., kl0) is not smaller
than

∑l

ι=1

(kι+1,0 − kι0)kι0
kι+1,0ρmax(Ω̃)

∥∥∥∥∥
vech(

∑kι0
t=1 g̃tg̃

′
t

kι0
−
∑kι+1,0

t=kι0+1
g̃tg̃

′
t

kι+1,0 − kι0
)

∥∥∥∥∥

2

. (A-68)

Recall that vech(g̃tg̃
′
t) = bt + yt + zt, by Assumption 1,

1
kι+1,0−kι0

∑kι+1,0
t=kι0+1

yt =

vech(J ′0Rι
1

kι+1,0−kι0
∑kι+1,0

t=kι0+1
(ftf

′
t − ΣF )R′ιJ0) = op(1) for each ι, and by Lemma 5,

1
kι+1,0−kι0

∑kι+1,0
t=kι0+1

zt = op(1) for each ι. Thus
1
kι0

∑kι0
t=1 g̃tg̃

′
t − 1

kι+1,0−kι0
∑kι+1,0

t=kι0+1
g̃tg̃

′
t =

1
kι0

∑kι0
t=1 bt − 1

kι+1,0−kι0
∑kι+1,0

t=kι0+1
bt + op(1). Recall that bt = vech(J ′0RιΣFRιJ0) for

kι−1,0 < t ≤ kι,0 and bt is different in different regime, thus
∑kι0
t=1 bt
kι0

−
∑kι+1,0
t=kι0+1

bt

kι+1,0−kι0 6= 0 for
some ι. It follows that there exists some c > 0 such that SSNE0−SSNE(k1,0, ..., kl0) ≥
Tc

ρmax(Ω̃)
with probability approaching one. Next, it is not difficult to see that under

the alternative ρmax(Ω̃) = Op(dT ) for the three kernel functions considered in this

paper18, since HAC method is used to estimate Ω̃ while under the alternative g̃tg̃
′
t is

not properly centered. Noting that dT
T
→ 0, the result is proved.

H PROOF OF THEOREM 8

Proof. It is not difficult to see that FNT (l + 1 |l ) = sup
1≤ι≤l+1

sup
k∈Λι,η

[SSNEι(k̃ι−1, k̃ι) −

SSNEι(k̃ι−1, k, k̃ι)], where SSNEι(k̃ι−1, k̃ι) is the sum of squared normalized error

of the ι-th regime. Thus testing l versus l + 1 changes is essentially testing jointly 0

18For more detailed procedure, also see the proof of Theorem 2 in Han and Inoue (2015).
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versus 1 change in each regime. In what follows, we reestablish Theorem 6 with l = 1

but k̃ι − kι0 = Op(1). Similar to (A-58), we have

SSNEι(k̃ι−1, k̃ι)− SSNEι(k̃ι−1, k, k̃ι)

= vech(

∑k
t=k̃ι−1+1

(f̃ιtf̃
′
ιt − Irι)√

k − k̃ι−1
)′Ω̃−1ι vech(

∑k
t=k̃ι−1+1

(f̃ιtf̃
′
ιt − Irι)√

k − k̃ι−1
)

+vech(

∑k̃ι
t=k+1(f̃ιtf̃

′
ιt − Irι)√

k̃ι − k
)′Ω̃−1ι vech(

∑k̃ι
t=k+1(f̃ιtf̃

′
ιt − Irι)√

k̃ι − k
)

−vech(
∑k̃ι

t=k̃ι−1+1
(f̃ιtf̃

′
ιt − Irι)

√
k̃ι − k̃ι−1

)′Ω̃−1ι vech(

∑k̃ι
t=k̃ι−1+1

(f̃ιtf̃
′
ιt − Irι)

√
k̃ι − k̃ι−1

), (A-69)

and similar to (A-59),

SSNEι(k̃ι−1, k̃ι)− SSNEι(k̃ι−1, k, k̃ι)

=
1

k−k̃ι−1
k̃ι−k̃ι−1

k̃ι−k
k̃ι−k̃ι−1

vech(

∑k
t=k̃ι−1+1

(f̃ιtf̃
′
ιt − Irι)√

k̃ι − k̃ι−1
− k − k̃ι−1
k̃ι − k̃ι−1

∑k̃ι
t=k̃ι−1+1

(f̃ιtf̃
′
ιt − Irι)

√
k̃ι − k̃ι−1

)′

Ω̃−1ι vech(

∑k
t=k̃ι−1+1

(f̃ιtf̃
′
ιt − Irι)√

k̃ι − k̃ι−1
− k − k̃ι−1
k̃ι − k̃ι−1

∑k̃ι
t=k̃ι−1+1

(f̃ιtf̃
′
ιt − Irι)

√
k̃ι − k̃ι−1

)

=
1

k−k̃ι−1
k̃ι−k̃ι−1

k̃ι−k
k̃ι−k̃ι−1

C(k̃ι−1, k, k̃ι; F̃ι)
′Ω̃−1ι C(k̃ι−1, k, k̃ι; F̃ι). (A-70)

Since k̃ι−kι0 = Op(1), asymptotically it suffices to consider the case that
∣∣∣k̃ι − kι0

∣∣∣ ≤
C for some integer C and all ι. And in such case Λι,η ⊂ (kι−1,0, kι0] for large T . Next,
based on these two properties and using four facts listed below,

sup
k∈Λι,η

∥∥∥∥∥
( 1
k−k̃ι−1

k̃ι−k̃ι−1

k̃ι−k

k̃ι−k̃ι−1

− 1
k−kι−1,0
kι0−kι−1,0

kι0−k
kι0−kι−1,0

)C(k̃ι−1, k, k̃ι; F̃ι)
′Ω̃−1ι C(k̃ι−1, k, k̃ι; F̃ι)

∥∥∥∥∥
,

sup
k∈Λι,η

∥∥∥C(k̃ι−1, k, k̃ι; F̃ι)′(Ω̃−1ι − Ω−1ι )C(k̃ι−1, k, k̃ι; F̃ι)
∥∥∥ ,

sup
k∈Λι,η

∥∥∥C(k̃ι−1, k, k̃ι; F̃ι)′Ω−1ι (C(k̃ι−1, k, k̃ι; F̃ι)− C(kι−1,0, k, kι0;Fι0Hι0))
∥∥∥ ,

sup
k∈Λι,η

∥∥∥C(kι−1,0, k, kι0;Fι0Hι0)′Ω−1ι (C(k̃ι−1, k, k̃ι; F̃ι)− C(kι−1,0, k, kι0;Fι0Hι0))
∥∥∥ are
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all op(1). Thus

sup
k∈Λι,η

[SSNEι(k̃ι−1, k̃ι)− SSNEι(k̃ι−1, k, k̃ι)]

= sup
k∈Λι,η

1
k−kι−1,0
kι0−kι−1,0

kι0−k
kι0−kι−1,0

C(kι−1,0, k, kι0;Fι0Hι0)
′Ω−1ι C(kι−1,0, k, kι0;Fι0Hι0) + op(1)

= sup
k∈Λι,η

FNT,ι(k) + op(1). (A-71)

By Assumption 12, with k = [Tτ ], FNT,ι(k) ⇒ 1
τ(1−τ)

∥∥∥W rι(rι+1)
2

(τ)− τW rι(rι+1)
2

(1)
∥∥∥
2

for τ ∈ (0, 1). Furthermore, since Wiener process has independent increments, the
limit process of FNT,ι(k) is independent with each other for different ι. Finally, define

Λ0ι,η = {k : kι−1,0 + (kι0 − kι−1,0)η ≤ k ≤ kι0 − (kι0 − kι−1,0)η}. For any η1 < η < η2,
Λ0ι,η2 ⊂ Λι,η ⊂ Λ

0
ι,η1
for large T , thus sup

k∈Λ0ι,η2
FNT,ι(k) ≤ sup

k∈Λι,η
FNT,ι(k) ≤ sup

k∈Λ0ι,η1
FNT,ι(k).

Since η1 and η2 can be arbitrarily close to η, sup
k∈Λι,η

FNT,ι(k) has the same distribution

as sup
k∈Λ0ι,η

FNT,ι(k). Taking together, we have the desired results.

1.
∥∥∥Ω̃−1ι − Ω−1ι

∥∥∥ = op(1) if dT

T
1
4
→ 0 and dT√

N
→ 0.

2. sup
k∈Λι,η

∥∥∥C(k̃ι−1, k, k̃ι; F̃ι)− C(kι−1,0, k, kι0;Fι0Hι0)
∥∥∥ = op(1) if

√
T
N
→ 0.

3. sup
k∈Λι,η

‖C(kι−1,0, k, kι0;Fι0Hι0)‖ = Op(1).

4. sup
k∈Λι,η

∥∥∥C(k̃ι−1, k, k̃ι; F̃ι)
∥∥∥ = Op(1).

Fact (1) follows from Lemma 11.
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Proof of (2): Note that

C(k̃ι−1, k, k̃ι; F̃ι)− C(k̃ι−1, k, k̃ι;FιHι0)

= [C(k̃ι−1, k, k̃ι; F̃ι)− C(k̃ι−1, k, k̃ι;FιHι)]

+[C(k̃ι−1, k, k̃ι;FιHι)− C(k̃ι−1, k, k̃ι;FιHι0)]

= vech(

∑k
t=k̃ι−1+1

(f̃ιtf̃
′
ιt −H ′

ιftf
′
tHι)√

k̃ι − k̃ι−1
− k − k̃ι−1
k̃ι − k̃ι−1

∑k̃ι
t=k̃ι−1+1

(f̃ιtf̃
′
ιt −H ′

ιftf
′
tHι)

√
k̃ι − k̃ι−1

)

+vech(

∑k
t=k̃ι−1+1

(H ′
ι(ftf

′
t − ΣF )Hι −H ′

ι0(ftf
′
t − ΣF )Hι0)√

k̃ι − k̃ι−1

− k − k̃ι−1
k̃ι − k̃ι−1

∑k̃ι
t=k̃ι−1+1

(H ′
ι(ftf

′
t − ΣF )Hι −H ′

ι0(ftf
′
t − ΣF )Hι0)

√
k̃ι − k̃ι−1

). (A-72)

Thus it’s not difficult to see sup
k∈Λι,η

∥∥∥C(k̃ι−1, k, k̃ι; F̃ι)− C(k̃ι−1, k, k̃ι;FιHι)
∥∥∥ is not larger

than sup
k∈Λι,η

∥∥∥∥

∑k

t=k̃ι−1+1
(f̃ιtf̃ ′ιt−H′

ιftf
′

tHι)√
k̃ι−k̃ι−1

∥∥∥∥+

∥∥∥∥∥

∑k̃ι

t=k̃ι−1+1
(f̃ιtf̃ ′ιt−H′

ιftf
′

tHι)√
k̃ι−k̃ι−1

∥∥∥∥∥
, which is Op(

√
T

δ2NT
) by

Lemma 10. And sup
k∈Λι,η

∥∥∥C(k̃ι−1, k, k̃ι;FιHι)− C(k̃ι−1, k, k̃ι;FιHι0)
∥∥∥ is not larger than

sup
k∈Λι,η

∥∥∥∥

∑k

t=k̃ι−1+1
(H′

ι(ftf
′

t−ΣF )Hι−H′

ι0(ftf
′

t−ΣF )Hι0)√
k−k̃ι−1

∥∥∥∥+

∥∥∥∥∥

∑k̃ι

t=k̃ι−1+1
(H′

ι(ftf
′

t−ΣF )Hι−H′

ι0(ftf
′

t−ΣF )Hι0)√
k̃ι−k̃ι−1

∥∥∥∥∥
,

which is op(1) by part (2) of Lemma 9 and Assumption 12. Finally, with
∣∣∣k̃ι − kι0

∣∣∣ ≤ C

for all ι, sup
k∈Λι,η

∥∥∥C(k̃ι−1, k, k̃ι;FιHι0)− C(kι−1,0, k, kι0;Fι0Hι0)
∥∥∥ = op(1) is obvious.

Proof of (3): Note that C(kι−1,0, k, kι0;Fι0Hι0) = vech(

∑k
t=kι−1,0+1

(H′

ι0ftf
′

tHι0−Irι )√
kι0−kι−1,0

−

k−kι−1,0
kι0−kι−1,0

∑kι0
t=kι−1,0+1

(H′

ι0ftf
′

tHι0−Irι )√
kι0−kι−1,0

), for some η1 < η, sup
k∈Λι,η

‖C(kι−1,0, k, kι0;Fι0Hι0)‖ ≤

sup
k∈Λ0ι,η1

∥∥∥∥

∑k
t=kι−1,0+1

(H′

ι0ftf
′

tHι0−Irι )√
kι0−kι−1,0

∥∥∥∥ +
∥∥∥∥

∑kι0
t=kι−1,0+1

(H′

ι0ftf
′

tHι0−Irι )√
kι0−kι−1,0

∥∥∥∥, which is Op(1) by As-

sumption 12.

Proof of (4): It follows directly from (2) and (3).
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I PROOF OF THEOREM 9

Proof. The calculation of SSNEι(k̃ι−1, k̃ι)−SSNEι(k̃ι−1, k, k̃ι) under the null is still
valid under the alternative. Thus following (A-70) we have

FNT (l + 1 |l )

≥ sup
k∈Λι,η

[SSNEι(k̃ι−1, k̃ι)− SSNEι(k̃ι−1, k, k̃ι)]

≥ SSNEι(k̃ι−1, k̃ι)− SSNEι(k̃ι−1, kι0, k̃ι)

≥ 1
kι0−k̃ι−1
k̃ι−k̃ι−1

k̃ι−kι0
k̃ι−k̃ι−1

1

ρmax(Ω̃ι)

∥∥∥∥∥∥
vech(

∑kι0
t=k̃ι−1+1

g̃ιtg̃
′
ιt

√
k̃ι − k̃ι−1

− kι0 − k̃ι−1
k̃ι − k̃ι−1

∑k̃ι
t=k̃ι−1+1

g̃ιtg̃
′
ιt

√
k̃ι − k̃ι−1

)

∥∥∥∥∥∥

2

=
(kι0 − k̃ι−1)(k̃ι − kι0)
(k̃ι − k̃ι−1)ρmax(Ω̃ι)

∥∥∥∥∥
vech(

∑kι0
t=k̃ι−1+1

g̃ιtg̃
′
ιt

kι0 − k̃ι−1
−
∑k̃ι

t=kι0+1
g̃ιtg̃

′
ιt

k̃ι − kι0
)

∥∥∥∥∥

2

. (A-73)

Define zιt = vech(g̃ιtg̃
′
ιt − J ′ι0gιtg′ιtJι0). By Lemma 13 and Assumption 1,

vech(

∑kι0
t=k̃ι−1+1

g̃ιtg̃
′
ιt

kι0 − k̃ι−1
)

=

∑kι0
t=k̃ι−1+1

zιt

kι0 − k̃ι−1
+ vech[J ′ι0Aι1

∑kι0
t=k̃ι−1+1

(ftf
′
t − ΣF )

kι0 − k̃ι−1
A′ι1Jι0] + vech(J

′
ι0Aι1ΣFA

′
ι1Jι0)

= vech(J ′ι0Aι1ΣFA
′
ι1Jι0) + op(1), (A-74)

and similarly vech(
∑k̃ι
t=kι0+1

g̃ιtg̃′ιt

k̃ι−kι0
) = vech(J ′ι0Aι2ΣFA

′
ι2Jι0) + op(1). Since Aι1ΣFA

′
ι1 6=

Aι2ΣFA
′
ι2 and ρmax(Ω̃ι) = Op(dT ), there exists some c > 0 such that FNT (l+1 |l ) ≥ Tc

dT

with probability approaching one.

J PROOF OF LEMMAS

Lemma 1 Under Assumption 7(1), Hajek-Renyi inequality applies to the process

{yt, t = kκ−1,0 + 1, ..., kκ,0} and {yt, t = kκ,0, ..., kκ−1,0 + 1}, κ = 1, ..., L+ 1.

22



Proof. Note that yt = vech(J ′0Rκ(ftf
′
t − ΣF )R′κJ0) for kκ−1,0 < k ≤ kκ,0, thus

P ( sup
kκ−1,0+m≤k≤kκ,0

ck

∥∥∥
∑k

t=kκ−1,0+1
yt

∥∥∥ > M) is controlled by

P (‖J ′0Rκ‖
2

sup
kκ−1,0+m≤k≤kκ,0

ck

∥∥∥∥
∑k

t=kκ−1,0+1
εt

∥∥∥∥ > M),

which is not larger than C
M2 (mc

2
kκ−1,0+m

+
∑kκ,0

k=kκ−1,0+m+1
c2k) by Hajek-Renyi inequality

for process {εt, t = kκ−1,0 + 1, ..., kκ,0}. Other processes can be proved similarly.

Lemma 2 In case factor loadings have structural changes, under Assumptions 1-6,

‖J − J0‖ = op(1) and ‖VNT − V ‖ = op(1).

Proof. The proof follows similar procedure as Proposition 1 in Bai (2003), with J, J0

and gt corresponding to H,H0 and ft respectively. To avoid repetition, we will only

sketch the main steps. In Bai (2003), proof of Proposition 1 relies on dNT = op(1)

and V ∗NT
p→ V (Bai’s notation). The former relies on Lemma A.1 and A.3(i)19 while

the latter relies on Lemma A.3(ii). Lemma A.1 relies on Theorem 1 of Bai and

Ng (2002) and Lemma A.3(i). Lemma A.3(ii) relies on Lemma A.3(i) and Lemma

1(ii) of Bai and Ng (2002). Thus it suffices to prove Lemma 1(ii) and Theorem 1

of Bai and Ng (2002) and Lemma A.3(i) of Bai (2003). In current context, the first

can be proved using Assumption 2 and Assumption 4(2), the second can be proved

using Assumptions 1-4, and the third can be proved using Assumption 5 and Weyl

inequality. Finally, Assumption 6 ensures uniqueness of J0.

Lemma 3 Under Assumptions 1 and 7,

1. sup
0≤k<l≤T

1√
T (l−k)

∑l
t=k+1 ‖gt‖

2 = Op(1),

2. sup
kι−1,0<l≤kι0

1
l−kι−1,0

∑l
t=kι−1,0+1

‖gt‖2 = Op(1),

3. sup
kι−1,0≤k<kι0

1
kι0−k

∑kι0
t=k+1 ‖gt‖

2 = Op(1).

19In Bai (2003), Bai states that it relies on Lemma A.2, but in fact Lemma A.1 and A.3(i) is

enough. This is because dNT = (
Λ
0′
Λ
0

N )
1

2
F 0′

T (F̃ − F 0H)VNT .
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Proof. We first prove part (2). Recall that gt = Rιft for kι−1,0 < t ≤ kι0, thus

sup
kι−1,0<l≤kι0

∑l
t=kι−1,0+1

‖gt‖2

l−kι−1,0 ≤ ‖Rι‖2 E ‖ft‖2+‖Rι‖2 sup
kι−1,0<l≤kι0

∑l
t=kι−1,0+1

(‖ft‖2−E‖ft‖2)
l−kι−1,0 , where

E ‖ft‖2 = trΣF . It suffices to show the second term isOp(1). LetDl =

∑l
t=kι−1,0+1

(ftf ′t−ΣF )
l−kι−1,0 ,

it follows that

∣∣∣∣

∑l
t=kι−1,0+1

(‖ft‖2−E‖ft‖2)
l−kι−1,0

∣∣∣∣ = |trDl| ≤
√
rι(trD

2
l )

1
2 =

√
rι ‖Dl‖, thus

sup
kι−1,0<l≤kι0

∣∣∣∣

∑l
t=kι−1,0+1

(‖ft‖2−E‖ft‖2)
l−kι−1,0

∣∣∣∣ ≤
√
rι sup
kι−1,0<l≤kι0

∥∥∥∥

∑l
t=kι−1,0+1

εt

l−kι−1,0

∥∥∥∥, which is Op(1) by

Hajek-Renyi inequality. Proof of part (3) is similar and omitted.

Now we prove part (1). The whole sample t = 1, ..., T is divided into several

nonoverlapping segments by the true change points. First consider the case that k and

l lie in two different segments. Without loss of generality, suppose k lies in the ι-th seg-

ment and l lies in the κ-th segment, then sup
kι−1,0<k≤kι0;kκ−1,0<l≤kκ0

∑l
t=k+1‖gt‖

2

√
T (l−k)

is no larger

than sup
kι−1,0<k<kι0

∑kι0
t=k+1‖gt‖

2

kι0−k +
∑kκ−1,0
t=kι0+1

‖gt‖2

kκ−1,0−kι0 + sup
kκ−1,0<l≤kκ0

∑l
t=kκ−1,0+1

‖gt‖2

l−kι−1,0 (If κ− 1 = ι, the

second term is zero). By parts (2) and (3), the first term and the third term are Op(1).

The second term is no larger than
∑κ−1

υ=ι+1 ‖Rυ‖
2 ( 1

kυ,0−kυ−1,0
∑kυ,0

t=kυ−1,0+1
‖ft‖2), which

is Op(1). Next consider the case that k and l lie in the same segment. Without loss of

generality, suppose they lie in the ι-th segment, then sup
kκ−1,0<k<l≤kι0

1√
T (l−k)

∑l
t=k+1 ‖gt‖

2

is no larger than ‖Rι‖2 E ‖ft‖2+‖Rι‖2 sup
kκ−1,0<k<l≤kι0

∣∣∣∣
1√

T (l−k)

∑l
t=k+1(‖ft‖

2 − E ‖ft‖2)
∣∣∣∣.

Similar to part (2), the second term is no larger than ‖Rι‖2
√
rι sup
kκ−1,0<k<l≤kι0

∥∥∥∥
∑l
t=k+1 εt√
T (l−k)

∥∥∥∥,

which is op(1) since by Assumption 7,

E( sup
kκ−1,0<k<l≤kι0

∥∥∥∥∥
1

√
T (l − k)

∑l

t=k+1
εt

∥∥∥∥∥

4+δ

)

=
1

T 2+
δ
2

∑kκ,0−1

k=kκ−1,0

∑kκ,0

l=k+1
E(

∥∥∥∥
1√
l − k

∑l

t=k+1
εt

∥∥∥∥
4+δ

) ≤ M

T
δ
2

. (A-75)

Up to now, we have proved the desired result for each possible case. Since the number

of cases is finite, the supremum among all 0 ≤ k < l ≤ T will also be Op(1).

Lemma 4 Under Assumptions 1-8,
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1. sup
0≤k<l≤T

∥∥∥∥
1√

T (l−k)

∑l
t=k+1(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥∥ = Op(
1

δ2NT
),

2. sup
0≤k<l≤T

∥∥∥∥
1√

T (l−k)

∑l
t=k+1(g̃t − J ′gt)g′tJ

∥∥∥∥ = Op(
1

δNT
),

3. sup
kι−1,0<l≤kι0

∥∥∥ 1
l−kι−1,0

∑l
t=kι−1,0+1

(g̃t − J ′gt)(g̃t − J ′gt)′
∥∥∥ = Op( 1

δ2NT
) for each ι,

4. sup
kι−1,0<l≤kι0

∥∥∥ 1
l−kι−1,0

∑l
t=kι−1,0+1

(g̃t − J ′gt)g′tJ
∥∥∥ = Op( 1

δNT
) for each ι,

5. sup
kι−1,0≤k<kι0

∥∥∥ 1
kι0−k

∑kι0
t=k+1(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥ = Op( 1
δ2NT
) for each ι,

6. sup
kι−1,0≤k<kι0

∥∥∥ 1
kι0−k

∑kι0
t=k+1(g̃t − J ′gt)g′tJ

∥∥∥ = Op( 1
δNT
) for each ι.

Proof. Following Bai (2003), we have

g̃t−J ′gt = V −1NT (
1

T

∑T

s=1
g̃sγN(s, t)+

1

T

∑T

s=1
g̃sζst+

1

T

∑T

s=1
g̃sηst+

1

T

∑T

s=1
g̃sξst),

(A-76)

where ζst =
e′set
N
− γN(s, t), ηst = g′sΓ

′et
N
and ξst =

g′tΓ
′es
N
. VNT is the diagonal matrix

of the first r̄ largest eigenvalues of 1
NT
XX ′ in decreasing order, G̃ is

√
T times the

corresponding eigenvector matrix, V is the diagonal matrix of eigenvalues of Σ
1
2
ΓΣGΣ

1
2
Γ

and Φ is the corresponding eigenvector matrix, J = Γ′Γ
N

G′G̃
T
V −1NT . First consider part

(1).

sup
0≤k<l≤T

∥∥∥∥∥
1

√
T (l − k)

∑l

t=k+1
(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥∥∥

≤ 4 sup
0≤k<l≤T

1
√
T (l − k)

∑l

t=k+1
(

∥∥∥∥
1

T

∑T

s=1
g̃sγN(s, t)

∥∥∥∥
2

+

∥∥∥∥
1

T

∑T

s=1
g̃sζst

∥∥∥∥
2

+

∥∥∥∥
1

T

∑T

s=1
g̃sηst

∥∥∥∥
2

+

∥∥∥∥
1

T

∑T

s=1
g̃sξst

∥∥∥∥
2

)
∥∥V −1NT

∥∥2

= 4
∥∥V −1NT

∥∥2 (I + II + III + IV ). (A-77)
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By part (1) of Lemma 2,
∥∥V −1NT

∥∥→ ‖V −1‖, thus it suffices to consider I, II, III and
IV . By Assumption 4,

I ≤ 1

T

∑T

s=1
‖g̃s‖2 sup

0≤k<l≤T

1
√
T (l − k)

∑l

t=k+1

1

T

∑T

s=1
γN(s, t)

2

≤ r̄
1

T
sup

0≤k<l≤T

1
√
T (l − k)

∑l

t=k+1
(
∑T

s=1
M |γN(s, t)|) = O(

1

T
). (A-78)

By part (1) of Assumption 8,

II ≤ 1

T

∑T

s=1
‖g̃s‖2

1

N
(
1

T

∑T

s=1
sup

0≤k<l≤T

1
√
T (l − k)

∑l

t=k+1

∣∣∣∣∣

∑N
i=1[eiseit − E(eiseit)]√

N

∣∣∣∣∣

2

)

= r̄
1

N
Op(1). (A-79)

By part (2) of Assumption 8,

III ≤ 1

T

∑T

s=1
‖g̃s‖2 sup

0≤k<l≤T

1
√
T (l − k)

∑l

t=k+1

1

T

∑T

s=1

∣∣∣∣
1

N

∑N

i=1
g′sγieit

∣∣∣∣
2

≤ r̄(
1

T

∑T

s=1
‖gs‖2)

1

N
sup

0≤k<l≤T

1
√
T (l − k)

∑l

t=k+1

∥∥∥∥
1√
N

∑N

i=1
γieit

∥∥∥∥
2

= r̄Op(1)
1

N
Op(1). (A-80)

By part (1) of Lemma 3 and part (ii) of Lemma 1 in Bai and Ng (2002),

IV ≤ 1

T

∑T

s=1
‖g̃s‖2 sup

0≤k<l≤T

1
√
T (l − k)

∑l

t=k+1

‖gt‖2
1

N

1

T

∑T

s=1

∥∥∥∥
1√
N

∑N

i=1
γieis

∥∥∥∥
2

= r̄Op(1)
1

N
Op(1). (A-81)
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Next consider part (2).

sup
0≤k<l≤T

∥∥∥∥∥
1

√
T (l − k)

∑l

t=k+1
(g̃t − J ′gt)g′tJ

∥∥∥∥∥

≤
∥∥V −1NT

∥∥ ‖J‖ sup
0≤k<l≤T

∥∥∥∥∥
1

T

1
√
T (l − k)

∑l

t=k+1

∑T

s=1
g̃sg

′
tγN(s, t)

∥∥∥∥∥

+
∥∥V −1NT

∥∥ ‖J‖ sup
0≤k<l≤T

∥∥∥∥∥
1

T

1
√
T (l − k)

∑l

t=k+1

∑T

s=1
g̃sg

′
tζst

∥∥∥∥∥

+
∥∥V −1NT

∥∥ ‖J‖ sup
0≤k<l≤T

∥∥∥∥∥
1

T

1
√
T (l − k)

∑l

t=k+1

∑T

s=1
g̃sg

′
tηst

∥∥∥∥∥

+
∥∥V −1NT

∥∥ ‖J‖ sup
0≤k<l≤T

∥∥∥∥∥
1

T

1
√
T (l − k)

∑l

t=k+1

∑T

s=1
g̃sg

′
tξst

∥∥∥∥∥

=
∥∥V −1NT

∥∥ ‖J‖ (V + V I + V II + V III). (A-82)

By Lemma 2,
∥∥V −1NT

∥∥ → ‖V −1‖ and ‖J‖ → ‖J0‖, thus it suffices to consider V , V I,
V II and V III. By part (1) of Lemma 3 and Assumption 4,

V ≤ (
1

T

∑T

s=1
‖g̃s‖2)

1
2 sup
0≤k<l≤T

(
1

T

∑T

s=1

∥∥∥∥∥
1

√
T (l − k)

∑l

t=k+1
g′tγN(s, t)

∥∥∥∥∥

2

)
1
2

≤ r̄( sup
0≤k<l≤T

∑l
t=k+1 ‖gt‖

2

√
T (l − k)

)
1
2 (
1

T
sup

0≤k<l≤T

1
√
T (l − k)

∑l

t=k+1

∑T

s=1
|γN(s, t)|2)

1
2

= Op(1)Op(
1√
T
). (A-83)

By part (1) of Lemma 3 and part (1) of Assumption 8,

V I ≤ (
1

T

∑T

s=1
‖g̃s‖2)

1
2 sup
0≤k<l≤T

(
1

T

∑T

s=1

∥∥∥∥∥

∑l
t=k+1 g

′
t√

T (l − k)

∑N
i=1[eiseit − E(eiseit)]

N

∥∥∥∥∥

2

)
1
2

≤ r̄
1√
N
( sup
0≤k<l≤T

1
√
T (l − k)

∑l

t=k+1
‖gt‖2)

1
2 (
1

T

∑T

s=1

sup
0≤k<l≤T

1
√
T (l − k)

∑l

t=k+1

∥∥∥∥
1√
N

∑N

i=1
[eiseit − E(eiseit)]

∥∥∥∥
2

)
1
2

=
1√
N
Op(1)Op(1). (A-84)
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By part (1) of Lemma 3 and part (2) of Assumption 8,

V II ≤ (
1

T

∑T

s=1
‖g̃s‖2)

1
2 sup
0≤k<l≤T

(
1

T

∑T

s=1

∥∥∥∥∥

∑l
t=k+1(

1
N

∑N
i=1 g

′
sγieit)g

′
t√

T (l − k)

∥∥∥∥∥

2

)
1
2

≤ r̄(
1

T

∑T

s=1
‖gs‖2)

1
2
1√
N
( sup
0≤k<l≤T

∥∥∥∥∥

∑l
t=k+1

∑N
i=1 γieitg

′
t√

NT (l − k)

∥∥∥∥∥

2

)
1
2

≤ r̄(
1

T

∑T

s=1
‖gs‖2)

1
2
1√
N
( sup
0≤k<l≤T

1
√
T (l − k)

∑l

t=k+1

‖gt‖2)
1
2 ( sup
0≤k<l≤T

1
√
T (l − k)

∑l

t=k+1

∥∥∥∥
1√
N

∑N

i=1
γieit

∥∥∥∥
2

)
1
2

= Op(1)
1√
N
Op(1)Op(1) (A-85)

By part (1) of Lemma 3 and part (ii) of Lemma 1 in Bai and Ng (2002),

V III ≤ (
1

T

∑T

s=1
‖g̃s‖2)

1
2 sup
0≤k<l≤T

(
1

T

∑T

s=1

∥∥∥∥∥

∑l
t=k+1 g

′
t(
1
N

∑N
i=1 g

′
tγieis)√

T (l − k)

∥∥∥∥∥

2

)
1
2

≤ r̄( sup
0≤k<l≤T

1
√
T (l − k)

∑l

t=k+1
‖gt‖2)

1√
N
(
1

T

∑T

s=1

∥∥∥∥
1√
N

∑N

i=1
γieis

∥∥∥∥
2

)
1
2

= Op(1)
1√
N
Op(1). (A-86)

For the other parts, proof of parts (3) and (5) are similar to proof of part (1), proof

of parts (4) and (6) are similar to proof of part (2).

Lemma 5 Under Assumptions 1-8,

1. sup
0≤k<l≤T

∥∥∥∥
1√

T (l−k)

∑l
t=k+1 zt

∥∥∥∥ = op(1),

2. sup
kι−1,0<l≤kι0

∥∥∥ 1
l−kι−1,0

∑l
t=kι−1,0+1

zt

∥∥∥ = op(1) for each ι,

3. sup
kι−1,0≤k<kι0

∥∥∥ 1
kι0−k

∑kι0
t=k+1 zt

∥∥∥ = op(1) for each ι.

Proof. Recall that zt = vech[(g̃t−J ′gt)(g̃t−J ′gt)′]+vech[(g̃t−J ′gt)g′tJ ]+vech[J ′gt(g̃t−
J ′gt)

′]+vech[(J ′−J ′0)gtg′t(J−J0)]+vech[(J ′−J ′0)gtg′tJ0]+vech[J ′0gtg′t(J−J0)]. From
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Lemma 2 and part (1) of Lemma 3, we have

sup
0≤k<l≤T

∥∥∥∥∥
1

√
T (l − k)

∑l

t=k+1
(J ′ − J ′0)gtg′t(J − J0)

∥∥∥∥∥

≤ ‖J − J0‖2 sup
0≤k<l≤T

1
√
T (l − k)

∑l

t=k+1
‖gt‖2 = op(1)Op(1) = op(1), (A-87)

and similarly sup
0≤k<l≤T

∥∥∥∥
1√

T (l−k)

∑l
t=k+1(J

′ − J ′0)gtg′tJ0
∥∥∥∥ = op(1). These together with

parts (1) and (2) of Lemma 4 proves part (1). Part (2) can be proved similarly using

Lemma 2, part (2) of Lemma 3 and parts (3) and (4) of Lemma 4. Part (3) can be

proved similarly using Lemma 2, part (3) of Lemma 3 and parts (5) and (6) of Lemma

4.

Lemma 6 In case factor loadings are stable, under Assumptions 1-6, ‖H −H0‖ =
op(1) and ‖UNT − U‖ = op(1).

Proof. The proof is similar to Lemma 2.

Lemma 7 In case factor loadings are stable, under Assumptions 1-6 and 10-11,

sup
Tε≤k≤T (1−ε)

∥∥∥ 1T
∑k

t=1(f̃tf̃
′
t −H ′ftf

′
tH)

∥∥∥ = Op( 1
δ2NT
).

Proof. It suffices to show sup
Tε≤k≤T (1−ε)

∥∥∥ 1T
∑k

t=1(f̃t −H ′ft)(f̃t −H ′ft)
′
∥∥∥ = Op(

1
δ2NT
)

and sup
Tε≤k≤T (1−ε)

∥∥∥ 1T
∑k

t=1(f̃t −H ′ft)f
′
tH
∥∥∥ = Op(

1
δ2NT
). The former is not larger than

1
T

∑T
t=1

∥∥∥f̃t −H ′ft

∥∥∥
2

, which is Op(
1

δ2NT
) by Lemma A.1 in Bai (2003). The latter is

a refinement of part (2) of Lemma 4. For its proof, see Lemma 3 of Han and Inoue

(2015), the required conditions (Assumptions 1-8(a) in Han and Inoue (2015)) can be

verified.

Lemma 8 In case factor loadings are stable, under Assumptions 1-6, 10 and 13,∥∥∥Ω̃−1 − Ω−1
∥∥∥ = op(1) if dT

δNT
→ 0 as (N, T )→∞.

Proof. First note that
∥∥∥Ω̃−1 − Ω−1

∥∥∥ ≤
∥∥∥Ω̃−1

∥∥∥
∥∥∥Ω̃− Ω

∥∥∥ ‖Ω−1‖, ‖Ω−1‖ is constant,
∥∥∥Ω̃−1

∥∥∥ ≤
√

r(r+1)
2

1
ρmin(Ω̃)

and
∣∣∣ρmin(Ω̃)− ρmin(Ω)

∣∣∣ ≤
∥∥∥Ω̃− Ω

∥∥∥. Thus it remains to
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show
∥∥∥Ω̃− Ω

∥∥∥ = op(1). By Assumption 13,
∥∥∥Ω̃(FH0)− Ω

∥∥∥ = op(1). By second half

of Theorem 2 in Han and Inoue (2015),
∥∥∥Ω̃− Ω̃(FH0)

∥∥∥ = op(1) if
dT
δNT

→ 0. The

required conditions in Han and Inoue (2015) can be verified.

Lemma 9 In case factor loadings have structural changes, under Assumptions 1-5

and 14, with
∣∣∣k̃ι − kι0

∣∣∣ = Op(1) and
∣∣∣k̃ι−1 − kι−1,0

∣∣∣ = Op(1), we have ‖Hι −Hι0‖ =
op(1) and ‖UιNT − Uι‖ = op(1).

Proof. First, Assumption 14 ensures uniqueness of Hι0. The proof of ‖Hι −Hι0‖ =
op(1) follows the same procedure as Proposition 1 in Bai (2003) which, as explained in

Lemma 2, relies on Lemma 1(ii), Theorem 1 of Bai and Ng (2002) and Lemma A.3(i)

of Bai (2003). Thus it suffices to reestablish these three with
∣∣∣k̃ι − kι0

∣∣∣ = Op(1) and∣∣∣k̃ι−1 − kι−1,0
∣∣∣ = Op(1). The first can be proved without adjustment. The second is

proved in Theorem 5. The third (‖UιNT − Uι‖ = op(1)) is proved in Theorem 4.

Lemma 10 Under Assumptions 1-5, 10-11 and 14, with
∣∣∣k̃ι − kι0

∣∣∣ = Op(1) and

∣∣∣k̃ι−1 − kι−1,0
∣∣∣ = Op(1), sup

k∈Λι,η

∥∥∥∥

∑k

t=k̃ι−1+1
(f̃ιtf̃ ′ιt−H′

ιftf
′

tHι)

k̃ι−k̃ι−1

∥∥∥∥ and

∥∥∥∥∥

∑k̃ι

t=k̃ι−1+1
(f̃ιtf̃ ′ιt−H′

ιftf
′

tHι)

k̃ι−k̃ι−1

∥∥∥∥∥
are both Op(

1
δ2NT
).

Proof. We will only show the first half, proof of the second half is the same.

It suffices to prove sup
k∈Λι,η

∥∥∥ 1
k̃ι−k̃ι−1

∑k
t=k̃ι−1+1

(f̃ιt −H ′
ιft)(f̃ιt −H ′

ιft)
′
∥∥∥ = Op(

1
δ2NT
) and

sup
k∈Λι,η

∥∥∥ 1
k̃ι−k̃ι−1

∑k
t=k̃ι−1+1

(f̃ιt −H ′
ιft)f

′
tHι

∥∥∥ = Op(
1

δ2NT
) with

∣∣∣k̃ι − kι0
∣∣∣ = Op(1) and

∣∣∣k̃ι−1 − kι−1,0
∣∣∣ = Op(1). The former is not larger than 1

k̃ι−k̃ι−1

∑k̃ι
t=k̃ι−1+1

∥∥∥f̃ιt −H ′
ιft

∥∥∥
2

,

which is Op(
1

δ2NT
) by Theorem 5 and ‖UιNT − Uι‖ = op(1) in Lemma 9. To prove the

latter, it suffices to show sup
k∈Λι,η

∥∥∥∥

∑k
t=kι−1+1

(f̃ιt−H′

ιft)f
′

tHι

kι−kι−1

∥∥∥∥ = Op(
1

δ2NT
) for each kι−1 ∈

[kι−1,0 − C, kι−1,0 + C] and kι ∈ [kι,0 − C, kι,0 + C], where C is some positive integer
(see Baltagi et al. (2017) for more details). For the case kι−1 ∈ [kι−1,0, kι−1,0 + C]
and kι ∈ [kι,0 − C, kι,0], Lemma 3 of Han and Inoue (2015) is applicable with T re-
placed by kι − kι−1. We next prove for the case kι−1 ∈ [kι−1,0 − C, kι−1,0 − 1] and
kι ∈ [kι,0 + 1, kι,0 + C]. Proof of the other two cases are the same.
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Note that in this case xit = f
′
tλ0,ι−1,i + eit for t ∈ [kι−1 + 1, kι−1,0], xit = f ′tλ0,ι,i +

eit for t ∈ [kι−1,0 + 1, kι,0] and xit = f ′tλ0,ι+1,i + eit for t ∈ [kι,0 + 1, kι]. Define

wit = f ′t(λ0,ι−1,i − λ0,ι,i) for t ∈ [kι−1 + 1, kι−1,0], wit = 0 for t ∈ [kι−1,0 + 1, kι,0]

and wit = f
′
t(λ0,ι+1,i − λ0,ι,i) for t ∈ [kι,0 + 1, kι], it follows that xit = f ′tλ0,ι,i + eit+

wit for t ∈ [kι−1 + 1, kι]. Define Xι = (xkι−1+1, ..., xkι)
′, wt = (w1t, ..., wNt)

′, Wι =

(wkι−1+1, ..., wkι)
′, Eι = (ekι−1+1, ..., ekι)

′ and recall Fι = (fkι−1+1, ..., fkι)
′, it follows

that Xι = FιΛ
′
0ι + Eι +Wι. Using the same decomposition as equation A.1 in Bai

(2003), we have

f̃ιt −H ′
ιft = U−1ιNT

1

N(kι − kι−1)
[F̃ ′ιFιΛ

′
0ιet + F̃

′
ιEιΛ0ιft + F̃

′
ιEιet

+F̃ ′ιFιΛ
′
0ιwt + F̃

′
ιWιΛ0ιft + F̃

′
ιWιwt + F̃

′
ιEιwt + F̃

′
ιWιet]

= U−1ιNT (Q
ι
1,t +Q

ι
2,t +Q

ι
3,t +Q

ι
4,t +Q

ι
5,t +Q

ι
6,t +Q

ι
7,t +Q

ι
8,t).(A-88)

By Lemma 9,
∥∥U−1ιNT

∥∥ and ‖Hι‖ are bothOp(1), thus it suffices to show form = 1, ..., 8,

sup
k∈Λι,η

∥∥∥ 1
kι−kι−1

∑k
t=kι−1+1

Qιm,tf
′
t

∥∥∥ = Op( 1
δ2NT
).

For m = 1, 2, 3, the proof is the same as Lemma 3 of Han and Inoue (2015)

except that in current case we use 1
kι−kι−1

∑kι
t=kι−1+1

∥∥∥f̃ιt −H ′
ιft

∥∥∥
2

= Op(
1

δ2NT
) and

‖Hι‖ = Op(1) for kι−1 ∈ [kι−1,0 − C, kι−1,0 − 1] and kι ∈ [kι,0 + 1, kι,0 + C]. These
two are proved as intermediate result in Theorem 5 and Lemma 9, respectively. For

m = 4, sup
k∈Λι,η

∥∥∥∥

∑k
t=kι−1+1

Qι4,tf
′

t

kι−kι−1

∥∥∥∥ is not larger than
∥∥∥ F̃ ′ιFιΛ

′

0ι

N(kι−kι−1)

∥∥∥ (
∑kι
t=kι−1+1

‖wtf ′t‖
kι−kι−1 ) and

∥∥∥∥∥
F̃ ′ιFιΛ

′
0ι

N(kι − kι−1)

∥∥∥∥∥
≤ (

∑kι
s=kι−1+1

∥∥∥f̃ιs
∥∥∥
2

kι − kι−1
)
1
2 (

∑kι
s=kι−1+1

‖fs‖2

kι − kι−1
)
1
2
1√
N
(

∑N
i=1 ‖λ0,ι,i‖

2

N
)
1
2

= Op(
1√
N
), (A-89)

∑kι
t=kι−1+1

‖wtf ′t‖
kι − kι−1

≤
∑kι−1,0

t=kι−1+1
‖ftf ′t‖

kι − kι−1
(
∑N

i=1
‖λ0,ι−1,i − λ0,ι,i‖2)

1
2

+

∑kι
t=kι0+1

‖ftf ′t‖
kι − kι−1

(
∑N

i=1
‖λ0,ι+1,i − λ0,ι,i‖2)

1
2

= Op(

√
N

T
). (A-90)
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For m = 5, sup
k∈Λι,η

∥∥∥∥

∑k
t=kι−1+1

Qι5,tf
′

t

kι−kι−1

∥∥∥∥ is not larger than
∥∥∥ F̃ ′ιWιΛ0ι
N(kι−kι−1)

∥∥∥ (
∑kι
t=kι−1+1

‖ftf ′t‖
kι−kι−1 ) and

1

kι − kι−1
∑kι

t=kι−1+1
‖ftf ′t‖ = Op(1), (A-91)

∥∥∥∥∥
F̃ ′ιWιΛ0ι

N(kι − kι−1)

∥∥∥∥∥

≤
∥∥∥∥

1

kι − kι−1
F̃ ′ιWι

∥∥∥∥
1√
N
(

∑N
i=1 ‖λ0,ι,i‖

2

N
)
1
2

≤ [

∑kι−1,0
s=kι−1+1

∥∥∥f̃ιsf ′s
∥∥∥

kι − kι−1
(
∑N

i=1
‖λ0,ι−1,i − λ0,ι,i‖2)

1
2

+

∑kι
s=kι−1+1

∥∥∥f̃ιsf ′s
∥∥∥

kι − kι−1
(
∑N

i=1
‖λ0,ι+1,i − λ0,ι,i‖2)

1
2 ]
1√
N
(

∑N
i=1 ‖λ0,ι,i‖

2

N
)
1
2

= Op(
1

T
). (A-92)

The last equality is due to
∥∥∥f̃ιs −H ′

ιfs

∥∥∥ = op(1) for kι−1 + 1 ≤ s ≤ kι, which can be
proved once Lemma A.2 in Bai (2003) is reestablished with kι−1 ∈ [kι−1,0−C, kι−1,0−
1] and kι ∈ [kι,0 + 1, kι,0 + C]. This is not difficult since in Bai (2003) Lemma

A.2 is based on Lemma A.1 and Proposition 1, and as explained in the cases m =

1, 2, 3, we have reestablished these two with kι−1 ∈ [kι−1,0 − C, kι−1,0 − 1] and kι ∈
[kι,0 + 1, kι,0 + C]. For m = 6, sup

k∈Λι,η

∥∥∥ 1
kι−kι−1

∑k
t=kι−1+1

Qι6,tf
′
t

∥∥∥ is not larger than

1
N

∥∥∥ F̃ ′ιWι

kι−kι−1

∥∥∥ (
∑kι
t=kι−1+1

‖wtf ′t‖
kι−kι−1 ). The second and the third terms are both Op(

√
N
T
), as

proved in m = 5 and m = 4 respectively. For m = 7, sup
k∈Λι,η

∥∥∥∥

∑k
t=kι−1+1

Qι7,tf
′

t

kι−kι−1

∥∥∥∥ is not

larger than
∥∥∥ 1
N(kι−kι−1) F̃

′
ιEι

∥∥∥ (
∑kι
t=kι−1+1

‖wtf ′t‖
kι−kι−1 ). The second term is Op(

√
N
T
), as proved

in m = 4. The first term is not larger than 1√
N
(

∑kι
s=kι−1+1

‖f̃ιs‖2
kι−kι−1 )

1
2 (

∑N
i=1

∑kι
s=kι−1+1

e2is

N(kι−kι−1) )
1
2 ,

which is Op(
1√
N
). For m = 8, sup

k∈Λι,η

∥∥∥ 1
kι−kι−1

∑k
t=kι−1+1

Qι8,tf
′
t

∥∥∥ is not larger than

1
N

∥∥∥ 1
kι−kι−1 F̃

′
ιWι

∥∥∥ (
∑kι
t=kι−1+1

‖etf ′t‖
kι−kι−1 ). The second term is Op(

√
N
T
), as proved in m =

5. The third term is not larger than (

∑kι
t=kι−1+1

‖ft‖2

kι−kι−1 )
1
2 (

∑kι
t=kι−1+1

∑N
i=1 e

2
it

kι−kι−1 )
1
2 , which is
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Op(
√
N). Thus sup

k∈Λι,η

∥∥∥ 1
kι−kι−1

∑k
t=kι−1+1

Qιm,tf
′
t

∥∥∥ = Op( 1T ) for m = 4, ..., 8.

Lemma 11 Under Assumptions 1-5 and 10-14, if
∣∣∣k̃ι − kι0

∣∣∣ and
∣∣∣k̃ι−1 − kι−1,0

∣∣∣ are

Op(1),
∥∥∥Ω̃−1ι − Ω−1ι

∥∥∥ = op(1) if dT

T
1
4
→ 0 and dT√

N
→ 0 as (N, T )→∞.

Proof. Similar to Lemma 8, it suffices to show
∥∥∥Ω̃ι − Ω̃(FιHι0)

∥∥∥ = op(1), given∣∣∣k̃ι − kι0
∣∣∣ = Op(1),

∣∣∣k̃ι−1 − kι−1,0
∣∣∣ = Op(1),

dT

T
1
4
→ 0 and dT√

N
→ 0. This can be

proved following the same procedure as Theorem 2 in Han and Inoue (2015). Here

we present the adjustment. First, the notation should be replaced correspondingly,

for example, in Han and Inoue (2015) the sample is t = 1, ..., T while here the sample

is t = kι−1 + 1, ..., kι. Next, in Han and Inoue (2015) proof of Theorem 2 relies on

their Lemma 7 and Lemma 8, which further relies on their Lemma 5 and Lemma 6

respectively. Once their Lemma 5 and Lemma 6 are reestablished given
∣∣∣k̃ι − kι0

∣∣∣ =

Op(1) and
∣∣∣k̃ι−1 − kι−1,0

∣∣∣ = Op(1), the proof of Lemma 7, Lemma 8 and Theorem 2

need no adjustment.

We first reestablish parts (i) and (iii) of their Lemma 5. With dT

T
1
4
→ 0 and

dT√
N
→ 0, they are enough. From equation (A-88), we have

∑kι
t=kι−1+1

∥∥∥f̃ιt −H ′
ιft

∥∥∥
4

kι − kι−1
≤ 83

∥∥U−1ιNT
∥∥4 (
∑8

m=1

∑kι
t=kι−1+1

∥∥Qιm,t
∥∥4

kι − kι−1
). (A-93)

Lemma 5 in Han and Inoue (2015) shows that
∑3

m=1
1

kι−kι−1
∑kι

t=kι−1+1

∥∥Qιm,t
∥∥4 =

Op(
1
T
) + Op(

1
N2 ), the proof need no adjustment. For m = 4, ..., 8, it can be shown

that

∑kι
t=kι−1+1

‖Qι4,t‖4
kι−kι−1 = Op(

1
T
),

∑kι
t=kι−1+1

‖Qι5,t‖4
kι−kι−1 = Op(

1
T
),

∑kι
t=kι−1+1

‖Qι6,t‖4
kι−kι−1 = Op(

1
T 3
),

∑kι
t=kι−1+1

‖Qι7,t‖4
kι−kι−1 = Op(

1
T
) and

∑kι
t=kι−1+1

‖Qι8,t‖4
kι−kι−1 = Op(

1
T 2
). The proof of Lemma 6

need no adjustment, but note that it utilized 1
T
F ′(F̂ − FH)VNT = Op(

1
δ2NT
). Its

counterpart in current case is
∥∥∥ 1
k̃ι−k̃ι−1

∑k̃ι
t=k̃ι−1+1

(f̃ιt −H ′
ιft)f

′
t

∥∥∥ = Op( 1
δ2NT
), which is

implicitly proved in Lemma 10.

Lemma 12 Under Assumptions 1-5 and 14, if
∣∣∣k̃ι − kι+1,0

∣∣∣ and
∣∣∣k̃ι−1 − kι−1,0

∣∣∣ are

Op(1), we have ‖Jι − Jι0‖ = op(1) and ‖VιNT − Vι‖ = op(1).
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Proof. The proof is similar to Lemma 9.

Lemma 13 Under Assumptions 1-5, 10-11 and 14, if
∣∣∣k̃ι − kι+1,0

∣∣∣ and
∣∣∣k̃ι−1 − kι−1,0

∣∣∣

are Op(1),
1

k̃ι−k̃ι−1

∑kι0
t=k̃ι−1+1

zιt = op(1) and
1

k̃ι−kι0

∑k̃ι
t=kι0+1

zιt = op(1).

Proof. We will show the second half, the first half can be proved similarly. It suffices

to show

∥∥∥∥
∑k̃ι
t=kι0+1

vech(g̃ιtg̃′ιt−J ′ιgιtg′ιtJι)
k̃ι−kι0

∥∥∥∥ and
∥∥∥∥
∑k̃ι
t=kι0+1

vech(J ′ιgιtg
′

ιtJι−J ′ι0gιtg′ιtJι0)
k̃ι−kι0

∥∥∥∥ are both

op(1). The first term can be proved similarly as Lemma 10. The second term is

not larger than

∥∥∥∥
∑k̃ι
t=kι0+1

gιtg′ιt

k̃ι−kι0

∥∥∥∥ ‖Jι − Jι0‖
2 + 2

∥∥∥∥
∑k̃ι
t=kι0+1

gιtg′ιt

k̃ι−kι0

∥∥∥∥ ‖Jι − Jι0‖ ‖Jι0‖, which
is op(1) by Lemma 12.
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