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Abstract

This paper considers multiple changes in the factor loadings of a high di-
mensional factor model occurring at dates that are unknown but common to
all subjects. Since the factors are unobservable, the problem is converted to
estimating and testing structural changes in the second moments of the pseudo
factors. We consider both joint and sequential estimation of the change points
and show that the distance between the estimated and the true change points is
Op(1). We find that the estimation error contained in the estimated pseudo fac-
tors has no effect on the asymptotic properties of the estimated change points
as the cross-sectional dimension N and the time dimension T go to infinity
jointly. No N-T ratio condition is needed. We also propose (i) tests for the
null of no change versus the alternative of I changes (ii) tests for the null of
changes versus the alternative of [ + 1 changes, and show that using estimated
factors asymptotically has no effect on their limit distributions if v /N — 0.
These tests allow us to make inference on the presence and number of structural
changes. Simulation results show good performance of the proposed procedure.
In an application to US quarterly macroeconomic data we detect two possible
breaks.
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1 INTRODUCTION

High dimensional factor models have played a crucial role in business cycle analysis,
consumer behavior analysis, asset pricing and macroeconomic forecasting, see for
example, Ross (1976), Lewbel (1991), Bernanke, Boivin and Eliasz (2005) and Stock
and Watson (2002a, 2002b), to mention a few. This has been enhanced by the
increasing availability of big data sets. However, as the time span of the data becomes
longer, there is a substantial risk that the underlying data generating process may
experience structural changes. Inference ignoring these changes would be misleading.
This paper considers multiple changes in the factor loadings of a high dimensional
factor model, occurring at dates that are unknown but common to all subjects. We
propose a joint estimator of all the change points as well as a sequential estimator
of the change points that estimates these change points one by one. Based on the
estimated change points, we are able to consistently determine the number of factors
and estimate the factor space in each regime. We also propose tests for (i) the null
of no change versus the alternative of some fixed number of changes and (ii) tests
for the null of [ changes versus the alternative of [ 4+ 1 changes. The latter allows us
to consistently determine the number of changes. These tests are easy to implement
and critical values tabulated in Bai and Perron (1998, 2003) can be used directly to
make inference on the presence as well as the number of structural changes.

Stock and Watson (2009) and Bates, Plagborg-Mgller, Stock and Watson (2013)
argue that as long as the magnitude of the loading breaks converges to zero sufficiently
fast, existing estimators ignoring loading breaks are still consistent. Recently, several
tests on the stability of the factor loadings in high dimensional factor models have
been proposed, including Breitung and Eickmeier (2011), Chen, Dolado and Gonzalo
(2014), Han and Inoue (2015) and Cheng, Liao and Schorfheide (2016). Recent
contributions on estimating high dimensional factor models with loading instability
include Baltagi, Kao and Wang (2017), Cheng et al. (2016), Massacci (2017) and Bai,
Han and Shi (2016). All of these papers consider the case with a single change. The
number of factors is explicitly allowed to change in the former two papers. The change

point estimator of Bai et al. (2016) is consistent (hence more accurate than those of



the former two papers), but it does not allow the number of factors to change.

This paper tackles multiple changes in high dimensional factor models!. We start
by estimating the number of factors and factor space ignoring structural changes.
Since the factor model with changes in the loadings can be equivalently written as
another factor model with stable loadings but pseudo factors, this would allow us to
identify the equivalent model with stable loadings and give us the estimated pseudo
factors. A key observation is that the mean of the second moment matrix of the
pseudo factors have changes at exactly the same dates as the loadings. Estimating
and testing multiple changes in the latter can be converted to estimating and testing
multiple changes in the former. This conversion is crucial because the true factors are
unobservable and not estimable without knowing the change points. It is also worth
pointing out that after this conversion we are using the estimated pseudo factors, not
the pseudo factors themselves. That is to say, the data contains estimation error. We
will show that this estimation error has a different effect on testing and estimating
structural changes. Once the estimated change points are available, they are plugged
in to split the sample and estimate the number of factors and factor space in each
regime, which are further used to construct the test for [ versus [ 4+ 1 changes.

In the regression setup, influential work on multiple changes include Bai and
Perron (1998) and Qu and Perron (2007). This paper differs from these seminal
papers in several respects. First, to estimate and test structural changes, this paper
utilizes estimated pseudo factors rather than the raw data. Second, the estimated
pseudo factors have a multivariate time series setup, while Bai and Perron (1998) have
a regression setup. Third, the estimated pseudo factors contain estimation error and
we show that to eliminate the effect of estimation error, for testing structural changes
we need \/TT — 0 as N and T go to infinity jointly, but no N-T' (T-N) ratio condition
is needed for estimating change points. The latter is rare in the high dimensional

econometrics literature since very few papers require no N-T (T-N) ratio condition?.

'Tn testing the joint hypothesis of stability of both factor loadings and the factor augmented

forecasting equation, Corradi and Swanson (2014) also consider the alternative of multiple changes.

2For example, Bai and Ng (2006) require % — 0 where estimated factors are used to augment

forecasting and vector autoregression. Various N-T ratio conditions are also needed in Bai (2009)
where estimated factors are used to control the interactive effects in panel data.



This paper is also closely related to Han and Inoue (2015), Baltagi et al. (2017) and
Ma and Su (2018). Han and Inoue (2015) propose Wald and LM type tests for single
change in a factor model. These tests can not be extended to cases with multiple
changes directly since they are based on the difference of the second moments of
factors between two subsamples. This paper solves this issue by considering likelihood
ratio type tests. This paper also contains results on estimating change points, which
is not covered in Han and Inoue (2015). Baltagi et al. (2017) propose an estimator
for a single change point in a factor model and prove that the distance between the
estimated and the true change point is O,(1), and this O, (1) error asymptotically has
no effect on the estimated number of factors and factor space in each regime. This
paper differs from Baltagi et al. (2017) in two respects. First, for the multiple changes
case, although the distance between the estimated and the true change points are still
O,(1), the proof is different. This is because when analyzing the location of one change
point, the locations of the previous and the next change point are unknown?®. Second,
this paper also studies the testing procedure to determine the presence and number
of structural changes, which is not covered in Baltagi et al. (2017). Ma and Su
(2018) propose an adaptive fused group Lasso method to estimate and test multiple
structural changes in factor models. Their method follows from the Lasso literature
while our method follows from converting the original high dimensional setup to a
fixed dimensional setup. Their estimator of the changes points is consistent, but
their method requires the number of factors to be stable. Our method allows (i) the
number of factors to change as well as (ii) more general type of changes. Allowing
the number of factors to change is important and has been considered by Stock and
Watson (2012) and Cheng et al. (2016). The latter found that given macroeconomic
and financial indicators have a factor representation, one new factor that captures
financial comovement emerges at the beginning of the Great Recession.

Throughout the paper, ||A|| = (trAA’)z denotes the Frobenius norm, -, < and
= denotes convergence in probability, convergence in distribution and weak conver-
gence of stochastic process respectively, vech(A) denotes the half vectorization of

matrix A, E(-) denotes the expectation, §yr = min{v/N,+/T} and (N,T) — oo de-

30bviously, the single change case does not have this issue.
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notes N and T going to infinity jointly. The rest of the paper is organized as follows:
Section 2 introduces the model setup, notation and preliminaries. Section 3 considers
both joint estimation and sequential estimation of the change points and also the sub-
sequent estimation of the number of factors and factor space in each regime. Section
4 proposes test statistics for multiple changes, derives their asymptotic distributions
and discusses how to determine the number of changes. Section 5 presents simula-
tion results. Section 6 provides an empirical application to US macroeconomic data.

Section 7 concludes. All the proofs are relegated to the appendix.

2 NOTATION AND PRELIMINARIES

2.1 The Model

Consider the following high dimensional factor model with L changes in the factor
loadings:

Tir = fosN0i + flo i i T €its (1)

with k10 +1 <t < kg, fork =1,...,L+1,i=1,..,N and t = 1,...,T, where
for and f_o; are r — ¢ and ¢ dimensional vectors of factors without and with changes
in the loadings respectively. Let fi = (fg,, fLo:)'- Xoq and A ; are factor loadings
of subject i corresponding to fo; and f’, in the x-th regime, respectively, and let
Aok = ( IO,i’ )\;J)’ . e 1s the error term allowed to have temporal and cross-sectional

dependence as well as heteroskedasticity. For x = 1,...,L, k.o are change points

(koo =0 and kpy10 =1T), Tho = k,?o are change fractions and considered fixed in
the asymptotic analysis. When there is no change in all factor loadings, let \; and A
denote the factor loading and the factor loading matrix.

In matrix form, the model can be expressed as follows:
Xow = Forsa Ay + F s N, + B, for ks =1, ..., L+ 1. (2)

, , : :
Xix = (k1 o415 s Tho o) a0 By = (€41 9415 ---» €k, o)’ are both of dimension (k. o—

ki10) X N. Fows = (foknr0t15 o Jokeo) a0d Foge = (f-0ku1 041, - f-0ks,) are of

dimensions (kxo0—Fkx—1,0) X (r—¢q) and (k. o—kx—_1,0) X ¢ respectively. Here we use ” k"
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to denote that the sample split is based on the true change points. Ag = (Ao.1, ..., Ao.n)’
and A, = (Au1, ..., A\sn) are of dimensions N x (r — ¢) and N x ¢ respectively. Also,
let FH* = (FOWM F—ON*) = (fkn—l,o-i-la ceey fkn,o)l and AO/@ = (A07 AH) - (/\On,la ceey AOH,N)/-

2.2 Equivalent Representation

First note that in model (1), changes in the number of factors are allowed for, and
incorporated as a special case of changes in the loadings by allowing A, to contain
some zero columns for some x. Second, for each factor considered in model (1), its
loadings are nonzero for at least one x, otherwise it would be totally irrelevant. Third,
zero columns are allowed to appear at different locations of A, for different . This
means that both emerging as well as disappearing factors are possible. Note that
for this case we can still identify the break point, although we may not be able to
identify whether the true model has both emerging and disappearing factors or the
same factors with different loadings in two regimes.

To derive the equivalent representation, define A_( as follows: Starting from the
first column of Ay, if it is nonzero and linearly independent with Ay, put it in A_.
If the second column of A; is nonzero and linearly independent with Ay and the first
column, put it in A_g. In general, if the j-th column of A, is nonzero and linearly
independent with Ay and those columns are already in A_g, put it in A_y. Repeat
this procedure for all x and j.

Let I' = (Ag,A_p) and 7 denote the number of columns in I'. From the definition
of A it is easy to see that (1) I' is full column rank, (2) the j-th column of A, is
allowed to be the same as the j-th column of A,_, for some positive integer s, i.e.,
the factor loadings are allowed to switch back to their previous values after one or
more breaks, (3) Ao, = ['R,; for some 7 x r dimensional R, because Ay, = (Ag, Ay),
columns of Ay are all included in I', and columns of A, are either included in I" or
linear combinations of columns in I'.*

Let Grx = (Ghur.041> > Ghno) = FrulRy. It follows that g, = R, f; if k10 +1 <

47ero columns of A, are also linear combinations of columns in T.



t < k.o, and
Xli* - FH*AGH + En* - FK/*R;P, + Emk - GI{*F/ + En*; (3)

which is a factor model with stable loadings I" and 7 dimensional pseudo factors g;.
Equation (3) generalizes the equivalent representation in Baltagi et al. (2017) to cases

with multiple changes.

Remark 1 The identification condition for the k-th change point is X # X pt1-
This is satisfied since ¥ ,, = RXpR., and R, # Ryi1.

Remark 2 To ensure the uniqueness (up to a rotation) of the equivalent represen-
tation, here we show that as long as m fiﬁn—l@“ foft = %p 20 for each r
and ||%FT — Ep” — 0 for some positive definite ¥ and X, %ZL g, — S 250
for some positive definite Y. First, it is not difficult to see that Yo = Zg;l(m,o —
Th-10)2G.k, Where X, = R.EpR, is positive semidefinite for all k. Thus for any 7
dimensional vector v, v'E¥qv = 0 implies v'3¢ v = 0 for all k, which further implies
V'R, =0 for all k. Since the ¥ x (L + 1) matriz (Ry, ..., Rp+1) has rank 7, v has to

be zero, and therefore Y. is positive definite.

Remark 3 Break in the intercept of x;; is absorbed into a break in the loadings. Break
in the variance of x;; could be due to a break in the variance-covariance of factors, or
a break in the factor loadings, or a break in the error variance. Our method cannot
distinguish between a break in the factor loadings and a break in the factor variance,
but can distinguish between these two possibilities and a break in the error variance,
because our method only detects the breaks in the second moment matrix of the pseudo

factors.

3 ESTIMATING MODELS WITH MULTIPLE CHANGES

In this section, we propose a joint estimator for all change points as well as a sequential
estimator which estimates the change points one by one, assuming the number of

breaks is known. How to determine the number of breaks will be discussed in the next



section. For both estimators, we show that the distance between the estimated and
the true change points is O,(1). In economic studies, the estimated change points may
provide guidance for uncovering the underlying factors or mechanism of the structural
change, or analyzing the effect of economic policy. The estimated change points also
have important implications for factor-augmented forecasting, which will be discussed
at the end of this section.

Based on the estimated change points, we can split the sample and estimate the
number of factors and the factor space in each regime. As discussed extensively in
the literature, consistently estimated factors can be helpful for business cycle analysis,
asset pricing and other issues. In this paper, the estimated factors will be used to

construct a test for [ versus [ + 1 breaks.

3.1 Joint Estimation of the Change Points

We first introduce the estimation procedure, and then impose assumptions to study

the asymptotic properties of the proposed estimators.

3.1.1 Estimation Procedure
The estimation procedure is as follows:

1. Using any consistent estimator, e.g., Bai and Ng (2002), Ahn and Horenstein
(2013) to estimate the number of factors ignoring structural changes, i.e., to

estimate the number of pseudo factors. Denote this estimator by 7.

2. Estimate the first 7 factors using the principal component method. Let g;,t =

1,...,T be the estimated factors®.

3. For any partition (ky, ..., k1), split the sample into L+1 subsamples, estimate the

1 kr

second moment matrix of g; in each subsample as ¥, = et S ST 3:9;
K~ vk — —NVR—

and calculate the sum of squared residuals,

Sy, kr) =Y

’The change points estimator also can be based on §;, where (g1,...,g7)" = G = GVnp =
(g1, -, g7)' VT and Vyr is a diagonal matrix that contains the first 7 largest eigenvalues of ﬁX X',

L+1

k=1

ankﬁlﬂ[vech(gtg; — 2 ) vech(g:g, — %)) (4)

7



Then estimate the change points by minimizing the sum of squared residuals,

(ky, ..., k) = argmin S(ky, ..., kL) (5)

The underlying mechanism is as follows:

1. Since model (2) has an equivalent representation (3), 7 is consistent for 7, g;
is asymptotically close to J'g; for some rotation matrix J , and J'g; is asymp-

1
totically close to Jjg;, where J L Jy = EIZCI)V_%, with V' being the diagonal

1 1
matrix of eigenvalues of X232 and ® the corresponding eigenvector matrix.

2. The second moment matrix of g; has breaks at the same points as the factor

loadings.
3. The second moment matrix of Jjg; has breaks at the same points as ¢;.

More precisely, let E(f:f/) = X for all ¢, then ¥, = Jj¥q . Jo is the mean of
Joaeg,Jo. Let y, = vech(Jjgi9; Jo—2) fort = k1 0+1, ..., keo withk = 1,..., L+1 and
2z = vech(§:g,— Jhg:giJo) for t = 1,..., T, it follows that vech(g:g;) = vech(3,)+y:+ 2
fort =ke10+1,....,ksoand k =1,..., L+ 1. Since X¢ , # X nt1, 2x = JoZaxJo #
S0 w10 # Eit1. Thus vech(g:g;) is a multivariate process with L mean shifts and
extra error z;. We will show that to asymptotically eliminate the effect of z;, this

requires (N, T) — oo and no N-T ratio condition is needed.

Remark 4 Through estimating the number of pseudo factors, we are essentially se-
lecting relevant moment conditions from a large number of candidates. The model
with 7 = T has the strongest identification strength for the unknown change points.
If 7 > 7, no information would be lost, but extra noise would be brought in by the
extra estimated factors. If 7 < 7, change point estimation would be based on a subset
of vech(g.q;), thus identification of the change points would be weaker or even totally

lost.

3.1.2 Assumptions

The assumptions are as follows:



Assumption 1 E|f||" < M < oo, E(f.f]) = Sp for all t. $p is positive definite

and m Zfi‘,gﬂ_mﬂ fifl—2Xp =o0,(1) fork =1,...,L+1. Note that when there

is no break, L =0, koo =0 and k1o =T.

Assumption 2 [[Ao.l| < A < oo for s =1,...,L+1, and || £I'T — Sp|| = O(\/l—ﬁ)

for some positive definite matriz Xr. When there is no break, | \|| < A < oo and
H%A'A — ZA” = O(\/—lﬁ) for some positive definite matriz 3y .
Assumption 3 There exists a positive constant M < oo such that:

1. B(ey) =0 and Eley|* < M for all i and t,

2. Bleyejs) = Tijus for alli,j andt,s, and 57 SV Zjvzl S ST i < M,

4
3. E \/—IN Zfil[eiseit — E(eseqn)]| < M for all s,t.

Assumption 4 There exists an M < oo such that:

1. E(%?) = Yn(s;1) and Zstl [yn(s, )| < M for all t,

2. E(eiejr) = Tijr with |15 < 745 for some 7;; and for all t, and Zjvzl |75 < M

for all 7.

Assumption 5 The largest eigenvalue of ﬁEE’ is Op(s2—).

2
6NT

Assumption 6 When there is no break, the eigenvalues of Y rp¥ip are distinct. When

there are breaks, the eigenvalues of gXr are distinct.
Assumption 7 Define ¢, = vech(fif] — Xr),

1. The data generating process of the factors is such that the Hajek-Renyi inequal-
ity® applies to the process {e;,t = ku_10+1,....,kso} and {€,t = k0, o, k—10+
1} forkn=1,..,L+1,

6Hajek-Renyi inequality is crucial for pinning down the order of the estimation error in the
estimated change points, see the Appendix A for more details.



2. There exist 6 > 0 and M < oo such that for k = 1,....L + 1 and for all

446
hooto < k < 1< ko, E(Hw—gk Snal V<.

Assumption 8 There exists M < oo such that:

‘ 2

1. E( sup ﬁZizkH ) < M for all s,

N
0<k<I<T \/LN Y oicqleiseir — E(eiseq)]

2
) < M.

2 B( suwp 23,

N
0<k<I<T \/LN 2eim Vit

Assumption 1 requires the law of large numbers to be applicable to factors within
each regime, thus f; can be dynamic and contain lags. Note that the second moment
matrix of the factors is assumed to be stationary over time. Assumption 2 requires
the factor loadings to be uniformly bounded and %F’ I (or %A’ A) converges to its
limit at the speed O(\/LN) Assumptions 3 and 4 allow for both temporal and cross-
sectional dependence as well as heteroskedasticity. Assumption 5 is the key condition
for determining the number of factors and is required in almost all existing methods.
For example, Onatski (2010) and Ahn and Horenstein (2013) assume E = A< B, where
gisanii.d. T x N matrix and A and B characterize the temporal and cross-sectional
dependence and heteroskedasticity. This is a sufficient but not necessary condition for
Assumption 5. Also note that once Assumption 5 is imposed, Assumption D in Bai
(2003) is not needed. In other words, for the purpose of determining the number of
factors, factors could be correlated with the errors. Assumption 6 ensures uniqueness
of the principal component estimator in large samples.

Assumption 7 imposes a further requirement on the factor process. Instead of
assuming a specific data generating process, we require the Hajek-Renyi inequality
to be applicable to the second moment process of the factors, so that Assumption 7
is in its most general form. Processes that satisfy Assumption 7 include martingale
difference, mixing process and linear process, see Bai (1996). Hajek-Renyi inequality

is a more powerful tool than the functional CLT for calculating the stochastic order of

sup-type terms. It allows us to calculate the order of sup ’ck Zle x¢| while FCLT
m<k<T
only allows us to calculate the order of sup T2 Zle x¢|, i.e., for Hajek-Renyi

7<k/T<1

10



inequality the supremum is taken with respect to all k£ while for FCLT the supremum
is taken with respect to the fraction.

Assumption 8 imposes further constraints on the errors. Assumption 3(3) and
Assumption F3 in Bai (2003) imply that the summands are uniformly O,(1). As-
sumption 8 strengthens this condition such that the supremum of the average of

these summands is O,(1).

Remark 5 The assumptions above are the same as or similar to the assumptions in
Bai (2003). Assumptions 1, 2, 3, 4 and 6 correspond to Assumptions A, B, C, E and
G in Bai (2003), respectively. Assumption 5 replaces Assumption D, and Assumption
8 strengthens Assumption F3 in Bai (2003).

3.1.3 Asymptotic Properties of the Joint Estimator

First note that due to the consistency of 7 for 7, treating 7 as known does not affect
the asymptotic properties of the change point estimator’. Define 7, = k, /T as the

estimated change fraction, we first show that 7, is consistent.

Proposition 1 Under Assumptions 1-8, 7, — 7,0 = 0,(1) forv=1,...,L as (N,T) —

Q.

Remark 6 For change points estimation, a key observation is that for any possible

region of the change points O, P((ky, ..., k1) € O) is controlled by P((k m"in) OS(k‘l, )
1,k )E

S(kigy .-y kro) < 0). The proof of Proposition 1 utilizes this observation.

Proposition 1 establishes the consistency of the estimated change fraction, and

serves as an intermediate step for the following theorem.
Theorem 1 Under Assumptions 1-8, k,—k,y = 0,(1) forv=1,...,L as (N,T) — oc.

Theorem 1 implies that no matter how large 7' is, the possible change points
are narrowed to a bounded interval of the true change points. Note that the ex-

tra error z; has no effect (asymptotically) on our estimator of the change points as

"The proof of the consistency of 7 for 7 is omitted since under Assumptions 1-5, assumptions in
Bai and Ng (2002) are satisfied.

11



long as (N,T) — oo. No N-T ratio condition is needed. This is different from
factor-augmented forecasting and factor-augmented vector autoregression (FAVAR),
in which ‘/TT — 0 is required to asymptotically eliminate the effect of using estimated

factors.

Remark 7 Identification of the change points relies on observations within a local
region of the true change points and consequently the extra error z; will not accumu-
late as T — oo. In contrast, factor-augmented forecasting and FAVAR relies on all
observations and consequently the extra error z; will accumulate as T — oo. This is
why z; asymptotically has no effect on the estimated change points and no N-T ratio

condition is needed.

Remark 8 The limiting distribution of k,—k., has the same form as the single change
case. This is because k, also minimizes the sum of squared residuals for the subsample
t=rk1+1,.., l;:LH. Since k,_1 — k10 and IE:LH — k41,0 are both O,(1), k, has the

same limiting distribution as the minimizer of the subsample t = k,_10+1,...,k410.

3.2 Sequential Estimation of the Change Points

This section considers sequential estimation of the change points one by one, each
time treating the model as if there is only one change point. The first two steps
are the same as the joint estimation while the third step is slightly adjusted: For
any partition ki, split the sample into two subsamples, estimate the second mo-
ment matrix of ¢g; in each subsample and calculate the sum of squared residuals,
S(k) =20y oty lvech(@d; — S)) [vech(,g; — )], then ky = argmin S(ky).
Compared to joint estimation, the main advantage of sequential estimation is that it
does not require knowing the number of changes®. Instead, together with sequential
testing, it allows us to determine the number of changes.

In what follows, we show that the distance between the sequentially estimated
and the true change points is also O,(1). First, define Sy(7) as the reduction in

the sum of squared residuals when y; = 0 and 2; = 0 is plugged in. If y, and 2

8Sequential estimation is also computationally simpler.

12



are indeed zero for all ¢, the estimated change fraction should be equal to 7 among
T10,---,Tr,0 that leads to the largest reduction in the sum of squared residuals. To
simplify the analysis, we require Sy(7,0) to be different for different ¢, and without

loss of generality, we assume:
Assumption 9 Sy(710) < ... < So(TrLo0)-

In general, y; and z; are not zero for all ¢, but asymptotically this does not affect

the result.

Proposition 2 Under Assumptions 1-9, 71 — 710 = 0,(1) as (N,T) — oo.
Similar to the joint estimation, Proposition 2 can be refined to:

Theorem 2 Under Assumptions 1-9, ky — ki = O,(1) as (N,T) — oc.

Again, no N-T ratio condition is needed to eliminate the effect of the extra error
z;. Once l%l is available, we can plug it in and estimate k3. Since 12:1 — k1o = 0,(1),
it can be shown that this is asymptotically equivalent to plugging in £, in which
case the problem is reduced to estimating the first change point with observations
t = 1,..., k1o removed”. Thus ky — koo will also be O,(1). Using this argument

sequentially, we have

Theorem 3 Under Assumptions 1-9, k, — ko= 0,(1) forv=1,....L as (N,T) —

Q.

Note that Theorems 1-3 require the change fractions 7, to be positive and dif-

ferent. Theorems 1-3 no longer hold if kg — k,—10 = o(T).

In the general case, k1 could converge to the change point in the middle of the sample. Then
the problem is reduced to estimating the first change point for subsamples t = 1,...,k1 9 and t =
k1,0+1,...,7 and taking ko as the one leading to the largest reduction in the sum of squared residuals.

13



3.3 Estimating the Number of Factors and the Factor Space

Once the change points estimators are available, we plug them in and estimate the
number of factors and factor space in each regime. If true change points are plugged
in, consistency of the estimated number of factors and convergence rate of the esti-
mated factor space are well established. Thus the main concern is the effect of using
estimated change points. We show that although the estimated change points are
inconsistent, this effect is asymptotically negligible.

Let 7, and 7, be the estimated (using the method in Bai and Ng (2002) or Ahn

and Horenstein (2013)) and the true number of factors in the x-th regime.

Theorem 4 Under Assumptions 1-2 and 5, with l%,.i—k;,w = 0,(1) and l;;n_l—kﬁ_l,o =
O,(1), we have  lim P(7, =r,) = 1.

(N,T)—o0
Next, let u, be some positive integer, F:ﬂ be T times the eigenvectors cor-
responding to the first u, eigenvalues of X, X!, H% = A{)KAO,% -Fl E% and
ﬁ’,}fﬁ = ﬁgwjg;ﬁ, where X,, = (:1:',;“71“, ...,x,;:n)’, F. = (fkﬁ,ﬁp ...,fkn) and V;V‘“Tﬁ is

the diagonal matrix that contains the first u, eigenvalues of X, X.

Theorem 5 Under Assumptions 1-4, with k, — keo = Op(1) and - kr_10 =
0O,(1), we have

1
N

o — H! ft

1 ks

-~ ~ - . 6
kn - km—l Zt:k"_l+l ) ( )

The convergence rate O, (s (57 ) is crucial to eliminate the effect of using estimated
factors in factor-augmented forecasting and FAVAR. In the next section we will use
the estimated factors to construct a test for [ versus [ + 1 changes. We show that the
rate Op((s%) is also crucial in eliminating the effect of using estimated factors on the

NT

limiting distribution of the test statistic.

Remark 9 The proof for Theorem 4 and Theorem & are similar to the single change

case, see Baltagi et al. (2017).

Remark 10 Theorem 4 and Theorem 5 rely on k, — ko = O,(1). Consistency of the

estimated change fractions is not enough.
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3.4 TImplications for Factor-augmented Forecasting

Consider the following factor-augmented regression model:

Yern = & fr + BWi + €14n, (7)

where W, contains some observable regressors relevant for forecasting, f; contains
unobservable factors and will be estimated from z;;, and h is the lead time between
the dependent variable and information available. When there is no break, f; will
be replaced by the estimated factors to estimate v and 3, and forecasts can be con-
structed based on the estimated factors, Wr, & and B When there are breaks in
factor loadings, we have two choices to handle the breaks.

The first choice is to plug in the estimated change points and estimate the factor
space in each regime. Let u, in Theorem 5 be the true number of factors. Theorem
5 implies that using ft is equivalent to using H] f; in the x-th regime. Since y;, =
o (HYYH. fi + B W, + €41, in the r-th regime and H,, is different for different x, we
need to allow o to have breaks at the estimated break points (ki, ..., kz) in estimating
the forecasting model.

The second choice is to ignore the breaks and obtain the estimated pseudo factors
J:, and then use g; to construct forecasts. Since §; — J'g; is asymptotically negligible
and g, = Ryf; for k,_10+1 < t < ko, this is equivalent to using J'R, f; for
Fo—10+1 <t < ko

If there is no zero column in A, and columns in Ay and all A, are linearly inde-
pendent, then there exists an 7 dimensional # such that ' J'R,, = o’ for all k. For
example, if Ag = 0 and there are two breaks, we have § = (o/, o/, a’)’. Thus for this
case, equation (7) can be written as y,,, = 0'J'g; + 8'W; + €41, and there is no need
to consider structural breaks for the forecasting model.

If there is no zero column in A, but columns in Ay and A, are linearly dependent,
then using g; will induce breaks in the forecasting model. For example, if Ag = 0,
there is only one break and Ay = 2A4, then ¢, = f; and g, = 2f; in the first and the
second regime respectively. It follows that y,,, = o'g; + 8’ W, + €41, in the first regime

and vy, = %o/ g; + B W, + €45 in the second regime. Thus for this case we need to
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allow o to have breaks at (ky, ..., k).

If there are zero columns in A,., then « and 5 are not identifiable even if we know
the change points, because when a certain column of A, is zero, the corresponding
factor can not be estimated. However, it is also high likely that this factor does not
appear in the forecasting model either. If this is true, then we need to allow a to
have breaks when we estimate the forecasting model!°.

In summary, since we do not know the specific form of structural breaks in the
factor loadings, we need to consider breaks in « for the forecasting model. The
number and locations of breaks of « are the same as those of the factor loadings. We
can also use g; for f; and apply Bai and Perron’s test directly to (7) to detect and
estimate the change points of a. The change points estimated in this way also have
bounded errors. Also, it’s worth pointing out that using g, (or ft) and the full sample
to construct forecasts is better than simply using the last subsample because the full

sample estimator of 3 is more accurate.

4 TESTING MULTIPLE CHANGES

In this section we propose two tests for multiple changes. The first one tests no change
(L = 0) versus some fixed number of changes (L = [). The second one tests [ versus
[ + 1 changes, and together with sequential estimation of the change points, can be
used to determine the number of changes.

Our testing procedure is the same as Bai and Perron (1998), but the construction
of the test statistics are slightly different, because our tests are based on a vector
(multivariate) process. The main concern is the effect of using estimated factors on

the asymptotic and finite sample performance of the test statistics.

4.1 Construction of the Test for L = 0 versus L = [

First, estimate the number of factors and then estimate the factor space by principal
components. Under the null, let f, be the estimated factors, Uys be the diagonal

matrix that contains the r largest eigenvalues of XX', H = +AN'ATF’ FURL be the

10This also applies when we use ft to estimate the forecasting model.
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rotation matrix, Hy be the probability limit of H and z = vech(f,f! — H}f.f/Hp).
Under the alternative, we follow the same notation as the last section. It follows
that under the null vech(f,f!) is a multivariate time series (vech(H}f.f/Hy)) with
stable mean (vech([.))!! and extra error z;, while under the alternative vech(g:g;) is
a multivariate time series with [ mean shifts and extra error z;. Thus we can base
the test on the difference between the restricted and unrestricted sum of squared
normalized error.

Let 2 = hm Var(vech(f Zt (H{ ftftHo I,))) be the long run covariance ma-
trix ofvech(H’ftftHo 1) and Q(F) = To(F )+ZT ! ker (- )[T (F)+T;(F)] be the
HAC estimator of Q using the estimated factors £, where T;(F) = T Zt 1 vech( fifl—

Ii)vech(fi_; fi_ _; — I5)'; ker(:) is some kernel function and dr is the bandwidth. For
simplicity, we will suppress Q(F ) as Q. It follows that the restricted sum of squared

normalized error is

SSNE, = Zi vech(fifi — = Z F ) vech(fif, — —Z i), ()

and for any partition (ki, ..., k;), the unrestricted sum of squared normalized error is

I+1 1 k.
SSNE(ky, ..., k Z Zt . vech(f,fl — p——— Zt:kb,m
F N OY— r 1 k. Y
Fol) Q- Yeeh(fofl — [ Zt:kb_ﬁl fefi)- (9)

A1
(2+)>

Let Fyr(T1, ...y T3 e +1 [SSNEy—SSNE(ky,....k)] and A, = {(71,...,7) :

|71 — 7. > € 71 > € 7, <1— ¢} for some prespecified € > 0, the test statistic is

sup  Fnp(71, .0y 755 5 ).
(T1yee,71)EAe

For the kernel function ker(:) and bandwidth dr, we consider three popular choices:
1. Bartlett kernel with dp = O(T'3).

2. Parzen kernel with dp = O(T'5).

Tt is not difficult to see that E(H)f,f{Ho) = H\XrHo = I,
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3. Quadratic spectral kernel with KlT% <dr < KQT% for some K, K5 > 0.

4.2 Construction of the Test for . = [ versus L. = [ + 1

First, we estimate [ change points and plug them in to estimate the number of factors
and factor space in each regime. Then testing L. = [ versus L = [ 4+ 1 is equivalent
to testing no change versus a single change in each regime jointly. The main concern
is the effect of using estimated change points and estimated factors on the limiting
distribution and consistency of the test statistic.

Let l~fl, e k, be the estimated change points and 7, be the estimated number of
factors in the :-th regime. Under the null, let F, = (JFL,/%L_1+17 s ka)’ be the estimated
factors, H, be the rotation matrix, H,g be the limit of H,, U, y7 be the eigenvalue ma-
trix, U, be the limit of U,y7, F, = (fLJ;:L_1+17 ey fL,ch), and Flo = (fik, 1041 fiko)
Note that f,; is r, dimensional and contains the factors that appear in the (-th regime.
Under the alternative, there are [ + 1 changes and the [ estimated change points will
be close to (O,(1)) the [ points that allow the greatest reduction in the sum of
squared normalized errors. Without loss of generality, suppose k,_; — ki—10 = O,(1)
and k, — k110 = Op(1) for some ¢. In this case, the (-th regime contains an extra
change point'? k, o but can be equivalently represented as having no changes but with
pseudo factors g, where g, = Aqf, for t € [k,_y +1,.... ko] and g; = A.f; for
telko+1,.., l;:L]. For this regime, we denote the estimated factors as §,; and define
G,, G,, Gy, J., Jo, Vinr and V, correspondingly as F,, F,, F,y, H,, H,, U,x7 and U,.
For the other regimes, we maintain the same notation. It follows that under the null
vech(f,f!,) is a multivariate time series with stable mean and extra error z* for all ¢
while under the alternative vech(g,:g/,) is a multivariate time series with a mean shift
and extra error z,; for some ¢. Again, the test is based on the difference between the

restricted and unrestricted sum of squared normalized error.

Let Q, = lim Var(vech(\/ﬁ S osr(HlgfufliHig — 1)) be the long

run covariance matrix of vech(H|, f1f,H,0 — I,,) and Q, be the HAC estimator of €,

2When k,_1 < k,_1,00r k, > k, 11,0, the i-th regime also contains the change point k,_1 o or k, 110,
but with k,—1 — k,—1,0 = Op(1) and k, — k, 41,0 = Op(1) these two are asymptotically ignorable.
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using F, and with kernel function ker(-) and bandwidth dy. The test statistic is

Fyr(l+1]1) = SSNE(ky, ..., k;) — min inf SSNE(ky, ..., k1, k k., ....k), (10)

1<i<I+1keA, ,

where SSNFE (l~€1, e l;;l) is the restricted sum of squared normalized error and equals

I+1 1 k.
Z SSNE — 17 ZL 12 vech thth m Zt:fﬁ_l—i-l
1 X - .
Fifi) @ vech(fufly — T Zt_~ 41 fufi)(11)

SSN E(l%l, ki1 kK, /21) is the unrestricted sum of squared normalized error

and equals

ZL__ll SSNENU% 1o K )+ SSNE, (kb 1, ks k +Z +1SSNE (kﬁ 1 s ) (12

with A, = {k:k, 1+ (k =k 1)<k <k — (k —k_1)n}.

4.3 Asymptotic Properties of the Test Statistics

Assumption 10 There exists M < oo such that:

2
‘ ) < M forallt andt =1, ..., L+

k., N
1 B(|| 757 2eh 1041 2oic Ssleisen — Bleisen)]
L,

2
k.
2. K( \/#—T Zt:ﬁLfl,oH Zf\;l ft)\’omeit )< M forv=1,...L+1,

) <M forallk,19<t<kgpandr=1,..,L+1.

3. E( \/— Zz 1 /\Owezt

Assumption 11 Foranye >0 and v =1,...,L +1,

1. sup _/*1 Zk— sz\i ftxmez‘t =0 (1)7
(ke,o—ki—1,0)e<k—k,—1,0<(ki,0—ki—1,0)(1—¢€) NT t=ktot = o P
N
2. Sup F Zt k1 2oict Jedouici|| = Op(1).

(kv,o—ki—1,0)e<k—k,—1,0<(ki,0—ki—1,0)(1—¢)

19



Assumption 12 For.=1,...,L + 1, Q, is positive definite and

1 Zkb—l,o"r(kb,o_kb—l,o)T
Vo — k10 T t=k-10+1

1 . . . .
% dimensional vector of independent Wiener processes

1
vech|Q, 2 (H)yfuf Ho — I.,)] = Wm(ré+l) (1),

where Wr,ir41) (+) is an

on [0, 1].

Assumption 13 Forit=1,....L+1, let Q(F,H,) be the HAC estimator of Q, using

F,H,, Q(FLHLO) is consistent for Q,. When L =0, Q(FHO) is consistent for Q.

Assumption 14 For . = 1,...,L + 1, the eigenvalues of Xp,X\, are distinct, the
1 ku0 /

eigenvalues of g, Xr. are also distinct. (Xp, = plzmm =k 1041 fufl,

Ya, = plim Jutlhy, Y = plim%AbA“, Y. = plim%FT“, A" contains the

1
kio—k.—1,0
nonzero factor loadings of the t-th regime, I'* contains the linearly independent vectors

of factor loadings of the i-th and (v + 1)-th regime.)

Note that when L = 0, koo = 0 and k1o = T, A, is replaced by A; in Assumptions
10 and 11, and in Assumption 12 f,, €, and r, is replaced by f;, 2 and r respectively.

Assumption 10 corresponds to and slightly weakens Assumption F in Bai (2003).
Assumption 11 requires the term in [|-|| to be uniformly O,(1). This is not restrictive
since all summands have zero means. Assumptions 10 and 11 are satisfied by various
mixing processes. Assumptions 12 requires the functional central limit theorem to
be applicable to vech(H,,f.f,Ho — I.,) in each regime. Assumptions 13 requires
the HAC estimator of €2, to be consistent if factors were observable. Assumptions 14
ensures that for each regime, no matter whether there is break or not, the principal

component estimator is unique in large samples.

4.3.1 Asymptotic Properties of the Test for L =0 versus L =1

Now we are ready to present the limiting distribution:

Theorem 6 Under Assumptions 1-6, 10-18 and L = 0, with \/TT — 0 and (;jV—TT — 0
as (N, T) — oo,

d
sup FNT(Tl)'“aTl;—) - sup F(Tla“'77—l; 9
(T1505T1)EAC (T1505T1)EAC



2

TWorrg1) (Tet1)=Tet1 Wo(rg1) (70)
o —

where F(rq, ..., 7, ")y = 2 )Zl

2 T lr(r+1 =1 ToT o1 (Tig1—70)

Note that ‘/TT — 0 and ;IIV—TT — 0 are needed to eliminate the effect of the extra
error z;. This is different from the results in the last section but similar to the results
in the factor-augmented forecasting and FAVAR. Intuitively, testing for structural
changes relies on all the observations and consequently z; will accumulate in the test
statistic as T' — oo and dr — oc.

We next consider the consistency of the proposed test. Under the alternative,
the process vech(g:g;) has | mean shifts and extra error z;. Thus vech(§:g;) is not
properly demeaned in calculating the restricted SSNFE. On the other hand, the test
statistic can be written as ﬁ [SSNE,— (Tl,.I.?iSGAESSNE(kl’ ..., k)] and by taking
the minimum for (74, ...,7;) € A, it ensures vech(§:g;) is properly demeaned. Thus

under the alternative the test statistic will diverge as (N, 7T") — oc.

Theorem 7 Under Assumptions 1-8 and L = 1, with dTT — 0 as (N,T) — o0,

LRy P
sup  Fnp(T1, ..., 7375 —) — 00.
(T150sT1) EAC

The test discussed above is designed for a given number of changes under the al-
ternative. When the number of changes is misspecified, the test may not be powerful.
For example, test for 0 versus 2 changes should be more powerful than the test for 0
versus 1 change when the true DGP contains two changes. Following Bai and Perron
(1998), we consider the UDmax and WDmax tests when the number of changes under
the alternative is unknown. Let ¢(q, o, ) be the asymptotic critical value of the test
for 0 versus [ changes with degree of freedom ¢ and significance level a. Given the
maximum possible number of changes M, UDmax is simply the maximum of the tests
for 0 versus [ changes with [ < M while WDmax is the weighted maximum of the

tests for 0 versus | changes with weights c(W;r Y oa,1)/ c(W;r Y «,1). With Theorem

6, the limiting distributions of both tests have the same form as in Bai and Perron
(1998).

Remark 11 Comprehensive critical values for Theorem 6 and the UDmax and WD-

max tests are tabulated in Bai and Perron (2003).
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Remark 12 Since 7 is consistent for r and © under the null and the alternative

respectively, in the asymptotic analysis we can treat r and 7 as known.

Remark 13 Now consider the finite sample effect of 7 # r(or ) on the performance
of the test. Underestimation of the number of factors will not affect the size of the
test but will decrease the power, because under the null the degrees of freedom @
(and consequently the critical value) adjust automatically with the estimated number
of factors 7, while under the alternative important second moment conditions of the
pseudo factors will be lost. QOuverestimation of the number of factors will not signifi-
cantly affect the power because all second moment conditions are utilized. However,
overestimation will make the test undersized if the errors are stationary, because under
the null it will magnify the degrees of freedom but will not magnify the test statistic.

If the errors are heteroscedastic, overestimation may introduce breaks from the errors.

4.3.2 Asymptotic Properties of the Test for L =/ versus L =1+ 1

If the true change points were plugged in, Theorem 6 implies that for each regime the
effect of using estimated factors can be eliminated if \/TT — 0 and ng—TT — 0. When the
estimated change points are plugged in, we show based on Theorem 4 and Theorem
5 that the result still holds if %" — 0 and %4 — 0.

4
Theorem 8 Under Assumptions 1-6, 10-1/ and L = [, with k, — ko = Oy(1)

for all ¢, \/WT — 0 and & — 0, we have Fyp(l + 1|1) KR sup F,, where F, =
T1 1<i<l+1

2
‘Wrb('r-r}»l) (1) = TWritro41) (1)H and F, is independent with each other
2 2

SUD_
n<T<(1-n)

for different ¢.

Critical values can be obtained via simulations and here they are related to the
number of factors in each regime. In case the number of factors is stable, we have:

Corollary 1 Ifr, =r for all, (Nl%gn P(Fnr(l4+11]1) < z) = Grosy n(a:)l“, where
,T)—00 2

)

2

‘Wr(r;—l) (7') — TWr(r;—l) (1)

Gy () is the c.d.f. of sup _7(11—7)
w7 n<t<(1-n)
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We next consider the consistency of Fyr(l 4+ 1|l). Since

Fyr(l4+1)l) =  sup sup [SSNE.(ke_y,ke) — SSNE, (ke_y, k. ky)]

1<k<I+1k€As

> SSNE,(k,_1,k,) — SSNE,(k,_1, ko, k,)

and under the alternative SSNE,(k,_1,k,) is not properly demeaned, Fyr(l + 1)
will diverge as (N,T) — oo.

Theorem 9 Under Assumptions 1-5, 10-11, 14 and L = | + 1, with
0,(1) and

]%L - kb—&-l,O‘ =

= O,(1) for some ¢ and % — 0, we have Fyr(1+1|1) 5 oo.

kb—l - kL—l,O

Remark 14 Since 7, is consistent for r, under the null, in the asymptotic analysis

we can treat r, as known.

Remark 15 For the finite sample effect of 7, on Fyp(l + 1]|1), the discussion in
Remark 13 also applies here.

4.4 Determining the Number of Changes

The sequential test Fiyr(l+1]) allows us to determine the number of changes. First,
estimate [ change points, either jointly or sequentially, where [ could be suggested by
some prior information or just zero. Next, perform the test Fyr(I+1|1). If rejected!?,
estimate [ + 1 change points, either jointly or sequentially, and then perform the test
Fnr(l+2]141). Repeat this procedure until the null can not be rejected. Let L be
the estimated number of changes, it is not difficult to see that (N’lTigri OOP (L<L)=0

and (NlTign P(L>L+1)=a.let @ — 0as (N,T) — oo, then L will be consistent.

Remark 16 For the error accumulation issue of our multi-step testing procedure,
note that the estimator of the number of factors and the factor space is robust to
bounded error of k, — k.o, and as explained in Remarks 13 and 15, our test is to some

degree robust to 7, # r,.

13Tt can be shown that the test is also consistent when L > [ + 1.

23



9 MONTE CARLO SIMULATIONS

This section presents simulation results to evaluate the finite sample properties of our

proposed estimation and testing procedures. The number of simulations is 1000.

5.1 Data Generating Process

The factors are generated by
fip=pfic1iptup,fort=2,...., T andp=1,...,3,

Where U = (’U/t’l,ut’g,ut’g), iS lld N(O,[g) fOI‘ t = 2, ,T and f1 = (fl,l; f172, f173>/
is i.i.d. N(0, #[3) so that the factors are stationary. The idiosyncratic errors are

generated by:
it = €41 + Uit for i = 1, ,N and t = 2, ...,T,

where vy = (vi4,...,0n,) is 1.id. N(0,Q) for t = 2,....7 and e; = (e11,...,en1)" is
N(0, ﬁﬁ) so that the idiosyncratic errors are stationary. €2 is generated as €);; =
Bl 5o that 3 captures the degree of cross-sectional dependence of the idiosyncratic
errors. In addition, u; and v; are mutually independent for all .

For factor loadings, we consider two different setups. Setup 1 contains no struc-
tural change and \; is i.i.d. N(0,3]3) across i. Setup 1 will be used to evaluate
the size of the tests for multiple changes. Setup 2 contains two structural changes
and hence three regimes. In the first and the second regime, the last element of A, ;
and \y; are zeros for all ¢ while the first two elements of A\;; and Ay, are both i.i.d.
N(0, %1'2) across i. In the third regime, A3, is i.i.d. N(0, %[3) across i. Also, A1, Mg
and A3, are independent. Thus in Setup 2 the number of factors in the three regimes
are 2, 2, 3 respectively and the number of pseudo factors is 7. Setup 2 will be used to
evaluate the performance of the estimated change points and the estimated number
of factors in each regime. Setup 3 also contains two structural changes while \; ;, Aa;
and A3, are all i.i.d. N (0, %13) across ¢ and independent of each other. Setup 3 will

be used to evaluate the power of the tests for multiple changes and the probabilities
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of selecting the correct number of changes. Once factors, loadings and errors are

available, the data is generated as:

Setup 1: Ty = fi\i + e,
Setup 2 and 3: Tip = f{Aei + i, i [TT10] +1 <t <[T7yx0] for K =1,2,3,

where (71,0, 72,0) = (0.3,0.7) are the change fractions. Finally, all factor loadings are

independent of the factors and the idiosyncratic errors.

5.2 Estimating the Change Points

We first estimate the number of pseudo factors using /C); in Bai and Ng (2002) with
the maximum number of factors rmax = 12. When using other criterion, e.g., ICps,
IC)3 in Bai and Ng (2002) and FR, GR in Ahn and Horenstein (2013), the results are
similar, and hence omitted. Once estimated pseudo factors are available, the change
points are estimated as in equation (5) with minimum sample size of each regime
T x 0.1.

Figures 1 and 2 are the histograms of the jointly estimated change points for
(N,T) = (100, 100) and (N,T) = (100,200) respectively. Each figure includes four
subfigures corresponding to (p,«,3) = (0,0,0), (0.7,0,0), (0,0.3,0) and (0,0,0.3)
respectively. In all subfigures, more than 95 percent of the mass is concentrated
within a (-8,8) neighborhood of the true change points. This confirms our theoretical
result that l;;,.i — kwo = O,(1). Figures 1 and 2 also show that the performance of
the estimated change points deteriorates when p increases from 0 to 0.7 while serial
correlation and cross-sectional dependence of the errors seems to have no effect. This
is also in line with the theoretical predictions because the errors affect the estimation

of the pseudo factors and not the estimation of the change points directly.
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5.3 Estimating the Number of Factors in Each Regime!*

The number of factors in each regime is estimated using /C), in Bai and Ng (2002)
and £R and GR in Ahn and Horenstein (2013), with maximum number of factors 8.
We consider various (/N,7T') combinations and representative (p, «, ) combinations.
These should cover the most empirically relevant cases. The results are shown in Table
1. z/y denotes the frequency of underestimation and overestimation is 2% and y%
respectively. In all cases, the probability of underestimation plus overestimation, z+y
is significantly smaller than the probability that the estimated change points differ
from the true change points. This implies O,(1) deviation from the true change points
does not significantly affect 7, 75 and 7 3. Also, when the size of each subsample is
large enough, =z and y are both zeros. This further confirms our theoretical result

that 71, 75 and 7 5 are robust to O,(1) estimation error of the change points.

5.4 Testing Multiple Changes

Now we present the results for the various tests of multiple changes. Table 2 reports
size of the test for 0 versus [ changes with [ = 1,2, 3, size of the UDmax and WDmax
tests and the probabilities of selecting changes when the data is generated under
Setup 1. We consider two methods of estimating the number of changes, L, and
Lo. Ly is obtained by the sequential procedure as discussed in Section 4.4 while L
is obtained by using WDmax to test the presence of at least one change first and
then performing the sequential procedure starting from 1 versus 2 changes. Table 3
reports the power of the test for 0 versus [ changes with [ = 1,2, 3, the power of the
UDmax and WDmax tests, the power of the test for 1 versus 2 changes, the size of the
test for 2 versus 3 changes and the probabilities of selecting changes when the data
is generated under Setup 3. For both tables, we consider (N,T) = (100,100) and
(100,200) with e = 0.05,0.10,0.15,0.20 and 0.25, and (p, a, 5) = (0,0,0), (0.7,0,0)
and (0.7,0.3,0.3). We delete the case T' = 100 and € = 0.05 to ensure the sample size

of each regime is at least 10.

14The finite sample performance of the estimated factor space should be similar to that of the
single change case, which are evaluated in Baltagi et al. (2016).
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Note that in calculating the HAC estimator of the covariance matrix of the second
moments of the estimated factors, Bartlett kernel is used with bandwidth 7%/ for
testing 0 versus [ changes and 2xT"/5 for testing [ versus [+1 changes'. In estimating
the number of factors at the very beginning, IC,3 '® is used except for the case
(N,T) = (100,100) and (p,c,3) = (0.7,0.3,0.3). In that case, /C,3 overestimates
too much, thus we switch to /C,;. The critical values are obtained from Bai and
Perron (2003) with nominal size of 5%.

First consider the size properties. Table 2 shows that overall, all tests are slightly
undersized. The undersizing phenomenon is quite obvious when 7" = 100 and p = 0.
This is in line with previous findings, see Diebold and Chen (1996). When T increases
to 200, the empirical size gets closer to the nominal size 5%. It is also easy to see that
when p = 0.7 and € = 0.05, the tests are significantly oversized. Thus we recommend
choosing € at least 0.10 when the factors have serial correlation. Once T is large
enough to guarantee the accuracy of the estimated factors, serial and cross-sectional
dependence of the errors do not seem to affect the size of the various tests.

Now consider the power properties. Powers of the tests for 0 versus [ changes are
good in all cases. WDmax has good power except when 7" = 100 and ¢ = 0.25, and
is more powerful than UDmax. When T = 200, test for 1 versus 2 changes has good
power, thus the probabilities of selecting the correct number of changes is always close
to 1. However, the power decreases a lot when 7" = 100, and thus Ly and L, tend to
underestimate the number of changes. This is because when T' = 100, the sample size
of each regime is too small to be robust to the estimation error of the change points.
We also conduct simulations gradually increasing 1" and find that when T increases to
140, the performance is as good as T" = 200. Of course, the power also depends upon
the location of the change points. We suggest that, for each regime, the sample size
should be at least 40. Finally, when T" = 100 serial and cross-sectional dependence of

the errors decrease the power. This is again caused by small 7". In summary, results

15For Bartlett kernel, the condition on the bandwidth is dp = O(Tl/?’). We simply choose dp =
T'/3. For testing [ versus [+ 1 changes, since Theorem 8 requires 44 — 0, we choose dp = 2 x T'1/5.
4

T
For space limitations, finite sample performances of different bandwidth choices are not carried out.

16 As discussed in Section 3.1.1, less conservative criterion is recommended in estimating the num-
ber of factors in the first step.
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in both tables are consistent with our theoretical derivation and show the usefulness

of the proposed testing procedure.

6 APPLICATION

In this section we apply the proposed method to detect breaks in Stock and Watson
(2009)’s US macroeconomic data set. The original data set contains 108 monthly and
79 quarterly time series of US nominal and real variables, including prices, interest
rates, money and credit aggregates, stock prices, exchange rates, etc, ranging from
1959:Q1 to 2006:Q4. The transformed data is a balanced panel of standardized vari-
ables with N = 109 and 7" = 190, ranging from 1959:Q3 to 2006:Q4, see Stock and
Watson (2009) for the details of data description and transformation.

We use WDmax to detect the presence of at least one break. The trimming
parameter € equals 0.1. Using Bai and Ng (2002)’s (4, ICy and ICs, the estimated
number of pseudo factors 7 equals 4, 2 and 10 respectively. Using Ahn and Horenstein
(2013)’s ER or GR estimator, 7 equals 1. At significance level 5%, WDmax fails to
reject the null when 7 = 4, 2, and 1 and reject the null when 7 = 10. UDmax
also rejects the null when 7 = 10. To check the robustness, we set the trimming
parameter € to be 0.05 and 0.15. The results are the same. We also set 7 manually
with maximum 12. We find that WDmax always fails to reject the null when 7 < 5,
and always rejects the null when 7 > 6. As discussed in Remark 13, under the null a
larger 7 (i.e., overestimating the number of factors) will make the test even less likely
to reject the null, while under the alternative, a smaller 7 (i.e., underestimating the
number of factors) may make the test fail to reject the null. Therefore, we conclude
there exists at least one break!”.

We then use the sequential test Fiyr(l + 1|1) to determine the number of breaks,
starting from 1 versus 2 breaks. We find that Fiy7(2]1) rejects the null but Fyr(3(2)
fails to reject the null, thus we conclude there are two breaks. The estimated break

points are 1979:Q1 and 1983:Q4. The first break could be due to the impact of the

1"The detected breaks may also come from the idiosyncratic noises if the number of factors is
overestimated. Since this section is mainly for illustration, further empirical evidence to support the
presence of breaks in the factor loadings is out of scope.
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Iranian revolution on the oil price and US inflation, which at least partially motivated
the Federal Reserve to tighten monetary policy. This break is also detected by Chen
et al. (2014) and Ma and Su (2018). The second break could be due to the great
moderation, and is also considered by Stock and Watson (2009) and Ma and Su
(2018). The estimated number of factors in three regimes is 3, 3, 4 respectively.
Decomposing the breaks into breaks in loadings of old factors and emergence of new

factors and identifying the extra factor is beyond the scope of this paper.

7 CONCLUSIONS

This paper studies a high dimensional factor model with multiple changes. The main
issues tackled are the estimation of change points, tests for the presence of multi-
ple changes and tests for determining the number of changes. Our strategy is based
on the second moments of the estimated pseudo factors and we show that estima-
tion errors contained in the estimated factors have different effects on estimating and
testing structural changes. Simulation studies confirm the theoretical results and
demonstrate its good performance. An application to U.S. macroeconomic dataset
illustrates our procedure for testing and estimating structural breaks. A natural next
step is to use bootstrap to fix the undersizing issue when T is less than 100, as
discussed in Diebold and Chen (1996). It will be also interesting to apply our theo-
retical results to study the financial market comovement during crises, as discussed in

Bekaert, Ehrmann, Fratzscher and Mehl (2014) and Belvisi, Pianeti and Urga (2015).
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Table 1: Estimated number of factors in each regime for 1y = 2,1, =2,73 =3, 7=17

N T IC), GR ER
p=0,a=0,6=0
100 100 o0/0 o0/t 1/0 1/0 1/0 5/0 1/0 0/0 3/0
100 200 o0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 200 o0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 300 o0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
p=07a=0,6=0
100 100 4/4 o/10 1/2 1/2 3/5 12/0 1/0 1/6 6/0
100 200 0/0 0/2 0/0 0/1 0/0 0/0 0/0 0/1 0/0
200 200 o0/0 0/3 0/0 0/0 0/1 0/0 0/0 0/1 0/0
200 300 o/0 0/1 o0/0 0/0 0/0 0/0 0/0 0/0 0/0
p=0,a0a=0.3,8=0
100 100 o0/0 o0/t 2/0 3/0 1/0 11/0 1/0 1/0 7/0
100 200 o0/0 o0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 200 o/0 0/0 o0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 300 o0/0 o0/0 o0/0 0/0 O/0 0/0 0/0 0/0 0/0
p=0,a=0,=0.3
100 100 0/0 0/0 1/0 1/0 1/0 6/0 1/0 0/0 4/0
100 200 o0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 200 o0/0 o0/0 o0/0 O0/0 0/0 0/0 0/0 0/0 0/0
200 300 o0o/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
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Table 2: Size of tests and probabilities of selecting changes

€ 7|0 Dmax Ly L,
1 2 3 U W 0 1 2 0 1 2
N =100,7 =100,p=0,a = 0,3 = 0
010 04 02 01 04 02 996 04 0 998 0.2 0
0.15| 0.1 0 0 0.1 0.1 999 0.1 0 999 0.1 0
0.20 0 0 0 0 0 100 0 0 100 0 0
0.25 | 0.1 0 0 0 0 999 0.1 0 100 0 0
N =100,7 =200,p=0,a=0,6=0
005 1.8 18 17 16 14 982 1.8 0 986 1.4 0
010 0.2 0.2 05 03 01 99.8 0.2 0 999 0.1 0
0151 06 05 02 07 02 994 0.6 0 99.8 0.2 0
020 04 03 01 04 0 9.6 04 0 100 0 0
025 09 04 0 0.7 0.2 99.1 0.9 0 998 0.2 0
N =100,7 =100,p=0.7,a=0,=0
0.10 | 2.3 26 3.0 25 22 977 23 0 978 22 0
0.15 ] 0.9 1.8 1.0 1.1 1.2 99.1 0.9 0 988 1.2 0
020 09 13 05 09 06 99.1 0.9 0 994 0.6 0
025] 0.8 1.3 0 0.7 0.1 99.2 0.8 0 999 0.1 0
N =100, =200,p=07,0 =0,3 =0
0.05]12.7 259 234 159 175 &7.3 11.8 0.8 825 16.1 0.13
010 5.3 &84 88 64 7.5 947 51 02 925 7.2 0.3
015 45 59 42 51 52 955 45 0 948 50 0.2
020 34 42 40 33 34 966 34 0 9.6 34 0
025136 35 03 28 21 964 3.6 0 979 21 0
N =100,7=100,p=0.7,a=0.3,6=0.3
010 20 25 31 25 24 98.0 2.0 0 976 24 0
0.15 | 0.8 2.0 1.0 1.0 1.1 99.2 0.8 0 989 1.1 0
020 1.0 14 16 1.0 0.7 99.0 1.0 0 993 0.7 0
025 08 13 01 06 01 99.2 0.8 0 999 0.1 0
N =100,7 =200,p=0.7,aa=0.3,6=0.3

0.05] 12,5 26.8 23.8 16.3 17.8 &7.5 11.7 0.7 822 16.5 1.2
010 54 &80 82 6.2 73 946 52 02 927 7.0 0.3
0.15| 4.6 56 4.2 53 53 954 4.6 0 947 5.2 0.1
020 3.7 40 19 36 32 963 37 0 968 3.2 0
025136 35 03 29 21 964 3.6 0 979 20 0.1
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Table 3: Power of tests and probabilities of selecting changes for L = 2

€ 1]0 Dmax [+ 1|l Ly Lo
I 2 3 U W 21 32 0 1 2 0 1 2
N =100, =100,p=0,a0 = 0,3 = 0
0.10 | 100 100 100 984 100 234 O 0 766 234 0 76.6 234
0.15| 100 100 100 23.1 100 124 O 0 876 124 0 876 124
0.20 | 100 100 100 49 999 96 0 0 904 96 01 903 9.6
0.25| 100 100 100 36 37 11.1 O 0 &89 111 9.3 33 04
N =100,7 =200,p=0,a0a=0,8=0
0.05 | 100 100 100 100 100 100 0.5 O 0 995 O 0 995
0.10 | 100 100 100 100 100 100 O O 0 100 0 0 100
0.15| 100 100 100 100 100 100 O 0 0 100 0 0 100
0.20 | 100 100 100 100 100 100 O 0 0 100 0 0 100
0.25| 100 100 100 100 100 100 O 0 0 100 0 0 100
N =100,7 =100,p=0.7,a=0,3=0
0.10 | 100 100 100 989 100 419 0.1 0 581 418 0 581 418
0.15| 100 100 100 28.7 100 233 O 0 767 233 0 76.7 233
0.20 | 100 100 100 59 100 158 O 0 842 158 0 84.2 158
0.25| 100 100 100 43 43 155 O 0 845 155 957 3.6 0.7
N =100, =200,p= 07,0 =0,3 =0
0.05 | 100 100 100 100 100 100 39 O 0 9.1 0 0 96.1
0.10 | 100 100 100 100 100 100 04 O 0 996 O 0 99.6
0.15| 100 100 100 100 100 100 0.1 O 0 999 O 0 999
0.20 | 100 100 100 100 100 100 O O 0 100 0 0 100
0.25| 100 100 100 100 100 100 O 0 0 100 0 0 100
N =100,7 =100,p =0.7,a=0.3,8 =0.3
0.10 | 97.3 985 99.9 785 97.7 370 03 2.7 606 365 23 609 36.6
0.15 1975 989 100 169 969 196 0 25 780 195 3.1 774 195
020 1975 999 100 13 951 153 O 25 822 153 49 &80.1 150
025|975 999 99.2 0.1 14 157 0 25 819 156 986 1.2 0.2
N =100,7 =200,p=0.7,a=0.3,8=0.3
0.06 | 100 100 100 100 100 100 4.2 O 0 98 0 0 958
0.10 | 100 100 100 100 100 100 04 O 0 996 0 0 99.6
0.15| 100 100 100 100 100 100 0.1 O 0 999 0 0 999
0.20 | 100 100 100 100 100 100 O O 0 100 0 0 100
0.25| 100 100 100 100 100 100 O O 0 100 O 0 100
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ESTIMATING AND TESTING HIGH DIMENSIONAL FACTOR
MODELS WITH MULTIPLE STRUCTURAL CHANGES
APPENDIX (not intended for publication)

A HAJEK-RENYI INEQUALITY

Hajek-Renyi inequality is applicable to various settings, including i.i.d., martingale
difference, martingale, vector-valued martingale, mixingale and linear process, also
see Bai (1996) for more details. For a sequence of independent random variables
{z,t = 1,..} with Ez; = 0 and Ex? = o7, Hajek and Renyi (1955) proved that for

any integers m and T,

1 m T
)< (2 2 2 2 )
mS<111€ETCk ‘Z e (¢ thl oy + Zt:m—H ;o) (A-1)
where {c;,k = 1,...} is a sequence of nonincreasing positive numbers. It is easy
to see that if o7 < o? for all ¢ and ¢, = , P( it;ET‘%Zfl x| > M) < ?\%%,
thus sup [1S°F 2] = O,(1) and su ‘1 Foal = Op(L). If e = L,
1<k£T 2 o) TrgkpgT g2 p(ﬁ) ’ vk
o2 T k
P( sup f Zt vxy| > M) < L (14> 1), thus sup ’\/LE Do | = Op(y/1ogT)
m<k<T 1<k<T
since Zk:l %—logT converges to the Euler constant and  sup ‘\/LE Zle x| = Op(1)

Tr<k<T
Tr 1 _ 1
since Zk m+1 k Zk 1 k k=1 % —108T —logT'T =log -.

B PROOF OF PROPOSITION 1

Proof. For any ¢ > 0 and n; > 0,...,n;, > 0, define D = {(kq,...., k) : (.0 — n,)T <
k, < (t,0+n,)T for v = 1,..., L}, we need to show P((ky, ..., k.) € D) < eas (N, T) —
co. Since D¢ = UL {(k1, ..., k) :for k = 1, ..., L, either k, < (1,0—n,)T or k, > (T,0+
n,)T} = ULLZID&), it suffices to show P((ky, ..., k1) € Df,) <eas(N,T) — oo forall v.
Since (ky, ..., k) = argmin S(ky, ..., kp), S(k1, .o kr) < S(k1, . kro) < iy (g +
%) (e + 2). I (ky, k) € D), then  min  S(ky, ..., ky) = S(ky, .., kg). Thus

(kl ~~~~~ kL)ED(C)

(ki,.... kL) € Dy, implies mm S'(kl,...,kL) < S (g + 2) (g + 2) and it



suffices to show P( min  S(ky, ... k) — Zthl(yt + 2)(y + 2) < 0) < € as

(kl ..... kL)EDE‘L)

(N, T) — o0
1 k.

For any given partition (ki,...,kz), let ¥, = T Dtk 141 G:g; and a; =

vech(X, — flb) fort e [k1+1,k]N[ke10+ 1, .. keo), t,6=1,..., L+ 1. It follows
vech(g:g; — f)b) = a; + y: + 2z and

- L+1 ) L, =
S(k1,....kr) = Z Zt i vech (3:9, — )] [vech(G:3) — 2.)]

—1+

= Z (yt+2t)(?/t+zt ‘I’Z atat+22 ay(Ye + 2 )(A-2)

Thus it suffices to show P( min  [331 ala, + 231 di(y + z)] < 0) < ¢

(kl """ kL)EDE/)

s (N,T) — oo. Since min [0 diay + 23 di(y + z)] < 0 implies
©

min Y7 ala, <2 sup ST al(y, + )|, it suffices to show that the
(b1, kL)ED(C ) (k1. kL)ED‘(:L)

left hand side dominates the right hand side asymptotically.

Consider the left hand side first. For any (ki,...,k) € Dy, there exists " such
that k1 < (1,0 —n,)T and ke > (7,0 +n,)T, thus for ¢ € [(1,0 —n,)7T, 7,07,
a; = vech(X, — %,) and for t € [1,0T + 1, (1.0 +0,)T], a; = vech(Se — £,41). So for
any (k1,....k1) € Df,),

T

!/
a;a
D, e
70T (Ti0+n,)T da
2, Gt D,y G
(Lo T])T t=1,0T+1

> 5, Tvech(Em — ) vech(Se — %,) + vech(Ep — L) vech(Se — Biiq)]
> 77LTfuech(EL — ZLH);Uech(EL — 2L+1), (A-3)
where the last inequality is due to (z — a)? + (z — b)? = 2(z — “2)? + w for any x.
Thus N 12111)1 De i Ghas > n, Tt ELH);mh@L Zii1) - Next, the right hand side
Tyeeny L)eD¢



is no larger than

L+1 /
Z t kr—1,0+1 UeCh(ZH) (yt + Zt) (A_4)
ST BE) (g + =) (A-5)
su vec 2] . -
(kl, ,kLl:))eD‘ t=k,_1+1 Yo 2
For the first term,
L+1 /
SIS ey
L+1 k‘n 0
< ’ )
o 2”21 Zt:kn71,0+1 Uec}l( ) 10+1
L+1 K0
< Zﬂzl IZll 1 0]l t:kﬁ,10+1(ftft/ —%p)|| = 0,(T), (A-6)
where the last equality follows from Assumption 1; and
L+1 . . o
Z t kﬁ 10+1 vec ( ) 10+1 Op( )7 ( - )

where the last equality follows from Lemma 5. For the second term, define b, =
vech(X,) for t € [ke—10+1, ..., keol, K = 1,..., L+ 1, then vech(§:g;) = b + y+ + 2 for
all t and vech(X,) = y—— Zt ki1 vech(Ggy) = = — kL - szkt_ﬁl(bt +y+ ). It

follows that the second term is no larger than

L+1 1 k, , k,
(kl,...?l?LI))eDh ZLzl k,— k1 (Zt:lﬁ—ﬁ-l o) (Zt:/ﬁ—1+1(yt - Zt>)‘
L+1 1 k, , k,
+(k1,...?i?L%)eD€> ZL:l ko — k1 (Zt=kb_1+1(yt + ) (Zt=kb_1+1(yt - Zt))‘
k. 2
_ Y + 2
< (L 1 1)( sup Zt kh1+1( t t) i
1<k, 1<k, <T k, —k,_1
k. k.
sup Zt:khwl by sup t=Fk,_ 1+1(yt + z) )
1<k, 1<k, <T k, — k1 || 1<k—1<k.<T k,— k.
= (L+1)(B*+ AB). (A-8)

T llth
For term A, we have A < sup e

Fonnll Tl
1<k, 1<k, <T VF—k-1 1<kb 1<kL .
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ol ?
t=k,_1+1 Yt

ST bl = O(VT). For term B, we have B> < 2 sup =y

]-Sk?/‘—l <kL§T

ky
t=k,_1+1 %t

2
— = 2B} +2B3. By = 0,(VT), since
t—Re—1

2  sup
1<k, 1<k, <T

l

1
VI —k Zt:k+1 &
1 I
I—k Zt:k-i-l “

L+1
B, < Z sup

=1 g, 1 o<k<I<kso

L+1 2 2
S IR sup
= k

k—1,0<k<I<kx0

IN

, (A-9)

and by Assumption 7,

4+6

)

E( sup

1 !
B €
kn—1,0<k<l§kﬁ70 vV l — k Zt:k‘+1 t
Fr0—1 .0 1 !
<
o Zk:kﬁfl,o Zl:k-ﬂ E(H Vi—Fk Zt:k+1 &

Using Lemma 5, By = 0,(v/T). Taking together, the right hand side is 0,(T) and
thus dominated by the left hand side. m

4+46
) < T?M. (A-10)

C PROOF OF THEOREM 1

Proof. From Proposition 1, we know that for any ¢ > 0 and n; > 0,...,n; > 0,
P((ky,....,k;) € D°) < e as (N,T) — oo. Thus to show k, — ko = O,(1) for any
given 1 < ¢ < L, we need to show for any ¢ > 0 and n; > 0,...,n; > 0, there
exist C' > 0 such that P((ky,....,k) € D, |k, — k| > C) < € as (N,T) — oo. By
symmetry, it suffices to show P((ki,...,k) € Dk, < ko — C) < € as (N,T) — .
Define D(C),y = D N{k, < ko — C}. Since (ky,....,ky) = argmin S(ky, ..., k),
Sk, kr) < S(k1y oo ko, oo k). Thus if (ky, ..., k) € D(O),

VAN
n
e
ol
=
o
h
N—
U
~
ESY)
S
3?‘
<
T
h
S—
A
(@)



Therefore it suffices to show P( min (S(ky, ... k) — S(ky, ... kug, o k)] <
(k1. kL)GD(C)(L)
0) <eas (N, T) —

We then show that the event min [S(k’l,...,k:L)—S(kl,...,kLg,...,k:L)] <0
(k1,.. kL)eD(C)(L)

. . S(ky,... S(k1,. k0,
is just the event min (CEL e L L L)

< 0. Conditioning on the for-
mer, for any (kf,...,k}) € D(C)), argmin  [S(ky, ..., kp)—S(k1, ..., kuo, -, kr)] =

k3, ..., k7)) implies S(kr, .. k¥) — S(k%, ... ko, ..., kT) < 0, and this further implies
1 L 1 L 1 L

S(k*,. k) =S (k*,... k,0,....k* . Sk, k) =S (k1 ,yeneskr0,yenk
Uik SUGekon ki) < 0. Tt follows that  min - Skl S bt
v o (kl ..... kL)ED(C)(L) Lo

. . S(k* . k) =S (k... K0,k ..
which is not larger than (k L)|k*£k10| 0 L), has to be nonpositive. Note that

the above argument holds for any (k7,...,k7) € D(C),, thus the former implies the
latter. Similarly, the latter also implies the former. Therefore, it suffices to show

P( min Sk, kL)‘;:g_(l,?dko """ h) < 0) <eas (N,T) — o0
(k‘l ..... kL)ED(O)(L)

Next, decompose S(ky, ..., k) — S(ky, ..., ki, ..., k1) as

[S(ky, ... k) — S(k1, o Ky Koy ooy )] (A-11)
—[S(k1s s ks s ko) — Sk, o ks kg, s k)] (A-12)

Term (A-11) equals

ST vech(Gud; — Son)) Tvech(§id; — Sia)]

t=k,+1
ko ~ ~/ 1A
- Z _ 1 [vech(G:g; — E ) [vech(gig; — X77))
L+1 * ~ ~ %
=D [vech(@d; — B0 Tvech(@g; — 340)]
= K — Ky — Kg, (A-13)



and term (A-12) equals

k, . = -~ S
ST vech(§igs — )] vech(G:d; — 57)]

tkL 1+

—Zt o 1vech Gdr — X)) [vech(G:4, — %.)]

Y leeh(@d, — S ech(ag, - 52
= L —Ly— L3, (A-14)
where ¥4 = W, $r = w and f]’fﬂ = W. Note that
Ly = Ko, thus (K — Ky — K3) — (Ly — Ly — Ly) = (K; — K3) — (L, — L»). Replacing
S 1 by .41, K3 is magnified, thus K; — K3 > ijktﬂ[uech(gtg;—2L+1)]'[vech(gt§;—
3,+1)]; and replacing ¥* by %,, L; is magnified, thus L; — Ly < Zf’jktﬂ[vech(gtgg -
> [vech(§.d, — %,)]. Taken together,

(K1 — K3) = (L1 — L)

kLO o o~ fad ~ ~ =
> D wech(@g; — S [vech(§ig; — Si)]
- Zt kot UeCh (9:9: — Eb)]/[vedl(gtgz/t - ib)]
o k.o . ~ ’ _ ~
= Zt - vech( Y1) vech(X, — X, 41)
— Z vech(X, — %,)vech(3, — %,)
t=k,+1
3 /
+2 Zt:kLH vech(X, — X,41) (vt + 2¢)
kLO ~ /
) Zt:kﬁl vech(X, — %) (ye + 2¢)
= Ka1 — Lai + Kaz — Lao, (A-15)
thus it suffices to show P( min K- L@ﬁkKM Laz <) <eas (N,T) — 0.
(k1,2 )ED(C) () v—kuol

We consider the case k,_1 < k,—10and k,1 > k,y10. Incase k,_; > k‘L 1o00rk, g <

k41,0, the proof is easier and therefore omitted. Plug in ¥,y = —— — Zt”kl (e +

) + vech(k Ty [(k’ —k )E + (kL—i-l,O - kLO)ZL-‘r]. + (kl,-‘r]. — kL+1,O)EL+2]) and ZL =

) D l(ytJrzt)—l—vech(k A [(ki-10—ki-1) i1+ (k,— ki—1,0) %)), and denote

¢kL Lk = ’U€Ch(k "k (kL,170 — kL,1)<EL,1 — EL)) and ¢k“kb+1 ’U€Ch(m[(k‘b+170 —




kLO)(ZL+1 — EL) + (kb+1 — kH—LO)(ZH—? — Eb)]), we have

k 1 k 1
1 tL:-;(; +1(yt + Zt) / t;:: +1 (yt + Zt)
K = L . -16
— Al [¢k“1@+1 + I ] [%L,kbﬂ + e [[A-16)
k, k.
1 e, (Wt 21) Do, (Ut 2t)
L = - - A-1
— Al [P, 1 T k— kL Vlon, n + k— kL J(A-17)
k}b+1 kLO
1 e (e 20) D o1 (et 2)
K _ 9 t=k,+1 ) 2at=F,+1 A-18
kLO - kL a2 [gbk“kﬂ_l * kH—l - kL ] kLO - kL ’ ( )
k. k
1 Do (e 2) 1 (Y + 2t)
Lag = 2 = I et=ht] . A-19
kLO - kl, a2 [gbkb_hh + kL - kL—]. ] kLO - kl, ( )
For (ki,...,kr) € D(C)(, and 7, and 7,,, small enough,
“¢kL,kb+1 H
kiy10 — ko ki1 — ki1
> h(X, 1 — %) - ————= h(X, 10— 2,
> SO0 fech (1 — )] — D fuech (%40 — )]
1 M11
> ——|lvech(X,41 — Z)|| — s vech(X,49 — X,
] + 77::10-&;777—10 H ( +1 )H Mot + Ter10 — Tuo H ( +2 )H
1
> 5 |lvech(X,41 — %,)||, (A-20)
and for n,_; and 7, small enough,
kL—l 0o — kL—l -1
= h(X,_1— )| < h(X,_1— X,
61| = " eeh(Becs = B € =t k(S — S|
(A-21)

is arbitrarily small.

1 kn+1
sup ot
(k1 kL )ED©O) | Rt — Ko Zt:kd—l( o+ 2)
1 1 ko ( + )
= - sup — Ve + 2
Ti41,0 = T (k1,...kL)ED(C)(,y T =k, +1 t t
1 kit1,0 1 -
+ T Zt:]ﬂo—‘r]_(yt + Zt) + (kl 77777 kSLl)lgD(C)(l) T Zt:kH—l,O"rl(yt + Zt) )
- Op(1)7 (A_22)



where we have used

(ke ksLl)lgD(C)(L) % Zfiok,,+1 vl = op(1), % Zf_t:ooﬂ ?JtH = 0p(1),

(k1 e, kSLl)lgD(C)(L) % ZfL—:LH,O-i-l yel| = op(1), (A-23)
R L waie [T LS we e

(F1yeees ksLl)lSD(c)(L) % f::,,JrLOH 2| = op(1). (A-24)

The first three terms follow from Hajek-Renyi inequality, which is proved in Lemma
1 to be applicable to y; within each regime while the last three terms follow from

Lemma 5. Similarly,

1 Zh (g + 2) (1) (A-25)
sup - vt 20| = o1, _
(k1,....kL)ED(C) ) k, —k,_1 b, Ot t »
using Lemma 5 and
1 Zkhl,o (1) (A 26)
Sup T y = % ) -
(k1o kr)€D(C) ) || T A t=hima+1 t p
1
e T = 0p(1). A-27
(k1,...,kL)ED(C) ) T t=k,_ 10+1 H »(1) ( )

Finally,
]- k.o ( + )
sup Yo+ 2
(k1 k) ED(C) oy || Ki0 — ko S t=hit1 Lt
1 Ko 1 -
S sup Y H + sup . H
(k1,--,k)ED(C) () ko —k, Zt:lm—l t (k1rodk)ED(C) ) ko — K, Zt:m-ﬂ t
1
= Op(—=) +0,(1), (A-28)

NG,
the first term follows from Hajek-Renyi inequality while the second terms follows from

Lemma 5. Taken together and choosing sufficiently large C', the result follows. m



D PROOF OF PROPOSITION 2

Proof. To simplify calculation, consider the case with two breaks. For any ¢ > 0
and 7 > 0, define W,, = {ky : (110 — )T < k1 < (710 + )T}, we need to show
P((k € We) < eas (N,T) — oo. Since ki = argmin S(ky), S(k1) < S(kyo). If
ky € Wy, then k?élvrvlng(kl) — S(ky). Thus k, € W, implies k?el%/lng(kl) < S(k1) and
it suffices to show P(km%/r[} S(ky) — S(kig) <0) < eas (N, T) — oo.

1€WS

n

For ki < ky, after some calculation, we have:

S(ky) — S(kig) = Iy (ky) — T(kyo) + Uy (k1) — U(kyp), (A-29)
where
I, (1) — M(k o)
= k(T — k) (51— D) + (T = ko) (B2 — Do)l fA-30)
(T — k1 )(T — kqy0) ’ ’
U (ky)
k1,0 k2,0 T
= 20 ) et 2y eta) 20y (et )
—2[(k1o — k1)gx, + (ka0 — kro)ek, + (T = ka0) 3, : ZT (Yt + 21)
, k1 ) ) k1 ’ k1 T — k‘l 1=k1+1
1 ky 2 1 T 2
) HTI? 2] - H—m 2ot )| (A-31)

k2,0

T
W(kio) = 290?1,0 ZL:kl 0+1(Z/t +z) + 290%/1,0 Zbik2,0+l(yt + 2t)
1 T

—2[(ka0 — kro)¢h, , + (T — kz,o)@il,o]’T . Zszl OH(yt + zt)

2

(A-32)

2
1 T
) H—W PRI

1 k1,
\/m ZL;: (yt + Zt)



Since

1
Or, = % vech[(ka,o — k1,0)(X1 — X2) + (T — ko) (X1 — ¥3)],  (A-33)
- N1

1
0r = T vech[(kio — k1) (Ze — X1) + (T — ko) (Z2 — Z3)],  (A-34)
— k1

1
gDil = T k‘ U@Ch[(k)lp — ]{1)(23 — 21) + (k?g’o — kLo)(Eg — 22)] (A—35)

—

22 |lvech(Ss — ) |* < 222 [|vech(S1 — Zo)|I*, (1 = 720)” lvech(Ss — )|

is smaller than (1 — 71,0)%|Jvech(3; — £9)||°, and thus for k; € Wy and ki < kg,
Iy (k1) — (k1) > T for some c. On the other hand, sup  Uy(ky) = 0,(T)

k1€Wﬁ,k1 <k1,0

and ¥ (k1) = 0,(T") due to the following:

L ||k |l |2, || and ||}, || are uniformly bounded for ki € W and ki < kyo.
2. Using Hajek-Renyi inequality, sup Zfl a1 Ut sup ZLT:kl 1 Ve[
k1€Wﬁ,k1<k1,0 k1€Wﬁ,k1<k1 0
k
HZLzzl o1 Ye|| and HZT:,CMH y¢|| are all O,,(\/T), sup \ﬁ ZL LY
k1eWg ki1<kio
O,(v/1ogT) and sup \/Tlﬁ ZLT:;“H ye|| is O,(1).
k‘lEWn‘j,k1<k1’o !
2
3. Using Lemma 5, sup ‘Zi:kﬂ 2|l and  sup ’ﬁ Zi:kﬂ %|| are both
1<k<I<T 1<k<I<T

op(T).

For k1o +1 < ki < kg, after some calculation, we have:
S(ky) — S(kig) = y(ky) — T(kyo) + Wa(ky) — U(kyp), (A-36)

where

Io(ky) — II(K1p)

= (- klon%fnvech( B - 77 (7;1‘)(’33%10) Juech(Ss — =)
> (b = k)2 foech(s = S| = 72 foech(Sa = S, (A31)

10



k1,0 k1 k20
Ua(k) = 2¢y; ZL:]_ (ye + 21) + 203, Z (ye + 1) + 2, Z (Yt + z1)

L=k1’0+1 1=k1+1
T 1 k1
7 4 5
+2<Pk/1 E L=k2,0+1(yt + 2) — 2[k1 005, + (k1 — l{:LO)(Pkl]/k_l E :L:1(yt + 2t)

1 T
—2[(kao — K1)y, + (T — k2,0)¢21],m ZL:kl_H(yt + 2)

1 k1 2 1 T 2
—_ H \/k_l szl(yt + Zt) - H m ZL:k1+1<yt + Zt) 9 (A—38)
ki —k k
gpél = %wch(& — ), 9021 = %1}@0}1(22 - ), (A-39)
1 1
T—k koo — k
ol = — /;0 vech(Sy — 53), @f, = ﬁvech(& — %), (A-40)

The term in the bracket is positive, thus for k; € W; and k1o +1 < ki < Koy,

Iy (k1) — Ha(k10) > T'c for some c. Using the same argument as in the previous case,
sup Uy (k1) = 0,(T).
kieWe

©,k1,0+1<k1<kz 0
For kyp < ki < T, after some calculation, we have:

S(k1) — S(k10) = g(ky) — M3(kro) + Ws(ky) — Us(kro). (A-41)

By symmetry, II3(k1)—1II3(k2,) has a similar expression as Iy (k1) —1II; (k1) and is pos-
itive. Thus Hg(k)l)—Hg(lﬂLo) Z H3(k32’0)—H3(k’170) = (]{7270—]6170)[2—:2 ||U€Ch(22 — 21)“2—
;:—Z?g [vech(Zs — 39)||°).

k2.0

k1,0
‘Ifg(kl) - 29021 ZL:l (yt + Zt) + 2<'02,1 ZL:lﬂ,o—H

1 k1
—2[k109F, + (koo — kio)ep, + (k1 — k‘z,o)@/lc?]/k— > e+ 2z)
1 t=

k1
(ye + 20) + 2903, ZL:kQ 0+1(yt + 21)

2 , (A-42)

- R RS

) H%z? S =)

and similarly sup  Us(ky) =0,(T). m
k‘lEWn‘:,k}1>k2,0

11



E PROOF OF THEOREM 2

Proof. Using similar argument as proving Theorem 1, it suffices to show for any

e > 0 and 1 > 0, there exist C' > 0 such that P( min S(’E):—i(’“o) <0)<e
kr €Wy, [k1—k1o|>C  [F1—h10]
as (N, T) — o0
First consider the case k; < k1. Note that
~ k1 - -
S(ky) = Zt:1[vech(gtg£ — 3] [vech(3:g; — Xk, )]
T
+Zt:k1+ [vech(G:g, — Z ) vech(G:g; — )W 5] (A-43)

where f]kl = Zt L G:g; and izl = T_;kl ZtT:k1+1 G:9,- Replacing ikl,o by ikl and
i;gl , by f];;l in the expression of S(ky), S(k1 ) is magnified. Thus

S(kl) —S’(k’lo) k10 S / ~ ~f S
: vech 32 ) vech -3
T R P k:1 o D, (9:9; — X3, Tvech(§,g; — X,)]
k1 - ~
- Z " [vech(gug; — Si,)]' lvech(3g, — Zu)]}. - (A-44)

The right hand side equals

vech(D; — 3 Yvech(D, — i]* — vech(Xy — Xp, ) vech(3y — i,
k1

k1,0 k1o
3 T2 - = + 2
+2vech(Ey — &f ) =5 o (U + 21) — 2vech(S1 — S, iy 1 (Ut + 21)
k10 — k1 k1o — ks
= EI_E2+E3_E4. (A—45)

12



Plug in X}, and izl, we have

koo — k T—k ST )|
- - = Yt T 2t
= pri20 = ko e 20y % t=k1+1
1 vec [—T—]ﬁ (X1 2)+T—k‘1( 1 3)|| + Tk
k2o — ki T — ks /ZtT:k +1<yt+zt)
—vech|———(3] — X — (¥ — X2 L
vech|=p—3 = (B = Ba) = m (B = B[ =
= Zy +Z12 — Ei3, (A-46)
— 1 k1 2
Z2 = T Z (yt + 2| (A-47)

ko k T —k 1 k1,
2 = 2vech[ 22— (%, — %) + 22 =) 3" (gt z)

T - kl T— k /{?170 — kl t=k1+1
Y 1 ZT I 1 ka s
T —k t:k1+1(yt + 2) —k‘Lo "y t:klﬂ(yt + 21), (A-48)
—_— 1 k1 1 kl,O
o4 = _2[k_1 Z (yt + 2] —kl,O _ Zt:klﬂ(yt + 2). (A-49)

Tf vech[ 20 (5 — X) + 7722 (51 — )] = 0, then T — 5y = 77722(5, — %), then
20 |lvech(S1 — T)|* = anech@z—zg)u (122 ”")Hvech(ﬁz %)%,

72,0(1—71,0)2 1-7T1,0

this contradicts with Assumption 9. Thus =;; > ¢ for some c. Using Hajek-Renyi in-

equality for ; in each regime and Lemma 5 for z;, sup H ﬁ ZtT:klﬂ (yr + 21) ||,
k1 €Wy k1 <k1,0—C !

1

T 5;1(3/15 + 2t) ; i

and sup Tro—ht 2ot=ky+1 2t

k1eWy,k1<k1,0—C
. k
while sup ‘ m+m > mpg1 Ye|| 18 O ( ) Thus for sufficiently large C, all
k1EW77,k:1<k‘170—C ’

the other terms are dominated by =;.

sup are all 0,(1)

k1 EWn,k‘l <k1,o—C

Next consider the case k; > kj . Using the same argument as the case k; < ki,

S(k1) — S(ki,0) 8 L
o hl 2 T ol 00 ~ Se T eech(i S

- Zt k1.0t 1 [vech(g:g; — Ezl)]’[vech(gtgg — jzl)]}, (A-50)

13




and the right hand side equals

vech(Sy — Xy, ) vech(Sy — Si,) — vech(Sy — Xf )vech(Ey — i)

k)l k‘l
- Yy + 2 ~ Y+ z
+2vech(Xy — X, ) = klOH( i 2 — 2vech(Xy — E}Zl)' = klOH( i 2
k’l ]{?1,0 kl kLO
- El - EQ + Eg - 54. (A—51)
Plug in %}, and f]}’;l, we have
2 1 k1 2
= = ‘ ) (22 - El) + ‘ k_l Zt:l(yt + Zt)
k10 1 k
—QUech[ " (22 — E1)]/]{:—1 Zt;(yt + 2)
= En+Z12—Ei3, (A-52)
- T — ko ? 1 T ’
= = T vech(Xy — X3)|| + Tk Zt:kl—l—l(yt + 2)
T — kQ,O / 1 T
~2vechl g PO = N T b et )
= Hoi + Z9p — Hag, (A-53)
2 = 2vech 20z, ) —— 3" ()
~3 = 2vech|—— - — Z
3 oy 2 1 k1 — k1o P Yt t
2 1 1 1 . A-54
- [k'_lz (ye + 2)]' kl——lmztkl,oﬂ(ytJrzt)’ (A-54)
- T — kag , 1 o
2y = 2U€C]’L[ T _ ]{,‘ (22 Zg)} ]{,’1——/{}170 Zt:k170+1<yt + Zt)
A3 3 (pta). (A5D)
T — kl t=k1+1 Ye “t ]{?1 — 1{71,0 t=Fk1,0+1 Yt “t)- ]

71,0
—0pech(X
T1,0+1 2™ H

by Assumption 9, Z1; — Z9; > ¢ for some ¢ > 0 if 7 is sufficiently small. Again, using

1-71,0—7

For k; € WU’ =11 — D9y >

H 1720 _yech (3 — 33) H Thus

Hajek-Renyi inequality for g, in each regime and Lemma 5 for z;, all the other terms

are dominated by Ell — Egl for sufficiently large C'. m

14



F PROOF OF THEOREM 6

Proof. Since 7 is consistent for r, we can treat r as known. It is not difficult to see

that

SSNE, = ZTi vech(fif] — I.)Q tvech(f.fl — Ir)

—Tvech(lthl Fifl = LY wech(~ Zt Foft 1), (A-56)

and for any partition (ki, ..., k),

T I+1
SSNE(kh ) kl) - Zt:l UeCh(ftft ) Q U€Ch(f ft - IT) ZL:1<]€L - kL—l)
2 L Y
vech( ;Lkill;l{tft — L)' tvech( tlﬁkb__ll;ftft — I.JA-57)
Let Fp=SSNEy— SSNE(ky, ..., k), it follows that
k. P 7 k. ;7
I+1 cch Zt:kb,lﬂ(ftft/ - ]T>)'Q_lvech(Zt:k“ﬁl(ﬁﬂ - ]r))

Fip = ) _ vech( N Vo =k
Zle(ftft/ - [T))/Q 1 (Et l(ftft — 7’)>
VT VT
_ oy D(k 1 +1,k) = D(1,T)
_ Zi {D(ki1+ 1, k) = [D(1, k) = D(L k1))

= Y Figl+). (A-58)

—vech(

After some algebra, we have

T3 ko i (eft = 1) koo (ot — 1)

F* 1) = h
L N Y L o e T T
]

~ kL 1 fL—l ~1‘, ~t/ - [r k tb+1 tJt r
SRPILEI SIS ES N % )
T3 ~ .

- B(ru, 7o Y QT B(1, 70 F). A-59
kLkL+1(kL+1 — kL) (T » Tutls ) (T y Toed1 ) ( )

]/
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Next, using four facts listed below, we have

l T3 -~ -
su B(r,, T: F)Y'(Q = Q YB(r,, 7001 F
(71501, 'rllD)EA6 ZLZI kLkL+1(kL+1 - kl,) ( i ) ( ) ( i )
1 = l -2
< slet-o sw B B = 0,00,(1) = o, (12-60)
€ (T1ye-,71)EA =
l B ren FYO Blri i B) — Bl oss; FHy)
su Ty, Ty ; Ty, Ty ; - Ty, Ty ;
(T15ery TI?)EAE =1 kLkH—l(kH—l - kL) i i i °
Q] .
< - B( TL,TLH,F) sup B( TL,TL+1,F) B(7,,T,+1; FHy)
€ (T15e,71) EA (T15e,T1)EAE
= Op(1)op(1) = 0,(1). (A-61)
It follows that Fy, = Zizl mB(T“ Top1; FHo)Q ' B(7,, 7o41; F Ho)+0p(1),

where 0,(1) is uniform and by Assumption 12 the first term converges weakly to

2
TLWr(r;q) (TL+1) — TL+1WT(T;>1) (TL)

Y T
=1 Ty Ti+1 (TL+1 _TL)

A1 —1| — d
1. HQ — Q7 =0,(1) if 5= — 0.
2. sup HB T Togrs F) — B(TL,TL_H;FHO)H = 0,(1) if \/TT — 0.
(T1 ..... Tl EA
3. sup |[|B(7,T.41; FHy)| = O,(1).
(Tl ..... TZ)EAe

4 sup HB(TL,TLH;F)HZOPQ).
(Tl ----- TZ)EAG

Fact (1) follows from Lemma 8.

Proof of (2): Note that

B<7_L7 TL+1; F~1) - B<TL7 TL+1; FHO)
- B n,n 1;F B(r,,7.41; FH) + B n,ml;FH — B(1,,70s1; FHy
+ +
= L“ Z (fofl — H fif/H) Z (fofl — H fif/H)]

+ve L“ Z H'(fif) — Sp)H — Hy(fof) — Sr)Ho)

k, 1 kit / '
_Tﬁz (H'(fuf; = Sr)H — Hy(fif; — Sr) Ho)). (4-62)
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It is not difficult to see

sup HB TL,TH_I,F)—B(TL,TL_H;FH)H

(T15e.,T1)EAC
- JT
< 92 su S " H' . H)| =0, (—— A-63
<o s S (R >H G (e

by Lemma 7, and

sup || B(7,, Tos1; FH) — BT, Tos1; FHo )|

(7-1 7777 Tl)EAe
- ! I et -
= 2TE<kS<u’1P1 e \/_ Zt 1 ftft ZF)H HO(ftft EF)-HO) OP(A) 64)

by part (2) of Lemma 6 and Assumption 12.

Proof of (3): Note that B(7,,7,1; FHy) = vech["* L 7F " (HfifiHy — 1) —
]“T\} MOH fuf Hy — 1)), it is not difficult to see  sup HB(’TL, 7415 FHy)|| <
(7‘1 ..... TZ)GA(
2  sup \/LT Zle(HéftflfHo - 1), »(1) by Assumption 12.

Te<k<T(l—¢)
Proof of (4): It follows directly from (2) and (3). =

(G PROOF OF THEOREM 7

Proof. Under the alternative, the estimated number of factors converges to the
number of pseudo factors and the estimated factors are pseudo factors, g;. First note

that  sup [SSNEy — SSNE(ky, ..., k)] > SSNEy — SSNE(kyo, ..., ki), thus it

suffices to show the latter goes to infinity in probability.

T o~ . 1+1
SSNE(k10,.... ko) = thlvech(gtgg)'ﬂ Yech(§.3,) — ZL (ko —

k'/,O
9:91 Zt ki_1.0+1 gt,q
k1 0)vech( = iZhmrotl QO tvech 0 AR 5
1’0> ( ]ﬁg — kL—LO ) ( kLO - kL—l ,0 }6 )
T N
SSNE, = thlvech(gtgg)’ﬂ—lvech(gtgg)
~ ~ = ~
—Tvech(Zt %gtgt) Q- vech(Zt %gtgt) (A-66)
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Thus similar to (A-59), SSNEy — SSNE(ki, ..., ki) can be written as

l T3 L+1 0 1 kuwo LO 1 kuit10
vech( G:G; —
Zbil Kok, O(kH-l 0o — ki) Z o Z

N L 1 kLONN L 1 k41,0 _
TS DML D LR

~ o~ L ~ o~ 2
Uech( kL—l—l,O Zt;ol gtgl/f . kbo Zt b O /> (A‘67)
T VT T T ’

) &
=1 kok,110(ki10 — ko)

+1,0 ~ ~/
where p,....(Q) is the maximal eigenvalue of Q. Note that L“ ¢ Zt\/lfgtgi ko 2. i/T 9 =

= =/

~ +L0 o
(k0= buo)uo (Zt:l Guf _ Zt:kbﬁlg gt) thus SSNEy— SSNE (k1 , ..., kip) is not smaller

T35 ko kir1,0—kwo

than )
Zl (kL+1,0 - kLO) (ZtLol gtgi,f . Et kL0+1 ~t~7/f (A—68)
=1 kb+1 Opma)((Q) kLO kL+1,0 kLO

Recall that vech(g:g;) = by + v + 2, by Assumption 1, m f”klbooﬂ Yy =
vech(JORLm tb+,€1/0°+1(ftft Yr)RlJy) = 0,(1) for each ¢, and by Lemma 5,

1 k. . . -
s t*,;,OOH 2 = 0,(1) for each t. Thus = Y7 §,3; — i S Gl =
}0 ZtLol bt m fL:J;cl,,;)O+l bt + Op(l). Recall that bt = ’U@Ch(JORLZFRLJ()) for

k, kb+1,0 b

k,—10 <t <k, and b, is different in different regime, thus Zj:% be kf;k;‘)_*,;ot # 0 for

some ¢. It follows that there exists some ¢ > 0 such that SSNEy—SSNE(ky, ..., kig) >

p TC(Q) with probability approaching one. Next, it is not difficult to see that under
the alternative p,, () = O,(dy) for the three kernel functions considered in this
paper!8, since HAC method is used to estimate ) while under the alternative G+, is

not properly centered. Noting that d?T — 0, the result is proved. =

H PROOF OF THEOREM 8

Proof. It is not difficult to see that Fxr(l 4+ 1]l) = sup sup [SSNEL(%L,D l;:L) —

1<i<I+1keA, ,

SSN EL(l;:L_l, k, iﬁ)], where SSN EL(/;:L_l, l;:L) is the sum of squared normalized error
of the -th regime. Thus testing [ versus [ 4+ 1 changes is essentially testing jointly O

18For more detailed procedure, also see the proof of Theorem 2 in Han and Inoue (2015).
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versus 1 change in each regime. In what follows, we reestablish Theorem 6 with [ =1

but k, — k,o = O,(1). Similar to (A-58), we have

SSNE,(k,_1,k,) — SSNE,(k,_1,k, k,)
k o k Py
L Sy _In ~ I )y _In
= wvech( SR f ! ))'Qleech(Zt_h_lﬂ(ff ! ))
k — kL—l k — kL—l
I;L ray E:L r
L - Ir Ir
+U€Ch( t=k+1(~ftfbt )) ) 1'U€Ch< t k+1(~f ft L))
Vk, — k k, —k

S (Fuf 1) i o Fafi = 1)
—vech( t=k o1t t~ )'Q tvech( t_kb’lfl t~ ! ), (A-69)
\/ ]{IL — kL—l \/ kl, - kL—l
and similar to (A-59),
SSNE,(ki—1,k) — SSNE,(k,_1, k. k.)
~ ~ ~ ];L
_ 1 vech(Zt:%klﬂ(ﬁt = Ir,) _ k—Fk,_q Z =k,_ +1(th ITL)),

k=ki1 _k,—k = = E—k
]’%L_I’;Lfl E:L_]::Lfl kL - kL_l ‘ ol kL - kL_l

~ i
Q_lvech(zt ko 1+1(fatfbt I;,) B k—Fk,_ Z —F +1(th -1,
V kL a kb_l k k \/ kL - kL—l
1 7 7 =~ ~ ~
= s 5 Ok b ks Y Q7 Ok ko F). (A-70)
ki—k,—1 k,—k,—1

Since l;:L — ko = O,(1), asymptotically it suffices to consider the case that ~L ol <

C for some integer C' and all ¢. And in such case A,, C (k,—1,0, kio] for large T'. Next,

based on these two properties and using four facts listed below,

sup ( k—k,_ 11 P —r  Fk_10 1 ko—F )C<]%L717 k? ]%La FL)lﬁb_lc’(l’%Lfla k? ];"U FL)
kehin || 77 LkL 1 ko—ki—1,0 k.o—k.—1,0

sup C(kL—17 k? ku FL),<QL_1 - QL_l)CU%L—h k7 ];;L; FL) )
k€A, q

sup C(%L—].? k? ];L; FL)/QZI(C(]%L—1> k? l%u FL) - C(kb—1,07 ka kLO; FLOHLO)) H 5
keA, ,

sSup C(/ﬁq,oa k, k.o FLOHLO)/Qfl(C(/;hl; k, ];h; FL) - C(khw, k, k.o; FLOHLO))H are

kEAL,n
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all 0,(1). Thus

sup [SSNE,(k,_1,k,) — SSNE,(k,_1, k., k,)]
kEA, 4
1

- kselip k—k.—1,0 ko—k
“" kyo—ki—1,0 koo—k.—1,0

= sup Fnr,.(k) + 0,(1). (A-71)

k€A,

C(kL—l,Oa ka kLO; FLOHLO)/QL_lc(kL—l,[]? k? kLO; FLOHLO) + Op(]-)

By Assumption 12, with k = [T'7], Fyr,.(k) = ﬁ ’W%(T) - 7'I/I/TL(T2L+1)(1)H2
for 7 € (0,1). Furthermore, since Wiener process has independent increments, the
limit process of Fiyr, (k) is independent with each other for different ¢. Finally, define
A?,n ={k k104 (ko —k—10)n < k < ko — (ko — ki—1,0)n}. For any 1, < n < n,,

Af{772 CA,C A?’m for large T', thus sup Fnr,(k) < sup Enr,(k) < sup Fnr,(k).

keA?ym kEAL,n keA?ﬂ]l

Since 1, and 7, can be arbitrarily close to 7, sup Fy7,(k) has the same distribution

keAL,”]
as sup Fyr,(k). Taking together, we have the desired results.

kEA?,
1. Hfz;l — 071 = 0,(1) if & — 0 and % — 0.
2. sup HC(Z}L,M k, I;ZL, FL> — C(kL,L(), ]{7, ]{ZLO; FLOHLO)H = Op<1) lf \/TT — 0

keAL,’V]
3' kSI1lXp ||C(kL71,07 k7 kLO; FLOHLO)H = Op(l)

€A,y

4. sup HC(/::L,l,k,l;:L;FL) = 0,(1).

keAL,n

Fact (1) follows from Lemma 11.
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Proof of (2): Note that

Cky_1,k,ky; F)) — Cky1, k, ks F,H,p)
= [Clk1,k,ky; F)) — C(ky—y, k., ks FH,)]
+[C (K1, k, ky; F.H,) — Cky1, k, ky; F,Hyp)]
Sbha(Fafl = HUASH) k= oy S (el - H1fif),

o= ko = ki Vi —F

S i (H(fufi = Sp)H, — Hiy(fuf) — Sr)Hio)

= wech(

+vech( —
kL - kL—l
k—k . Zf;,;b_ﬁl(HZ(ftf{ —Xp)H, — Hy(fif] — ZF)HLO)) (A-72)
kL - kL—l l%L - ]A{:Lfl

Thus it’s not difficult to see sup HCU%L_I’ k. k,; FL) — C(/;:L_l, k. k,; F,H,)

keAL,"]
Sk, Ffl—Hfef{HL) S afl—HUfe S HL)
\/];Lfl'%,‘_1 \/];L*%L—l
Lemma 10. And sup HC(lz,‘L_l,k,l;:L;FLHL) — 0(12;L_1,1<;,12:L;FLHL0)

kEAL,n

is not larger

than sup
keAL,'ﬂ

, which is op(g) by
T

is not larger than

S =S He=Hy(fofi=Sp) o) || || 25 (HUfi=Sp) Hi=Ho(fof{~Sr) Huo)
sup = ——
k€A Vk—k1 N
which is 0,(1) by part (2) of Lemma 9 and Assumption 12. Finally, with |k, — k,o| < C

for all 4, sup “C(%L_l,k,/%L;FLHLO) — Ckr0. K, k:LO;FLOHLO)‘
ke, .

= 0,(1) is obvious.

k_ Hl IHL 7171
Proof of (3): Note that C(k,_1.0, k, kwo: FioHuo) — vech(z““”%l( LRGN
10— Re—1,0

k.0 ’ /
k—k,— Zt:kh 1 (HofefeHo—1Ir,)
R - ), for some ny <1, sup [[C(k,-10,k, ko; FoH.o)|| <
w—Fk,—1,0 VEo—k—1,0 kEA,, 7

k
¥k 1 g1 (Hlofef{Hio=Ir,) ‘ Hztf’h1,0+1(H;Oftfgmo—zn)

\/kLo—kkl,o \/kLo—kbfLo

sup

0
keA?

sumption 12.

Proof of (4): It follows directly from (2) and (3). =

, which is O,(1) by As-
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I PROOF OF THEOREM 9

Proof. The calculation of SSNEL(kL Lk ) —SSNE, (k:L 1k, l;;L) under the null is still

valid under the alternative. Thus following (A-70) we have

Fxp(l41]1)

> sup [SSNE,(k,_1,k,) — SSNE,(k,_1, k., k,)]

> SSNEL(kL 1, k) — SSNE,(k,_1, ko, k)

N | L WCMZf‘“,; 1 9nle b — T 125;;%,1“ Em&lt) i
%% Prmax (§1) N A Y

k.o I;L ~ ~/
Zt Eo_141 9utGun Zt:kLoJrl 9uit9u
kLU - kL—l kL - kLO

(kLO _ kbfl)(kb _ kLO)

(ke = K1) Prnax (S2.)

'Uech(

Define z,; = vech(Gugl, — J}y9.49.;J.0). By Lemma 13 and Assumption 1,

L

>
t=k,_1+1 gl»tth
kLO - kL 1

ky
= —Z i + vech[J] Alzt oy (1~ )
- 104+

kLO_kL 1 kLO_kfl
= wvech(JyA1XrA) J0) + 0,(1), (A-74)

vech(

Ail JL()] -+ Uech(JZOAd ZFAZI JL())

k, 55
and similarly vech(w) = vech(J)yApXrAlyJo) + 0,(1). Since A XpAl, #

k.—k.o
Ap¥pAl, and p.. (Q,) = O,(dr), there exists some ¢ > 0 such that Fyp(I1+1|1) > dT—TC

with probability approaching one. m

J PROOF OF LEMMAS

Lemma 1 Under Assumption 7(1), Hajek-Renyi inequality applies to the process
{yt,t = ]{35_1’0 + 1, ceey k/-c,()} and {yt,t = k,{’o, ceey kn—l,O + ]_}, R = 1, ceey L+1.
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Proof. Note that y; = vech(J\R.(fif] — Xr)R),Jo) for k.10 < k < ko, thus
k
‘Zt:knﬂ,o—i—l Yt

P( sup Ck > M) is controlled by

kr—1,0+m<k<kg; o

k
P(|J.R,|I? sup Ck €l > M
(Il Jo Rl e Zt:km,1,0+1 ¢ );
which is not larger than - (mc}, +m+z:2?€ﬁ_l o +m+1 Cr) by Hajek-Renyi inequality

for process {€;,t = kx—10+ 1,..., ks0}. Other processes can be proved similarly. m

Lemma 2 In case factor loadings have structural changes, under Assumptions 1-6,

1T = Joll = 0p(1) and [[Vr — V| = 0p(1).

Proof. The proof follows similar procedure as Proposition 1 in Bai (2003), with J, Jo
and ¢; corresponding to H, Hy and f; respectively. To avoid repetition, we will only
sketch the main steps. In Bai (2003), proof of Proposition 1 relies on dyr = 0,(1)
and V3 % V (Bai’s notation). The former relies on Lemma A.1 and A.3(i)'® while
the latter relies on Lemma A.3(ii). Lemma A.l relies on Theorem 1 of Bai and
Ng (2002) and Lemma A.3(i). Lemma A.3(ii) relies on Lemma A.3(i) and Lemma
1(ii) of Bai and Ng (2002). Thus it suffices to prove Lemma 1(ii) and Theorem 1
of Bai and Ng (2002) and Lemma A.3(i) of Bai (2003). In current context, the first
can be proved using Assumption 2 and Assumption 4(2), the second can be proved
using Assumptions 1-4, and the third can be proved using Assumption 5 and Weyl

inequality. Finally, Assumption 6 ensures uniqueness of J,. =
Lemma 3 Under Assumptions 1 and 7,

l 2
I s s S lal” = 040,

1 l 2
2, s o T son Il = 0,00,

k 2
3. sSup kbol_k Zt£k+1 HgtH = Op(l)'
k,—1,0<k<k.0

9Tn Bai (2003), Bai states that it relies on Lemma A.2, but in fact Lemma A.1 and A.3(i) is
enough. This is because dyr = (AOI/VAO )% FTO/(F — FYH)Vnr.
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Proof. We first prove part (2). Recall that ¢ = R, f; for k,_19 < t < k, thus
ik, _p ge1lloell? zizkb,l,oﬂ<||ft|\27E||ftH?)

st <|\RNE|fIP+IR]?  su where
BT e
fefi—=%
E||f¢;||2 = tr¥p. It suffices to show the second term is O,(1). Let D; = Eick, =L 01:1(1:) ¢ F),

ik, _q g1 (IFel >l flI?)
I-k.—1,0

= |[trDy| < R (trDY): = 7| D], thus

Zf&:k +1 €t

ku_1,0<I<k.o Fo 1 0<i<kuo k10
Hajek-Renyi inequality. Proof of part (3) is similar and omitted.

it follows that '

ik, g g1 (1Fel* =Bl f2lI?)
l_kL—l,O

, which is O,(1) by

Now we prove part (1). The whole sample ¢ = 1,...,T is divided into several
nonoverlapping segments by the true change points. First consider the case that k and

[ lie in two different segments. Without loss of generality, suppose k lies in the (-th seg-

l 2
1 1 = g .
ment and [ lies in the k-th segment, then su ez llodl” is no larger
)
kb—1,0<k§]ﬁ0;kn—1,0<l§kl<0 \% T(l_k)

201 lgell? L0 g > llge )12

— gl Z llgell t=k, 1 o+1119t
than  sup Et*k’“;:k + == ktl‘):lk —+  sup T (If s — 1=, the

k,—1,0<k<k,o ‘ " ‘ kr—1,0<l<kxo e

second term is zero). By parts (2) and (3), the first term and the third term are O,(1).
The second term is no larger than 7! v 1 17 (——— oo kv o Zt Koo 1.041 | £:|I?), which
is Op(1). Next consider the case that £ and [ lie in the same segment. Without loss of

. .. 1 l 2
generality, suppose they lie in the (-th segment, then km,l,osiz s W D iy 9]

is no larger than | R, |* B || £, +| R.||* sup

kr—1,0<k<I<k.,0

Tt S (Ll = BIAI)|.

l
Zt:k+1 €t

/T(—k)

Similar to part (2), the second term is no larger than | R,||* /7,  sup
kr—1,0<k<I<k.,0

which is 0,(1) since by Assumption 7,

4490

F( )

kk—1 0<k<l<kb0

\/th p1
r,0—1
B T2+5 Zk Fro1,0 l k1 H\/—Zt .

(A-75)

Up to now, we have proved the desired result for each possible case. Since the number

of cases is finite, the supremum among all 0 < k£ <[ < T will also be O,(1). m

Lemma 4 Under Assumptions 1-8,
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1A ! 1
! os?clillOST \/—Zt k1 (G = T'90)(5 = T'g1) Op(é?vT)’
2. su —_J Il =0,(-1),
0§k<Il)§T mZt kGt = J'9:)9; ’ b(537)
I G — J'90) G — J'g) || = 0, (=
3. khfolilfgkbo [ thkL,l,oJrl(gt —J'9)(g— J'q) || = Op(é?VT) for each ¢,
4. Sup - kL 1,0 Zt k. 10+1( J gt)gtJ ’ — Op(ﬁ) fO?” each L,
k,—1,0<I<k,0
5. su —J J' ’ = or each t,
kb71,0§113<kbo koo— th S (G0 9:)(Ge — J"9¢) 5?v ) [
6. sup xm % Zt i1 (e — J'g0)g1 ‘ = O,(5 T) for each ¢.
k.—1,0<k<k.0

Proof. Following Bai (2003), we have

1 T 1 T 1 T 1 T
1 -1 ~ pd Pt P
— S0 =Var(m D G+ Y GCatm Y Gt s ) i),
(A-76)

— N (8,1), ny = gs]FV tand &, = gézes Vi is the diagonal matrix

!/
eset

where (,, =

of the first 7 largest eigenvalues of + X X' in decreasing order, G is /T times the

1 1
corresponding eigenvector matrix, V is the diagonal matrix of eigenvalues of ¥2X %2

I'TGGy—1 Ty :
~ —7 Vyr- First consider part

and @ is the corresponding eigenvector matrix, J =

(1).

su J J/ /
0§k<§)§T \/th ka1 "90)(Ge = J'9)
= YRR E5 SNSRI N 15 e P |
sup ——— L (s, 1 <
B 0§k<ll)§T T(l—k;) t=k+1|| T e IIN T g Gt

2

1 T 1 T 2 -
! TzszlgsnSt +Hfzslgsgst >HVN%”2

= 4| Verl I+ 1T+ 111+ 1V). (A-77)
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By part (1) of Lemma 2, ||Vg7| — [V}, thus it suffices to consider I, I1, I1I and
IV. By Assumption 4,

L T2 1 ! 1 T ,
I < —E P osup ———— 2+ st
- T s=1 ||g | 0<k<%)<T\/T Zt:k+1T25:17N< )
1 T 1

= M Sat =0(=). A-78

< L\ T Dt Zs M (s, 0)) = O(). (A7)

By part (1) of Assumption 8,

1 1

1
I < = ’ N =)
S SATIS g

N 2
2 :l 21‘21[61'56# - E(eiseit)] )
t=k+1

VN
= 7—0,(1). (A-79)

By part (2) of Assumption 8,

2
171

IN

1 N
N Zi:l 9sVicit

2

1T 1 A p—
T ZSZI ||gs|| 0<?q1ill)<T\/m Zt:k+1 T Z‘g:l

IN
=
I

1 1 l 1 N
s su = i€i
T Z oI )N0<k<ll:)<T T(l—k) Zt:’““ VN Zi:l .

— 70,(1)=0,(1). (A-80)

N

By part (1) of Lemma 3 and part (ii) of Lemma 1 in Bai and Ng (2002),

v <

1T
TZS= 191 0<k<l<T\/T Zt k+1

11 2
2
||gt|| N T 25:1 \/N Ziil 77,’623

1

= 70,(1)5;0,(1)- (A-81)
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Next consider part (2).

—J J
0<k:<l<T \/th j1 '9)9,
l T ,
||VNTH HJ||O<?€15><T T\/ﬁ Zt:kﬂ ZszlgsgﬂN(s,t)

<k<ILT

1 1 ! T
+ HVNTH ||JH sup Tm Zt:kﬂ 25:1 959iCt
Vil L l U 44
—i—H NTHH | sup Tmzt:kﬂzszlgsgmst

0<k<IL<T

1 1 ! T
+HVJ\771“H||JH Sup T\/ﬁzt:kﬂzs:lgsgfefst

0<k<ILT

\Varl[ 17| (V + VI +VII+VIII). (A-82)

By Lemma 2, ||[Vyr|| = [V~ and ||J]| — [|Jo||, thus it suffices to consider V, VI,

VII and VIII. By part (1) of Lemma 3 and Assumption 4,

v

IN

IN

1
sup ————)2 s, 1)
(0§k<Il)§T T — k) ) ( 0<k<l<T\/T Zt k+1 ZS 1 v

Op(1)Oy(

2
T

S gt sw (3

0<l~c<l<T

Zt k+1 ||gt||

N|=

B )

1 !
\/ﬁ Zt:kH 97w (s,

1

2

1
i (A-83)

By part (1) of Lemma 3 and part (1) of Assumption 8,

VI

IA

IN

2
Zt k41 9t Z@ Lleiseir — B(eiseir)] )%

T(l — k) N

T NSt 1 T
> gz sup (?Zs:l

0<k<IZT
1

_ 1 T
7“_ E ||gt )2 ( E
0<k<l<Ts/T t=k+1 s=1

0<k<l<T z/ T Zt k+1
VN

2

)2

\/— Z ezsezt ezseit)]

Op(l)Op(l)- (A-84)
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By part (1) of Lemma 3 and part (2) of Assumption 8,

2
1 1 I 7T Zi—k+1(% S gvei)di||
VII < — s 2 su — — — 2
< (TZ 1311%) O<k<IID<T(TZ$:1 0 h )
! N /12
< Y P sup | it )y
=T =1 P VN “o<k<i<r NT(l—k)

IN

P b1 1 1 z
T s 2 Ssu D —
7 2 lo:lF) VN <O§k<ll)§Ts/T(l — k) Zt:kﬂ

2

2\ 1 : L N . 3
||gt|| ) (OgigE)ST T(l _ k) Zt:k‘-i-l \/N Zi:l ’yzezt
1
= 0,(1)—=0,(1)0,(1) (A-85)

VN

By part (1) of Lemma 3 and part (ii) of Lemma 1 in Bai and Ng (2002),

2

1 . 1T || Yt 9% 2 givieis) ||

VIII < (= )2 sup (= : 2

< (TZ [FAlS O<k<%)<T(TZs:1 0§ )
1 T 2
< —(= e )2

B 0<k<l<T\/TiZt k1 o) \/_(TZ = )t

1

= 0,()—=0,(1) (A-56)

VN
For the other parts, proof of parts (3) and (5) are similar to proof of part (1), proof
of parts (4) and (6) are similar to proof of part (2). =

Lemma 5 Under Assumptions 1-8,

1 l _
b o | e 2 = enlD)
2. s ﬁ D ik 101 2t|| = 0p(1) for each i,
1—1,0N0R00
k
3. ) SgIIZ<k kbo;—k Do 2 (1) for each ¢.
1t—1,0> 0

Proof. Recall that z; = vech[(g:—J g:)(g:—J' g:)'|+vech[(Gg:—J g+) g, J)+vech [ g:(§:—
J' g) | +vech[(J — J)gegi(J — Jo)| +vech[(J' — J}) g:g;Jo) +vech[ T grgi(J — Jo)]. From
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Lemma 2 and part (1) of Lemma 3, we have

0<k<l<T

\/T Zt k+1 Jo)gigi(J = o)

< 1T =Sl sup =

0<k<l<T\/m Zt:k—i—l ”gt||2 = 0p(1)0y(1) = 0,(1), (A-87)

and similarly  sup ' = 0,(1). These together with

0<k<ILT
parts (1) and (2) of Lemma 4 proves part (1). Part (2) can be proved similarly using

Lemma 2, part (2) of Lemma 3 and parts (3) and (4) of Lemma 4. Part (3) can be

T Zewen (I = T)aegi o

proved similarly using Lemma 2, part (3) of Lemma 3 and parts (5) and (6) of Lemma

4. m

Lemma 6 In case factor loadings are stable, under Assumptions 1-6, |H — Hy|| =

op(1) and [[Unr — U|| = 0,(1).
Proof. The proof is similar to Lemma 2. =

Lemma 7 In case factor loadings are stable, under Assumptions 1-6 and 10-11,

Sup %Zf:l(ﬁ.ﬂ, - H/ftft/H)H = OP((;%)
Te<k<T(1l—¢) 2
Proof. It suffices to show sup 1 Zle(ft _ Hlft)(ft _H'Y p(%)
Te<k<T(1—c) 2
and o Zt 1( — H'f,) f{H H = —521 ). The former is not larger than
Te<k<T(1—¢) 2

Sy T A
a refinement of part (2) of Lemma 4. For its proof, see Lemma 3 of Han and Inoue

(2015), the required conditions (Assumptions 1-8(a) in Han and Inoue (2015)) can be

, which is Op((s%) by Lemma A.1 in Bai (2003). The latter is
NT

verified. ®m

Lemma 8 In case factor loadings are stable, under Assumptions 1-6, 10 and 13,
HQ P = 0,(1) if £ — 0 as (N,T) —

Proof. First note that HQ_l -1

< o

”Q—QH 1971, 271 is constant,

HQ—1H < r(r;rl)p '1@) and ‘pmin((z) — pmin(Q)‘ < HQ — QH Thus it remains to
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show HQ — QH = 0,(1). By Assumption 13,

(O (FHy) — QH = 0,(1). By second half
‘Q — Q(FH,) ] — 0,(1) if #Z — 0. The

required conditions in Han and Inoue (2015) can be verified. m

of Theorem 2 in Han and Inoue (2015),

Lemma 9 In case factor loadings have structural changes, under Assumptions 1-5
and 14, with |k, — k| = O,(1) and k1 — k10| = Oy(1), we have |H, — Hyl| =
op(1) and [|[Unt — U.|| = 0p(1).

Proof. First, Assumption 14 ensures uniqueness of H,y. The proof of ||H, — H,|| =
0,(1) follows the same procedure as Proposition 1 in Bai (2003) which, as explained in
Lemma 2, relies on Lemma 1(ii), Theorem 1 of Bai and Ng (2002) and Lemma A.3(i)

of Bai (2003). Thus it suffices to reestablish these three with |k, — k,o| = O,(1) and

12:L_1 - kb—l,o) = O,(1). The first can be proved without adjustment. The second is
proved in Theorem 5. The third (||Unr — U,|| = 0,(1)) is proved in Theorem 4. m

Lemma 10 Under Assumptions 1-5, 10-11 and 14, with

}—kw( — 0,(1) and
Si G dl=H L)
k,—k,—

S G Fl— Lt )
I;:L _kbfl

an

kL—l - kL—l,O

= Op<1); sup
keAL,n

are both Op(57—).

NT

Proof. We will only show the first half, proof of the second half is the same.

It suffices to prove sup ||—— Zt i (fe— Hf)(fu — H f)'|| = Op(2=) and
ke, q NT

Sup ‘ﬁif:iﬁ_lﬂ(ﬁt —HIfi)f{H|| = Op(5-) with |k, —ko| = Oy(1) and

7 . 2

kal - k’L*l ,0 th H,ft y

= Op(1). The former is not larger than + zt T
) in

which is O,(57—) by Theorem 5 and [|U,nr — U, || = 0p(1
NT

Zt:kL,1+1(th—Hlft)f{HL
kL_kL—l

Lemma 9. To prove the

latter, it suffices to show sup
keAL,n

[k—10— C,ki—10+ C] and k, € [k, o — C, k.o + C], where C is some positive integer
(see Baltagi et al. (2017) for more details). For the case k,—1 € [k,—1,0,ki—1,0 + C]
and k, € [k, 0 — C, ko], Lemma 3 of Han and Inoue (2015) is applicable with 7" re-
placed by k, — k,_;. We next prove for the case k,_; € [k,_10 — C,k,_10 — 1] and

= p(ﬁ) for each k,_; €

k, € [k.o+ 1,k o+ C]. Proof of the other two cases are the same.
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Note that in this case z; = fiXo,—1; + € for t € [k, + 1, ki—10], it = fido.i +
eqr for t € [k—10+ 1,k 0] and x; = f{Ao,41: + ex for t € [k o+ 1,k]. Define
wir = f{(Aou—1; — Xoui) for t € (ko1 + 1, ki—10], wie = 0 for t € [k,_10 + 1, k0]
and wi = f{(Aou+1: — Aoyi) for t € [ko+ 1, k], it follows that z;; = f{Ao,.: + €t
wy for t € [k,_1 + 1,k,]. Define X, = (g, 41, xr,), wp = (Wig, ..., wny)', W, =
(Wk, 111y Wk,)y E, = (€r,_ 41, ex ) and recall F, = (fx,_,41,..., fr,), it follows
that X, = FJA{, + E, + W,. Using the same decomposition as equation A.1 in Bai
(2003), we have

- 1
-Hf = Ut -
th Lft ULNTN(]{,’L _ l{fL_l)

+FL/FLA:)Lwt + FL/WLAOLft + FL,WLwt + FL/ELwt + FL,WLQ]
= UJVlT( L17t + Qét + Qét + Qi,t + QLBt + Qé,t + QLH + ngt)(A—88)

[FL,FLAE)L@,: + FL/ELAOLft + FL/ELet

By Lemma 9, ||U, ;|| and || H, || are both O, (1), thus it suffices to show for m =1, ..., 8,

1 k L " — 1
kse%)n P Zt:k,‘_l—i-l Qm,tft H Op((;?VT )-
For m = 1,2,3, the proof is the same as Lemma 3 of Han and Inoue (2015)
2
. 1 k. 3 1
except that in current case we use ——> ", . |fu—H/fi|| = O”(m) and

|H.| = O,(1) for k,—y € [ki—10— C,ki—10— 1] and k, € [k, 0+ 1,k 0+ C]|. These

two are proved as intermediate result in Theorem 5 and Lemma 9, respectively. For

k_ L . / . ~ , ki w fl
m =4, sup —Et_’;f;l Qich is not larger than H Néiﬁo ) (Zt—’“];jl;““ ‘ tH) and
kEALm L =1 L =1 L t—1
2
~ k. r
FFN, | (ZS:;@_IH fis );(Z’jb_kb_ﬁl ||fs||2); 1 (zjil ||A0,L,i||2)%
N(kl, - kal) - kL - kal kL - kal \/N N
1
- 0 7 A-89
k. k.1,
P i1 el

N 2\ 1
kL - kL—l S k'b - kL—l (Zizl ||/\O’L_1’i - AO’L’i“ )2

Pttt Il N 2
+ tlgkLO—Jr;c 1 t <Z¢:1 H)‘o,url,z'—)\O,L,i“2)é

- 0,(X0). (A-90)
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k L ! - ki : é
For m =5, sup || S0 | motdrgerthan [ 532525 | (S55255) ane
LN
1 k. )
k, — k1 Zt:kb_lﬂ I f:fi ]l = 0,(1), (A-91)
FL/WLAOL
N(kb - kal)
< —1 F’ 1 Z'fil ||)\0,L,i||2 %
= & =& ( )
—ko VN N
Zbklol+1‘fbsf/ N
S v ) )
= [ k, —k,_1 (Zi:1 ||)\0,L—17i - )\O,L,iH )2
/ N ,
+Zs k,— 1+1‘fL5f (Z ||)\0H_1,L—/\0M|| )%] 1 <Zi:1|/\”. )%
Fo = Fiy " VN N
1

fis — H'fo]| = 0,(1) for k,_; +1 < s < k,, which can be
proved once Lemma A.2 in Bai (2003) is reestablished with k,_1 € [k,_10—C, k10—
1] and k, € [k, o + 1,k + C]. This is not difficult since in Bai (2003) Lemma

The last equality is due to ’

A.2 is based on Lemma A.1 and Proposition 1, and as explained in the cases m =
1,2,3, we have reestablished these two with k,_y € [k,—10 — C,k,—10 — 1] and k, €
|k,o+ 1,k + C|. For m = 6, sup ‘

keAL,?’]

1 k L / :
TTET Dtk 111 Q67tftH is not larger than

ki wzf/
(Zt";;‘_l;b 17”1 tH). The second and the third terms are both Op(g), as

k /
Dbk, _1+1 Q7S

F'W,
kL_kbfl

L
N

proved in m = 5 and m = 4 respectively. For m = 7, sup T is not
kEAL,n L L—

larger th F i aloefily oy d term is O, (¥ d

arger than m || (= ——)- The second term is O,(*"), as prove

k 712 N k 2
ZsL:kL_lJrl fus )%(21:1 ZSL:h_1+1 €is )%
kb_kal N(kl,_kbfl) )

1 k
kl,_kbfl Zt:kL—l+1 Q§7tf1;/

: _ : 1
in m = 4. The first term is not larger than \/_N(

which is Op(%ﬁ). For m = 8, sup ‘ is not larger than
ke,

ky

t=k, _1+1 Hetfgll
( kL_kL—l )

1 nl
~ F

kb_kb—l 2 ﬂ)

The second term is O,

k, 2 N
Zt/:kbfqu”ft” % Zt k,_1+1 Dim1 e?t % hich i
e Kl P )2, which is

, as proved in m =

5. The third term is not larger than (
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O,(vV/N). Thus sup

keA, y

=Oy(7) form=4,..8 =

1 k
E—k,_1 Zt:kL_1+1 Qin,tft/

Lemma 11 Under Assumptions 1-5 and 10-14, if l;:L — k,o| and l;;L_l —k,_10| are

0,(1), [ar — a1 ‘ = 0p(1) if % — 0 and 2 — 0 as (N, T) — 0.

L

Proof. Similar to Lemma 8, it suffices to show HQ —Q(F,Hy)|| = o,(1), given

= 0,(1), k4 — k10| = O,(1), % — 0 and jTN — 0. This can be

proved following the same procedure as Theorem 2 in Han and Inoue (2015). Here

0

we present the adjustment. First, the notation should be replaced correspondingly,
for example, in Han and Inoue (2015) the sample is t = 1, ..., 7" while here the sample
ist=Fk_1+1,..,k. Next, in Han and Inoue (2015) proof of Theorem 2 relies on
their Lemma 7 and Lemma 8, which further relies on their Lemma 5 and Lemma 6
respectively. Once their Lemma 5 and Lemma 6 are reestablished given k,
O,(1) and
need no adjustment.

We first reestablish parts (i) and (iii) of their Lemma 5. With < —21( — 0 and

j—TN — 0, they are enough. From equation (A-88), we have

10

k,_, — lﬁ—l,o) = O,(1), the proof of Lemma 7, Lemma 8 and Theorem 2

4
H
t ko 1};1[2;_1 Hfq < g3 HUJVIT||4 (Ziil Zt kébljlk}b}Ql t” ' (A-93)
Lemma 5 in Han and Inoue (2015) shows that % k—}cl i " HQ;MH
Op(7 ) —|— O,(57= ) the proof need ;10 adJustme4nt. For m = 3 .8, it can be shown
that k kb41 =0 (%) R . - OP(%)’ kL ko1 - Op(%)v
Zt;kzi’z”?é” = Op(7) and Zt;k;;izﬂ?é’tn = Op(75). The proof of Lemma 6

need no adjustment, but note that it utilized T F” (F — FH)Vnr = Op(52—). Its
NT

counterpart in current case is H IE,,—}EH Zf;,;L_l +1(.th —Hf) f}|| = Oy( 5?;)’ which is
implicitly proved in Lemma 10. =
Lemma 12 Under Assumptions 1-5 and 14, if /;:L — ki+10| and l~€L_1 — k,—10| are

0,(1), we have ||.J, — Jo|| = 0,(1) and ||V.nr — V.|| = 0,(1).
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Proof. The proof is similar to Lemma 9. =

Lemma 13 Under Assumptions 1-5, 10-11 and 14, if |k and |k,

H—l 0 -1 kb—l,O

k.
are OP( )? ];L—}fb Zt Ok 1+1 OP(1> and kO Zt k,o+1 2t = Op(l)'

Proof. We will show the second half, the first half can be proved similarly. It suffices
and '

k
Zt;kbtﬁl vech(J]gutg,,J.—J}5 9.9, J0)
E?L*kLO

k .
Zt;kLO+l vech(Gutd,s—J, 9t 9,1 L)
kL*k/,O

are both

to show H

0p(1). The first term can be proved similarly as Lemma 10. The second term is

not larger than E—+” 17, — Jol|? +2HZ—+” 17, = Jool| || Juoll, Which

k,—

is 0,(1) by Lemma 12. =
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