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Abstract

It is generally admitted that many financial time series have heavy tailed marginal distributions.
When time series models are fitted on such data, the non-existence of appropriate moments
may invalidate standard statistical tools used for inference. Moreover, the existence of moments
can be crucial for risk management, for instance when risk is measured through the expected
shortfall. This paper considers testing the existence of moments in the framework of GARCH
processes. While the second-order stationarity condition does not depend on the distribution of
the innovation, higher-order moment conditions involve moments of the independent innovation
process. We propose tests for the existence of high moments of the returns process which are
based on the joint asymptotic distribution of the Quasi-Maximum Likelihood (QML) estimator
of the volatility parameters and empirical moments of the residuals. A bootstrap procedure is
proposed to improve the finite-sample performance of our test. To achieve efficiency gains we
consider non Gaussian QML estimators founded on reparametrizations of the GARCH model,
and we discuss optimality issues. Monte-Carlo experiments and an empirical study illustrate

the asymptotic results.
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1 Introduction

Testing for the existence of moments of financial time series is of crucial importance. A standard
assumption is that prices are nonstationary while returns (or log returns) are (strictly) stationary.
However, there is no commonly accepted assumption concerning the existence of moments of such
returns. Many searchers in financial econometrics argue that stock returns might not admit 4th-
order moments (see e.g. Politis (2007)), while some of them even question the existence of second-
order moments. The existence of moments is central to many applications: in presence of heavy tails,
many statistical tools developed for the analysis of financial time series become invalid. For instance,
using the expected shortfall in risk analysis requires finiteness of the first absolute moment. Long-
run horizons predictions of the squared returns require finite unconditional variance of the returns,
and their confidence intervals require finite fourth-order moments.

The problem of testing the stationarity, or the finiteness of moments, of financial series has been
tackled in different ways in the econometric literature. Loretan and Phillips (1994) investigated
nonparametric methods for testing the constancy of the unconditional variance when the fourth
unconditional moment is infinite. Trapani (2016) proposed a test for testing existence of the k-th
moment of a random variable. A test for second-order stationarity of a time series based on the
discrete Fourier transform was developed by Dwivedi and Subba Rao (2011). Other articles focused
on the estimation of the tail index, as for instance Kearns and Pagan (1997), Jondeau and Rockinger
(2003).

For the log returns, denoted ¢; throughout, the most widely used models are arguably the gen-
eralized autoregressive conditional heteroscedasticity (GARCH) models introduced by Engle (1982)
and Bollerslev (1986), and extended by many authors. Such models are of the form e, = oy1; where
oy is a positive parametric function of the past returns, and (7;) is an independent and identically
distributed (i.i.d.) sequence, 1; being independent of the past returns. Importantly, the distribution
of n; is generally unspecified - the model can thus be viewed as a semi-parametric formulation. The
existence of moments for GARCH-type processes were investigated in several articles. Chen and
An (1998) provided sufficient conditions, and Ling and McAleer (2002a) established necessary and
sufficient conditions for the existence of fourth and higher moments for the standard and asymmet-
ric GARCH(p, ¢) models. He and Terésvita (1999), and Ling and McAleer (2002b) derived such

condition for a general family of non-linear GARCH(1,1) models.



A variety of econometric tools, such as the unit root tests, are available for testing the non-
stationarity of prices. As far as the returns are concerned, strict stationarity testing as well as
the estimation of nonstationary GARCH-type models have been studied by Jensen and Rahbek
(2014a, 2014b), Francq and Zakoian (2012, 2013a), Pedersen and Rahbek (2016), Li, Zhang, Zhu
and Ling (2018). To our knowledge, no statistical procedure is available for testing the existence
of unconditional moments in the GARCH framework. The main aim of this paper is to develop
such procedures for the classical GARCH model. The problem is nonstandard because, except for
the second-order moment condition which solely depends on the volatility parameters, the moments
conditions for GARCH models involve the distribution of the underlying i.i.d. sequence.

We first use Gaussian QML to derive the joint asymptotic distribution of estimators of the
volatility parameters and of moments of the rescaled residuals. A test of the existence of moments
of the squared returns will be deduced. A resampling procedure will be considered in order to
improve the finite sample properties of the test. The validity of this residual bootstrap procedure
will be established. Next, we will show how to improve the power of our tests by using non-Gaussian
QML. In particular, optimality properties will be studied.

The paper is structured as follows. Section 2 is devoted to tests of moment existence based on
the Gaussian QML estimator for the GARCH(p, ¢) model. In Section 2.1, the joint distribution of
the Gaussian QML estimator and a vector of moments of the residuals is derived. Wald Tests of the
2mth-order stationarity are deduced in Section 2.2. Bootstrap-based test are studied in Section 2.3.
Section 3 is devoted to the efficient testing of the 2nd-order stationarity. Tests based on generalized
QML are considered in Section 3.1. Local alternatives and optimality issues are discussed in Section
3.2. Evidence from simulations and real financial time series are provided in Section 4. Concluding

remarks are in Section 5. The proofs are presented in the Appendix.

2 Moment testing based on the Gaussian QML

Consider the standard GARCH(p, ¢) model

€ = Ot
(2.1)
of = wo + D iy i€t + 25—y Bojor;
where (7;) is a sequence of i.i.d. variables, and 6y = (wo, a1, ..., B0p)" satisfies wy > 0,ag; > 0,

Boj = 0. Under the assumption Z§:1 Boj < 1, the variable o7 can be expressed as a function of the
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Figure 1: Existence of moments for the GARCH(1,1) model with Gaussian (top panel) and Stu-
dent(7) (low panel) errors. The bullet indicates a typical value obtained for real stock returns (more

precisely, the value estimated in Section 4.2)



infinite past of €, as 07 = 02(0y) = 02(€2_|,€2 ,,...;00). Figure 1 displays the regions of existence

of the moments, up to the order 6, for the GARCH(1,1) model with two distributions for the error
terms: standard Gaussian (top panel) and standardized Student with 7 degrees of freedom (bottom
panel). While the 2nd-order moment condition (a9 + fp < 1) does not depend on the law of 7,
it is seen that the existence of higher-order moments is very sensitive to the moments of 7;. Note
also that for small values of ag, and for 3y close to 1 (a situation typically reported in empirical
studies and marked in the figure by a bullet), the existence of moments is very sensitive to any
small variation of the parameters. This shows that testing the existence of moments in the GARCH
framework may entail formidable statistical difficulties.

To develop such tests, we turn to the joint estimation of the volatility parameters 68y and a
vector of moments of the i.i.d. noise (7). Given observations €1, ..., €,, and arbitrary initial values
€& and g fori € {1 -¢,2—4¢q,...,0} and j € {1 —p,2 —p,...,0}, we define, for t = 1,...,n
and any 6 belonging to a parameter set ©, 67(0) = wo + > iy api€r_; + Z§:1 ﬁojc}f_j(e), where
57 ;(0) =ayj for t < j, and e = & for t <.

Define the Gaussian QMLE by

1 o - .
0,, = arg min — Zzt(e), where  ¢,(0) =
=1

€

57(0)

log 52(0). 2.2
min +log 57 (0) (2.2)

The following assumptions are required for the strong consistency and asymptotic normality of the
Gaussian QMLE. Let v(Ag) denote the top-Lyapunov exponent associated with Model (2.1) (see
Bougerol and Picard (1992)).

Al: 6y € © and O is compact.

A2: y(Ag) <0, and forall 0 €©, 375, 8; < 1.

A3: 7»? has a nondegenerate distribution and En? = 1.

A4: If p > 0, Ap,(z) and By, (z) have no common roots, Ag,(1) # 0, and agg + Bop # 0.
Ab: 6y € (2), where (2) denotes the interior of ©.

A6: En} < .

The first part of A2 is the necessary and sufficient condition established by Bougerol and Picard
(1992) for the existence of a strictly stationary solution to the GARCH(p, ¢) model. Assumptions



A3 and A4 are made for identifiability reasons in order to get the consistency of 0.,. Assumptions

A5 and A6 are required for the asymptotic normality of the QMLE.

2.1 Asymptotic law of the empirical moments of the rescaled GARCH returns

N

Let the residuals 7, = €;/6y, where 6y = o(€i—1,€1-9,...,€0,€—1,...;0,). We define, for any r > 0,
1 n
fur = Ezmtr, pr = Elne|".
t=1

For any integer m, let f,, = (jio, fi4, .., fom) and p,, = (uo, ft4, .- ., pom)’ . The following result
provides the joint asymptotic distribution of the QMLE and the vector of sample moments of the

residuals.

Theorem 2.1. If A1-A6 hold, and if pam < o0 then
(na —1)J~1 —86oby,

0, —6
GICELD RIS ” , (2:3)
\/ﬁ(ﬂm - lJ’m) _bmoo Am

n !
where 6y = (wo, o1, - . ., g, 0,...,0),

T=E(00,), ¢ =(00), ¢(6)=—

and Ap, = (Gij)i1<ij<m, bm = (bi)i<i<m, with
@ij = paivy) + p2ipojli +J + (pa — )i — 1] — ipoipiair1) — Jp2ipeisny, 1 <45 <m,

bi = p2i — pogir1) + (a — 1)ipg;, 1<i<m.

Remark 2.1. It is worth noting that the asymptotic variance-covariance matrix A,, of the vector of
empirical moments of the rescaled returns does not depend on the parameter 8y. It solely depends

on the moments, up to the order 2m, of ;.

Note that fi, = 1 whence the initial values are such that, for any positive constant K, K62(8,,) =
5?(9;) for some 9; € O (see Francq and Zakoian (2013b), Remark 4). For more general initial

values, the previous theorem yields the following result.
Corollary 2.1. Under the assumptions of Theorem 2.1, we have

Vn(fiy — 1) = 0, in probability as n — oo.



2.2 Testing the existence of 2mth-order moments in the GARCH (1,1)

In the GARCH(1,1) case, 07 = wo + apes_; + Boo7_q, the necessary and sufficient condition for the
existence of E(e?™), where m > 1 is an integer, is
m m ' .
> (7 )bt <1
im0 \'
(see He and Teriisvirta (1999)). Let G(8,p) = > 7 (M) 8™ "ug; (with pg = 1). Under the

assumptions of Theorem 2.1' we have

Vi{G(8, 1) — G(B0, )} 5 N(0,02), (2.4)

where

2 OG(O(], y’m) » OG(O(M y’m) )

T T a(0)

Counsider the 2m-th order stationarity problems

Hy: FE(™)<oo against Hp: FE(e&™) = oo, (2.5)
and

H}: E(&™) =00 against o B(e™) < oo (2.6)

Let the Wald test statistic, with by convention fig = 1,

Vi {Zi (DB — 1

T, = , where &

Om o) T a(f)

and f]m is a consistent estimator of 3,,. The following result is an immediate consequence of the

convergence of T;, to the N(0,1) distribution when > " (’;7’)043531—%2@- =1.

Proposition 2.1. Under the assumptions of Theorem 2.1, a test of (2.5) [resp. (2.6)] at the

asymptotic level a € (0,1) is defined by the rejection region
(>0 1-a)},  [resp. {Th <0 Y (a)}], (2.7)

where ® is the N'(0,1) cumulative distribution function.

'In the GARCH(1,1) case, the first part of A2 reduces to Elog(con? + fo) < 0 and A4 vanishes.



Remark 2.2. As is usual in problems where the null assumption defines an open subset of the
parameter set, the test is in fact constructed for the closure of the null assumption. In other words,

for Hy : > ( )aoﬁ ‘l9; < 1, the asymptotic region satisfies
supgr, limy oo P{T, > ®'(1 -a)} =aq,

where the sup has to be understood as the supremum over all values of 8y and error distributions

such that Hy be satisfied.

Remark 2.3. Proposition 2.1 can in particular be applied for testing the second-order moment
condition, g + Bo < 1. In this case, the test statistic is given by T}, = n(& + 8 — 1)/{(jis —

~—1 ~ . . .
1)e'J e}'/? where e = (1,1)’, and ji4 and J are consistent estimators of 4 and J, respectively.

2.3 Bootstrap-based tests

As we will see in the numerical section, the finite sample distributions of the test statistics are not
always in par with the asymptotic results. With the aim of improving the finite sample perfor-
mance of our tests, we will approximate the test statistic distributions by means of a residual-based
bootstrap procedure. Recent papers dealing with bootstrap inference for GARCH-type models are
Leucht, Kreiss and Neumann (2015), Beutner, Heinemann and Smeekes (2018), Cavaliere, Nielsen,
Pedersen and Rahbek (2018), Heinemann (2019).

We start by presenting the resampling scheme when m = 1 (for simplicity in the GARCH(1,1)

case).

1. For a GARCH(1,1) model, let a compact parameter space ©° whose generic elements are
constrained parameters of the form 6’ = (w,a,1 — a) with w > 0 and 0 < o < 1. Compute

the constrained QMLE

~ N N N
0. = (@, A&, 1 — &) = arg min g AC)
CISCH

and the standardized residuals 7y = 7;/s,, where 7y = et/ét(éc) and s2 = n7tY°0 77

Denote by F); the empirical distribution of these residuals.

2. Simulate a trajectory of length n of a GARCH model with the parameter 6, and distribution
F7 for the i.i.d. noise 7y, compute the unconstrained QMLE o = (w*, &, ﬁ*) of the GARCH

parameter, and compute the statistic S} = &* + 5.



~

3. On the observations €y, ...,€,, compute the unconstrained QMLE 6 = (W, &, 5) and the

statistic S, = & + 3.

4. Repeat B times step 2, and denote by S¥!, ..., S*B the bootstrap test statistic. Approximate
the p-value of the test Hy : Fe? < oo against Hy : Ee? = oo by #{Sﬁj >Sn;j=1,...,B}/B,
and approximate the p-value of the test Hf : Fe? = oo against Hj : Ee? < oo by #{S;‘Lj <
Sp;j=1,...,B}/B

The numerical optimization required for the computation of the QMLE in Step 2, repeated a large
number of times B, is the most time-consuming part of the algorithm. Instead of this step, in view
of (A.1), one can mimic the distribution of the QMLE by using a Newton-Raphson type iteration
(see e.g. Kreiss et al. (2011), Shimizu (2013)). Set

n

0 = 0.+ T3 (0~ 1) du(B), 25)
t=1
where
- 1 054(0) BT
gbt(o) - &t(o) 80 ) Jn - n ;qstht(eC)

and 77,...,n, are independent and F} -distributed. That resampling algorithm is valid in the

following sense.

Theorem 2.2 (Asymptotic validity of the bootstrap procedure). Let a GARCH(p,q) process (€t)
with parameter 8y such that ¢y =1 with ¢ = (0,1,...,1), and i.i.d. sequence (n;) satisfying Al-
A6. Assume also that the distribution of ny admits a bounded density with respect to the Lebesgue

measure. Let 6 be defined by (2.8). For almost all realization (), as n — 0o we have, given (€;),
Vn(SE—1) 5 N(©0,0%), o= (u—1)dJ e

Note that, in Theorem 2.2, 02 corresponds to o2, in (2.4) with m = 1. The previous result thus
shows that the distribution of S} given (e;) well mimics the (unconditional) distribution of S, at
the boundary of Hy, i.e. in the case ¢'6y = 1, at least when n is large. It is also expected that
in finite samples the bootstrap distribution of S} better approaches the distribution of S, than its
asymptotic distribution.

We also give informal arguments for the consistency of the bootstrap: under the alternative

c'0y > 1, the constrained estimator 6. should converge to a pseudo-true value 6, or a set a pseudo-



true values (see e.g. White, 1994), solution of

2
* . €
0, = arg min EJE—(%) + log o2(6)

and the distribution of /n (S} —1) = /nc (9* - 96) = /nc (9* - 03) is also expected to be
bounded in probability under the alternative, whereas \/n (S, — 1) = v/nc <9n - 00) ++v/n(c'6p—1)
tends also surely to +0o0. Hence the consistency of the bootstrap.

For testing the existence of Ee%m when m > 1, we generalize the previous resampling scheme as

follows.

5. Estimate a GARCH(1,1) model and compute fig; = n~1 > 1| H7¢ on the recentred and rescaled

residuals.

6. Estimate a GARCH(1,1) model of parameter 8. = (w., ., 3.) under the constraint Hy :

Yoo (M) ek B g = 1.

7. Simulate a trajectory of length n of a GARCH model with the parameter 6, of the previous
step, and the empirical distribution of the unconstrained residuals for the i.i.d. noise. Compute
the unconstrained QMLE 0" = (&*,&*, 3*) and the statistic S* = it (T)d*lﬁ*m_l,&’z‘l

where [15; is computed on the residuals based on 6"
8. Compute S, = > (") G B ;.
9. As Step 4.

The validity of this bootstrap procedure should follow from the same arguments as those used to
prove Theorem 2.2. A recent paper by Heinemann (2019) establishes the validity of a fized-design

bootstrap for testing the existence of moments for GARCH processes.

3 Efficient testing of 2nd-order stationarity

In this section, we focus on the second-order stationarity test for the GARCH(p, ¢) model. Contrary
to the higher-order moment conditions, the second-order moment condition does not depend on the
distribution of the i.i.d. process. To achieve efficiency gains we do not ounly consider the Gaussian

QML, but also alternative QML estimators founded on reparametrizations of the GARCH model.
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The estimator of the original parametrization (2.1) is estimated in two steps, as in Francq, Lepage

and Zakoian (2011) (hereafter FLZ).

3.1 Generalized QML based tests

Provided that F|n|" < oo, Model (2.1) can be equivalently rewritten as

a=o0in", BRI =1, (3.1)

where nt(T) = n;/{E|n;|"}/". The link between the parameters of the two formulations, (2.1) and

(3.1), is given by

—-2/r (r)
6, = Be), B0~ " R (3.2)
0 I, 0 I,
In particular, the GARCH persistence coefficients [p; are unchanged in the reparametrization. Let
ugr) = E]ny)\s for any s > 0. In the sequel, we omit the upper-script () when r = 2. Let ©(") such

that © = {BM0, 0 c ©"}. We consider the generalized QMLE of Oér)

Y

55:) = argmin I,,(0),

0co(r)
where, for @ € ©),
! r7(0)

t=1
It was shown in Francq and Zakoian (2013b), that under the identifiability constraint F \ny) " =1,

the only QMLE which is strongly consistent whatever the error distribution is of the above form.

Define the standardized returns ﬁt(’“) = -, t = 1,...,n. For any s > 0 let ﬁé’}l =
s ~t(0n )
LS, ‘@(T) , and let
B [ Fandan 0
0 I,

Note that, under appropriate conditions, the generalized QMLE 6,(;) converges to 0((;), not to the
parameter @y of the standard parametrization. Let EW be the two-stage QMLE (2QMLE) of 8y
defined as

9,,=B"8". (3.3)

The next result provides the asymptotic properties of this estimator.

11



Lemma 3.1 (FLZ, Theorem 2.1). Let r > 0. Under Assumptions A1-A6, and if po, < oo, the
2Q0MLE of ¢ satisfies

Jn @M - 00) AN (0, 20”)) (3.4)
with
1 a 2 2 Hor
S0 g™+ =1 - g0 038, o) = (2) (1)),
and 50 = (UJQ,Oé()l, -y Qg 0, e ,0),.

Let the null assumption of second-order stationarity
q P
Hp : Zaol- + Zﬁoj <1, or, equivalently Hp: &0y <1,
i=1 j=1

where ¢ = (0,1,...,1) € RPT4+L and let Hy : ¢’y > 1. Let also the null assumption of infinite

variance: H : ¢/6g > 1, and let Hj : /6y < 1. From (3.4) we have

o~

\/ﬁc/(OTw —0y) £> N <0’0(r)2 — C/E(r)c) ‘

Let (") a consistent estimator of o(™) and let the Wald statistic

o Vb, — 1)
wre () '
The next result is a direct consequence of Lemma 3.1.

Proposition 3.1. Under the assumptions of Lemma 3.1, a test of Hy [resp. H{/[ at the asymptotic
level a € (0,1) is defined by the rejection region

Cr={Tnr >0 1 —a)}, [resp. Ck={Th, <@ ()} (3.5)

3.2 Asymptotic properties under local alternatives

To compare the powers of the different statistic 75, , when r varies, we introduce a sequence of local

alternatives. Around 6( such that ¢’8y = 1, let a sequence of local parameters of the form:

7

where 7 € RPT9+1 Without loss of generality, assume that n is sufficiently large so that 8,, € ©. We

0n:00+

denote by P, r the distribution of the observations (ei, ..., €,) when the parameter is 6y + 7/y/n.

12



3.2.1 Asymptotic local powers
Assume that 7; has a density f which is positive everywhere, with third-order derivatives such that

lim yf(y) =0 and lim 2f'(y) =0, (3.6)

ly|—o0 ly|—o0

and that, for some positive constants K and 9,
f/ / f/ "
(%) |+ |(5) o)< x (141), (3.7

Elm|® < . (3.8)

I 9
\y!‘f(y)‘w

These regularity conditions are satisfied for numerous distributions?.

Proposition 3.2. Under the assumptions of Proposition 3.1 and under (3.6)-(3.8), the local asymp-

totic powers of the second-order stationarity tests (3.5) are given by

/
lim P, (C) =040 (a)+ S\ for >0, (3.9)
n—oo o)
and
: * -1 C,T /
lim P, - (C;) =@ P (a) — for T <0.
n—oo o(r)

Comparison of the asymptotic powers of the second-order stationarity tests (3.5) when r varies
thus boils down to comparing the coefficients ¢("); the smaller the latter, the more powerful the

test C,.

Corollary 3.1. Let [r,7] such that ro = argminy, 7 g(r) is well defined. Then, within the family
{Cy,r € r,7]} (resp. {C),r € [r,T]}), for testing Ho (resp. Hy), the test Cy, has the highest local

asymptotic power, uniformly in T.

Remark 3.1. The optimal value rg of » depends on the errors distribution, and is also optimal
for the estimator ém of 6y (see FLZ). In the Gaussian case, unsurprisingly, rog = 2, but for other
distributions, the tests based on the Gaussian QMLE are far from optimal. For instance, in the
case of a Student ¢(v) distribution, rq is strictly less than 1 for small values of the degree of freedom

v, and increases to 2 as v goes to infinity.

Remark 3.2. It has to be noted that a minimum of g over the positive real line may not exist
for particular distributions of 7; (see FLZ, Example 2.3). In practice, rg is not known but can be

consistently estimated under appropriate assumptions (see FLZ, Theorem 3.1).

%in particular the Gaussian distribution (§ = 2), the Student’s distributions with v > 4 degrees of freedom (§ = 2).
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3.2.2 Optimality issues

Corollary 3.1 allows to determine optimal tests within the class of QML tests of critical regions C,.
(or C¥). In this section we provide an upper bound for the local powers which, if it is reached,
characterizes optimal tests. Optimality means "uniformly most powerful unbiased (UMPU)" (see

van der Vaart (1998)).

Proposition 3.3. Let a strictly stationary GARCH(p, q) model and assume that the error density
[ satisfies (3.6)-(3.8). Let vy the Fisher information for scale

= [{1+yf' W)/ fW)} fly)dy < oo.

Then, any test whose critical region satisfies

c’T\/ﬁ
lim P, . (C :@{qfl a +7} for T >0, 3.10
Tim_ Py (C) (o) + AL (3.10)

ts UMPU for testing Hg against Hy.
As a consequence, the test based on the Gaussian QML density is optimal in the following case.

Proposition 3.4. Under the assumptions of Proposition 3.2, the second-order stationarity test (3.5)

with r = 2 is asymptotically locally UMPU when the density of n; has the form

a® 2 &
fly) = e Wyt a>0, I'(a :/ tv " tetds. 3.11
(y) () |yl (a) ; (3.11)

4 Numerical illustrations

To illustrate the finite sample properties of our test statistics we consider simulated and real financial

data.

4.1 Monte-Carlo experiments

In this section, our aims are to (i) study the performance of the tests of Section 2.2 for the existence
of 2mth-order moments; (i) use the bootstrap procedure of Section 2.3 to see whether the finite
sample properties of the tests are improved; (iii) look for efficiency gains by implementing the

generalized QML of Section 3.
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We first simulated N = 1000 independent trajectories of size n = 2000, 4000, 8000 of a
GARCH(1,1) process with parameter (wg,ag,30) = (0.5,0.105,0.87) and 7 ~ N(0,1). In this

setting, we have

3 (T‘) b B i — 1 = —0.025, —0.027,0.001,0.073, 0.216, 0.482
=0

form =1,2,3,4,5,6 respectively. Therefore the moments of order 2m are finite for m < 2 and they
are infinite for m > 3. Table 1 shows that, very often, the tests defined by (2.7) correctly detect
that Ee?™ is finite for m < 2 and infinite for m > 4. For m = 3, one cannot conclude in general,
which is not surprising since S := Y7 (")’ 8™ pg; is very close to 1 when m = 3. Note also
that, for a correct decision, the sample size n needs to be quite large. A first explanation for the
need of large samples is that the parameter (g, 8y) = (0.105,0.87) of the generated GARCH model
is located in a region where a slight variation of the parameter may entail important modifications
in the moments existence (see our comments of Figure 1). Another possible explanation is that the
finite sample distribution of the test statistic S, is far from its Gaussian asymptotic approximation,
as will be seen in the following experiment. We simulated N = 1000 independent trajectories of
a GARCH(1,1) process with parameter (w,a, ) = (0.5,0.10,0.90) and 7; ~ N(0,1). Note that
the parameter of the simulated model stands at the boundary of the region of existence of the
second-order moment. On each simulation, the GARCH model has been estimated and the statistic
Sp =da&+ B used to test the existence of Ee? has been computed. Figure 2 shows a kernel density
estimation of the distribution of the estimator S,, of S = 1 for n = 2000 and n = 8000. Even for
the large sample size n = 8000, the distribution is clearly negatively skewed, and thus is not well
estimated by the Gaussian asymptotic distribution. Other numerical experiments, not presented

here, reveal that the problem may be even more pronounced when testing moments moments of

order 2m > 2 and/or when 7 is not Gaussian.

Table 2 is the analogue of Table 1, but uses the resampling algorithm and rejects the null when
the estimated p-value is smaller than the nominal level. The two tables are quite similar but, as
expected, the empirical relative frequency of rejection is closer to the nominal level when m = 3 (i.e

S is very close to 1).
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Table 1: Relative frequency of rejection of Ho : Ee;™ < oo against Hy : Ee;™ = oo or of H} : Eei™ = oo against
H; : EE¥™ < oo at the nominal level o = 5% or 10%. The null hypothesis Hy is true for m = 1,2 and false for

m =3,...,6, the null H{ is true for m = 3,...,6 and false for m =1, 2.

Null n o m=1 m=2 m=3 m=4 m=5 m=6
Hy 2000 5% 0.0 0.0 1.2 144 35.8 48.9
10% 0.0 0.0 4.5 30.6 60.5 80.6

4000 5% 0.0 0.0 24 35.9 77.1 93.1

10% 0.0 0.0 6.4 53.4 90.0 98.5

8000 5% 0.0 0.0 3.0 66.8 99.0 99.9

10% 0.0 0.0 6.9 79.6 99.6  100.0

Hy 2000 5% 97.5 48.1 7.9 0.7 0.1 0.1
10% 99.8 65.9 15.7 1.8 0.1 0.1

4000 5% 100.0 72.7 7.3 0.1 0.0 0.0

10%  100.0 85.3 14.7 0.4 0.0 0.0

8000 5% 100.0 94.1 6.7 0.0 0.0 0.0

10%  100.0 97.3 14.5 0.0 0.0 0.0

n=2000 n=8000
o
m —
o |
©
o
O —
o |
3
o |
o | fre}
I3y
o o - - o o - -
T T T T T T T T
098 099 1.00 1.01 0.990 0.995 1.000 1.005

Figure 2: Empirical distribution of S,,.
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Table 2: As Table 1, but the resampling algorithm is used instead of the asymptotic distribution.

Null n o m=1 m=2 m=3 m=4 m=5 m=6
Hy 2000 5% 0.0 0.1 3.6 24.8 50.2 72.9
10% 0.0 0.1 8.3 38.4 67.6 86.8

4000 5% 0.0 0.0 6.3 42.9 81.5 94.7

10% 0.0 0.1 11.0 60.2 89.7 98.6

8000 5% 0.0 0.0 4.3 68.3 97.9 99.8

10% 0.0 0.0 9.1 81.5 99.4  100.0

Hi 2000 5% 83.3 31.2 4.3 0.6 0.0 0.0
10% 95.1 48.9 9.7 1.3 0.1 0.0

4000 5% 98.9 01.9 4.5 0.1 0.0 0.0

10%  100.0 69.8 10.2 0.7 0.0 0.0

8000 5% 100.0 81.8 2.3 0.0 0.0 0.0

10%  100.0 93.3 10.2 0.1 0.0 0.0

Now we turn to tests based on non-Gaussian QML. Figure 3 displays the function

- (5)

for r € [r,7] when 7y ~ N(0,1). In this distribution, the optimal value ro of r, i.e. the point where

the minimum value of g(r) is reached, is 79 = 2. One can see that arg min,. g(r) is indeed close to 2
when n is large enough and 7 is not chosen too large. It is actually necessary to impose an upper
bound for r because, as shown in Lemma 3.1 of FLZ, when n is fixed, §(r) tends to zero as r — oo.

Table 3 presents results for tests of the existence of second-order moments on 1000 independent
simulations of length n of a GARCH(1,1) process when 7, follows a GED(0.3) distribution (normal-
ized so that En? = 1). When ag = 0.1 and By = 0.8 we have ag + By = 0.9 (thus Hy := Fe? < oo is
true), when ap = 0.105 and Sy = 0.87 we have ag + By = 0.975 (thus Hy is true), when oy = 0.105
and By = 0.895 we have ag + Sy = 1 (thus we are at the boundary of Hy), when oy = 0.145 and
Bo = 0.88 we have ag + Sy = 1.025 (thus Hy is false) and when oy = 0.15 and Sy = 0.9 we have
ag + Bp = 1.05 (thus Hy is false). The columns "QML" are obtained by applying the tests defined
in Proposition 2.1 in the case m = 1, based on the Gaussian QMLE (see Remark 2.3). For the

columns "gQML", we consider the test defined in Proposition 3.1, based on the generalized QMLE
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Figure 3: Empirical estimate of the function g(r) when the GARCH innovation n; ~ N(0, 1).
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Table 3: Relative frequency of rejection of Ho : Ee¢f < oo against Hy : Ee¢f = oo or of Hf :

Ee} = oo against

H} : Fe? < 0o at the nominal level a = 5% or 10%, using the Gaussian QML or the generalized QML methods.

(040750)
Null n
Hy 2000
4000
8000
H 2000
4000
8000

!
5%
10%
5%
10%
5%
10%
5%
10%
5%
10%
5%
10%

(0.1,0.8)
QML gQML
0.0 0.0
0.2 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.1 0.0
6.5 844
256 91.1
351 984
69.8  98.7
87.2  100.0
94.6  100.0

(0.105, 0.87)
QML gQML
02 0.0
08 04
01 0.0
08 02
02 0.0
08 0.1
22 335
16.6 474
13.7 441
356  56.1
313 58.7
465  69.0

(0.105,0.895)

QML gQML
0.4 1.8
2.8 5.3
1.2 1.6
4.5 6.3
2.1 3.1
6.2 7.8
0.7 104
6.8 156
55 101
175  16.2
8.2 7.6
154 133

(0.145,0.88)
QML gQML
2.6 8.9
9.7 224
6.3  21.0
193 371
148 433
31.2  61.6
0.5 2.9
4.2 5.0
1.3 1.3
4.3 1.9
1.4 0.2
2.5 0.9

(0.15,0.9)
QML gQML
9.9  41.3
271 63.2
33.0  76.7
569  88.3
675  96.4
83.1  98.6
0.4 0.4
1.4 0.8
0.1 0.0
0.5 0.0
0.1 0.0
0.2 0.0

where 7 is replaced by the minimizer of §(r) for r € [0.001,2]) (see Remark 3.2). For both tests,

except on the boundary, the rejection frequencies are satisfactory with a clear advantage (for all

except 2 cases) for the gQML. For parameters sufficiently far from the boundary, frequencies of

rejection of the alternative hypotheses are high. The tests of Hy appear conservative, the empirical

probabilities of incorrect rejection being never greater than the nominal level. On the contrary, the

tests of Hy generally over-reject the null. A bootstrap procedure was implemented, with the aim

of improving the results under the null assumptions. To reduce the computational time, we only

implemented the bootstrap for a subset of the parameters and sample sizes. The results reported

in Table 4 show that, as expected, the errors of first kind are better controlled.
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Table 4: As Table 3, but resampling algorithms are used instead of the asymptotic distributions.
(v, Bo) (0.1,0.8) (0.105,0.895) (0.15,0.9)
Null n a QML gQML QML gQML QML gQML
Hy 2000 5% 0.3 0.0 2.7 43 210  41.0
10% 1.0 0.1 6.7 8.8 40.0 59.6
H; 2000 5% 14.2 31.9 3.6 3.1 0.2 0.5
10% 30.7  51.1 8.1 7.1 0.7 0.6

price return
o |
© o |
0 |
Yo}
o | 0
o
0
)
O —

o |
=
0 _| 0 |
™ |
o |
[ap] o i

T T T T T T T T T T T

0 1000 2000 3000 4000 0 1000 2000 3000 4000

Figure 4: Total stock price and return from 2001-07-16 to 2018-09-21.
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4.2 Empirical study

In this section, we consider the daily stock returns of the French energy company Total SA, which
constitutes one of the main components of the CAC40 index. The sample path over the period
2001-07-16 to 2018-09-21 is displayed in Figure 4. On the return series, the estimated GARCH(1,1)

model is the following (the estimated standard deviations are into brackets):

& = 0.035(0.009), @& = 0.083(0.011), A3 = 0.903(0.011)
fiu =4.1(0.3), fig =41.0(12.5), fis = 833.2(482.5),

fino = 24572.4(18530.0),  fi12 = 844199.0(711993.3).

The statistics T}, are respectively equal to —2.96, —0.69,1.15,1.62,1.45,1.19 for m = 1,...,6. This
provides strong evidence for the existence of moments of order 2, and some evidence of non existence
of moments of order 8. Figure 5 displays, for m = 1,...,6, the kernel density estimator of the
distribution of S,, under the null that § = 1. These estimators were obtained by using B = 1000
replications in the above-described resampling algorithm. The value of S, computed from the
observations is represented by the vertical line on the plots. A value of 5, on the left tail of the
distribution is a sign that Ee?™ is finite. Conversely, a value of S, in the extreme right tail of
the distribution indicates that Ee?™ is likely to be infinite. From this figure, we conclude that
Ee? should be finite and Ee? should be infinite, which reinforces the conclusions drawn from the
asymptotic theory. In view of Figure 1, it is not surprising that we cannot conclude concerning
the existence of moments of order 4 and 6. Indeed, the estimated value belongs to a zone of the

parameter space where the different moment conditions are almost undistinguishable.

5 Concluding remarks

Testing for the existence of moments is particularly important for financial times series, whose
distributions are thought of as being heavily tailed, even if there is no consensus in the literature
about how moments really exist. GARCH models offer a framework for such tests because: i)
the existence of moments is explicitly characterized in terms of the volatility parameters and the
moments of the errors distribution and ii) a sound theory of estimation is available for such models.

Contrary to alternative approaches (e.g. the extreme value theory) for studying the tails of returns,
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Figure 5: Bootstrap estimates of the distribution of S;, when S = 1 (kernel density estimator) and observed

value of S,, (vertical line).
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the dynamics does not constitute a "nuisance parameter": on the contrary, the dynamics of the
series (i.e. the serial dependence) is used to estimate characteristics of the marginal distribution.

In this paper, we have proposed tests for detecting whether the 2mth moment of a GARCH
process is finite. We used QML approaches which do not rely on any distributional assumption on
the error process. We derived the asymptotic distribution of tests based on the Gaussian QML,
as well as tests relying on a reparametrization of the model enabling the use of alternative QML.
We also discussed the choice of an optimal reparameterization. In this article, we focused on the
classical GARCH(p, ¢) model but it is clear that various alternative specifications of the conditional
variance (GJR-GARCH, TGARCH, ...) could be handled in a similar fashion.

A general conclusion from our study is that determining if a given moment of a GARCH series

exists is a difficult statistical problem. 3

The bootstrap versions of our tests bring significant
improvements in terms of size but, as expected, do not improve powers. Even locally optimal tests
may be far from conclusive for moderate sample sizes. This suggests that one has to be cautious in

assessing the existence, or non-existence, of moments of financial time series.
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Appendix: proofs

Proof of Theorem 2.1

By Francq and Zakoian (2004) Theorems 2.1 and 2.2, 6,, — 6, a.s. and

. 1 — 1 0c2(0
Vii(0u=0) = =S (1-0) 700) 4 op)
t=1 t

5 N0, (ke — 1D)J 7). (A.1)

Let n(0) = etat_l(et_l, €_2,...;0), m(0) = etat_l(et_l, ey €1, €0, €1, .. 0),
1 — § 3 I o
(@)= =D mO)". An(0) =~ li(6)I"
=1 t=1

Using (4.6) in Francq and Zakoian (2004), and arguments similar to those used to prove i)

in their Theorem 2.1, it can be shown that
,&r = ,ar(én) = ,ur(én) + OP(n_l/2)- (A2)

A Taylor expansion gives, for 8* between 6,, and 6,

Opr(67) 2 I (60)

W(en —00) = 1, (60) + W(én —0o) + OP(”_1/2)(A-3)

:ur(én) = ,UT(OO)_I_
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where the second equality follows from (A.1), with

Opr (0 1 90f(60) —r
001 - Z‘ t| Ut 00’ - 9 MT¢ +0P(1)7

and ¢ = E (¢,). This expansion, together with (A.3)-(A.2), gives
A —r ) _
Vil = 11(60)) = =1 ®'V/7 (8= 60) + op(n ™),
and thus

Vi = pr) = % ;(\MT — ) — gﬂr(ﬁ/\/ﬁ <én - 00) +op(n=1?%).

In view of (A.1) we thus have,
- IR 171 2 ~1/2
\/ﬁ(l'l'm_p’m):%Z(me_um>+ym¢'—’ (1_77t)¢t+0P(” )7
=1

where Z; ., = (2, nt, . 02 Ui = (o, 2084, + . ., Mptan,)'
The asymptotic normality in Theorem 2.1 follows by the Wold-Cramer device and the
central limit theorem for martingale differences. Using the equality ¢'J ‘¢ = 1 (see Remark

3 in Francq and Zakoian (2013b)) we have,
Varo { Vi, = B)} = Var(Zim) + E[Zym(1 = 1)), + v E1Z} (1= 0))] + Vi, (g — 1),
and

Covas (vt (8 = 60) Vit = )} = =T " GLE{(L = 1) 21} + s = D).

The conclusion follows by noting that J ¢ = 0. O

Proof of Corollary 2.1

It suffices to remark that the asymptotic law of \/n(f1, — 1) is degenerate: indeed, by = a;; =
a; = 0 for all 7 and j. O
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Proof of Theorem 2.2

We start by showing a lemma.

Lemma A.1. Suppose that the assumptions of Theorem 2.2 are satisfied. Conditionally on
almost all realizations (e;) of the GARCH (p, q) process, the distribution F' of the standardized
restduals tends to the unconditional distribution F' of n,. Moreover, for almost all realizations
(€:) and any A € [—00,00), as n — o0

%Zﬁfl,ﬁM: / 2 F(dz) — / 2 F(dx). (A.4)
t=1 A

A

More generally, for any real function h such that |h(z| < ax* + b where a,b > 0, and the set
Dy, of its discontinuities verifies P(n, € Dy) = 0, we have

/ h(z)Fx (dz) — / h(z)F(dz). (A.5)

Proof of Lemma A.1. The proof is inspired by that of Lemmas 8.6 and 8.7 in Francq,
JimATnez-Gamero and Meintanis (2017). Let 1,(8) = €,/0,(8) and 7%,(8) = ¢,/5,(0), so that

~

n = 1:(6.) and n: = 1:(6). In Francq and Zakoian (2004), it is shown that
sup |o4(0) — 5,(8)| < Kp', (A.6)
0co

where, here and in the sequel, K denotes a generic positive variable depending on {n;,t < 0}

and p denotes a generic constant belonging to [0,1). We thus have

R K
sup |n:(0) — 7:(0)] < —p'|es]
0cO W

where w is a positive lower bound for w over the compact set ©. By the mean value theorem

o\ (977t(9n) e
nt(00> =T + 80/ <90 - 90) )

with 6,, between 90 and 0. In Francq and Zakoian (2004), it is also shown that for any d
there exists a neighborhood V' (6y) of 8, such that

0.4
E s |29 oo Baup [60)]]" < 0. (A7)
0V (8o) 01(0) 0€O
This entails that
() ' ¢(6o)
su = su 0 =u )
9ev£o) ‘ 00’ GEV(I;O) 0:(0) PO o
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where u; € F;_; and Eu,ﬁl/2 < oco. We thus have

i =l < K (o + [0 = 00| ) el (A8)

for n large enough. It follows that, for almost all sequence (), or equivalently almost all

sequence (1),

1 & 1 o, 2 — .
Siz5an+g2(m—m)2+52m(m—m)—>1
t=1 t=1 t=1
as n — 0o. Since
. 1 1
Ut—ﬁtzs—(ﬁt—ﬁt)‘i‘(s——l) M, (A.9)

we have
15— me) < (0" + an) velmil,

for n large enough, where v; = 2Ku; + 1 and a,, = ‘

8.~ 6o + (L ~ 1) tends to 0. For all
r € R, alle >0 and all M > 0, we then have

IN

| Li<a) — Lim<a)] L (p+am You el e -+ (ot +an Yo}

< lay t lapse T Lpsar,
with the event
A = {x— (pt—i—a) vM <mn <x+ (pt—i—a) vtM}.
For t > loge/log p, we have A; .y C Age pr with
Ay ={r—evyyM <n <x+ecv,M}.

Taking d > 2, we have

x+eve M

ElAs,M =LE (1AE,]W | ‘Ft—1> = E/

x—eve M

fly)dy < 21&&{@( f(y)eM Ev,.

For all K > 0, we thus have a small € > 0 and a large M > 0 such that

E {1A25,M + 1g,5e + 1|17t\>M} < K.
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It follows that, for almost all sequences (¢;), we have

o1
lim —
n—oo N,

=1 t=1

We have shown that, for almost all (¢;), F* weakly converges to F.

Now note that by (A.8) we have
1~
- E |7 = mel" — 0
n
=1

for k = 1,2, 3,4, assuming without loss of generality that d > 8. Since %Z?:l Nt — py, this
implies
1<,
. Z Ny = Ha.
n
=1
We then obtain (A.4) with A = —oo from (A.9) and the convergence of s, to 1.

By the continuous mapping theorem, given almost all sequence (¢;), a random sequence
(X, Y,) with uniform distribution on {(A{, h(7;)), t = 1,...,n} converges in distribution to
a random vector (X,Y) = (n?, h(n)) where n ~ F. Having shown (A.4) with A = —oco, we
already know that E(X, | (¢)) — EX. Theorem 3.6 in Billingsley (1999) then shows that
the sequence X, is uniformly integrable, given (¢;). By Theorem 3.5 in Billingsley (1999), to
show (A.5), that is E(Y,, | (¢;)) — EY, it remains to show that Y, is uniformly integrable,
which is obvious because |Y,,| < aX,, + b. The proof of Lemma A.1 is complete.

Now we turn to the proof of Theorem 2.2. We have, in view of (2.8),
Ax a 1 «
V(S —1) ='vn (0 - ec) SN i
Vi 2™

with &, = (nf2 — 1) Qgt(éc) The index n in &;, emphasizes that the distribution F’ of n;, as
well as 6., depend on n. Let @, = (/2 — 1) ¢;(6,). In view of (A.6) and a similar inequality

for the derivatives, we have

sup
6O

#:(8) = 64(0)| < Kp'w,

where u; 1= supgg ¢+(0) + 1 admits moments of any order. It follows that
K o

< —

Vi
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as n — oo, noting that the previous series is a.s. finite because its expectation is finite.
Moreover, by the standard arguments of Francq and Zakoian (2004), it can be shown that
J,, converges to the invertible matrix J = E¢,¢;(0y) as n — oo.

It thus remains to show that, conditional on (),

1 < d
> @ SN0, (- 1)) (A.10)
VS
Note that, conditional on (¢), for each n the random vectors @i ,,, 2, ... are independent

and centered, with finite second-order moments. From Lindeberg’s CLT for triangular arrays
of square integrable martingale increments, and the Wold-Cramer device, it suffices to show

that for any A € R3, X # 0,

1 n
- Z\/ar (N ,) = (= HDNIX >0 asn — oo, (A.11)
t=1
and for all e > 0
1 n
g Z E <{)\/wt7n}2 1{‘)‘/mt7n|2\/ﬁ€}> —0 asn — oo. (A12)
t=1

Note that, given (), only the term 7/ is random in @ ,. Moreover, if n ~ ¥, then En =0,
En? =1 and, by (A.4) in Lemma A.1, En* — 1y as n — oo. Given (¢), as n — oo we thus

have
VarNa,, = {qut(@c)}z (Bt —1) = (N} (s — 1).

Moreover, for all £ > 0 there exists a neighborhood V'(6y) of 8, such that

1 n
lim — E sup
n—oo M, —1 0cV ()

{(N¢,(0)} — {(N,(00)}| <.

The previous result is obtained by using the ergodic theorem, the continuity of 6 —
E[{X$,(0)}" — {N¢,(60)}"
neighborhood. Now the consistency of 6. and the ergodic theorem entail (A.11), noting that
under A2 and A4, 0 < py — 1 < o0.

Now we turn to the proof of (A.12). Given (¢;), for some neighborhood V'(6,) of 8, and

, the dominated convergence theorem, and by shrinking the
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n large enough we have

2
EAN® 0} 1 nw, 1> vie)

/ 2
< I{SUPeeV(eo) supt21|)\’q,’>t(0)|>0} OGS\}']-(I;O) Sthl) {A ¢t(0)}

x FE

;21> Ik
h \/Supaevwo) supy>1 | N é¢(6)|

211 . (A.13)
B |

For any A > 0 there exists n4 such that if n > n,4 then the expectation in the right-hand
side of (A.13) is bounded by

B ‘77:2 - 1‘2 1{\n:2—1|2A}'

By Lemma A.1, this terms tends to

/|9E2_1|>A }:Bz — 1‘2F(d:v)

which is arbitrarily small when A is sufficiently large. We then obtain (A.12) by already

given arguments. O

Proof of Proposition 3.2

Under the strict stationarity condition 79 < 0, Drost and Klaassen (1997) showed that, for
standard GARCH, the log-likelihood ratio A, ((6,,600) = log Ly, ¢(6,,)/ Ly ¢(0) satisfies the
LAN property
1 ~y
A 5 (0,,00) = T'Sp £ (0) — §T/Jf7' +op,, (1), (A.14)

where S, ;(80) = N'{0,3;} under Py, as n — 0o and J; = LJ.

Note that the so-called central sequence S, ; is conditional on the initial values. In the
stationary case, Lee and Taniguchi (2005) showed that the initial values have no influence
on the LAN property. Let the functions

a) =10k o) wa we)=1+2l0 0 (4) o
f f f
We have

Sn1(60) = 5—= Zgl(nt)¢t (A.15)



and thus
1 ~
Ay (6, 600) = 2\/, Zgl () §T,Jf7' + op,, (1). (A.16)

By FLZ, letting ¢\ = ¢,(6") and ¢ = E¢\",

R N (R T R T A W UR O L sl A B
n /\(7” _ (7, - (T) 1 \/ﬁ (,,.) . P )
0, —6, 0 {J"} =1 \ P |77t | 1
where J™ = E (%¢)§T)¢)§T)/). We also have
f(c@m—l)
= VndBY6,’ — \/ndB" O(T
= c'B(T’)\/ﬁ(O T) —6\") + /(B — B(T’))as)
() (r)
, fiy), — p
ZQOZ ¢B" | /n A?T (27’ + op(1)
0, —0
n (r))2 (r)
r r r r)’ r ) — 1 |nt | )
= (o) {-alupe + B gy ) D e +op(1)
=\ @ <|77t | 1)

where ao =317 1%1 Let 8y = (wo, 201, - - -, @og, 0, - - ., 0). Noting that

—2/r r r r r T r r rg’ r ya)
) = o) = uilag, ¢ =BV, IV =2BYIBY, 208" =8,

Vn(c'0,, —1)

2/r : 1
= <M3/TQ0 %{ O‘ouT/T90+CJ (B! })TZ: 'l;(r)gbin(mr)_l) +op(1)

- Z + 2 ) Z o (10

-1).

Let P, . the distribution of the observations (ey,...,€,) when the parameter is 6y + 7//n.
Under P, o

T, 0 1 ¢
’ LN : , (A.17)

At (6 + 7/+/n, 6o) —Lr'Jr ¢ YrJT



where, using the equality J@, = ¢,

1 2 2
=5 {QOT/Q’) (kz - ;h) + C/T;kr} )

and k., = F { <|%‘T - 1) g1 (771)} = iE {Im["g1(m)} = —r (the latter equality is straightfor-
wardly obtained by integration by part). Therefore, ¢, = :

CT
0'(7') ‘

Proposition 3.1 shows that
lim Pn’o(cr) = .

n—oo

Le Cam’s third lemma (see e.g. van der Vaart, 1998, page 90) shows that
T SN N(e, 1), under P, ..

The conclusion follows. O

Proof of Corollary 3.1

Using the fact that J—* —50% is semi-definite positive (see FLZ), minimizing 0" is equivalent

to minimizing g(r) with respect to 7. O

Proof of Proposition 3.3
By (A.17), we have

Ayt (60 + 7/v/n, 6o) LN <—L§fT/JT, %T/JT) under Py,

which is the distribution of the log-likelihood ratio in the statistical model N {7‘, 4J_1/Lf} of
parameter 7. The so-called local experiments {L,, ((6p + 7')//n), T € RPTT1} converge to
the gaussian experiment {N (7,4J7"/i;) , 7 € RPT7H1} (see van der Vaart (1998) for details
about the notion of statistical experiments).

The second-order stationarity test in (3.5) corresponds to the test
H,,: d7=0 against H;,:c7>0.

in the limiting experiment. The UMPU test based on X ~ N (T,4J_1/Lf> is the test of
rejection region

C = {c’X/ 4cJ tefry > @71 — g)} :
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This UMPU test has the power

c"r\/ﬁ
P TC:q){i—q)_ll—a}. A.18
The conclusion follows. O

Proof of Proposition 3.4
In view of (3.9) and (3.10), the test (3.5) with r = 2 is asymptotically locally UMPU iff

cT B C/T\/ﬁ
Vg —1DeJ e 2v cJ e

that is, iff (ug — 1)ty = 4. By Corollary 1 in Francq and ZakoAfan (2006), the solutions of

Cy =

this equation are given by (3.11). O
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