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Abstract

We introduce a new time series model for public consumption expenditure, tax
revenues and real income that is capable to incorporate oscillations characterized
by asymmetric phase and duration (or dynamic asymmetry). A specific-to-general
econometric strategy is implemented in order to exclude the null hypotheses that
these variable are linear or symmetric and, consequently, to ensure that these
can be parsimoniously modelled. The U.S. postwar data suggest that the dy-
namic asymmetry – either in cycle, either in trend – is effectively a reasonable
hypothesis for government expenditure and tax revenue, but also that a simple
vector model unifying the (different) nonlinearities of each single series is unfea-
sible. Such an “Occam-razor” failure hinders econometricians in building impulse
responses for calculation of fiscal multiplier and is here circumvented via empirical
indexes.
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1 Introduction

The dynamics of the U.S. fiscal variables is one of the key topics in the political and

economic debate. In this framework, the main object of interest in literature is the

fiscal multiplier, which, according to the Keynesian perspective, indicates the marginal

effect of a shock in the Government spending on the aggregated income. Because of

the impactive policy consequences, the estimation of this object is one of the main

objectives of the modern macroeconometrics. The difficulties in the pursue of such an

objective have been exacerbated during the Sovereign Debt Crisis of 2011-13, when

many Countries was facing a so high debt and deficit spending to lead International

Monetary Fund to suggest severe cuts in the public balances that subsequently revealed

unnecessary; see, among others, Blanchard and Leigh (2013).

This has forced economic literature to modify the econometric modelling in favor of a

nonlinear parametrization of the system under investigation; see Auerbach and Gorod-

nichenko (2012, here adopted as benchmark for our analysis), and Caggiano, Casteln-

uovo, Colombo, and Nodari (2015); Ramey and Zubairy (2018), among others. This

new strand of literature assumes that the macroeconomic system moves according to

a Smooth Transition (Vector) Autoregression (ST(V)AR, henceforth). This family of

models assumes that the observables are (at least partially) represented by a nonlin-

ear function (called transition function) depending on at least two parameters – slope

and location – and a transition variable, which links the nonlinear dynamics of the

observables to other variables or lags of the same observables. Asymmetric transitions

are commonly associated to a logistic curve because the sigmoid characterizing that

function ensures that the phases of expansions are steeper than the following phase of

recessions; such “steepness” is the most classical definition of asymmetry in the liter-

ature on business cycle and, to our knowledge, the only one adopted in literature on

fiscal policy.

Other two definitions of asymmetry are equally fundamental, and namely: the “deep-

ness” , occurring if the series undergoes contraction at an accelerating pace until a
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minimum, after which it starts to recover with quickly decreasing acceleration until

it smoothly recovers the peak; and the “sharpness” , occurring when the probability

that the transitions to and from the expansion and contraction phases are not identi-

cal. Dynamic asymmetry occurs when all these definitions of asymmetry holds jointly.

Zanetti Chini (2018) shows that traditional STAR-type models can only incorporate

steepness but not deepness, hence introduces a generalized version of the STAR model

(GSTAR, henceforth) capable to model dynamic asymmetry in the cycle.

Are U.S. fiscal variables dynamically asymmetric? And does dynamic asymmetry affect

the fiscal multiplier? This paper shows that the affirmative answer to these questions

has important consequences in terms of measurement. The next section 2 summarizes

the model and introduce a set of indexes to deal with this methodological problem; the

results are described in Section 3; Section 4 concludes; finally, a separated Supplement

includes econometric details and further results.

2 Methods

2.1 Data and Econometric Modelling

Let consider the triple of economic variables

{G, T, Y }, (1)

where G is the aggregate public consumption, T the total public revenues and Y is the

real output. Such a triple of variable coincides with the one adopted by Auerbach and

Gorodnichenko (2012). The corresponding data (quarterly growth rates from 1947:Q1

to 2008:Q1) are plotted in Figure 1, jointly with the corresponding estimated models

that we are going to discuss.

We model dynamic asymmetry in time series {yi
t}

T
t , where i = {G, T, Y }, by using a
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GSTAR(p) model here described:

yi
t = φ′

zt + θ′ztG(ξ) + ǫt, ǫt ∼ I.I.D.(0, σ2), E[ǫt|Ωt−1] = 0,

F (ξ) =

(

1 + exp

{

−

K
∏

k=1

h
(

ck, st

)

})

−1

,

h(ηt)
.
=























γ−1
1 exp(γ1|ηt| − 1) if γ1 > 0,

0 if γ1 = 0,

−γ−1
1 log(1 − γ1|ηt|) if γ1 < 0,

for ηt ≥ 0 and

h(ηt)
.
=























−γ−1
2 exp(γ2|ηt| − 1) if γ2 > 0,

0 if γ2 = 0,

γ−1
2 log(1 − γ2|ηt|) if γ2 < 0,

for ηt < 0.

(2)

where the T × 1 vector yt is a dependent variable; zt = (1, yt−1, . . . , yt−p)
′, φ =

(φ0, φ1, . . . , φp)
′, θ = (θ0, θ1, . . . , θp)

′ are autoregressive parameter vectors; Ωt−1 =

[yt−1, . . . , yt−p] is the set of histories up to time t− 1, G(ξ)
.
= F (γ, h(ck, st)) is a transi-

tion function – continuous in γ – of the vector of nonlinear parameters ξ = [γ, h(ck, st)],

which is formed by the vector γ = (γ1, γ2) and a function of the K location parame-

ter ck; the transition variable st = yt−d, with d > 0 denoting the delay, and defining

ηt ≡ (st − c) for ease of notation. We consider three types of transition variables:

S1 : st = yt−d, d > 0

S2 : st = xt, xt ∼ MA(7);

S3 : st = t/T.

(3)

The first transition variable, S1, is a classical autoregressive transition variable with

delay parameter determined according to some criterion like the minimal p-value of the

test for dynamic asymmetry. The exogenous transition S2 mimics the one adopted by

Auerbach and Gorodnichenko (2012) and has been adopted for comparison with the lit-

erature. S3 postulates the transition is a linear trend, and thus implies that the model

is dynamically asymmetric around the trend.
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The two equations for h(ηt) model the higher and the lower tail of the transition func-

tion, respectively; so they allow for the dynamically asymmetric behavior introduced by

the slope parameters γ1 and γ2, which control the velocity of the transition in each half

of the same function. When γ1, γ2 > 0 (γ1, γ2 < 0), h(ηt) is an exponential (logarithmic)

rescaling that increases more quickly (more slowly) than a standard logistic function

does. In turn, this logarithmic (exponential) rescaling in the levels is directly connected

to the form of the density function: when γ1 = γ2 = γ, the model nests a symmet-

ric STAR(p) and the sample density tends to concentrate in the two extremes; when

γ → +∞, F (·) nests an indicator function I(st>c), so that GSTAR(p) nests a threshold

autoregression and the distribution of the process degenerates a rectangle-‘U’; finally,

when γ = 0, F (·) nests a straight line around 1/2 for each transition variable and

the distribution becomes symmetric, so that the model nests a linear AR(p). The

requirement that h(·) = 0 when the slope parameter is zero is necessary for ease of

exposition and allows us to build a test for the null of linearity against of dynamic

asymmetry. In our empirical application, we adopt the Specific-to-General modelling

strategy summarized in Supplement.

2.2 Measuring Fiscal Efficiency

Once ŷi
t has been obtained from (2) – (10) we estimate two Static/Dynamic Fiscal

Pseudo-Multiplier Indexes (SFPMI and DFPMI, henceforth):

SFPMI
(1)
t = Ŷt/Ĝt, SFPMI

(2)
t = Ŷt/(T̂tĜt)

DFPMI
(1)
t = ∆Ŷt/∆Ĝt, DFPMI

(2)
t = ∆Ŷt/(∆T̂t + ∆Ĝt)

(4)

where term “pseudo-” underlines the merely empirical nature of the index, which differs

from the with from the theoretical coefficient adopted in the New-Keynesian litera-

ture; see Woodford (2011). The indexes SFPMI(2) and DFPMI(2) serves to clean

the indicator from fiscal revenues, thus giving an idea of the effective amount of the

financial efficiency of public expenditure for investments. Moreover, we compute also
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their cumulated (average) version:

CSFPMI
(1)
t = 1/T

T
∑

t=1

Ŷt/Ĝt, CSFPMI
(2)
t = 1/T

T
∑

t=1

Ŷt/
(

T̂t + Ĝt

)

CDFPMI
(1)
t = 1/T

T
∑

t=1

∆Ŷt/∆Ĝt, CDFPMI
(2)
t = 1/T

T
∑

t=1

∆Ŷt/
(

∆T̂t + ∆Ĝt

)

(5)

The use of these indexes is necessary in light of the difficulties in modelling all the

three variables of interest with the same parametrization and specification via a unique

vector representation, as the next Section is going to explain.

3 Results

We start our empirical investigation by applying the two tests for the null hypotheses

of linearity and dynamic symmetry against the alternative of dynamic asymmetry (see

the Supplement for details) using all the three different transition variables S1, S2 and

S3 and three different delays. According to Table 1, two variables (namely, G and T)

are nonlinear and, in most of the cases, dynamically asymmetric. On the opposite side,

Y is linear. Interestingly, in each test, there are important spreads between different

transition variable: for example, T is nonlinear according to S1, while the nonlinear-

ity cannot be rejected for S2 if considering one quarter delay. Moreover, there is not

perfect correlation among nonlinearity and asymmetry. This seems us an (demanding,

but feasible) issue for the specification of the econometric model, since our experience

lead us to conclude that – limitatly to G and T – a proper choice of the autoregressive

order p and number of transition regimes K delivers good estimates also if the sample

is suspected to be linear according to the linearity test. On the other side – and a for-

tiori in light of the above mentioned differences in nonlinearity testing – the choice of

the transition variable is a economic issue and cannot be delegated to the econometric

mechanics.

These considerations forces us to estimate one dynamically asymmetric and one sym-

metric model for each economic variable and for each of the three transition variables,
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for a total of 18 models. The estimated models are reported in Table 3 of Supplement.

Several facts arises: first, and coherently with the previously mentioned difficulty of the

sample to pass the classical linearity test, many of the parameter of the STAR models

are non-significant, while the majority of GSTAR ones are. Second, the asymmetric pa-

rameterizations is more parsimonious in terms of autoregressive order (3 for STAR, up

to 5 for STAR); in two cases on three (G and Y) the STAR models is characterized by

three regimes (thus, two transition functions, corresponding to labels “G1”, “G2”, “Y1”,

“Y2”, respectively), making the number of parameter to estimate blowing-up; such an

over-parametrization of the STAR model reflects to only slightly higher R2 with respect

to the GSTAR; in the peculiar case of STAR model for T with specification S3, we were

not able to find a sufficiently performing model, also if augmenting the possible lags up

to 7. Third, and most importantly, the form of the estimated transition functions F (·)

plotted in Figure 2 differs significantly among the two main parameterizations as well

as among the three S-specifications: the GSTAR model suggests a common dynamic

symmetry for only Y and G, where an immediate bust during recessions is followed

by a rapid acceleration in expansions; instead, T is a bit a more gradual either in the

accelerating recovery, either in the smooth peak. Differently, the F (·) resulting from

STARs are characterized by extremes oscillations in Y (which was suspected to be lin-

ear), while G and T transitions are extremely smooth; for further details, see Figure 3

of Supplement.

This impossibility to summarize all the three economic variable via unique nonlinear

transition motivates our skepticism in adoption of a vector-type structural modelling:

in fact, an improper transition function would reflect in non-credible impulse-response

functions – which in turn are the final object of interest in the literature. Our indexes

serves to circumvent this methodological gap. Ideally, these indexes are supposed to

be positive (that is, evidencing a clear positive multiplier effect of public expenditure

on economic growth) and, similarly to Woodford (2011), small in magnitude. Our es-

timates reported in Table 2 are almost surprising: although the evidence of a positive

cumulated effect of G (or G-and-T) on Y is sufficient if looking at the overall exercise
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(in facts, 2/10 static and 4/10 dynamic indexes are negative), there is an important

difference among symmetric and asymmetric indexes: an half of the former is negative,

while this results reduces to 1/10 for the asymmetric ones. Similarly the asymmetric

specifications are different also in terms of magnitude, albeit mostly in the dynamic

version. The temporal evolution of the indexes plotted in Figures 4 – 6 of Supplement

indicates that all the indexes are stationary processes with outliers. These last varies

according to the parametrization as well as the S-specification: the dynamically asym-

metric models are globally more stable than their symmetric counterpart – specially in

the static version, whose few outliers therein are relatively small-sized; on the oppo-

site side, the dynamic indexes are characterized by ultra-high sized outliers in either

symmetric and asymmetric specifications, in particular with S2.

4 Conclusions

The U.S. public consumption expenditure and tax revenues are characterized by dynam-

ically asymmetry. An application of the Generalized Logistic STAR model lead us to

conclude that there is a non-negligible spread among the estimated transition function

of each fiscal variable, and, noticeably, among fiscal variables and real income. Secondly,

that the efficiency of public consumption expenditure measured by cumulative indexes

computed by classical symmetric STAR model is ambiguous, and such an ambiguity is

due to the fact that this parametrization is prone to over-evaluate the duration as well

as the magnitudo of recession phases. Our dynamic asymmetric specification allows for

non-ambiguous results. As a consequence, any vector model aiming to summarize the

nonlinear behavior of fiscal variables and understand the business cycle phase-effect on

fiscal multiplier is required to take in account for the presence of several independent,

selective transition functions. Finally, that the selection of the transition variable is

a non-postponable issue. In fact, while the new generation of large dataset publicly

available for macroeconometric analysis is formed by hundreds of variables, repeating

the current analysis is not recommendable. Hence, we invoke further research to arrive
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to a unifying structural model.
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Table 1: Linearity and Dynamic Symmetry Tests

Data G T Y

H0: Dyn. Symmetry Linearity Dyn. Symmetry Linearity Dyn. Symmetry Linearity

d=1

S1 0.0005 0.2187 0.0076 0.0136 0.5188 0.9699
S2 0.0236 0.7008 0.6991 0.8288 0.7176 0.6085

d=2

S1 0.0871 0.1085 1.15e-04 0.1162 0.9201 0.6700
S2 0.1918 0.0783 0.0376 0.0953 0.9703 0.3490

d=4

S1 0.0021 0.0984 0.0011 0.0648 0.1776 0.2825
S2 6.3e-06 0.0431 0.2211 0.2055 0.9969 0.6877

S3 0.0236 0.0.5480 2.7e-06 0.2785 0.4319 0.6085

NOTES: This table reports the p-values of LM statistic (9) of Supplement for all different types of
transition variable and four delay parameters. All the variables are in quarterly growth rates. The
specification of transition variable S3 is a linear trend and, thus, cannot be used in lag determinations.

Table 2: Cumulated Fiscal Pseudo-Multiplier Indeces

Index Type Static Dynamic

Model Dyn. Sym. Dyn. Asym. Dyn. Sym. Dyn. Asym.

Index spec. I1 I2 I1 I2 I1 I2 I1 I2

S1 -1.5865 -1.4418 0.6317 0.2642 -1.4139 1.0653 -7.4466 0.0713
S2 2.1453 1.4530 1.7042 0.9828 -0.1108 0.7714 12.5302 5.6378
S3 1.3862 0.8456 -0.3723 0.0962

NOTES: This table reports the estimated CFPMI indexes in (5) for the case that ŷi is estimated via
dynamically symmetric , and asymmetric model. I1 and I2 label the specification of the cumulative
index without and with T, respectively.
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Figure 1: Data and Fitted models

NOTE: The upper panel plots the GSTARs; the lower panel plots (symmetric) STARs. Colored bands
represent NBER recession dates.

Figure 2: Comparsion of Dynamically Symmetric and Asymmetric Models

NOTE:The upper panels plot GSTAR models; the lower panels plots STAR models; the left-hand
panels plot the nonlinear function versus time; the right-hand panels plot the same function versus
transition variable S1. Colored bands represent NBER recession dates.
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A Supplement (for online publication only)

This Supplement, partially taken from Zanetti Chini (2018), provides additional con-

tents in terms of methodology adopted in the Main Text as well as additional results.

Namely, Subsection A.1 illustrates the test for the null hypothesis of dynamic symme-

try and linearity; Subsection A.2 describes the estimation; Subsection A.3 describes the

modelling strategy; finally Section B gives additional results.

A.1 Testing

According to the definition of GSTAR model given in Section 2 of Main Document, the

dynamic asymmetry of the series is modelled by parameters γ1 and γ2. Hence, a test for

the presence of dynamic asymmetry in the process yt requires the following hypothesis

system:

H0 : γ1 = 0 and γ1 = 0 in (2) of Main Document,

H1 : γ1 6= 0 and γ1 6= 0 in (2) of Main Document.

(6)

On a slightly different perspective, testing for the null hypothesis of dynamic symmetry

requires substituting h(ηt) = ηt in equation (2) of Main Document. In both cases,

the alternative hypothesis remains dynamic asymmetry. In both the cases the idea

of this test is the same as that of Luukkonen, Saikkonen, and Teräsvirta (1988): the

GLSTAR(p) model is linearized via Taylor expansion in order to build an artificial

regression whose coefficients incorporate these two slopes. This linearization leads to

the following auxiliary regression:

ût = ẑ
′

1t
β̃1 +

p
∑

j=1

β2jyt−jyt−d +

p
∑

j=1

β3jyt−jy
2
t−d +

p
∑

j=1

β4jyt−jy
3
t−d + vt , (7)

where vt is a N.I.D.(0, σ2) process, β̃1 = (β10,β
′

1
)′, β10 = φ0−(c/4)θ0, β1 = φ−(c/4)θ+

(1/4)θ0ed, ed = (0, 0, . . . , 0, 1, 0, . . . , 0)′ with the d-th element equal to unit and T3(G) =

f1G + f3G
3 is the third-order Taylor expansion of G(Ξ) at γ = 0, f1 = ∂G(Ξ)/∂Ξ

∣

∣

γ=0
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and f3 = (1/6)∂3G(Ξ)/∂Ξ
∣

∣

γ=0
, G(Ξ) being defined in previous section1. The null

hypothesis is

H ′

0 : β2j = β3j = β4j = 0 j = 1, . . . , p, (8)

The test statistic:

LM = (SSR0 − SSR)/σ̂v
2 , (9)

with SSR0 and SSR denoting the sum of the squared estimated residuals from the

estimated auxiliary regression (7) and under the null and alternative, respectively, and

σ2
v = (1/T )SSR has an asymptoticχ2

3p distribution under H ′

0. A similar argument with

different definitions of ût, β̃1, β1, H ′

0, holds for the other types of F (·).

A.2 Estimation

Estimation of model (2) in Main Document is done by concentrating the Sum of Square

Residuals function with respect to θ and φ, that is minimizing:

SSR =
T

∑

t=1

(

yt − ψ̂
′ξ̃′

t

)2

, (10)

where ψ̂ = [φ̂, θ̂] =

(

∑T

t=1 ξ̃′
t
(γ, c)ξ̃t(γ, c)

)

−1(
∑T

t=1 ξ̃′
t
(γ, c)yt

)

and ξ̃t(γ̂, ĉ) =
[

z, z′
t
G(γ̂, h(ĉ, st)

]

.

Both γ1 and γ2 have been chosen between a minimum value of -10 and a maximum of

10 with rate 0.25 in the first three examples the grid for parameter c1is the set of val-

ues computed between the 10th and 90th percentile of st with rate computed as the

difference of the two and divided for an arbitrarily high number (here, 200).

A.3 Econometric Modelling

In this section we discuss the modelling strategy for a GSTAR model.

The modelling strategy is based on the implicit assumptions that a linear process is

1Notice the difference from similar expressions in Teräsvirta (1994): here τ2 is a vector and ẑ2t

is the double (it was − 1

4
{· · · }). The LM statistic and the terms in the auxiliary regression remain

unchanged.
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a peculiar case of a nonlinear one and, in turn, that the dynamic asymmetry is the

most general case of nonlinearity. Thus, we use a specific-to-general modelling strategy,

consisting in the following 7 steps:

1. Specify a linear autoregressive model.

2. Test linearity for different values of d, and if rejected, determining d in (2).

3. Choose between LSTAR, LSTAR2 or ESTAR by the Teräsvirta’s rule.

4. Test the symmetry of the tails transition function according to the result in Step

3.

5. If the hypothesis of symmetry is rejected, estimate the GSTAR model with the

most appropriate transition function given by step 3.

6. Evaluate the new parametrization by some diagnostic tests.

7. Use the estimated GSTAR model for forecasting aims.

In our examples the autoregressive order p is selected according to Bayesian Informa-

tion Criterion, which is combined with the result with a portmanteau test for serial

correlation in order to avoid a wrong rejection of symmetry hypothesis. This is due to

the fact that the GSTAR model requires a lower autoregressive order with respect to

its symmetric counterpart.

The choice of the type of nonlinear function has not been investigated, being the liter-

ature homogeneously logistic-supportive. For what concerns Step 4, the linear as well

as dynamic symmetry hypotheses are tested by the LM-type test discussed in Section

A.1. The choice of the delay parameter d and the choice of the transition function can

be done with the same procedure adopted in Teräsvirta (1994). In this paper, results

for step 6 are not shown for economy of space, but they are available under request.

Finally step 7 is not part of the aims of this paper.

B Additional Figures and Tables
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Figure 3: Data and Nonlinear functions: a comparison

(a) F̂G versus time
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(c) F̂T versus time
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(d) F̂T versus st
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(e) F̂Y versus time
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(f) F̂Y versus st
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NOTE: This figure plots the estimated transition function of al the variables in consideration against
time (left-hand side panels) and against transition variables S1– S3 (right-hand side panels)
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Figure 4: Estimated FPMIs with transition variable S1

NOTE: Colored bands represent NBER recession dates.

Figure 5: Estimated FPMIs with transition variable S2

NOTE: Colored bands represent NBER recession dates.
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Figure 6: Estimated FPMIs with transition variable S3

NOTE: Colored bands represent NBER recession dates.
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Table 3: Estimation results of Dynamically Symmetric and Asymmetric models.

Specification S1

Variable G T Y

Model Dyn. Symmetric Dyn. Asymmetric Dyn. Symmetric Dyn. Asymmetric Dyn. Symmetric Dyn. Asymmetric

Parameter Value SE Value SE Value SE Value SE Value SE Value SE

φ0 -3.8542 0.1195 0.9672 0.0671 -9.2104 12.2681 -10.3752 2.2592 1.0573 0.3616 -0.2290 0.2114

φ1 -1.2978 65.8271 1.0011 0.0387 0.2032 6.9685 0.2601 0.1606 0.6354 0.2317 0.5252 0.1060

φ2 -129.785 47.9899 -0.1348 0.0328 -0.0249 0.3649 -0.4066 0.0437 -0.3194 0.2081 -0.5224 0.0383

φ3 -7.9140 46.8410 -0.2414 0.1803 0.0549 0.1999

φ4 4.7896 48.3562 -0.5268 0.1932 -0.4344 0.1575

φ5 0.2871 0.2744

θ0 13.2561 0.1024 -1.3346 0.4211 15.3575 20.5251 18.5734 6.2656 -0.1564 0.4198 2.2741 1.5560

θ1 -118,639 8.5797 0.5307 0.1417 -3.4938 5.7683 1.1289 0.2075 0.5258 0.2454 0.9072 0.1811

θ2 0.4296 13.0623 -0.5258 0.1323 1.1568 1.9298 0.0216 0.0707 0.0933 0.2359 0.0292 0.0597

θ3 -0.1320 13.2070 -1.1274 2.3547 -0.2836 0.2296

θ4 0.4958 11.6285 1.9536 3.6901 0.4583 0.1737

θ5 -2.2385 3.9231

γ1 0.6520 0.4009 -6.1500 0.1932 2.7762 3.1240 -6.1500 0.1380 232.035 815.68 -3.1500 0.0942

γ2 0.0476 0.0233 1.2500 0.2017 1.2194 2.0853 -2.2500 0.1615 -0.0823 0.1759

c1 0.3282 4.8790 2.1862 0.1022 0.4132 0.8445 -3.5441 0.1775 0.2533 0.0217 1.0959 0.3704

c2 1.1225 0.5212 1.3091 0.3503 0.3503 0.0217

R2 0.8276 0.8276 0.8144 0.7145 0.8001 0.7799

LogLik. -5.66e+04 -554.68 -1759.34 -3.258,86 -4.6164 -9.0876

S2

φ0 -9.0876 0.9199 2.0368 0.4612 1,3936 0.4701 -0.2376 0.1339 0.8348 0.1686 0.9898 0.2678

φ1 0.0151 0.7059 -1.2747 0.6349 0.7763 0.0899 1.5433 0.0329 1.9264 0.1687 1.2820 0.1054

φ2 0.2719 0.6249 1.5915 0.5040 0.2110 0.1347 -0.5674 0.0249 -0.4717 0.1071 -0.7724 0.2583

φ3 0.5520 0.4005 0.0276 0.1146 -0.1249 0.0727

φ4 -0.3641 0.2832 -0.6677 0.1151 0.0588 0.0755

φ5 0.4200 0.0848

θ0 -1,2743 2.1568 -2.6258 0.5561 -1.9861 0.6500 3.4366 0.8424 0.8355 0.3390 -0.3083 0.3795

θ1 4,5570 1.0620 4.6300 0.3262 0.6720 0.1286 -1.2635 0.2996 -0.5877 0.1417 -0.0284 0.1669

θ2 -2,9702 1.3988 -3.7094 0.2785 -0.5747 0.1741 0.5985 0.1524 0.9471 0.2309 0.4487 0.2376

θ3 -1,0830 1.1229 -0.1145 0.1832 -0.2797 0.2301

θ4 -0,2894 0.6779 0.2749 0.1724 -0.3156 0.1368

θ5 -0.0618 0.1229

γ1 3.2452 1.1147 -6.1500 0.0281 2,120,72 8.40e07 -6.1500 0.0859 1,363.63 2287.85 -3.1500 0.1349

γ2 765.81 1.5e04 -1.1605 0.0239 11.2652 11.8550 1.2375 0.0971 -1.1189 0.1019

c1 1.1225 0.1576 -0.7282 0.0798 -0.0461 0.0335 0.1785 0.0795 0.5640 0.0083 -1.0279 0.4187

c2 1.0504 0.0311 1.3300 0.1077

R2 0.8657 0.8374 0.8044 0.7265 0.8066 0.7759

LogLik. -352.3147 -500.37 -1,900.80 -3,071.37 -3.4629 -10.1257

S3

φ0 -0.5980 2.7391 -44.6727 48.8091 -30.1383 74.6355 -2.9625 8,4927 -5.5562 16.3463

φ1 0.7504 0.4195 4.8616 3.7639 -2.3279 7.8379 2.0589 2.3221 1.6230 1.0817

φ2 0.1036 0.3733 -0.5768 0.3959 5.9505 14.4471 -2.0237 4.2199 -1.0634 1.3341

φ3 0.4318 0.6372 -0.1220 1.5602

φ4 -0.4950 0.5246 -0.0028 1.1414

φ5

θ0 -0.5980 3.0097 91.2742 11.8626 61.5247 16.3987 111.1456 48.2376 12.6395 5.2861

θ1 4.2967 0.4826 -7.0759 1.0369 6.6980 1.3029 -35.3972 26.1797 -0.7331 0.8347

θ2 0.5635 0.4522 0.2354 0.7324 -12.3643 2.0998 75.7201 62.4688 1.11808 0.8132

θ3 -0.8982 0.7196 3.3853 62.2005

θ4 0.7574 0.5903 -4.5736 42.9148

θ5

γ1 2.3982 2.2338 -6.1500 0.0279 -6.1500 0.0582 4.4504 1.8490 -3.1500 0.2112

γ2 0.6187 0.0480 0.0413 0.0562 4.4264 1.7845 0.0413 0.2084

c1 0.5246 0.0250 0.0413 0.0223 0.0046 0.7005 0.2310 0.3004 0.0046 1.3210

c2 0.2410 0.2694

R2 0.8501 0.8342 0.7121 0.7767 0.8099

LogLik. -432.4223 -518.2096 -3,298.42 -2.9341 -9.9040

NOTES: This table shows the estimates of the models here adopted. The Dynamically Symmetric model for T with S3 is not available. All the Dynamically Symmetric specifications have

multiple transitions and only the first one is reported for economy of space.
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