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Abstrat

It is generally admitted that many �nanial time series have heavy tailed marginal distributions.

When time series models are �tted on suh data, the non-existene of appropriate moments

may invalidate standard statistial tools used for inferene. Moreover, the existene of moments

an be ruial for risk management, for instane when risk is measured through the expeted

shortfall. This paper onsiders testing the existene of moments in the framework of GARCH

proesses. While the seond-order stationarity ondition does not depend on the distribution of

the innovation, higher-order moment onditions involve moments of the independent innovation

proess. We propose tests for the existene of high moments of the returns proess whih are

based on the joint asymptoti distribution of the Quasi-Maximum Likelihood (QML) estimator

of the volatility parameters and empirial moments of the residuals. A bootstrap proedure is

proposed to improve the �nite-sample performane of our test. To ahieve e�ieny gains we

onsider non Gaussian QML estimators founded on reparametrizations of the GARCH model,

and we disuss optimality issues. Monte-Carlo experiments and an empirial study illustrate

the asymptoti results.
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1 Introdution

Testing for the existene of moments of �nanial time series is of ruial importane. A standard

assumption is that pries are nonstationary while returns (or log returns) are (stritly) stationary.

However, there is no ommonly aepted assumption onerning the existene of moments of suh

returns. Many searhers in �nanial eonometris argue that stok returns might not admit 4th-

order moments (see e.g. Politis (2007)), while some of them even question the existene of seond-

order moments. The existene of moments is entral to many appliations: in presene of heavy tails,

many statistial tools developed for the analysis of �nanial time series beome invalid. For instane,

using the expeted shortfall in risk analysis requires �niteness of the �rst absolute moment. Long-

run horizons preditions of the squared returns require �nite unonditional variane of the returns,

and their on�dene intervals require �nite fourth-order moments.

The problem of testing the stationarity, or the �niteness of moments, of �nanial series has been

takled in di�erent ways in the eonometri literature. Loretan and Phillips (1994) investigated

nonparametri methods for testing the onstany of the unonditional variane when the fourth

unonditional moment is in�nite. Trapani (2016) proposed a test for testing existene of the k-th

moment of a random variable. A test for seond-order stationarity of a time series based on the

disrete Fourier transform was developed by Dwivedi and Subba Rao (2011). Other artiles foused

on the estimation of the tail index, as for instane Kearns and Pagan (1997), Jondeau and Rokinger

(2003).

For the log returns, denoted ǫt throughout, the most widely used models are arguably the gen-

eralized autoregressive onditional heterosedastiity (GARCH) models introdued by Engle (1982)

and Bollerslev (1986), and extended by many authors. Suh models are of the form ǫt = σtηt where

σt is a positive parametri funtion of the past returns, and (ηt) is an independent and identially

distributed (i.i.d.) sequene, ηt being independent of the past returns. Importantly, the distribution

of ηt is generally unspei�ed - the model an thus be viewed as a semi-parametri formulation. The

existene of moments for GARCH-type proesses were investigated in several artiles. Chen and

An (1998) provided su�ient onditions, and Ling and MAleer (2002a) established neessary and

su�ient onditions for the existene of fourth and higher moments for the standard and asymmet-

ri GARCH(p, q) models. He and Teräsvita (1999), and Ling and MAleer (2002b) derived suh

ondition for a general family of non-linear GARCH(1,1) models.
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A variety of eonometri tools, suh as the unit root tests, are available for testing the non-

stationarity of pries. As far as the returns are onerned, strit stationarity testing as well as

the estimation of nonstationary GARCH-type models have been studied by Jensen and Rahbek

(2014a, 2014b), Franq and Zakoïan (2012, 2013a), Pedersen and Rahbek (2016), Li, Zhang, Zhu

and Ling (2018). To our knowledge, no statistial proedure is available for testing the existene

of unonditional moments in the GARCH framework. The main aim of this paper is to develop

suh proedures for the lassial GARCH model. The problem is nonstandard beause, exept for

the seond-order moment ondition whih solely depends on the volatility parameters, the moments

onditions for GARCH models involve the distribution of the underlying i.i.d. sequene.

We �rst use Gaussian QML to derive the joint asymptoti distribution of estimators of the

volatility parameters and of moments of the resaled residuals. A test of the existene of moments

of the squared returns will be dedued. A resampling proedure will be onsidered in order to

improve the �nite sample properties of the test. The validity of this residual bootstrap proedure

will be established. Next, we will show how to improve the power of our tests by using non-Gaussian

QML. In partiular, optimality properties will be studied.

The paper is strutured as follows. Setion 2 is devoted to tests of moment existene based on

the Gaussian QML estimator for the GARCH(p, q) model. In Setion 2.1, the joint distribution of

the Gaussian QML estimator and a vetor of moments of the residuals is derived. Wald Tests of the

2mth-order stationarity are dedued in Setion 2.2. Bootstrap-based test are studied in Setion 2.3.

Setion 3 is devoted to the e�ient testing of the 2nd-order stationarity. Tests based on generalized

QML are onsidered in Setion 3.1. Loal alternatives and optimality issues are disussed in Setion

3.2. Evidene from simulations and real �nanial time series are provided in Setion 4. Conluding

remarks are in Setion 5. The proofs are presented in the Appendix.

2 Moment testing based on the Gaussian QML

Consider the standard GARCH(p, q) model





ǫt = σtηt

σ2
t = ω0 +

∑q
i=1 α0iǫ

2
t−i +

∑p
j=1 β0jσ

2
t−j

(2.1)

where (ηt) is a sequene of i.i.d. variables, and θ0 = (ω0, α01, . . . , β0p)
′
satis�es ω0 > 0, α0i ≥ 0,

β0j ≥ 0. Under the assumption

∑p
j=1 β0j < 1, the variable σ2

t an be expressed as a funtion of the
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Figure 1: Existene of moments for the GARCH(1,1) model with Gaussian (top panel) and Stu-

dent(7) (low panel) errors. The bullet indiates a typial value obtained for real stok returns (more

preisely, the value estimated in Setion 4.2)
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in�nite past of ǫt, as σ
2
t = σ2

t (θ0) = σ2(ǫ2t−1, ǫ
2
t−2, . . . ;θ0). Figure 1 displays the regions of existene

of the moments, up to the order 6, for the GARCH(1,1) model with two distributions for the error

terms: standard Gaussian (top panel) and standardized Student with 7 degrees of freedom (bottom

panel). While the 2nd-order moment ondition (α0 + β0 < 1) does not depend on the law of ηt,

it is seen that the existene of higher-order moments is very sensitive to the moments of ηt. Note

also that for small values of α0, and for β0 lose to 1 (a situation typially reported in empirial

studies and marked in the �gure by a bullet), the existene of moments is very sensitive to any

small variation of the parameters. This shows that testing the existene of moments in the GARCH

framework may entail formidable statistial di�ulties.

To develop suh tests, we turn to the joint estimation of the volatility parameters θ0 and a

vetor of moments of the i.i.d. noise (ηt). Given observations ǫ1, . . . , ǫn, and arbitrary initial values

ǫ̃i and σ̃j for i ∈ {1 − q, 2 − q, . . . , 0} and j ∈ {1 − p, 2 − p, . . . , 0}, we de�ne, for t = 1, . . . , n

and any θ belonging to a parameter set Θ, σ̃2
t (θ) = ω0 +

∑q
i=1 α0iǫ

2
t−i +

∑p
j=1 β0j σ̃

2
t−j(θ), where

σ̃2
t−j(θ) = σ̃t−j for t ≤ j, and ǫt−i = ǫ̃t−i for t ≤ i.

De�ne the Gaussian QMLE by

θ̂n = argmin
θ∈Θ

1

n

n∑

t=1

ℓ̃t(θ), where ℓ̃t(θ) =
ǫ2t

σ̃2
t (θ)

+ log σ̃2
t (θ). (2.2)

The following assumptions are required for the strong onsisteny and asymptoti normality of the

Gaussian QMLE. Let γ(A0) denote the top-Lyapunov exponent assoiated with Model (2.1) (see

Bougerol and Piard (1992)).

A1: θ0 ∈ Θ and Θ is ompat.

A2: γ(A0) < 0, and for all θ ∈ Θ,
∑p

j=1 βj < 1.

A3: η2t has a nondegenerate distribution and Eη2t = 1.

A4: If p > 0, Aθ0(z) and Bθ0(z) have no ommon roots, Aθ0(1) 6= 0, and α0q + β0p 6= 0.

A5: θ0 ∈
◦
Θ, where

◦
Θ denotes the interior of Θ.

A6: Eη4t < ∞.

The �rst part of A2 is the neessary and su�ient ondition established by Bougerol and Piard

(1992) for the existene of a stritly stationary solution to the GARCH(p, q) model. Assumptions
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A3 and A4 are made for identi�ability reasons in order to get the onsisteny of θ̂n. Assumptions

A5 and A6 are required for the asymptoti normality of the QMLE.

2.1 Asymptoti law of the empirial moments of the resaled GARCH returns

Let the residuals η̂t = ǫt/σ̂t, where σ̂t = σ(ǫt−1, ǫt−2, . . . , ǫ̃0, ǫ̃−1, . . . ; θ̂n). We de�ne, for any r ≥ 0,

µ̂r =
1

n

n∑

t=1

|η̂t|r, µr = E|ηt|r.

For any integer m, let µ̂m = (µ̂2, µ̂4, . . . , µ̂2m)′ and µm = (µ2, µ4, . . . , µ2m)′. The following result

provides the joint asymptoti distribution of the QMLE and the vetor of sample moments of the

residuals.

Theorem 2.1. If A1-A6 hold, and if µ4m < ∞ then




√
n
(
θ̂n − θ0

)

√
n(µ̂m − µm)


 L→ N



0,Σm :=


 (µ4 − 1)J−1 −θ0b

′
m

−bmθ
′
0 Am





 , (2.3)

where θ0 = (ω0, α01, . . . , α0q, 0, . . . , 0)
′,

J = E
(
φtφ

′
t

)
, φt = φt(θ0), φt(θ) =

1

σ2
t (θ)

∂σ2
t

∂θ
(θ),

and Am = (aij)1≤i,j≤m, bm = (bi)1≤i≤m, with

aij = µ2(i+j) + µ2iµ2j [i+ j + (µ4 − 1)ij − 1]− iµ2iµ2(j+1) − jµ2jµ2(i+1), 1 ≤ i, j ≤ m,

bi = µ2i − µ2(i+1) + (µ4 − 1)iµ2i, 1 ≤ i ≤ m.

Remark 2.1. It is worth noting that the asymptoti variane-ovariane matrix Am of the vetor of

empirial moments of the resaled returns does not depend on the parameter θ0. It solely depends

on the moments, up to the order 2m, of ηt.

Note that µ̂2 = 1 whene the initial values are suh that, for any positive onstantK,Kσ̃2
t (θ̂n) =

σ̃2
t (θ̂

∗
n) for some θ̂

∗
n ∈ Θ (see Franq and Zakoïan (2013b), Remark 4). For more general initial

values, the previous theorem yields the following result.

Corollary 2.1. Under the assumptions of Theorem 2.1, we have

√
n(µ̂2 − 1) → 0, in probability as n → ∞.
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2.2 Testing the existene of 2mth-order moments in the GARCH (1,1)

In the GARCH(1,1) ase, σ2
t = ω0 + α0ǫ

2
t−1 + β0σ

2
t−1, the neessary and su�ient ondition for the

existene of E(ǫ2mt ), where m ≥ 1 is an integer, is

m∑

i=0

(
m

i

)
αi
0β

m−i
0 µ2i < 1

(see He and Teräsvirta (1999)). Let G(θ,µ) =
∑m

i=0

(m
i

)
αiβm−iµ2i (with µ0 = 1). Under the

assumptions of Theorem 2.1

1

we have

√
n{G(θ̂, µ̂m)−G(θ0,µm)} L→ N (0, σ2

m), (2.4)

where

σ2
m =

∂G(θ0,µm)

∂(θ′,µ′)
Σm

∂G(θ0,µm)

∂
(
θ
µ

) .

Consider the 2m-th order stationarity problems

H0 : E(ǫ2mt ) < ∞ against H1 : E(ǫ2mt ) = ∞, (2.5)

and

H∗
0 : E(ǫ2mt ) = ∞ against H∗

1 : E(ǫ2mt ) < ∞. (2.6)

Let the Wald test statisti, with by onvention µ̂0 = 1,

Tn =

√
n
{∑m

i=0

(m
i

)
α̂i
nβ̂

m−i
n µ̂2i − 1

}

σ̂m
, where σ̂2

m =
∂G(θ̂n, µ̂m)

∂(θ′,µ′)
Σ̂m

∂G(θ̂n, µ̂m)

∂
(
θ
µ

)

and Σ̂m is a onsistent estimator of Σm. The following result is an immediate onsequene of the

onvergene of Tn to the N (0, 1) distribution when

∑m
i=0

(m
i

)
αi
0β

m−i
0 µ2i = 1.

Proposition 2.1. Under the assumptions of Theorem 2.1, a test of (2.5) [resp. (2.6)℄ at the

asymptoti level α ∈ (0, 1) is de�ned by the rejetion region

{Tn > Φ−1(1− α)}, [resp. {Tn < Φ−1(α)}], (2.7)

where Φ is the N (0, 1) umulative distribution funtion.

1

In the GARCH(1,1) ase, the �rst part of A2 redues to E log(α0η
2
t + β0) < 0 and A4 vanishes.
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Remark 2.2. As is usual in problems where the null assumption de�nes an open subset of the

parameter set, the test is in fat onstruted for the losure of the null assumption. In other words,

for H0 :
∑m

i=0

(
m
i

)
αi
0β

m−i
0 µ2i ≤ 1, the asymptoti region satis�es

supH0
limn→∞ P{Tn > Φ−1(1− α)} = α,

where the sup has to be understood as the supremum over all values of θ0 and error distributions

suh that H0 be satis�ed.

Remark 2.3. Proposition 2.1 an in partiular be applied for testing the seond-order moment

ondition, α0 + β0 < 1. In this ase, the test statisti is given by Tn =
√
n(α̂ + β̂ − 1)/{(µ̂4 −

1)e′Ĵ
−1

e}1/2 where e = (1, 1)′, and µ̂4 and Ĵ are onsistent estimators of µ4 and J , respetively.

2.3 Bootstrap-based tests

As we will see in the numerial setion, the �nite sample distributions of the test statistis are not

always in par with the asymptoti results. With the aim of improving the �nite sample perfor-

mane of our tests, we will approximate the test statisti distributions by means of a residual-based

bootstrap proedure. Reent papers dealing with bootstrap inferene for GARCH-type models are

Leuht, Kreiss and Neumann (2015), Beutner, Heinemann and Smeekes (2018), Cavaliere, Nielsen,

Pedersen and Rahbek (2018), Heinemann (2019).

We start by presenting the resampling sheme when m = 1 (for simpliity in the GARCH(1,1)

ase).

1. For a GARCH(1,1) model, let a ompat parameter spae Θc
whose generi elements are

onstrained parameters of the form θ′ = (ω,α, 1 − α) with ω > 0 and 0 < α < 1. Compute

the onstrained QMLE

θ̂
′
c = (ω̂c, α̂c, 1− α̂c) = arg min

θ∈Θc

n∑

t=1

ℓ̃t(θ)

and the standardized residuals η̂t = η̃t/sn, where η̃t = ǫt/σ̃t(θ̂c) and s2n = n−1
∑n

t=1 η̃
2
t .

Denote by F ∗
n the empirial distribution of these residuals.

2. Simulate a trajetory of length n of a GARCH model with the parameter θ̂c and distribution

F ∗
n for the i.i.d. noise η∗t , ompute the unonstrained QMLE θ̂

∗
= (ω̂∗, α̂∗, β̂∗)′ of the GARCH

parameter, and ompute the statisti S∗
n = α̂∗ + β̂∗

.
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3. On the observations ǫ1, . . . , ǫn, ompute the unonstrained QMLE θ̂ = (ω̂, α̂, β̂) and the

statisti Sn = α̂+ β̂.

4. Repeat B times step 2, and denote by S∗1
n , . . . , S∗B

n the bootstrap test statisti. Approximate

the p-value of the test H0 : Eǫ2t < ∞ against H1 : Eǫ2t = ∞ by #{S∗j
n ≥ Sn; j = 1, . . . , B}/B,

and approximate the p-value of the test H∗
0 : Eǫ2t = ∞ against H∗

1 : Eǫ2t < ∞ by #{S∗j
n ≤

Sn; j = 1, . . . , B}/B

The numerial optimization required for the omputation of the QMLE in Step 2, repeated a large

number of times B, is the most time-onsuming part of the algorithm. Instead of this step, in view

of (A.1), one an mimi the distribution of the QMLE by using a Newton-Raphson type iteration

(see e.g. Kreiss et al. (2011), Shimizu (2013)). Set

θ̂
∗
= θ̂c + J−1

n

1

n

n∑

t=1

(
η∗ 2t − 1

)
φ̃t(θ̂c), (2.8)

where

φ̃t(θ) =
1

σ̃t(θ)

∂σ̃t(θ)

∂θ
, Jn =

1

n

n∑

t=1

φ̃tφ̃
′
t(θ̂c)

and η∗1 , . . . , η
∗
n are independent and F ∗

n -distributed. That resampling algorithm is valid in the

following sense.

Theorem 2.2 (Asymptoti validity of the bootstrap proedure). Let a GARCH(p, q) proess (ǫt)

with parameter θ0 suh that c′θ0 = 1 with c′ = (0, 1, . . . , 1), and i.i.d. sequene (ηt) satisfying A1-

A6. Assume also that the distribution of ηt admits a bounded density with respet to the Lebesgue

measure. Let θ̂
∗
be de�ned by (2.8). For almost all realization (ǫt), as n → ∞ we have, given (ǫt),

√
n (S∗

n − 1)
L→ N (0, σ2), σ2 = (µ4 − 1)c′J−1c.

Note that, in Theorem 2.2, σ2
orresponds to σ2

m in (2.4) with m = 1. The previous result thus

shows that the distribution of S∗
n given (ǫt) well mimis the (unonditional) distribution of Sn at

the boundary of H0, i.e. in the ase c′θ0 = 1, at least when n is large. It is also expeted that

in �nite samples the bootstrap distribution of S∗
n better approahes the distribution of Sn than its

asymptoti distribution.

We also give informal arguments for the onsisteny of the bootstrap: under the alternative

c′θ0 > 1, the onstrained estimator θ̂c should onverge to a pseudo-true value θ∗
0, or a set a pseudo-
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true values (see e.g. White, 1994), solution of

θ∗
0 = arg min

θ∈Θc
E

ǫ2t
σ2
t (θ)

+ log σ2
t (θ)

and the distribution of

√
n (S∗

n − 1) =
√
nc′
(
θ̂
∗ − θ̂c

)
=

√
nc′
(
θ̂
∗ − θ∗

0

)
is also expeted to be

bounded in probability under the alternative, whereas

√
n (Sn − 1) =

√
nc′
(
θ̂n − θ0

)
+
√
n(c′θ0−1)

tends also surely to +∞. Hene the onsisteny of the bootstrap.

For testing the existene of Eǫ2mt when m > 1, we generalize the previous resampling sheme as

follows.

5. Estimate a GARCH(1,1) model and ompute µ̂2i = n−1
∑n

t=1 η̂
2i
t on the reentred and resaled

residuals.

6. Estimate a GARCH(1,1) model of parameter θc = (ωc, αc, βc) under the onstraint H0 :
∑m

i=0

(m
i

)
αi
cβ

m−i
c µ̂2i = 1.

7. Simulate a trajetory of length n of a GARCH model with the parameter θ̂c of the previous

step, and the empirial distribution of the unonstrained residuals for the i.i.d. noise. Compute

the unonstrained QMLE θ̂
∗
= (ω̂∗, α̂∗, β̂∗)′ and the statisti S∗

n =
∑m

i=0

(m
i

)
α̂∗ iβ̂∗m−iµ̂∗

2i

where µ̂∗
2i is omputed on the residuals based on θ̂

∗
.

8. Compute Sn =
∑m

i=0

(
m
i

)
α̂iβ̂m−iµ̂2i.

9. As Step 4.

The validity of this bootstrap proedure should follow from the same arguments as those used to

prove Theorem 2.2. A reent paper by Heinemann (2019) establishes the validity of a �xed-design

bootstrap for testing the existene of moments for GARCH proesses.

3 E�ient testing of 2nd-order stationarity

In this setion, we fous on the seond-order stationarity test for the GARCH(p, q) model. Contrary

to the higher-order moment onditions, the seond-order moment ondition does not depend on the

distribution of the i.i.d. proess. To ahieve e�ieny gains we do not only onsider the Gaussian

QML, but also alternative QML estimators founded on reparametrizations of the GARCH model.
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The estimator of the original parametrization (2.1) is estimated in two steps, as in Franq, Lepage

and Zakoïan (2011) (hereafter FLZ).

3.1 Generalized QML based tests

Provided that E|ηt|r < ∞, Model (2.1) an be equivalently rewritten as

ǫt = σt(θ
(r)
0 )η

(r)
t , E|η(r)t |r = 1, (3.1)

where η
(r)
t = ηt/{E|ηt|r}1/r. The link between the parameters of the two formulations, (2.1) and

(3.1), is given by

θ0 = B(r)θ
(r)
0 , B(r) =


 µ

−2/r
r Iq+1 0

0 Ip


 =


 µ

(r)
2 Iq+1 0

0 Ip


 . (3.2)

In partiular, the GARCH persistene oe�ients β0j are unhanged in the reparametrization. Let

µ
(r)
s = E|η(r)t |s for any s > 0. In the sequel, we omit the upper-sript (r) when r = 2. Let Θ(r)

suh

that Θ = {B(r)θ, θ ∈ Θ(r)}. We onsider the generalized QMLE of θ
(r)
0 ,

θ̂
(r)

n = argmin

θ∈Θ(r)

Ĩn(θ),

where, for θ ∈ Θ(r)
,

Ĩn(θ) =
1

n

n∑

t=1

l̃t(θ) with l̃t(θ) = log σ̃2
t (θ) +

2

r

|ǫt|r
σ̃r
t (θ)

.

It was shown in Franq and Zakoïan (2013b), that under the identi�ability onstraint E|η(r)t |r = 1,

the only QMLE whih is strongly onsistent whatever the error distribution is of the above form.

De�ne the standardized returns η̂
(r)
t = ǫt

σ̃t(θ̂
(r)
n )

, t = 1, . . . , n. For any s > 0 let µ̂
(r)
s,n =

1
n

∑n
t=1

∣∣∣η̂t(r)
∣∣∣
s
, and let

B̂(r)
n =


 µ̂

(r)
2,nIq+1 0

0 Ip


 .

Note that, under appropriate onditions, the generalized QMLE θ̂
(r)

n onverges to θ
(r)
0 , not to the

parameter θ0 of the standard parametrization. Let θ̂n,r be the two-stage QMLE (2QMLE) of θ0

de�ned as

θ̂n,r = B̂(r)
n θ̂

(r)

n . (3.3)

The next result provides the asymptoti properties of this estimator.
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Lemma 3.1 (FLZ, Theorem 2.1). Let r > 0. Under Assumptions A1-A6, and if µ2r < ∞, the

2QMLE of θ0 satis�es

√
n
(
θ̂n,r − θ0

)
L→ N

(
0,Σ(r)

)
(3.4)

with

Σ(r) = g(r)J−1 + {µ4 − 1− g(r)} θ0θ
′
0, g(r) =

(
2

r

)2(µ2r

µ2
r

− 1

)
,

and θ0 = (ω0, α01, . . . , α0q, 0, . . . , 0)
′.

Let the null assumption of seond-order stationarity

H0 :

q∑

i=1

α0i +

p∑

j=1

β0j < 1, or, equivalently H0 : c′θ0 < 1,

where c = (0, 1, . . . , 1) ∈ R
p+q+1, and let H1 : c′θ0 ≥ 1. Let also the null assumption of in�nite

variane: H
∗
0
: c′θ0 ≥ 1, and let H

∗
1
: c′θ0 < 1. From (3.4) we have

√
nc′(θ̂n,r − θ0)

L→ N
(
0, σ(r)2 := c′Σ(r)c

)
.

Let σ̂(r)
a onsistent estimator of σ(r)

and let the Wald statisti

Tn,r =

√
n(c′θ̂n,r − 1)

σ̂(r)
.

The next result is a diret onsequene of Lemma 3.1.

Proposition 3.1. Under the assumptions of Lemma 3.1, a test of H0 [resp. H∗
0℄ at the asymptoti

level α ∈ (0, 1) is de�ned by the rejetion region

Cr = {Tn,r > Φ−1(1− α)}, [resp. C∗
r = {Tn,r < Φ−1(α)}]. (3.5)

3.2 Asymptoti properties under loal alternatives

To ompare the powers of the di�erent statisti Tn,r when r varies, we introdue a sequene of loal

alternatives. Around θ0 suh that c′θ0 = 1, let a sequene of loal parameters of the form:

θn = θ0 +
τ√
n

where τ ∈ R
p+q+1

. Without loss of generality, assume that n is su�iently large so that θn ∈ Θ. We

denote by Pn,τ the distribution of the observations (ǫ1, . . . , ǫn) when the parameter is θ0 + τ/
√
n.

12



3.2.1 Asymptoti loal powers

Assume that ηt has a density f whih is positive everywhere, with third-order derivatives suh that

lim
|y|→∞

yf(y) = 0 and lim
|y|→∞

y2f ′(y) = 0, (3.6)

and that, for some positive onstants K and δ,

|y|
∣∣∣∣
f ′

f
(y)

∣∣∣∣+ y2
∣∣∣∣
(
f ′

f

)′
(y)

∣∣∣∣+ y2
∣∣∣∣
(
f ′

f

)′′
(y)

∣∣∣∣ ≤ K
(
1 + |y|δ

)
, (3.7)

E |η1|2δ < ∞. (3.8)

These regularity onditions are satis�ed for numerous distributions

2

.

Proposition 3.2. Under the assumptions of Proposition 3.1 and under (3.6)-(3.8), the loal asymp-

toti powers of the seond-order stationarity tests (3.5) are given by

lim
n→∞

Pn,τ (Cr) = Φ

{
Φ−1(α) +

c′τ

σ(r)

}
for c′τ ≥ 0, (3.9)

and

lim
n→∞

Pn,τ (C∗
r) = Φ

{
Φ−1(α) − c′τ

σ(r)

}
for c′τ ≤ 0.

Comparison of the asymptoti powers of the seond-order stationarity tests (3.5) when r varies

thus boils down to omparing the oe�ients σ(r)
: the smaller the latter, the more powerful the

test Cr.

Corollary 3.1. Let [r, r] suh that r0 = argmin[r,r] g(r) is well de�ned. Then, within the family

{Cr, r ∈ [r, r]} (resp. {C∗
r , r ∈ [r, r]}), for testing H0 (resp. H

∗
0
), the test Cr0 has the highest loal

asymptoti power, uniformly in τ .

Remark 3.1. The optimal value r0 of r depends on the errors distribution, and is also optimal

for the estimator θ̂n,r of θ0 (see FLZ). In the Gaussian ase, unsurprisingly, r0 = 2, but for other

distributions, the tests based on the Gaussian QMLE are far from optimal. For instane, in the

ase of a Student t(ν) distribution, r0 is stritly less than 1 for small values of the degree of freedom

ν, and inreases to 2 as ν goes to in�nity.

Remark 3.2. It has to be noted that a minimum of g over the positive real line may not exist

for partiular distributions of ηt (see FLZ, Example 2.3). In pratie, r0 is not known but an be

onsistently estimated under appropriate assumptions (see FLZ, Theorem 3.1).

2

in partiular the Gaussian distribution (δ = 2), the Student's distributions with ν > 4 degrees of freedom (δ = 2).
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3.2.2 Optimality issues

Corollary 3.1 allows to determine optimal tests within the lass of QML tests of ritial regions Cr

(or C∗
r ). In this setion we provide an upper bound for the loal powers whih, if it is reahed,

haraterizes optimal tests. Optimality means "uniformly most powerful unbiased (UMPU)" (see

van der Vaart (1998)).

Proposition 3.3. Let a stritly stationary GARCH(p, q) model and assume that the error density

f satis�es (3.6)-(3.8). Let ιf the Fisher information for sale

ιf =
∫
{1 + yf ′(y)/f(y)}2 f(y)dy < ∞.

Then, any test whose ritial region satis�es

lim
n→∞

Pn,τ (C) = Φ

{
Φ−1 (α) +

c′τ
√
ιf

2
√
c′J−1c

}
for c′τ ≥ 0, (3.10)

is UMPU for testing H0 against H1.

As a onsequene, the test based on the Gaussian QML density is optimal in the following ase.

Proposition 3.4. Under the assumptions of Proposition 3.2, the seond-order stationarity test (3.5)

with r = 2 is asymptotially loally UMPU when the density of ηt has the form

f(y) =
aa

Γ(a)
e−ay2 |y|2a−1, a > 0, Γ(a) =

∫ ∞

0
ta−1e−tdt. (3.11)

4 Numerial illustrations

To illustrate the �nite sample properties of our test statistis we onsider simulated and real �nanial

data.

4.1 Monte-Carlo experiments

In this setion, our aims are to (i) study the performane of the tests of Setion 2.2 for the existene

of 2mth-order moments; (ii) use the bootstrap proedure of Setion 2.3 to see whether the �nite

sample properties of the tests are improved; (iii) look for e�ieny gains by implementing the

generalized QML of Setion 3.
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We �rst simulated N = 1000 independent trajetories of size n = 2000, 4000, 8000 of a

GARCH(1,1) proess with parameter (ω0, α0, β0) = (0.5, 0.105, 0.87) and ηt ∼ N (0, 1). In this

setting, we have

m∑

i=0

(
m

i

)
αi
0β

m−i
0 µ2i − 1 = −0.025,−0.027, 0.001, 0.073, 0.216, 0.482

for m = 1, 2, 3, 4, 5, 6 respetively. Therefore the moments of order 2m are �nite for m ≤ 2 and they

are in�nite for m ≥ 3. Table 1 shows that, very often, the tests de�ned by (2.7) orretly detet

that Eǫ2mt is �nite for m ≤ 2 and in�nite for m ≥ 4. For m = 3, one annot onlude in general,

whih is not surprising sine S :=
∑m

i=0

(m
i

)
αiβm−iµ2i is very lose to 1 when m = 3. Note also

that, for a orret deision, the sample size n needs to be quite large. A �rst explanation for the

need of large samples is that the parameter (α0, β0) = (0.105, 0.87) of the generated GARCH model

is loated in a region where a slight variation of the parameter may entail important modi�ations

in the moments existene (see our omments of Figure 1). Another possible explanation is that the

�nite sample distribution of the test statisti Sn is far from its Gaussian asymptoti approximation,

as will be seen in the following experiment. We simulated N = 1000 independent trajetories of

a GARCH(1,1) proess with parameter (ω,α, β) = (0.5, 0.10, 0.90) and ηt ∼ N (0, 1). Note that

the parameter of the simulated model stands at the boundary of the region of existene of the

seond-order moment. On eah simulation, the GARCH model has been estimated and the statisti

Sn = α̂ + β̂ used to test the existene of Eǫ2t has been omputed. Figure 2 shows a kernel density

estimation of the distribution of the estimator Sn of S = 1 for n = 2000 and n = 8000. Even for

the large sample size n = 8000, the distribution is learly negatively skewed, and thus is not well

estimated by the Gaussian asymptoti distribution. Other numerial experiments, not presented

here, reveal that the problem may be even more pronouned when testing moments moments of

order 2m > 2 and/or when η is not Gaussian.

Table 2 is the analogue of Table 1, but uses the resampling algorithm and rejets the null when

the estimated p-value is smaller than the nominal level. The two tables are quite similar but, as

expeted, the empirial relative frequeny of rejetion is loser to the nominal level when m = 3 (i.e

S is very lose to 1).
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Table 1: Relative frequeny of rejetion of H0 : Eǫ2mt < ∞ against H1 : Eǫ2mt = ∞ or of H∗
0 : Eǫ2mt = ∞ against

H∗
1 : Eǫ2mt < ∞ at the nominal level α = 5% or 10%. The null hypothesis H0 is true for m = 1, 2 and false for

m = 3, . . . , 6, the null H∗
0 is true for m = 3, . . . , 6 and false for m = 1, 2.

Null n α m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

H0 2000 5% 0.0 0.0 1.2 14.4 35.8 48.9

10% 0.0 0.0 4.5 30.6 60.5 80.6

4000 5% 0.0 0.0 2.4 35.9 77.1 93.1

10% 0.0 0.0 6.4 53.4 90.0 98.5

8000 5% 0.0 0.0 3.0 66.8 99.0 99.9

10% 0.0 0.0 6.9 79.6 99.6 100.0

H∗
0 2000 5% 97.5 48.1 7.9 0.7 0.1 0.1

10% 99.8 65.9 15.7 1.8 0.1 0.1

4000 5% 100.0 72.7 7.3 0.1 0.0 0.0

10% 100.0 85.3 14.7 0.4 0.0 0.0

8000 5% 100.0 94.1 6.7 0.0 0.0 0.0

10% 100.0 97.3 14.5 0.0 0.0 0.0

0.98 0.99 1.00 1.01

0
2
0

4
0

6
0

n=2000

0.990 0.995 1.000 1.005

0
5
0

1
0
0

1
5
0

n=8000

Figure 2: Empirial distribution of Sn.
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Table 2: As Table 1, but the resampling algorithm is used instead of the asymptoti distribution.

Null n α m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

H0 2000 5% 0.0 0.1 3.6 24.8 50.2 72.9

10% 0.0 0.1 8.3 38.4 67.6 86.8

4000 5% 0.0 0.0 6.3 42.9 81.5 94.7

10% 0.0 0.1 11.0 60.2 89.7 98.6

8000 5% 0.0 0.0 4.3 68.3 97.9 99.8

10% 0.0 0.0 9.1 81.5 99.4 100.0

H∗
0 2000 5% 83.3 31.2 4.3 0.6 0.0 0.0

10% 95.1 48.9 9.7 1.3 0.1 0.0

4000 5% 98.9 51.9 4.5 0.1 0.0 0.0

10% 100.0 69.8 10.2 0.7 0.0 0.0

8000 5% 100.0 81.8 5.3 0.0 0.0 0.0

10% 100.0 93.3 10.2 0.1 0.0 0.0

Now we turn to tests based on non-Gaussian QML. Figure 3 displays the funtion

r 7→ ĝ(r) =

(
2

r

)2( µ̂2r

µ̂2
r

)

for r ∈ [r, r] when ηt ∼ N (0, 1). In this distribution, the optimal value r0 of r, i.e. the point where

the minimum value of g(r) is reahed, is r0 = 2. One an see that argminr ĝ(r) is indeed lose to 2

when n is large enough and r is not hosen too large. It is atually neessary to impose an upper

bound for r beause, as shown in Lemma 3.1 of FLZ, when n is �xed, ĝ(r) tends to zero as r → ∞.

Table 3 presents results for tests of the existene of seond-order moments on 1000 independent

simulations of length n of a GARCH(1,1) proess when ηt follows a GED(0.3) distribution (normal-

ized so that Eη2t = 1). When α0 = 0.1 and β0 = 0.8 we have α0 +β0 = 0.9 (thus H0 := Eǫ2t < ∞ is

true), when α0 = 0.105 and β0 = 0.87 we have α0 + β0 = 0.975 (thus H0 is true), when α0 = 0.105

and β0 = 0.895 we have α0 + β0 = 1 (thus we are at the boundary of H0), when α0 = 0.145 and

β0 = 0.88 we have α0 + β0 = 1.025 (thus H0 is false) and when α0 = 0.15 and β0 = 0.9 we have

α0 + β0 = 1.05 (thus H0 is false). The olumns "QML" are obtained by applying the tests de�ned

in Proposition 2.1 in the ase m = 1, based on the Gaussian QMLE (see Remark 2.3). For the

olumns "gQML", we onsider the test de�ned in Proposition 3.1, based on the generalized QMLE
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Figure 3: Empirial estimate of the funtion g(r) when the GARCH innovation ηt ∼ N (0, 1).
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Table 3: Relative frequeny of rejetion of H0 : Eǫ2t < ∞ against H1 : Eǫ2t = ∞ or of H∗
0 : Eǫ2t = ∞ against

H∗
1 : Eǫ2t < ∞ at the nominal level α = 5% or 10%, using the Gaussian QML or the generalized QML methods.

(α0, β0) (0.1, 0.8) (0.105, 0.87) (0.105, 0.895) (0.145, 0.88) (0.15, 0.9)

Null n α QML gQML QML gQML QML gQML QML gQML QML gQML

H0 2000 5% 0.0 0.0 0.2 0.0 0.4 1.8 2.6 8.9 9.9 41.3

10% 0.2 0.0 0.8 0.4 2.8 5.3 9.7 22.4 27.1 63.2

4000 5% 0.0 0.0 0.1 0.0 1.2 1.6 6.3 21.0 33.0 76.7

10% 0.0 0.0 0.8 0.2 4.5 6.3 19.3 37.1 56.9 88.3

8000 5% 0.0 0.0 0.2 0.0 2.1 3.1 14.8 43.3 67.5 96.4

10% 0.1 0.0 0.8 0.1 6.2 7.8 31.2 61.6 83.1 98.6

H∗
0 2000 5% 6.5 84.4 2.2 33.5 0.7 10.4 0.5 2.9 0.4 0.4

10% 25.6 91.1 16.6 47.4 6.8 15.6 4.2 5.0 1.4 0.8

4000 5% 35.1 98.4 13.7 44.1 5.5 10.1 1.3 1.3 0.1 0.0

10% 69.8 98.7 35.6 56.1 17.5 16.2 4.3 1.9 0.5 0.0

8000 5% 87.2 100.0 31.3 58.7 8.2 7.6 1.4 0.2 0.1 0.0

10% 94.6 100.0 46.5 69.0 15.4 13.3 2.5 0.9 0.2 0.0

where r is replaed by the minimizer of ĝ(r) for r ∈ [0.001, 2]) (see Remark 3.2). For both tests,

exept on the boundary, the rejetion frequenies are satisfatory with a lear advantage (for all

exept 2 ases) for the gQML. For parameters su�iently far from the boundary, frequenies of

rejetion of the alternative hypotheses are high. The tests of H0 appear onservative, the empirial

probabilities of inorret rejetion being never greater than the nominal level. On the ontrary, the

tests of H∗
0 generally over-rejet the null. A bootstrap proedure was implemented, with the aim

of improving the results under the null assumptions. To redue the omputational time, we only

implemented the bootstrap for a subset of the parameters and sample sizes. The results reported

in Table 4 show that, as expeted, the errors of �rst kind are better ontrolled.
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Table 4: As Table 3, but resampling algorithms are used instead of the asymptoti distributions.

(α0, β0) (0.1, 0.8) (0.105, 0.895) (0.15, 0.9)

Null n α QML gQML QML gQML QML gQML

H0 2000 5% 0.3 0.0 2.7 4.3 21.0 41.0

10% 1.0 0.1 6.7 8.8 40.0 59.6

H∗
0 2000 5% 14.2 31.9 3.6 3.1 0.2 0.5

10% 30.7 51.1 8.1 7.1 0.7 0.6
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Figure 4: Total stok prie and return from 2001-07-16 to 2018-09-21.
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4.2 Empirial study

In this setion, we onsider the daily stok returns of the Frenh energy ompany Total SA, whih

onstitutes one of the main omponents of the CAC40 index. The sample path over the period

2001-07-16 to 2018-09-21 is displayed in Figure 4. On the return series, the estimated GARCH(1,1)

model is the following (the estimated standard deviations are into brakets):

ω̂ = 0.035(0.009), α̂ = 0.083(0.011), β̂ = 0.903(0.011)

µ̂4 = 4.1(0.3), µ̂6 = 41.0(12.5), µ̂8 = 833.2(482.5),

µ̂10 = 24572.4(18530.0), µ̂12 = 844199.0(711993.3).

The statistis Tn are respetively equal to −2.96,−0.69, 1.15, 1.62, 1.45, 1.19 for m = 1, . . . , 6. This

provides strong evidene for the existene of moments of order 2, and some evidene of non existene

of moments of order 8. Figure 5 displays, for m = 1, . . . , 6, the kernel density estimator of the

distribution of Sn under the null that S = 1. These estimators were obtained by using B = 1000

repliations in the above-desribed resampling algorithm. The value of Sn omputed from the

observations is represented by the vertial line on the plots. A value of Sn on the left tail of the

distribution is a sign that Eǫ2mt is �nite. Conversely, a value of Sn in the extreme right tail of

the distribution indiates that Eǫ2mt is likely to be in�nite. From this �gure, we onlude that

Eǫ2t should be �nite and Eǫ8t should be in�nite, whih reinfores the onlusions drawn from the

asymptoti theory. In view of Figure 1, it is not surprising that we annot onlude onerning

the existene of moments of order 4 and 6. Indeed, the estimated value belongs to a zone of the

parameter spae where the di�erent moment onditions are almost undistinguishable.

5 Conluding remarks

Testing for the existene of moments is partiularly important for �nanial times series, whose

distributions are thought of as being heavily tailed, even if there is no onsensus in the literature

about how moments really exist. GARCH models o�er a framework for suh tests beause: i)

the existene of moments is expliitly haraterized in terms of the volatility parameters and the

moments of the errors distribution and ii) a sound theory of estimation is available for suh models.

Contrary to alternative approahes (e.g. the extreme value theory) for studying the tails of returns,
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Figure 5: Bootstrap estimates of the distribution of Sn when S = 1 (kernel density estimator) and observed

value of Sn (vertial line).
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the dynamis does not onstitute a "nuisane parameter": on the ontrary, the dynamis of the

series (i.e. the serial dependene) is used to estimate harateristis of the marginal distribution.

In this paper, we have proposed tests for deteting whether the 2mth moment of a GARCH

proess is �nite. We used QML approahes whih do not rely on any distributional assumption on

the error proess. We derived the asymptoti distribution of tests based on the Gaussian QML,

as well as tests relying on a reparametrization of the model enabling the use of alternative QML.

We also disussed the hoie of an optimal reparameterization. In this artile, we foused on the

lassial GARCH(p, q) model but it is lear that various alternative spei�ations of the onditional

variane (GJR-GARCH, TGARCH, ...) ould be handled in a similar fashion.

A general onlusion from our study is that determining if a given moment of a GARCH series

exists is a di�ult statistial problem.

3

The bootstrap versions of our tests bring signi�ant

improvements in terms of size but, as expeted, do not improve powers. Even loally optimal tests

may be far from onlusive for moderate sample sizes. This suggests that one has to be autious in

assessing the existene, or non-existene, of moments of �nanial time series.
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3

In pratie, the situation an even be ompliated when the series is ontaminated by the presene of outliers

(e.g. due to market rashes or rallies). Several authors have proposed statistial methods for deteting the presene

of outliers (see for instane Franses and Ghijsels, 1999, Franses and van Dijk, 2011). In suh situations, estimation

methods that are resistant to outliers are alled for (see e.g. Sakata and White, 1998) but it is lear that our tests

will no longer be reliable when the model beomes misspei�ed.
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Appendix: proofs

Proof of Theorem 2.1

By Franq and Zakoian (2004) Theorems 2.1 and 2.2, θ̂n → θ0 a.s. and

√
n
(
θ̂n − θ0

)
= −J−1 1√

n

n∑

t=1

(
1− η2t

) 1

σ2
t

∂σ2
t (θ0)

∂θ
+ oP (1)

L→ N (0, (κ4 − 1)J−1). (A.1)

Let ηt(θ) = ǫtσ
−1
t (ǫt−1, ǫt−2, . . . ; θ), η̃t(θ) = ǫtσ

−1
t (ǫt−1, . . . , ǫ1, ǫ̃0, ǫ̃−1, . . . ; θ),

µr(θ) =
1

n

n∑

t=1

|ηt(θ)|r, µ̃r(θ) =
1

n

n∑

t=1

|η̃t(θ)|r.

Using (4.6) in Franq and Zakoian (2004), and arguments similar to those used to prove i)

in their Theorem 2.1, it an be shown that

µ̂r = µ̃r(θ̂n) = µr(θ̂n) + oP (n
−1/2). (A.2)

A Taylor expansion gives, for θ∗
between θ̂n and θ0,

µr(θ̂n) = µr(θ0) +
∂µr(θ

∗)

∂θ′ (θ̂n − θ0) = µr(θ0) +
∂µr(θ0)

∂θ′ (θ̂n − θ0) + oP (n
−1/2)(A.3)

27



where the seond equality follows from (A.1), with

∂µr(θ0)

∂θ′ =
−r

2n

n∑

t=1

|ηt|r
1

σ2
t

∂σ2
t (θ0)

∂θ′ =
−r

2
µrφ

′ + oP (1),

and φ = E (φt) . This expansion, together with (A.3)-(A.2), gives

√
n(µ̂r − µr(θ0)) =

−r

2
µrφ

′√n
(
θ̂n − θ0

)
+ oP (n

−1/2),

and thus

√
n(µ̂r − µr) =

1√
n

n∑

t=1

(|ηt|r − µr)−
r

2
µrφ

′√n
(
θ̂n − θ0

)
+ oP (n

−1/2).

In view of (A.1) we thus have,

√
n(µ̂m − µm) =

1√
n

n∑

t=1

(Zt,m − µm) + νmφ
′J−1

(
1− η2t

)
φt + oP (n

−1/2),

where Zt,m = (η2t , η
4
t , . . . , η

2m
t )′, νm = (µ2, 2µ4, . . . , mµ2m)

′
.

The asymptoti normality in Theorem 2.1 follows by the Wold-Cràmer devie and the

entral limit theorem for martingale di�erenes. Using the equality φ′J−1φ = 1 (see Remark

3 in Franq and Zakoian (2013b)) we have,

Varas{
√
n(µ̂m − µm)} = Var(Zt,m) + E[Zt,m(1− η2t )]ν

′
m + νmE[Z ′

t,m(1− η2t )] + νmν
′
m(µ4 − 1),

and

Covas{
√
n
(
θ̂n − θ0

)
,
√
n(µ̂m − µm)} = −J−1φ[E{(1− η2t )Z

′
t,m}+ (µ4 − 1)ν ′

m].

The onlusion follows by noting that J−1φ = θ0. ✷

Proof of Corollary 2.1

It su�es to remark that the asymptoti law of

√
n(µ̂2−1) is degenerate: indeed, b1 = ai1 =

a1j = 0 for all i and j. ✷
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Proof of Theorem 2.2

We start by showing a lemma.

Lemma A.1. Suppose that the assumptions of Theorem 2.2 are satis�ed. Conditionally on

almost all realizations (ǫt) of the GARCH(p, q) proess, the distribution F ∗
n of the standardized

residuals tends to the unonditional distribution F of ηt. Moreover, for almost all realizations

(ǫt) and any A ∈ [−∞,∞), as n → ∞

1

n

n∑

t=1

η̂4t 1η̂t≥A =

∫ ∞

A

x4F ∗
n(dx) →

∫ ∞

A

x4F (dx). (A.4)

More generally, for any real funtion h suh that |h(x| ≤ ax4 + b where a, b > 0, and the set

Dh of its disontinuities veri�es P (ηt ∈ Dh) = 0, we have

∫
h(x)F ∗

n(dx) →
∫

h(x)F (dx). (A.5)

Proof of Lemma A.1. The proof is inspired by that of Lemmas 8.6 and 8.7 in Franq,

Jim�©nez-Gamero and Meintanis (2017). Let ηt(θ) = ǫt/σt(θ) and η̃t(θ) = ǫt/σ̃t(θ), so that

η̃t = η̃t(θ̂c) and ηt = ηt(θ0). In Franq and Zakoian (2004), it is shown that

sup
θ∈Θ

|σt(θ)− σ̃t(θ)| ≤ Kρt, (A.6)

where, here and in the sequel, K denotes a generi positive variable depending on {ηt, t ≤ 0}
and ρ denotes a generi onstant belonging to [0, 1). We thus have

sup
θ∈Θ

|ηt(θ)− η̃t(θ)| ≤
K

ω
ρt|ǫt|

where ω is a positive lower bound for ω over the ompat set Θ. By the mean value theorem

ηt(θ̂c) = ηt +
∂ηt(θn)

∂θ′

(
θ̂c − θ0

)
,

with θn between θ̂c and θ0. In Franq and Zakoian (2004), it is also shown that for any d

there exists a neighborhood V (θ0) of θ0 suh that

E sup
θ∈V (θ0)

∣∣∣∣
σt(θ0)

σt(θ)

∣∣∣∣
d

< ∞, E sup
θ∈Θ

‖φt(θ)‖d < ∞. (A.7)

This entails that

sup
θ∈V (θ0)

∥∥∥∥
∂ηt(θ)

∂θ′

∥∥∥∥ = sup
θ∈V (θ0)

∥∥∥∥
σt(θ0)

σt(θ)
φt(θ)ηt

∥∥∥∥ = ut|ηt|,
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where ut ∈ Ft−1 and Eu
d/2
t < ∞. We thus have

|η̃t − ηt| ≤ K
(
ρt +

∥∥∥θ̂c − θ0

∥∥∥
)
ut|ηt|, (A.8)

for n large enough. It follows that, for almost all sequene (ǫt), or equivalently almost all

sequene (ηt),

s2n =
1

n

n∑

t=1

η2t +
1

n

n∑

t=1

(η̃t − ηt)
2 +

2

n

n∑

t=1

ηt (η̃t − ηt) → 1

as n → ∞. Sine

η̂t − ηt =
1

sn
(η̃t − ηt) +

(
1

sn
− 1

)
ηt, (A.9)

we have

|η̂t − ηt| ≤
(
ρt + an

)
vt|ηt|,

for n large enough, where vt = 2Kut + 1 and an =
∥∥∥θ̂c − θ0

∥∥∥+
(

1
sn

− 1
)
tends to 0. For all

x ∈ R, all ε > 0 and all M > 0, we then have

∣∣1{η̂t≤x} − 1{ηt≤x}
∣∣ ≤ 1{x−(ρt+an)vt|ηt|≤ηt≤x+(ρt+an)vt|ηt|}

≤ 1At,ε,M
+ 1an>ε + 1|ηt|>M ,

with the event

At,ε,M =
{
x−

(
ρt + ε

)
vtM ≤ ηt ≤ x+

(
ρt + ε

)
vtM

}
.

For t ≥ log ε/ log ρ, we have At,ε,M ⊂ A2ε,M with

Aε,M = {x− εvtM ≤ ηt ≤ x+ εvtM} .

Taking d ≥ 2, we have

E1Aε,M
= EE

(
1Aε,M

| Ft−1

)
= E

∫ x+εvtM

x−εvtM

f(y)dy ≤ 2max
y∈R

f(y)εMEvt.

For all κ > 0, we thus have a small ε > 0 and a large M > 0 suh that

E
{
1A2ε,M

+ 1an>ε + 1|ηt|>M

}
≤ κ.
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It follows that, for almost all sequenes (ǫt), we have

lim
n→∞

1

n

n∑

t=1

1{η̂t≤x} = lim
n→∞

1

n

n∑

t=1

1{ηt≤x} = P (ηt ≤ x) , ∀x ∈ R.

We have shown that, for almost all (ǫt), F
∗
n weakly onverges to F .

Now note that by (A.8) we have

1

n

n∑

t=1

|η̃t − ηt|k → 0

for k = 1, 2, 3, 4, assuming without loss of generality that d ≥ 8. Sine 1
n

∑n
t=1 η

4
t → µ4, this

implies

1

n

n∑

t=1

η̃4t → µ4.

We then obtain (A.4) with A = −∞ from (A.9) and the onvergene of sn to 1.

By the ontinuous mapping theorem, given almost all sequene (ǫt), a random sequene

(Xn, Yn) with uniform distribution on {(η̂4t , h(η̂t)), t = 1, . . . , n} onverges in distribution to

a random vetor (X, Y ) = (η4, h(η)) where η ∼ F . Having shown (A.4) with A = −∞, we

already know that E(Xn | (ǫt)) → EX. Theorem 3.6 in Billingsley (1999) then shows that

the sequene Xn is uniformly integrable, given (ǫt). By Theorem 3.5 in Billingsley (1999), to

show (A.5), that is E(Yn | (ǫt)) → EY , it remains to show that Yn is uniformly integrable,

whih is obvious beause |Yn| ≤ aXn + b. The proof of Lemma A.1 is omplete.

Now we turn to the proof of Theorem 2.2. We have, in view of (2.8),

√
n (S∗

n − 1) = c′
√
n
(
θ̂
∗ − θ̂c

)
= c′J−1

n

1√
n

n∑

t=1

x̃t,n,

with x̃t,n = (η∗2t − 1) φ̃t(θ̂c). The index n in x̃t,n emphasizes that the distribution F ∗
n of η∗t , as

well as θ̂c, depend on n. Let xt,n = (η∗2t − 1)φt(θ̂c). In view of (A.6) and a similar inequality

for the derivatives, we have

sup
θ∈Θ

∣∣∣φt(θ)− φ̃t(θ)
∣∣∣ ≤ Kρtut,

where ut := supθΘ φt(θ) + 1 admits moments of any order. It follows that

∣∣∣∣∣
1√
n

n∑

t=1

xt,n −
1√
n

n∑

t=1

x̃t,n

∣∣∣∣∣ ≤
K√
n

∞∑

t=1

∣∣η∗2t − 1
∣∣ ρtut → 0 a.s.
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as n → ∞, noting that the previous series is a.s. �nite beause its expetation is �nite.

Moreover, by the standard arguments of Franq and Zakoian (2004), it an be shown that

Jn onverges to the invertible matrix J = Eφtφ
′
t(θ0) as n → ∞.

It thus remains to show that, onditional on (ǫt),

1√
n

n∑

t=1

xt,n
d→ N (0, (µ4 − 1)J) . (A.10)

Note that, onditional on (ǫt), for eah n the random vetors x1,n,x2,n, . . . are independent

and entered, with �nite seond-order moments. From Lindeberg's CLT for triangular arrays

of square integrable martingale inrements, and the Wold-Cramer devie, it su�es to show

that for any λ ∈ R
3
, λ 6= 0,

1

n

n∑

t=1

Var (λ′xt,n) → (µ4 − 1)λ′Jλ > 0 as n → ∞, (A.11)

and for all ε > 0

1

n

n∑

t=1

E
(
{λ′xt,n}2 1{|λ′xt,n|≥

√
nε}

)
→ 0 as n → ∞. (A.12)

Note that, given (ǫt), only the term η∗t is random in xt,n. Moreover, if η ∼ F ∗
n , then Eη = 0,

Eη2 = 1 and, by (A.4) in Lemma A.1, Eη4 → µ4 as n → ∞. Given (ǫt), as n → ∞ we thus

have

Varλ′xt,n =
{
λ′φt(θ̂c)

}2

(Eη4 − 1) → {λ′φt}2 (µ4 − 1).

Moreover, for all ε > 0 there exists a neighborhood V (θ0) of θ0 suh that

lim
n→∞

1

n

n∑

t=1

sup
θ∈V (θ0)

∣∣∣{λ′φt(θ)}2 − {λ′φt(θ0)}2
∣∣∣ ≤ ε.

The previous result is obtained by using the ergodi theorem, the ontinuity of θ 7→
E
∣∣∣{λ′φt(θ)}

2 − {λ′φt(θ0)}2
∣∣∣, the dominated onvergene theorem, and by shrinking the

neighborhood. Now the onsisteny of θ̂c and the ergodi theorem entail (A.11), noting that

under A2 and A4, 0 < µ4 − 1 < ∞.

Now we turn to the proof of (A.12). Given (ǫt), for some neighborhood V (θ0) of θ0 and
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n large enough we have

E {λ′xt,n}2 1{|λ′xt,n|≥
√
nε}

≤ 1{supθ∈V (θ0)
supt≥1|λ′φt(θ)|>0} sup

θ∈V (θ0)

sup
t≥1

{λ′φt(θ)}2

× E
∣∣η∗2t − 1

∣∣2 1{
|η∗2t −1|≥ √

nε√
supθ∈V (θ0)

supt≥1|λ′φt(θ)|

}. (A.13)

For any A > 0 there exists nA suh that if n > nA then the expetation in the right-hand

side of (A.13) is bounded by

E
∣∣η∗2t − 1

∣∣2 1{|η∗2t −1|≥A}.

By Lemma A.1, this terms tends to

∫

|x2−1|≥A

∣∣x2 − 1
∣∣2 F (dx)

whih is arbitrarily small when A is su�iently large. We then obtain (A.12) by already

given arguments. ✷

Proof of Proposition 3.2

Under the strit stationarity ondition γ0 < 0, Drost and Klaassen (1997) showed that, for

standard GARCH, the log-likelihood ratio Λn,f(θn, θ0) = logLn,f(θn)/Ln,f(θ0) satis�es the

LAN property

Λn,f(θn, θ0) = τ ′Sn,f(θ0)−
1

2
τ ′
Ifτ + oPθ0

(1), (A.14)

where Sn,f(θ0)
d−→ N {0, If} under Pθ0 as n → ∞ and If =

ιf
4
J .

Note that the so-alled entral sequene Sn,f is onditional on the initial values. In the

stationary ase, Lee and Taniguhi (2005) showed that the initial values have no in�uene

on the LAN property. Let the funtions

g1(y) = 1 + y
f ′

f
(y) and g2(y) = 1 + 2y

f ′

f
(y) + y2

(
f ′

f

)′
(y).

We have

Sn,f(θ0) =
−1

2
√
n

n∑

t=1

g1(ηt)φt (A.15)
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and thus

Λn,f(θn, θ0) =
−τ ′

2
√
n

n∑

t=1

g1(ηt)φt −
1

2
τ ′
Ifτ + oPθ0

(1). (A.16)

By FLZ, letting φ
(r)
t = φt(θ

(r)
0 ) and φ(r) = Eφ

(r)
t ,

√
n


 µ̂

(r)
2,n − µ

(r)
2

θ̂
(r)

n − θ
(r)
0


 =


 1 −µ

(r)
2 φ(r)′{J (r)}−1

0 {J (r)}−1


 1√

n

n∑

t=1


 |η(r)t |2 − µ

(r)
2

φ
(r)
t

(
|η(r)t |r − 1

)

 + oP (1),

where J (r) = E
(

r
2
φ

(r)
t φ

(r)′

t

)
. We also have

√
n(c′θ̂n,r − 1)

=
√
nc′B̂(r)

n θ̂
(r)

n −√
nc′B(r)θ

(r)
0

= c′B(r)
√
n(θ̂

(r)

n − θ
(r)
0 ) + c′

√
n(B̂(r)

n − B(r))θ̂
(r)

n

=

(
q∑

i=1

α
(r)
0i c′B(r)

)
√
n


 µ̂

(r)
2,n − µ

(r)
2

θ̂
(r)

n − θ
(r)
0


 + oP (1)

=
(
α
(r)
0

{
−α

(r)
0 µ

(r)
2 φ(r)′ + c′B(r)

}
{J (r)}−1

) 1√
n

n∑

t=1


 |η(r)t |2 − µ

(r)
2

φ
(r)
t

(
|η(r)t |r − 1

)

 + oP (1)

where α
(r)
0 =

∑q
i=1 α

(r)
0i . Let θ0 = (ω0, α01, . . . , α0q, 0, . . . , 0)

′. Noting that

µ
(r)
2 = µ−2/r

r , α
(r)
0 = µ2/r

r α0, φ
(r)
t = B(r)φt, J (r) =

r

2
B(r)JB(r), µ2/rθ

′
0B

(r) = θ
′
0

we get

√
n(c′θ̂n,r − 1)

=

(
µ2/r
r α0

2

r

{
−α0µ

2/r
r θ

′
0 + c′J−1(B(r))−1

}) 1√
n

n∑

t=1


 µ

−2/r
r (η2t − 1)

B(r)φt

(
|ηt|r
µr

− 1
)

 + oP (1)

=
α0√
n

n∑

t=1

(η2t − 1) +
2

r

{
−α0θ

′
0 + c′J−1

} 1√
n

n∑

t=1

φt

( |ηt|r
µr

− 1

)
.

Let Pn,τ the distribution of the observations (ǫ1, . . . , ǫn) when the parameter is θ0 + τ/
√
n.

Under Pn,0


 Tn,r

Λn,f(θ0 + τ/
√
n, θ0)


 d−→ N






 0

− ιf
8
τ ′Jτ


 ,


 1 cr

cr
ιf
4
τ ′Jτ





 , (A.17)
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where, using the equality Jθ0 = φ,

cr = − 1

2σ(r)

{
α0τ

′φ

(
k2 −

2

r
kr

)
+ c′τ

2

r
kr

}
,

and kr = E
{(

|η1|r
µr

− 1
)
g1(η1)

}
= 1

µr
E {|η1|rg1(η1)} = −r (the latter equality is straightfor-

wardly obtained by integration by part). Therefore, cr =
c′τ
σ(r) .

Proposition 3.1 shows that

lim
n→∞

Pn,0(Cr) = α.

Le Cam's third lemma (see e.g. van der Vaart, 1998, page 90) shows that

Tn,r
d−→ N (cr, 1), under Pn,τ .

The onlusion follows. ✷

Proof of Corollary 3.1

Using the fat that J−1−θ0θ
′
0 is semi-de�nite positive (see FLZ), minimizing σ(r)

is equivalent

to minimizing g(r) with respet to r. ✷

Proof of Proposition 3.3

By (A.17), we have

Λn,f(θ0 + τ/
√
n, θ0)

d−→ N
(
−ιf

8
τ ′Jτ ,

ιf
4
τ ′Jτ

)
under Pθ0 ,

whih is the distribution of the log-likelihood ratio in the statistial modelN
{
τ , 4J−1/ιf

}
of

parameter τ . The so-alled loal experiments {Ln,f (θ0 + τ ′)/
√
n), τ ∈ R

p+q+1} onverge to

the gaussian experiment

{
N
(
τ , 4J−1/ιf

)
, τ ∈ R

p+q+1
}
(see van der Vaart (1998) for details

about the notion of statistial experiments).

The seond-order stationarity test in (3.5) orresponds to the test

H0,τ : c′τ = 0 against H1,τ : c
′τ > 0.

in the limiting experiment. The UMPU test based on X ∼ N
(
τ , 4J−1/ιf

)
is the test of

rejetion region

C =

{
c′X/

√
4c′J−1c/ιf > Φ−1(1− α)

}
.
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This UMPU test has the power

PH1,τ (C) = Φ

{
c′τ

√
ιf

2
√
c′J−1c

− Φ−1 (1− α)

}
. (A.18)

The onlusion follows. ✷

Proof of Proposition 3.4

In view of (3.9) and (3.10), the test (3.5) with r = 2 is asymptotially loally UMPU i�

c2 =
c′τ√

(µ4 − 1)c′J−1c
=

c′τ
√
ιf

2
√
c′J−1c

,

that is, i� (µ4 − 1)ιf = 4. By Corollary 1 in Franq and Zako�¯an (2006), the solutions of

this equation are given by (3.11). ✷
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