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Abstra
t

It is generally admitted that many �nan
ial time series have heavy tailed marginal distributions.

When time series models are �tted on su
h data, the non-existen
e of appropriate moments

may invalidate standard statisti
al tools used for inferen
e. Moreover, the existen
e of moments


an be 
ru
ial for risk management, for instan
e when risk is measured through the expe
ted

shortfall. This paper 
onsiders testing the existen
e of moments in the framework of GARCH

pro
esses. While the se
ond-order stationarity 
ondition does not depend on the distribution of

the innovation, higher-order moment 
onditions involve moments of the independent innovation

pro
ess. We propose tests for the existen
e of high moments of the returns pro
ess whi
h are

based on the joint asymptoti
 distribution of the Quasi-Maximum Likelihood (QML) estimator

of the volatility parameters and empiri
al moments of the residuals. A bootstrap pro
edure is

proposed to improve the �nite-sample performan
e of our test. To a
hieve e�
ien
y gains we


onsider non Gaussian QML estimators founded on reparametrizations of the GARCH model,

and we dis
uss optimality issues. Monte-Carlo experiments and an empiri
al study illustrate

the asymptoti
 results.
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1 Introdu
tion

Testing for the existen
e of moments of �nan
ial time series is of 
ru
ial importan
e. A standard

assumption is that pri
es are nonstationary while returns (or log returns) are (stri
tly) stationary.

However, there is no 
ommonly a

epted assumption 
on
erning the existen
e of moments of su
h

returns. Many sear
hers in �nan
ial e
onometri
s argue that sto
k returns might not admit 4th-

order moments (see e.g. Politis (2007)), while some of them even question the existen
e of se
ond-

order moments. The existen
e of moments is 
entral to many appli
ations: in presen
e of heavy tails,

many statisti
al tools developed for the analysis of �nan
ial time series be
ome invalid. For instan
e,

using the expe
ted shortfall in risk analysis requires �niteness of the �rst absolute moment. Long-

run horizons predi
tions of the squared returns require �nite un
onditional varian
e of the returns,

and their 
on�den
e intervals require �nite fourth-order moments.

The problem of testing the stationarity, or the �niteness of moments, of �nan
ial series has been

ta
kled in di�erent ways in the e
onometri
 literature. Loretan and Phillips (1994) investigated

nonparametri
 methods for testing the 
onstan
y of the un
onditional varian
e when the fourth

un
onditional moment is in�nite. Trapani (2016) proposed a test for testing existen
e of the k-th

moment of a random variable. A test for se
ond-order stationarity of a time series based on the

dis
rete Fourier transform was developed by Dwivedi and Subba Rao (2011). Other arti
les fo
used

on the estimation of the tail index, as for instan
e Kearns and Pagan (1997), Jondeau and Ro
kinger

(2003).

For the log returns, denoted ǫt throughout, the most widely used models are arguably the gen-

eralized autoregressive 
onditional heteros
edasti
ity (GARCH) models introdu
ed by Engle (1982)

and Bollerslev (1986), and extended by many authors. Su
h models are of the form ǫt = σtηt where

σt is a positive parametri
 fun
tion of the past returns, and (ηt) is an independent and identi
ally

distributed (i.i.d.) sequen
e, ηt being independent of the past returns. Importantly, the distribution

of ηt is generally unspe
i�ed - the model 
an thus be viewed as a semi-parametri
 formulation. The

existen
e of moments for GARCH-type pro
esses were investigated in several arti
les. Chen and

An (1998) provided su�
ient 
onditions, and Ling and M
Aleer (2002a) established ne
essary and

su�
ient 
onditions for the existen
e of fourth and higher moments for the standard and asymmet-

ri
 GARCH(p, q) models. He and Teräsvita (1999), and Ling and M
Aleer (2002b) derived su
h


ondition for a general family of non-linear GARCH(1,1) models.
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A variety of e
onometri
 tools, su
h as the unit root tests, are available for testing the non-

stationarity of pri
es. As far as the returns are 
on
erned, stri
t stationarity testing as well as

the estimation of nonstationary GARCH-type models have been studied by Jensen and Rahbek

(2014a, 2014b), Fran
q and Zakoïan (2012, 2013a), Pedersen and Rahbek (2016), Li, Zhang, Zhu

and Ling (2018). To our knowledge, no statisti
al pro
edure is available for testing the existen
e

of un
onditional moments in the GARCH framework. The main aim of this paper is to develop

su
h pro
edures for the 
lassi
al GARCH model. The problem is nonstandard be
ause, ex
ept for

the se
ond-order moment 
ondition whi
h solely depends on the volatility parameters, the moments


onditions for GARCH models involve the distribution of the underlying i.i.d. sequen
e.

We �rst use Gaussian QML to derive the joint asymptoti
 distribution of estimators of the

volatility parameters and of moments of the res
aled residuals. A test of the existen
e of moments

of the squared returns will be dedu
ed. A resampling pro
edure will be 
onsidered in order to

improve the �nite sample properties of the test. The validity of this residual bootstrap pro
edure

will be established. Next, we will show how to improve the power of our tests by using non-Gaussian

QML. In parti
ular, optimality properties will be studied.

The paper is stru
tured as follows. Se
tion 2 is devoted to tests of moment existen
e based on

the Gaussian QML estimator for the GARCH(p, q) model. In Se
tion 2.1, the joint distribution of

the Gaussian QML estimator and a ve
tor of moments of the residuals is derived. Wald Tests of the

2mth-order stationarity are dedu
ed in Se
tion 2.2. Bootstrap-based test are studied in Se
tion 2.3.

Se
tion 3 is devoted to the e�
ient testing of the 2nd-order stationarity. Tests based on generalized

QML are 
onsidered in Se
tion 3.1. Lo
al alternatives and optimality issues are dis
ussed in Se
tion

3.2. Eviden
e from simulations and real �nan
ial time series are provided in Se
tion 4. Con
luding

remarks are in Se
tion 5. The proofs are presented in the Appendix.

2 Moment testing based on the Gaussian QML

Consider the standard GARCH(p, q) model





ǫt = σtηt

σ2
t = ω0 +

∑q
i=1 α0iǫ

2
t−i +

∑p
j=1 β0jσ

2
t−j

(2.1)

where (ηt) is a sequen
e of i.i.d. variables, and θ0 = (ω0, α01, . . . , β0p)
′
satis�es ω0 > 0, α0i ≥ 0,

β0j ≥ 0. Under the assumption

∑p
j=1 β0j < 1, the variable σ2

t 
an be expressed as a fun
tion of the
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Figure 1: Existen
e of moments for the GARCH(1,1) model with Gaussian (top panel) and Stu-

dent(7) (low panel) errors. The bullet indi
ates a typi
al value obtained for real sto
k returns (more

pre
isely, the value estimated in Se
tion 4.2)
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in�nite past of ǫt, as σ
2
t = σ2

t (θ0) = σ2(ǫ2t−1, ǫ
2
t−2, . . . ;θ0). Figure 1 displays the regions of existen
e

of the moments, up to the order 6, for the GARCH(1,1) model with two distributions for the error

terms: standard Gaussian (top panel) and standardized Student with 7 degrees of freedom (bottom

panel). While the 2nd-order moment 
ondition (α0 + β0 < 1) does not depend on the law of ηt,

it is seen that the existen
e of higher-order moments is very sensitive to the moments of ηt. Note

also that for small values of α0, and for β0 
lose to 1 (a situation typi
ally reported in empiri
al

studies and marked in the �gure by a bullet), the existen
e of moments is very sensitive to any

small variation of the parameters. This shows that testing the existen
e of moments in the GARCH

framework may entail formidable statisti
al di�
ulties.

To develop su
h tests, we turn to the joint estimation of the volatility parameters θ0 and a

ve
tor of moments of the i.i.d. noise (ηt). Given observations ǫ1, . . . , ǫn, and arbitrary initial values

ǫ̃i and σ̃j for i ∈ {1 − q, 2 − q, . . . , 0} and j ∈ {1 − p, 2 − p, . . . , 0}, we de�ne, for t = 1, . . . , n

and any θ belonging to a parameter set Θ, σ̃2
t (θ) = ω0 +

∑q
i=1 α0iǫ

2
t−i +

∑p
j=1 β0j σ̃

2
t−j(θ), where

σ̃2
t−j(θ) = σ̃t−j for t ≤ j, and ǫt−i = ǫ̃t−i for t ≤ i.

De�ne the Gaussian QMLE by

θ̂n = argmin
θ∈Θ

1

n

n∑

t=1

ℓ̃t(θ), where ℓ̃t(θ) =
ǫ2t

σ̃2
t (θ)

+ log σ̃2
t (θ). (2.2)

The following assumptions are required for the strong 
onsisten
y and asymptoti
 normality of the

Gaussian QMLE. Let γ(A0) denote the top-Lyapunov exponent asso
iated with Model (2.1) (see

Bougerol and Pi
ard (1992)).

A1: θ0 ∈ Θ and Θ is 
ompa
t.

A2: γ(A0) < 0, and for all θ ∈ Θ,
∑p

j=1 βj < 1.

A3: η2t has a nondegenerate distribution and Eη2t = 1.

A4: If p > 0, Aθ0(z) and Bθ0(z) have no 
ommon roots, Aθ0(1) 6= 0, and α0q + β0p 6= 0.

A5: θ0 ∈
◦
Θ, where

◦
Θ denotes the interior of Θ.

A6: Eη4t < ∞.

The �rst part of A2 is the ne
essary and su�
ient 
ondition established by Bougerol and Pi
ard

(1992) for the existen
e of a stri
tly stationary solution to the GARCH(p, q) model. Assumptions
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A3 and A4 are made for identi�ability reasons in order to get the 
onsisten
y of θ̂n. Assumptions

A5 and A6 are required for the asymptoti
 normality of the QMLE.

2.1 Asymptoti
 law of the empiri
al moments of the res
aled GARCH returns

Let the residuals η̂t = ǫt/σ̂t, where σ̂t = σ(ǫt−1, ǫt−2, . . . , ǫ̃0, ǫ̃−1, . . . ; θ̂n). We de�ne, for any r ≥ 0,

µ̂r =
1

n

n∑

t=1

|η̂t|r, µr = E|ηt|r.

For any integer m, let µ̂m = (µ̂2, µ̂4, . . . , µ̂2m)′ and µm = (µ2, µ4, . . . , µ2m)′. The following result

provides the joint asymptoti
 distribution of the QMLE and the ve
tor of sample moments of the

residuals.

Theorem 2.1. If A1-A6 hold, and if µ4m < ∞ then




√
n
(
θ̂n − θ0

)

√
n(µ̂m − µm)


 L→ N



0,Σm :=


 (µ4 − 1)J−1 −θ0b

′
m

−bmθ
′
0 Am





 , (2.3)

where θ0 = (ω0, α01, . . . , α0q, 0, . . . , 0)
′,

J = E
(
φtφ

′
t

)
, φt = φt(θ0), φt(θ) =

1

σ2
t (θ)

∂σ2
t

∂θ
(θ),

and Am = (aij)1≤i,j≤m, bm = (bi)1≤i≤m, with

aij = µ2(i+j) + µ2iµ2j [i+ j + (µ4 − 1)ij − 1]− iµ2iµ2(j+1) − jµ2jµ2(i+1), 1 ≤ i, j ≤ m,

bi = µ2i − µ2(i+1) + (µ4 − 1)iµ2i, 1 ≤ i ≤ m.

Remark 2.1. It is worth noting that the asymptoti
 varian
e-
ovarian
e matrix Am of the ve
tor of

empiri
al moments of the res
aled returns does not depend on the parameter θ0. It solely depends

on the moments, up to the order 2m, of ηt.

Note that µ̂2 = 1 when
e the initial values are su
h that, for any positive 
onstantK,Kσ̃2
t (θ̂n) =

σ̃2
t (θ̂

∗
n) for some θ̂

∗
n ∈ Θ (see Fran
q and Zakoïan (2013b), Remark 4). For more general initial

values, the previous theorem yields the following result.

Corollary 2.1. Under the assumptions of Theorem 2.1, we have

√
n(µ̂2 − 1) → 0, in probability as n → ∞.
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2.2 Testing the existen
e of 2mth-order moments in the GARCH (1,1)

In the GARCH(1,1) 
ase, σ2
t = ω0 + α0ǫ

2
t−1 + β0σ

2
t−1, the ne
essary and su�
ient 
ondition for the

existen
e of E(ǫ2mt ), where m ≥ 1 is an integer, is

m∑

i=0

(
m

i

)
αi
0β

m−i
0 µ2i < 1

(see He and Teräsvirta (1999)). Let G(θ,µ) =
∑m

i=0

(m
i

)
αiβm−iµ2i (with µ0 = 1). Under the

assumptions of Theorem 2.1

1

we have

√
n{G(θ̂, µ̂m)−G(θ0,µm)} L→ N (0, σ2

m), (2.4)

where

σ2
m =

∂G(θ0,µm)

∂(θ′,µ′)
Σm

∂G(θ0,µm)

∂
(
θ
µ

) .

Consider the 2m-th order stationarity problems

H0 : E(ǫ2mt ) < ∞ against H1 : E(ǫ2mt ) = ∞, (2.5)

and

H∗
0 : E(ǫ2mt ) = ∞ against H∗

1 : E(ǫ2mt ) < ∞. (2.6)

Let the Wald test statisti
, with by 
onvention µ̂0 = 1,

Tn =

√
n
{∑m

i=0

(m
i

)
α̂i
nβ̂

m−i
n µ̂2i − 1

}

σ̂m
, where σ̂2

m =
∂G(θ̂n, µ̂m)

∂(θ′,µ′)
Σ̂m

∂G(θ̂n, µ̂m)

∂
(
θ
µ

)

and Σ̂m is a 
onsistent estimator of Σm. The following result is an immediate 
onsequen
e of the


onvergen
e of Tn to the N (0, 1) distribution when

∑m
i=0

(m
i

)
αi
0β

m−i
0 µ2i = 1.

Proposition 2.1. Under the assumptions of Theorem 2.1, a test of (2.5) [resp. (2.6)℄ at the

asymptoti
 level α ∈ (0, 1) is de�ned by the reje
tion region

{Tn > Φ−1(1− α)}, [resp. {Tn < Φ−1(α)}], (2.7)

where Φ is the N (0, 1) 
umulative distribution fun
tion.

1

In the GARCH(1,1) 
ase, the �rst part of A2 redu
es to E log(α0η
2
t + β0) < 0 and A4 vanishes.
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Remark 2.2. As is usual in problems where the null assumption de�nes an open subset of the

parameter set, the test is in fa
t 
onstru
ted for the 
losure of the null assumption. In other words,

for H0 :
∑m

i=0

(
m
i

)
αi
0β

m−i
0 µ2i ≤ 1, the asymptoti
 region satis�es

supH0
limn→∞ P{Tn > Φ−1(1− α)} = α,

where the sup has to be understood as the supremum over all values of θ0 and error distributions

su
h that H0 be satis�ed.

Remark 2.3. Proposition 2.1 
an in parti
ular be applied for testing the se
ond-order moment


ondition, α0 + β0 < 1. In this 
ase, the test statisti
 is given by Tn =
√
n(α̂ + β̂ − 1)/{(µ̂4 −

1)e′Ĵ
−1

e}1/2 where e = (1, 1)′, and µ̂4 and Ĵ are 
onsistent estimators of µ4 and J , respe
tively.

2.3 Bootstrap-based tests

As we will see in the numeri
al se
tion, the �nite sample distributions of the test statisti
s are not

always in par with the asymptoti
 results. With the aim of improving the �nite sample perfor-

man
e of our tests, we will approximate the test statisti
 distributions by means of a residual-based

bootstrap pro
edure. Re
ent papers dealing with bootstrap inferen
e for GARCH-type models are

Leu
ht, Kreiss and Neumann (2015), Beutner, Heinemann and Smeekes (2018), Cavaliere, Nielsen,

Pedersen and Rahbek (2018), Heinemann (2019).

We start by presenting the resampling s
heme when m = 1 (for simpli
ity in the GARCH(1,1)


ase).

1. For a GARCH(1,1) model, let a 
ompa
t parameter spa
e Θc
whose generi
 elements are


onstrained parameters of the form θ′ = (ω,α, 1 − α) with ω > 0 and 0 < α < 1. Compute

the 
onstrained QMLE

θ̂
′
c = (ω̂c, α̂c, 1− α̂c) = arg min

θ∈Θc

n∑

t=1

ℓ̃t(θ)

and the standardized residuals η̂t = η̃t/sn, where η̃t = ǫt/σ̃t(θ̂c) and s2n = n−1
∑n

t=1 η̃
2
t .

Denote by F ∗
n the empiri
al distribution of these residuals.

2. Simulate a traje
tory of length n of a GARCH model with the parameter θ̂c and distribution

F ∗
n for the i.i.d. noise η∗t , 
ompute the un
onstrained QMLE θ̂

∗
= (ω̂∗, α̂∗, β̂∗)′ of the GARCH

parameter, and 
ompute the statisti
 S∗
n = α̂∗ + β̂∗

.
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3. On the observations ǫ1, . . . , ǫn, 
ompute the un
onstrained QMLE θ̂ = (ω̂, α̂, β̂) and the

statisti
 Sn = α̂+ β̂.

4. Repeat B times step 2, and denote by S∗1
n , . . . , S∗B

n the bootstrap test statisti
. Approximate

the p-value of the test H0 : Eǫ2t < ∞ against H1 : Eǫ2t = ∞ by #{S∗j
n ≥ Sn; j = 1, . . . , B}/B,

and approximate the p-value of the test H∗
0 : Eǫ2t = ∞ against H∗

1 : Eǫ2t < ∞ by #{S∗j
n ≤

Sn; j = 1, . . . , B}/B

The numeri
al optimization required for the 
omputation of the QMLE in Step 2, repeated a large

number of times B, is the most time-
onsuming part of the algorithm. Instead of this step, in view

of (A.1), one 
an mimi
 the distribution of the QMLE by using a Newton-Raphson type iteration

(see e.g. Kreiss et al. (2011), Shimizu (2013)). Set

θ̂
∗
= θ̂c + J−1

n

1

n

n∑

t=1

(
η∗ 2t − 1

)
φ̃t(θ̂c), (2.8)

where

φ̃t(θ) =
1

σ̃t(θ)

∂σ̃t(θ)

∂θ
, Jn =

1

n

n∑

t=1

φ̃tφ̃
′
t(θ̂c)

and η∗1 , . . . , η
∗
n are independent and F ∗

n -distributed. That resampling algorithm is valid in the

following sense.

Theorem 2.2 (Asymptoti
 validity of the bootstrap pro
edure). Let a GARCH(p, q) pro
ess (ǫt)

with parameter θ0 su
h that c′θ0 = 1 with c′ = (0, 1, . . . , 1), and i.i.d. sequen
e (ηt) satisfying A1-

A6. Assume also that the distribution of ηt admits a bounded density with respe
t to the Lebesgue

measure. Let θ̂
∗
be de�ned by (2.8). For almost all realization (ǫt), as n → ∞ we have, given (ǫt),

√
n (S∗

n − 1)
L→ N (0, σ2), σ2 = (µ4 − 1)c′J−1c.

Note that, in Theorem 2.2, σ2

orresponds to σ2

m in (2.4) with m = 1. The previous result thus

shows that the distribution of S∗
n given (ǫt) well mimi
s the (un
onditional) distribution of Sn at

the boundary of H0, i.e. in the 
ase c′θ0 = 1, at least when n is large. It is also expe
ted that

in �nite samples the bootstrap distribution of S∗
n better approa
hes the distribution of Sn than its

asymptoti
 distribution.

We also give informal arguments for the 
onsisten
y of the bootstrap: under the alternative

c′θ0 > 1, the 
onstrained estimator θ̂c should 
onverge to a pseudo-true value θ∗
0, or a set a pseudo-

9



true values (see e.g. White, 1994), solution of

θ∗
0 = arg min

θ∈Θc
E

ǫ2t
σ2
t (θ)

+ log σ2
t (θ)

and the distribution of

√
n (S∗

n − 1) =
√
nc′
(
θ̂
∗ − θ̂c

)
=

√
nc′
(
θ̂
∗ − θ∗

0

)
is also expe
ted to be

bounded in probability under the alternative, whereas

√
n (Sn − 1) =

√
nc′
(
θ̂n − θ0

)
+
√
n(c′θ0−1)

tends also surely to +∞. Hen
e the 
onsisten
y of the bootstrap.

For testing the existen
e of Eǫ2mt when m > 1, we generalize the previous resampling s
heme as

follows.

5. Estimate a GARCH(1,1) model and 
ompute µ̂2i = n−1
∑n

t=1 η̂
2i
t on the re
entred and res
aled

residuals.

6. Estimate a GARCH(1,1) model of parameter θc = (ωc, αc, βc) under the 
onstraint H0 :
∑m

i=0

(m
i

)
αi
cβ

m−i
c µ̂2i = 1.

7. Simulate a traje
tory of length n of a GARCH model with the parameter θ̂c of the previous

step, and the empiri
al distribution of the un
onstrained residuals for the i.i.d. noise. Compute

the un
onstrained QMLE θ̂
∗
= (ω̂∗, α̂∗, β̂∗)′ and the statisti
 S∗

n =
∑m

i=0

(m
i

)
α̂∗ iβ̂∗m−iµ̂∗

2i

where µ̂∗
2i is 
omputed on the residuals based on θ̂

∗
.

8. Compute Sn =
∑m

i=0

(
m
i

)
α̂iβ̂m−iµ̂2i.

9. As Step 4.

The validity of this bootstrap pro
edure should follow from the same arguments as those used to

prove Theorem 2.2. A re
ent paper by Heinemann (2019) establishes the validity of a �xed-design

bootstrap for testing the existen
e of moments for GARCH pro
esses.

3 E�
ient testing of 2nd-order stationarity

In this se
tion, we fo
us on the se
ond-order stationarity test for the GARCH(p, q) model. Contrary

to the higher-order moment 
onditions, the se
ond-order moment 
ondition does not depend on the

distribution of the i.i.d. pro
ess. To a
hieve e�
ien
y gains we do not only 
onsider the Gaussian

QML, but also alternative QML estimators founded on reparametrizations of the GARCH model.
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The estimator of the original parametrization (2.1) is estimated in two steps, as in Fran
q, Lepage

and Zakoïan (2011) (hereafter FLZ).

3.1 Generalized QML based tests

Provided that E|ηt|r < ∞, Model (2.1) 
an be equivalently rewritten as

ǫt = σt(θ
(r)
0 )η

(r)
t , E|η(r)t |r = 1, (3.1)

where η
(r)
t = ηt/{E|ηt|r}1/r. The link between the parameters of the two formulations, (2.1) and

(3.1), is given by

θ0 = B(r)θ
(r)
0 , B(r) =


 µ

−2/r
r Iq+1 0

0 Ip


 =


 µ

(r)
2 Iq+1 0

0 Ip


 . (3.2)

In parti
ular, the GARCH persisten
e 
oe�
ients β0j are un
hanged in the reparametrization. Let

µ
(r)
s = E|η(r)t |s for any s > 0. In the sequel, we omit the upper-s
ript (r) when r = 2. Let Θ(r)

su
h

that Θ = {B(r)θ, θ ∈ Θ(r)}. We 
onsider the generalized QMLE of θ
(r)
0 ,

θ̂
(r)

n = argmin

θ∈Θ(r)

Ĩn(θ),

where, for θ ∈ Θ(r)
,

Ĩn(θ) =
1

n

n∑

t=1

l̃t(θ) with l̃t(θ) = log σ̃2
t (θ) +

2

r

|ǫt|r
σ̃r
t (θ)

.

It was shown in Fran
q and Zakoïan (2013b), that under the identi�ability 
onstraint E|η(r)t |r = 1,

the only QMLE whi
h is strongly 
onsistent whatever the error distribution is of the above form.

De�ne the standardized returns η̂
(r)
t = ǫt

σ̃t(θ̂
(r)
n )

, t = 1, . . . , n. For any s > 0 let µ̂
(r)
s,n =

1
n

∑n
t=1

∣∣∣η̂t(r)
∣∣∣
s
, and let

B̂(r)
n =


 µ̂

(r)
2,nIq+1 0

0 Ip


 .

Note that, under appropriate 
onditions, the generalized QMLE θ̂
(r)

n 
onverges to θ
(r)
0 , not to the

parameter θ0 of the standard parametrization. Let θ̂n,r be the two-stage QMLE (2QMLE) of θ0

de�ned as

θ̂n,r = B̂(r)
n θ̂

(r)

n . (3.3)

The next result provides the asymptoti
 properties of this estimator.
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Lemma 3.1 (FLZ, Theorem 2.1). Let r > 0. Under Assumptions A1-A6, and if µ2r < ∞, the

2QMLE of θ0 satis�es

√
n
(
θ̂n,r − θ0

)
L→ N

(
0,Σ(r)

)
(3.4)

with

Σ(r) = g(r)J−1 + {µ4 − 1− g(r)} θ0θ
′
0, g(r) =

(
2

r

)2(µ2r

µ2
r

− 1

)
,

and θ0 = (ω0, α01, . . . , α0q, 0, . . . , 0)
′.

Let the null assumption of se
ond-order stationarity

H0 :

q∑

i=1

α0i +

p∑

j=1

β0j < 1, or, equivalently H0 : c′θ0 < 1,

where c = (0, 1, . . . , 1) ∈ R
p+q+1, and let H1 : c′θ0 ≥ 1. Let also the null assumption of in�nite

varian
e: H
∗
0
: c′θ0 ≥ 1, and let H

∗
1
: c′θ0 < 1. From (3.4) we have

√
nc′(θ̂n,r − θ0)

L→ N
(
0, σ(r)2 := c′Σ(r)c

)
.

Let σ̂(r)
a 
onsistent estimator of σ(r)

and let the Wald statisti


Tn,r =

√
n(c′θ̂n,r − 1)

σ̂(r)
.

The next result is a dire
t 
onsequen
e of Lemma 3.1.

Proposition 3.1. Under the assumptions of Lemma 3.1, a test of H0 [resp. H∗
0℄ at the asymptoti


level α ∈ (0, 1) is de�ned by the reje
tion region

Cr = {Tn,r > Φ−1(1− α)}, [resp. C∗
r = {Tn,r < Φ−1(α)}]. (3.5)

3.2 Asymptoti
 properties under lo
al alternatives

To 
ompare the powers of the di�erent statisti
 Tn,r when r varies, we introdu
e a sequen
e of lo
al

alternatives. Around θ0 su
h that c′θ0 = 1, let a sequen
e of lo
al parameters of the form:

θn = θ0 +
τ√
n

where τ ∈ R
p+q+1

. Without loss of generality, assume that n is su�
iently large so that θn ∈ Θ. We

denote by Pn,τ the distribution of the observations (ǫ1, . . . , ǫn) when the parameter is θ0 + τ/
√
n.

12



3.2.1 Asymptoti
 lo
al powers

Assume that ηt has a density f whi
h is positive everywhere, with third-order derivatives su
h that

lim
|y|→∞

yf(y) = 0 and lim
|y|→∞

y2f ′(y) = 0, (3.6)

and that, for some positive 
onstants K and δ,

|y|
∣∣∣∣
f ′

f
(y)

∣∣∣∣+ y2
∣∣∣∣
(
f ′

f

)′
(y)

∣∣∣∣+ y2
∣∣∣∣
(
f ′

f

)′′
(y)

∣∣∣∣ ≤ K
(
1 + |y|δ

)
, (3.7)

E |η1|2δ < ∞. (3.8)

These regularity 
onditions are satis�ed for numerous distributions

2

.

Proposition 3.2. Under the assumptions of Proposition 3.1 and under (3.6)-(3.8), the lo
al asymp-

toti
 powers of the se
ond-order stationarity tests (3.5) are given by

lim
n→∞

Pn,τ (Cr) = Φ

{
Φ−1(α) +

c′τ

σ(r)

}
for c′τ ≥ 0, (3.9)

and

lim
n→∞

Pn,τ (C∗
r) = Φ

{
Φ−1(α) − c′τ

σ(r)

}
for c′τ ≤ 0.

Comparison of the asymptoti
 powers of the se
ond-order stationarity tests (3.5) when r varies

thus boils down to 
omparing the 
oe�
ients σ(r)
: the smaller the latter, the more powerful the

test Cr.

Corollary 3.1. Let [r, r] su
h that r0 = argmin[r,r] g(r) is well de�ned. Then, within the family

{Cr, r ∈ [r, r]} (resp. {C∗
r , r ∈ [r, r]}), for testing H0 (resp. H

∗
0
), the test Cr0 has the highest lo
al

asymptoti
 power, uniformly in τ .

Remark 3.1. The optimal value r0 of r depends on the errors distribution, and is also optimal

for the estimator θ̂n,r of θ0 (see FLZ). In the Gaussian 
ase, unsurprisingly, r0 = 2, but for other

distributions, the tests based on the Gaussian QMLE are far from optimal. For instan
e, in the


ase of a Student t(ν) distribution, r0 is stri
tly less than 1 for small values of the degree of freedom

ν, and in
reases to 2 as ν goes to in�nity.

Remark 3.2. It has to be noted that a minimum of g over the positive real line may not exist

for parti
ular distributions of ηt (see FLZ, Example 2.3). In pra
ti
e, r0 is not known but 
an be


onsistently estimated under appropriate assumptions (see FLZ, Theorem 3.1).

2

in parti
ular the Gaussian distribution (δ = 2), the Student's distributions with ν > 4 degrees of freedom (δ = 2).
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3.2.2 Optimality issues

Corollary 3.1 allows to determine optimal tests within the 
lass of QML tests of 
riti
al regions Cr

(or C∗
r ). In this se
tion we provide an upper bound for the lo
al powers whi
h, if it is rea
hed,


hara
terizes optimal tests. Optimality means "uniformly most powerful unbiased (UMPU)" (see

van der Vaart (1998)).

Proposition 3.3. Let a stri
tly stationary GARCH(p, q) model and assume that the error density

f satis�es (3.6)-(3.8). Let ιf the Fisher information for s
ale

ιf =
∫
{1 + yf ′(y)/f(y)}2 f(y)dy < ∞.

Then, any test whose 
riti
al region satis�es

lim
n→∞

Pn,τ (C) = Φ

{
Φ−1 (α) +

c′τ
√
ιf

2
√
c′J−1c

}
for c′τ ≥ 0, (3.10)

is UMPU for testing H0 against H1.

As a 
onsequen
e, the test based on the Gaussian QML density is optimal in the following 
ase.

Proposition 3.4. Under the assumptions of Proposition 3.2, the se
ond-order stationarity test (3.5)

with r = 2 is asymptoti
ally lo
ally UMPU when the density of ηt has the form

f(y) =
aa

Γ(a)
e−ay2 |y|2a−1, a > 0, Γ(a) =

∫ ∞

0
ta−1e−tdt. (3.11)

4 Numeri
al illustrations

To illustrate the �nite sample properties of our test statisti
s we 
onsider simulated and real �nan
ial

data.

4.1 Monte-Carlo experiments

In this se
tion, our aims are to (i) study the performan
e of the tests of Se
tion 2.2 for the existen
e

of 2mth-order moments; (ii) use the bootstrap pro
edure of Se
tion 2.3 to see whether the �nite

sample properties of the tests are improved; (iii) look for e�
ien
y gains by implementing the

generalized QML of Se
tion 3.

14



We �rst simulated N = 1000 independent traje
tories of size n = 2000, 4000, 8000 of a

GARCH(1,1) pro
ess with parameter (ω0, α0, β0) = (0.5, 0.105, 0.87) and ηt ∼ N (0, 1). In this

setting, we have

m∑

i=0

(
m

i

)
αi
0β

m−i
0 µ2i − 1 = −0.025,−0.027, 0.001, 0.073, 0.216, 0.482

for m = 1, 2, 3, 4, 5, 6 respe
tively. Therefore the moments of order 2m are �nite for m ≤ 2 and they

are in�nite for m ≥ 3. Table 1 shows that, very often, the tests de�ned by (2.7) 
orre
tly dete
t

that Eǫ2mt is �nite for m ≤ 2 and in�nite for m ≥ 4. For m = 3, one 
annot 
on
lude in general,

whi
h is not surprising sin
e S :=
∑m

i=0

(m
i

)
αiβm−iµ2i is very 
lose to 1 when m = 3. Note also

that, for a 
orre
t de
ision, the sample size n needs to be quite large. A �rst explanation for the

need of large samples is that the parameter (α0, β0) = (0.105, 0.87) of the generated GARCH model

is lo
ated in a region where a slight variation of the parameter may entail important modi�
ations

in the moments existen
e (see our 
omments of Figure 1). Another possible explanation is that the

�nite sample distribution of the test statisti
 Sn is far from its Gaussian asymptoti
 approximation,

as will be seen in the following experiment. We simulated N = 1000 independent traje
tories of

a GARCH(1,1) pro
ess with parameter (ω,α, β) = (0.5, 0.10, 0.90) and ηt ∼ N (0, 1). Note that

the parameter of the simulated model stands at the boundary of the region of existen
e of the

se
ond-order moment. On ea
h simulation, the GARCH model has been estimated and the statisti


Sn = α̂ + β̂ used to test the existen
e of Eǫ2t has been 
omputed. Figure 2 shows a kernel density

estimation of the distribution of the estimator Sn of S = 1 for n = 2000 and n = 8000. Even for

the large sample size n = 8000, the distribution is 
learly negatively skewed, and thus is not well

estimated by the Gaussian asymptoti
 distribution. Other numeri
al experiments, not presented

here, reveal that the problem may be even more pronoun
ed when testing moments moments of

order 2m > 2 and/or when η is not Gaussian.

Table 2 is the analogue of Table 1, but uses the resampling algorithm and reje
ts the null when

the estimated p-value is smaller than the nominal level. The two tables are quite similar but, as

expe
ted, the empiri
al relative frequen
y of reje
tion is 
loser to the nominal level when m = 3 (i.e

S is very 
lose to 1).
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Table 1: Relative frequen
y of reje
tion of H0 : Eǫ2mt < ∞ against H1 : Eǫ2mt = ∞ or of H∗
0 : Eǫ2mt = ∞ against

H∗
1 : Eǫ2mt < ∞ at the nominal level α = 5% or 10%. The null hypothesis H0 is true for m = 1, 2 and false for

m = 3, . . . , 6, the null H∗
0 is true for m = 3, . . . , 6 and false for m = 1, 2.

Null n α m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

H0 2000 5% 0.0 0.0 1.2 14.4 35.8 48.9

10% 0.0 0.0 4.5 30.6 60.5 80.6

4000 5% 0.0 0.0 2.4 35.9 77.1 93.1

10% 0.0 0.0 6.4 53.4 90.0 98.5

8000 5% 0.0 0.0 3.0 66.8 99.0 99.9

10% 0.0 0.0 6.9 79.6 99.6 100.0

H∗
0 2000 5% 97.5 48.1 7.9 0.7 0.1 0.1

10% 99.8 65.9 15.7 1.8 0.1 0.1

4000 5% 100.0 72.7 7.3 0.1 0.0 0.0

10% 100.0 85.3 14.7 0.4 0.0 0.0

8000 5% 100.0 94.1 6.7 0.0 0.0 0.0

10% 100.0 97.3 14.5 0.0 0.0 0.0

0.98 0.99 1.00 1.01

0
2
0

4
0

6
0

n=2000

0.990 0.995 1.000 1.005

0
5
0

1
0
0

1
5
0

n=8000

Figure 2: Empiri
al distribution of Sn.
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Table 2: As Table 1, but the resampling algorithm is used instead of the asymptoti
 distribution.

Null n α m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

H0 2000 5% 0.0 0.1 3.6 24.8 50.2 72.9

10% 0.0 0.1 8.3 38.4 67.6 86.8

4000 5% 0.0 0.0 6.3 42.9 81.5 94.7

10% 0.0 0.1 11.0 60.2 89.7 98.6

8000 5% 0.0 0.0 4.3 68.3 97.9 99.8

10% 0.0 0.0 9.1 81.5 99.4 100.0

H∗
0 2000 5% 83.3 31.2 4.3 0.6 0.0 0.0

10% 95.1 48.9 9.7 1.3 0.1 0.0

4000 5% 98.9 51.9 4.5 0.1 0.0 0.0

10% 100.0 69.8 10.2 0.7 0.0 0.0

8000 5% 100.0 81.8 5.3 0.0 0.0 0.0

10% 100.0 93.3 10.2 0.1 0.0 0.0

Now we turn to tests based on non-Gaussian QML. Figure 3 displays the fun
tion

r 7→ ĝ(r) =

(
2

r

)2( µ̂2r

µ̂2
r

)

for r ∈ [r, r] when ηt ∼ N (0, 1). In this distribution, the optimal value r0 of r, i.e. the point where

the minimum value of g(r) is rea
hed, is r0 = 2. One 
an see that argminr ĝ(r) is indeed 
lose to 2

when n is large enough and r is not 
hosen too large. It is a
tually ne
essary to impose an upper

bound for r be
ause, as shown in Lemma 3.1 of FLZ, when n is �xed, ĝ(r) tends to zero as r → ∞.

Table 3 presents results for tests of the existen
e of se
ond-order moments on 1000 independent

simulations of length n of a GARCH(1,1) pro
ess when ηt follows a GED(0.3) distribution (normal-

ized so that Eη2t = 1). When α0 = 0.1 and β0 = 0.8 we have α0 +β0 = 0.9 (thus H0 := Eǫ2t < ∞ is

true), when α0 = 0.105 and β0 = 0.87 we have α0 + β0 = 0.975 (thus H0 is true), when α0 = 0.105

and β0 = 0.895 we have α0 + β0 = 1 (thus we are at the boundary of H0), when α0 = 0.145 and

β0 = 0.88 we have α0 + β0 = 1.025 (thus H0 is false) and when α0 = 0.15 and β0 = 0.9 we have

α0 + β0 = 1.05 (thus H0 is false). The 
olumns "QML" are obtained by applying the tests de�ned

in Proposition 2.1 in the 
ase m = 1, based on the Gaussian QMLE (see Remark 2.3). For the


olumns "gQML", we 
onsider the test de�ned in Proposition 3.1, based on the generalized QMLE
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Figure 3: Empiri
al estimate of the fun
tion g(r) when the GARCH innovation ηt ∼ N (0, 1).
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Table 3: Relative frequen
y of reje
tion of H0 : Eǫ2t < ∞ against H1 : Eǫ2t = ∞ or of H∗
0 : Eǫ2t = ∞ against

H∗
1 : Eǫ2t < ∞ at the nominal level α = 5% or 10%, using the Gaussian QML or the generalized QML methods.

(α0, β0) (0.1, 0.8) (0.105, 0.87) (0.105, 0.895) (0.145, 0.88) (0.15, 0.9)

Null n α QML gQML QML gQML QML gQML QML gQML QML gQML

H0 2000 5% 0.0 0.0 0.2 0.0 0.4 1.8 2.6 8.9 9.9 41.3

10% 0.2 0.0 0.8 0.4 2.8 5.3 9.7 22.4 27.1 63.2

4000 5% 0.0 0.0 0.1 0.0 1.2 1.6 6.3 21.0 33.0 76.7

10% 0.0 0.0 0.8 0.2 4.5 6.3 19.3 37.1 56.9 88.3

8000 5% 0.0 0.0 0.2 0.0 2.1 3.1 14.8 43.3 67.5 96.4

10% 0.1 0.0 0.8 0.1 6.2 7.8 31.2 61.6 83.1 98.6

H∗
0 2000 5% 6.5 84.4 2.2 33.5 0.7 10.4 0.5 2.9 0.4 0.4

10% 25.6 91.1 16.6 47.4 6.8 15.6 4.2 5.0 1.4 0.8

4000 5% 35.1 98.4 13.7 44.1 5.5 10.1 1.3 1.3 0.1 0.0

10% 69.8 98.7 35.6 56.1 17.5 16.2 4.3 1.9 0.5 0.0

8000 5% 87.2 100.0 31.3 58.7 8.2 7.6 1.4 0.2 0.1 0.0

10% 94.6 100.0 46.5 69.0 15.4 13.3 2.5 0.9 0.2 0.0

where r is repla
ed by the minimizer of ĝ(r) for r ∈ [0.001, 2]) (see Remark 3.2). For both tests,

ex
ept on the boundary, the reje
tion frequen
ies are satisfa
tory with a 
lear advantage (for all

ex
ept 2 
ases) for the gQML. For parameters su�
iently far from the boundary, frequen
ies of

reje
tion of the alternative hypotheses are high. The tests of H0 appear 
onservative, the empiri
al

probabilities of in
orre
t reje
tion being never greater than the nominal level. On the 
ontrary, the

tests of H∗
0 generally over-reje
t the null. A bootstrap pro
edure was implemented, with the aim

of improving the results under the null assumptions. To redu
e the 
omputational time, we only

implemented the bootstrap for a subset of the parameters and sample sizes. The results reported

in Table 4 show that, as expe
ted, the errors of �rst kind are better 
ontrolled.
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Table 4: As Table 3, but resampling algorithms are used instead of the asymptoti
 distributions.

(α0, β0) (0.1, 0.8) (0.105, 0.895) (0.15, 0.9)

Null n α QML gQML QML gQML QML gQML

H0 2000 5% 0.3 0.0 2.7 4.3 21.0 41.0

10% 1.0 0.1 6.7 8.8 40.0 59.6

H∗
0 2000 5% 14.2 31.9 3.6 3.1 0.2 0.5

10% 30.7 51.1 8.1 7.1 0.7 0.6
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Figure 4: Total sto
k pri
e and return from 2001-07-16 to 2018-09-21.
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4.2 Empiri
al study

In this se
tion, we 
onsider the daily sto
k returns of the Fren
h energy 
ompany Total SA, whi
h


onstitutes one of the main 
omponents of the CAC40 index. The sample path over the period

2001-07-16 to 2018-09-21 is displayed in Figure 4. On the return series, the estimated GARCH(1,1)

model is the following (the estimated standard deviations are into bra
kets):

ω̂ = 0.035(0.009), α̂ = 0.083(0.011), β̂ = 0.903(0.011)

µ̂4 = 4.1(0.3), µ̂6 = 41.0(12.5), µ̂8 = 833.2(482.5),

µ̂10 = 24572.4(18530.0), µ̂12 = 844199.0(711993.3).

The statisti
s Tn are respe
tively equal to −2.96,−0.69, 1.15, 1.62, 1.45, 1.19 for m = 1, . . . , 6. This

provides strong eviden
e for the existen
e of moments of order 2, and some eviden
e of non existen
e

of moments of order 8. Figure 5 displays, for m = 1, . . . , 6, the kernel density estimator of the

distribution of Sn under the null that S = 1. These estimators were obtained by using B = 1000

repli
ations in the above-des
ribed resampling algorithm. The value of Sn 
omputed from the

observations is represented by the verti
al line on the plots. A value of Sn on the left tail of the

distribution is a sign that Eǫ2mt is �nite. Conversely, a value of Sn in the extreme right tail of

the distribution indi
ates that Eǫ2mt is likely to be in�nite. From this �gure, we 
on
lude that

Eǫ2t should be �nite and Eǫ8t should be in�nite, whi
h reinfor
es the 
on
lusions drawn from the

asymptoti
 theory. In view of Figure 1, it is not surprising that we 
annot 
on
lude 
on
erning

the existen
e of moments of order 4 and 6. Indeed, the estimated value belongs to a zone of the

parameter spa
e where the di�erent moment 
onditions are almost undistinguishable.

5 Con
luding remarks

Testing for the existen
e of moments is parti
ularly important for �nan
ial times series, whose

distributions are thought of as being heavily tailed, even if there is no 
onsensus in the literature

about how moments really exist. GARCH models o�er a framework for su
h tests be
ause: i)

the existen
e of moments is expli
itly 
hara
terized in terms of the volatility parameters and the

moments of the errors distribution and ii) a sound theory of estimation is available for su
h models.

Contrary to alternative approa
hes (e.g. the extreme value theory) for studying the tails of returns,
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Figure 5: Bootstrap estimates of the distribution of Sn when S = 1 (kernel density estimator) and observed

value of Sn (verti
al line).
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the dynami
s does not 
onstitute a "nuisan
e parameter": on the 
ontrary, the dynami
s of the

series (i.e. the serial dependen
e) is used to estimate 
hara
teristi
s of the marginal distribution.

In this paper, we have proposed tests for dete
ting whether the 2mth moment of a GARCH

pro
ess is �nite. We used QML approa
hes whi
h do not rely on any distributional assumption on

the error pro
ess. We derived the asymptoti
 distribution of tests based on the Gaussian QML,

as well as tests relying on a reparametrization of the model enabling the use of alternative QML.

We also dis
ussed the 
hoi
e of an optimal reparameterization. In this arti
le, we fo
used on the


lassi
al GARCH(p, q) model but it is 
lear that various alternative spe
i�
ations of the 
onditional

varian
e (GJR-GARCH, TGARCH, ...) 
ould be handled in a similar fashion.

A general 
on
lusion from our study is that determining if a given moment of a GARCH series

exists is a di�
ult statisti
al problem.

3

The bootstrap versions of our tests bring signi�
ant

improvements in terms of size but, as expe
ted, do not improve powers. Even lo
ally optimal tests

may be far from 
on
lusive for moderate sample sizes. This suggests that one has to be 
autious in

assessing the existen
e, or non-existen
e, of moments of �nan
ial time series.
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3

In pra
ti
e, the situation 
an even be 
ompli
ated when the series is 
ontaminated by the presen
e of outliers

(e.g. due to market 
rashes or rallies). Several authors have proposed statisti
al methods for dete
ting the presen
e

of outliers (see for instan
e Franses and Ghijsels, 1999, Franses and van Dijk, 2011). In su
h situations, estimation

methods that are resistant to outliers are 
alled for (see e.g. Sakata and White, 1998) but it is 
lear that our tests

will no longer be reliable when the model be
omes misspe
i�ed.
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Appendix: proofs

Proof of Theorem 2.1

By Fran
q and Zakoian (2004) Theorems 2.1 and 2.2, θ̂n → θ0 a.s. and

√
n
(
θ̂n − θ0

)
= −J−1 1√

n

n∑

t=1

(
1− η2t

) 1

σ2
t

∂σ2
t (θ0)

∂θ
+ oP (1)

L→ N (0, (κ4 − 1)J−1). (A.1)

Let ηt(θ) = ǫtσ
−1
t (ǫt−1, ǫt−2, . . . ; θ), η̃t(θ) = ǫtσ

−1
t (ǫt−1, . . . , ǫ1, ǫ̃0, ǫ̃−1, . . . ; θ),

µr(θ) =
1

n

n∑

t=1

|ηt(θ)|r, µ̃r(θ) =
1

n

n∑

t=1

|η̃t(θ)|r.

Using (4.6) in Fran
q and Zakoian (2004), and arguments similar to those used to prove i)

in their Theorem 2.1, it 
an be shown that

µ̂r = µ̃r(θ̂n) = µr(θ̂n) + oP (n
−1/2). (A.2)

A Taylor expansion gives, for θ∗
between θ̂n and θ0,

µr(θ̂n) = µr(θ0) +
∂µr(θ

∗)

∂θ′ (θ̂n − θ0) = µr(θ0) +
∂µr(θ0)

∂θ′ (θ̂n − θ0) + oP (n
−1/2)(A.3)
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where the se
ond equality follows from (A.1), with

∂µr(θ0)

∂θ′ =
−r

2n

n∑

t=1

|ηt|r
1

σ2
t

∂σ2
t (θ0)

∂θ′ =
−r

2
µrφ

′ + oP (1),

and φ = E (φt) . This expansion, together with (A.3)-(A.2), gives

√
n(µ̂r − µr(θ0)) =

−r

2
µrφ

′√n
(
θ̂n − θ0

)
+ oP (n

−1/2),

and thus

√
n(µ̂r − µr) =

1√
n

n∑

t=1

(|ηt|r − µr)−
r

2
µrφ

′√n
(
θ̂n − θ0

)
+ oP (n

−1/2).

In view of (A.1) we thus have,

√
n(µ̂m − µm) =

1√
n

n∑

t=1

(Zt,m − µm) + νmφ
′J−1

(
1− η2t

)
φt + oP (n

−1/2),

where Zt,m = (η2t , η
4
t , . . . , η

2m
t )′, νm = (µ2, 2µ4, . . . , mµ2m)

′
.

The asymptoti
 normality in Theorem 2.1 follows by the Wold-Cràmer devi
e and the


entral limit theorem for martingale di�eren
es. Using the equality φ′J−1φ = 1 (see Remark

3 in Fran
q and Zakoian (2013b)) we have,

Varas{
√
n(µ̂m − µm)} = Var(Zt,m) + E[Zt,m(1− η2t )]ν

′
m + νmE[Z ′

t,m(1− η2t )] + νmν
′
m(µ4 − 1),

and

Covas{
√
n
(
θ̂n − θ0

)
,
√
n(µ̂m − µm)} = −J−1φ[E{(1− η2t )Z

′
t,m}+ (µ4 − 1)ν ′

m].

The 
on
lusion follows by noting that J−1φ = θ0. ✷

Proof of Corollary 2.1

It su�
es to remark that the asymptoti
 law of

√
n(µ̂2−1) is degenerate: indeed, b1 = ai1 =

a1j = 0 for all i and j. ✷
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Proof of Theorem 2.2

We start by showing a lemma.

Lemma A.1. Suppose that the assumptions of Theorem 2.2 are satis�ed. Conditionally on

almost all realizations (ǫt) of the GARCH(p, q) pro
ess, the distribution F ∗
n of the standardized

residuals tends to the un
onditional distribution F of ηt. Moreover, for almost all realizations

(ǫt) and any A ∈ [−∞,∞), as n → ∞

1

n

n∑

t=1

η̂4t 1η̂t≥A =

∫ ∞

A

x4F ∗
n(dx) →

∫ ∞

A

x4F (dx). (A.4)

More generally, for any real fun
tion h su
h that |h(x| ≤ ax4 + b where a, b > 0, and the set

Dh of its dis
ontinuities veri�es P (ηt ∈ Dh) = 0, we have

∫
h(x)F ∗

n(dx) →
∫

h(x)F (dx). (A.5)

Proof of Lemma A.1. The proof is inspired by that of Lemmas 8.6 and 8.7 in Fran
q,

Jim�©nez-Gamero and Meintanis (2017). Let ηt(θ) = ǫt/σt(θ) and η̃t(θ) = ǫt/σ̃t(θ), so that

η̃t = η̃t(θ̂c) and ηt = ηt(θ0). In Fran
q and Zakoian (2004), it is shown that

sup
θ∈Θ

|σt(θ)− σ̃t(θ)| ≤ Kρt, (A.6)

where, here and in the sequel, K denotes a generi
 positive variable depending on {ηt, t ≤ 0}
and ρ denotes a generi
 
onstant belonging to [0, 1). We thus have

sup
θ∈Θ

|ηt(θ)− η̃t(θ)| ≤
K

ω
ρt|ǫt|

where ω is a positive lower bound for ω over the 
ompa
t set Θ. By the mean value theorem

ηt(θ̂c) = ηt +
∂ηt(θn)

∂θ′

(
θ̂c − θ0

)
,

with θn between θ̂c and θ0. In Fran
q and Zakoian (2004), it is also shown that for any d

there exists a neighborhood V (θ0) of θ0 su
h that

E sup
θ∈V (θ0)

∣∣∣∣
σt(θ0)

σt(θ)

∣∣∣∣
d

< ∞, E sup
θ∈Θ

‖φt(θ)‖d < ∞. (A.7)

This entails that

sup
θ∈V (θ0)

∥∥∥∥
∂ηt(θ)

∂θ′

∥∥∥∥ = sup
θ∈V (θ0)

∥∥∥∥
σt(θ0)

σt(θ)
φt(θ)ηt

∥∥∥∥ = ut|ηt|,
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where ut ∈ Ft−1 and Eu
d/2
t < ∞. We thus have

|η̃t − ηt| ≤ K
(
ρt +

∥∥∥θ̂c − θ0

∥∥∥
)
ut|ηt|, (A.8)

for n large enough. It follows that, for almost all sequen
e (ǫt), or equivalently almost all

sequen
e (ηt),

s2n =
1

n

n∑

t=1

η2t +
1

n

n∑

t=1

(η̃t − ηt)
2 +

2

n

n∑

t=1

ηt (η̃t − ηt) → 1

as n → ∞. Sin
e

η̂t − ηt =
1

sn
(η̃t − ηt) +

(
1

sn
− 1

)
ηt, (A.9)

we have

|η̂t − ηt| ≤
(
ρt + an

)
vt|ηt|,

for n large enough, where vt = 2Kut + 1 and an =
∥∥∥θ̂c − θ0

∥∥∥+
(

1
sn

− 1
)
tends to 0. For all

x ∈ R, all ε > 0 and all M > 0, we then have

∣∣1{η̂t≤x} − 1{ηt≤x}
∣∣ ≤ 1{x−(ρt+an)vt|ηt|≤ηt≤x+(ρt+an)vt|ηt|}

≤ 1At,ε,M
+ 1an>ε + 1|ηt|>M ,

with the event

At,ε,M =
{
x−

(
ρt + ε

)
vtM ≤ ηt ≤ x+

(
ρt + ε

)
vtM

}
.

For t ≥ log ε/ log ρ, we have At,ε,M ⊂ A2ε,M with

Aε,M = {x− εvtM ≤ ηt ≤ x+ εvtM} .

Taking d ≥ 2, we have

E1Aε,M
= EE

(
1Aε,M

| Ft−1

)
= E

∫ x+εvtM

x−εvtM

f(y)dy ≤ 2max
y∈R

f(y)εMEvt.

For all κ > 0, we thus have a small ε > 0 and a large M > 0 su
h that

E
{
1A2ε,M

+ 1an>ε + 1|ηt|>M

}
≤ κ.
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It follows that, for almost all sequen
es (ǫt), we have

lim
n→∞

1

n

n∑

t=1

1{η̂t≤x} = lim
n→∞

1

n

n∑

t=1

1{ηt≤x} = P (ηt ≤ x) , ∀x ∈ R.

We have shown that, for almost all (ǫt), F
∗
n weakly 
onverges to F .

Now note that by (A.8) we have

1

n

n∑

t=1

|η̃t − ηt|k → 0

for k = 1, 2, 3, 4, assuming without loss of generality that d ≥ 8. Sin
e 1
n

∑n
t=1 η

4
t → µ4, this

implies

1

n

n∑

t=1

η̃4t → µ4.

We then obtain (A.4) with A = −∞ from (A.9) and the 
onvergen
e of sn to 1.

By the 
ontinuous mapping theorem, given almost all sequen
e (ǫt), a random sequen
e

(Xn, Yn) with uniform distribution on {(η̂4t , h(η̂t)), t = 1, . . . , n} 
onverges in distribution to

a random ve
tor (X, Y ) = (η4, h(η)) where η ∼ F . Having shown (A.4) with A = −∞, we

already know that E(Xn | (ǫt)) → EX. Theorem 3.6 in Billingsley (1999) then shows that

the sequen
e Xn is uniformly integrable, given (ǫt). By Theorem 3.5 in Billingsley (1999), to

show (A.5), that is E(Yn | (ǫt)) → EY , it remains to show that Yn is uniformly integrable,

whi
h is obvious be
ause |Yn| ≤ aXn + b. The proof of Lemma A.1 is 
omplete.

Now we turn to the proof of Theorem 2.2. We have, in view of (2.8),

√
n (S∗

n − 1) = c′
√
n
(
θ̂
∗ − θ̂c

)
= c′J−1

n

1√
n

n∑

t=1

x̃t,n,

with x̃t,n = (η∗2t − 1) φ̃t(θ̂c). The index n in x̃t,n emphasizes that the distribution F ∗
n of η∗t , as

well as θ̂c, depend on n. Let xt,n = (η∗2t − 1)φt(θ̂c). In view of (A.6) and a similar inequality

for the derivatives, we have

sup
θ∈Θ

∣∣∣φt(θ)− φ̃t(θ)
∣∣∣ ≤ Kρtut,

where ut := supθΘ φt(θ) + 1 admits moments of any order. It follows that

∣∣∣∣∣
1√
n

n∑

t=1

xt,n −
1√
n

n∑

t=1

x̃t,n

∣∣∣∣∣ ≤
K√
n

∞∑

t=1

∣∣η∗2t − 1
∣∣ ρtut → 0 a.s.

31



as n → ∞, noting that the previous series is a.s. �nite be
ause its expe
tation is �nite.

Moreover, by the standard arguments of Fran
q and Zakoian (2004), it 
an be shown that

Jn 
onverges to the invertible matrix J = Eφtφ
′
t(θ0) as n → ∞.

It thus remains to show that, 
onditional on (ǫt),

1√
n

n∑

t=1

xt,n
d→ N (0, (µ4 − 1)J) . (A.10)

Note that, 
onditional on (ǫt), for ea
h n the random ve
tors x1,n,x2,n, . . . are independent

and 
entered, with �nite se
ond-order moments. From Lindeberg's CLT for triangular arrays

of square integrable martingale in
rements, and the Wold-Cramer devi
e, it su�
es to show

that for any λ ∈ R
3
, λ 6= 0,

1

n

n∑

t=1

Var (λ′xt,n) → (µ4 − 1)λ′Jλ > 0 as n → ∞, (A.11)

and for all ε > 0

1

n

n∑

t=1

E
(
{λ′xt,n}2 1{|λ′xt,n|≥

√
nε}

)
→ 0 as n → ∞. (A.12)

Note that, given (ǫt), only the term η∗t is random in xt,n. Moreover, if η ∼ F ∗
n , then Eη = 0,

Eη2 = 1 and, by (A.4) in Lemma A.1, Eη4 → µ4 as n → ∞. Given (ǫt), as n → ∞ we thus

have

Varλ′xt,n =
{
λ′φt(θ̂c)

}2

(Eη4 − 1) → {λ′φt}2 (µ4 − 1).

Moreover, for all ε > 0 there exists a neighborhood V (θ0) of θ0 su
h that

lim
n→∞

1

n

n∑

t=1

sup
θ∈V (θ0)

∣∣∣{λ′φt(θ)}2 − {λ′φt(θ0)}2
∣∣∣ ≤ ε.

The previous result is obtained by using the ergodi
 theorem, the 
ontinuity of θ 7→
E
∣∣∣{λ′φt(θ)}

2 − {λ′φt(θ0)}2
∣∣∣, the dominated 
onvergen
e theorem, and by shrinking the

neighborhood. Now the 
onsisten
y of θ̂c and the ergodi
 theorem entail (A.11), noting that

under A2 and A4, 0 < µ4 − 1 < ∞.

Now we turn to the proof of (A.12). Given (ǫt), for some neighborhood V (θ0) of θ0 and
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n large enough we have

E {λ′xt,n}2 1{|λ′xt,n|≥
√
nε}

≤ 1{supθ∈V (θ0)
supt≥1|λ′φt(θ)|>0} sup

θ∈V (θ0)

sup
t≥1

{λ′φt(θ)}2

× E
∣∣η∗2t − 1

∣∣2 1{
|η∗2t −1|≥ √

nε√
supθ∈V (θ0)

supt≥1|λ′φt(θ)|

}. (A.13)

For any A > 0 there exists nA su
h that if n > nA then the expe
tation in the right-hand

side of (A.13) is bounded by

E
∣∣η∗2t − 1

∣∣2 1{|η∗2t −1|≥A}.

By Lemma A.1, this terms tends to

∫

|x2−1|≥A

∣∣x2 − 1
∣∣2 F (dx)

whi
h is arbitrarily small when A is su�
iently large. We then obtain (A.12) by already

given arguments. ✷

Proof of Proposition 3.2

Under the stri
t stationarity 
ondition γ0 < 0, Drost and Klaassen (1997) showed that, for

standard GARCH, the log-likelihood ratio Λn,f(θn, θ0) = logLn,f(θn)/Ln,f(θ0) satis�es the

LAN property

Λn,f(θn, θ0) = τ ′Sn,f(θ0)−
1

2
τ ′
Ifτ + oPθ0

(1), (A.14)

where Sn,f(θ0)
d−→ N {0, If} under Pθ0 as n → ∞ and If =

ιf
4
J .

Note that the so-
alled 
entral sequen
e Sn,f is 
onditional on the initial values. In the

stationary 
ase, Lee and Tanigu
hi (2005) showed that the initial values have no in�uen
e

on the LAN property. Let the fun
tions

g1(y) = 1 + y
f ′

f
(y) and g2(y) = 1 + 2y

f ′

f
(y) + y2

(
f ′

f

)′
(y).

We have

Sn,f(θ0) =
−1

2
√
n

n∑

t=1

g1(ηt)φt (A.15)
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and thus

Λn,f(θn, θ0) =
−τ ′

2
√
n

n∑

t=1

g1(ηt)φt −
1

2
τ ′
Ifτ + oPθ0

(1). (A.16)

By FLZ, letting φ
(r)
t = φt(θ

(r)
0 ) and φ(r) = Eφ

(r)
t ,

√
n


 µ̂

(r)
2,n − µ

(r)
2

θ̂
(r)

n − θ
(r)
0


 =


 1 −µ

(r)
2 φ(r)′{J (r)}−1

0 {J (r)}−1


 1√

n

n∑

t=1


 |η(r)t |2 − µ

(r)
2

φ
(r)
t

(
|η(r)t |r − 1

)

 + oP (1),

where J (r) = E
(

r
2
φ

(r)
t φ

(r)′

t

)
. We also have

√
n(c′θ̂n,r − 1)

=
√
nc′B̂(r)

n θ̂
(r)

n −√
nc′B(r)θ

(r)
0

= c′B(r)
√
n(θ̂

(r)

n − θ
(r)
0 ) + c′

√
n(B̂(r)

n − B(r))θ̂
(r)

n

=

(
q∑

i=1

α
(r)
0i c′B(r)

)
√
n


 µ̂

(r)
2,n − µ

(r)
2

θ̂
(r)

n − θ
(r)
0


 + oP (1)

=
(
α
(r)
0

{
−α

(r)
0 µ

(r)
2 φ(r)′ + c′B(r)

}
{J (r)}−1

) 1√
n

n∑

t=1


 |η(r)t |2 − µ

(r)
2

φ
(r)
t

(
|η(r)t |r − 1

)

 + oP (1)

where α
(r)
0 =

∑q
i=1 α

(r)
0i . Let θ0 = (ω0, α01, . . . , α0q, 0, . . . , 0)

′. Noting that

µ
(r)
2 = µ−2/r

r , α
(r)
0 = µ2/r

r α0, φ
(r)
t = B(r)φt, J (r) =

r

2
B(r)JB(r), µ2/rθ

′
0B

(r) = θ
′
0

we get

√
n(c′θ̂n,r − 1)

=

(
µ2/r
r α0

2

r

{
−α0µ

2/r
r θ

′
0 + c′J−1(B(r))−1

}) 1√
n

n∑

t=1


 µ

−2/r
r (η2t − 1)

B(r)φt

(
|ηt|r
µr

− 1
)

 + oP (1)

=
α0√
n

n∑

t=1

(η2t − 1) +
2

r

{
−α0θ

′
0 + c′J−1

} 1√
n

n∑

t=1

φt

( |ηt|r
µr

− 1

)
.

Let Pn,τ the distribution of the observations (ǫ1, . . . , ǫn) when the parameter is θ0 + τ/
√
n.

Under Pn,0


 Tn,r

Λn,f(θ0 + τ/
√
n, θ0)


 d−→ N






 0

− ιf
8
τ ′Jτ


 ,


 1 cr

cr
ιf
4
τ ′Jτ





 , (A.17)
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where, using the equality Jθ0 = φ,

cr = − 1

2σ(r)

{
α0τ

′φ

(
k2 −

2

r
kr

)
+ c′τ

2

r
kr

}
,

and kr = E
{(

|η1|r
µr

− 1
)
g1(η1)

}
= 1

µr
E {|η1|rg1(η1)} = −r (the latter equality is straightfor-

wardly obtained by integration by part). Therefore, cr =
c′τ
σ(r) .

Proposition 3.1 shows that

lim
n→∞

Pn,0(Cr) = α.

Le Cam's third lemma (see e.g. van der Vaart, 1998, page 90) shows that

Tn,r
d−→ N (cr, 1), under Pn,τ .

The 
on
lusion follows. ✷

Proof of Corollary 3.1

Using the fa
t that J−1−θ0θ
′
0 is semi-de�nite positive (see FLZ), minimizing σ(r)

is equivalent

to minimizing g(r) with respe
t to r. ✷

Proof of Proposition 3.3

By (A.17), we have

Λn,f(θ0 + τ/
√
n, θ0)

d−→ N
(
−ιf

8
τ ′Jτ ,

ιf
4
τ ′Jτ

)
under Pθ0 ,

whi
h is the distribution of the log-likelihood ratio in the statisti
al modelN
{
τ , 4J−1/ιf

}
of

parameter τ . The so-
alled lo
al experiments {Ln,f (θ0 + τ ′)/
√
n), τ ∈ R

p+q+1} 
onverge to

the gaussian experiment

{
N
(
τ , 4J−1/ιf

)
, τ ∈ R

p+q+1
}
(see van der Vaart (1998) for details

about the notion of statisti
al experiments).

The se
ond-order stationarity test in (3.5) 
orresponds to the test

H0,τ : c′τ = 0 against H1,τ : c
′τ > 0.

in the limiting experiment. The UMPU test based on X ∼ N
(
τ , 4J−1/ιf

)
is the test of

reje
tion region

C =

{
c′X/

√
4c′J−1c/ιf > Φ−1(1− α)

}
.
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This UMPU test has the power

PH1,τ (C) = Φ

{
c′τ

√
ιf

2
√
c′J−1c

− Φ−1 (1− α)

}
. (A.18)

The 
on
lusion follows. ✷

Proof of Proposition 3.4

In view of (3.9) and (3.10), the test (3.5) with r = 2 is asymptoti
ally lo
ally UMPU i�

c2 =
c′τ√

(µ4 − 1)c′J−1c
=

c′τ
√
ιf

2
√
c′J−1c

,

that is, i� (µ4 − 1)ιf = 4. By Corollary 1 in Fran
q and Zako�¯an (2006), the solutions of

this equation are given by (3.11). ✷
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