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Abstract

In this paper we find a geometrical characterization of some components of the theory of equilibrium

Walrasian and the existence of these in a pure exchange economy with heterogeneous agents where there are

r goods and m agents. It will be proven that this economics admit stratification, for this we will consider

the Grassmannian varieties. These are of greater importance for construct varieties of flags that contain

information for obtaining the core of the economy and the existence of equilibrium.

1 Introduction

In certain cases the problem of finding the equilibrium point it becomes difficult in economic theory since there
are spaces that don’t have good properties like compactness or connected. The discussion extends to problem
versions of more general equilibrium exposed by Keiding [2017]. In this work, we use the Grassmannian varieties
mentioned in Griffiths and Harris [2014] and Fulton and Harris [2013] to describe some components of economies
with pure exchange with heterogeneous agents.
Suppose an economy with pure exchange with agents heterogeneous. Groups of heterogeneous individuals are
presented which are homogeneous among themselves with goods to be traded. We want to study the pure
exchange produced by these groups.
We could ask ourselves the following questions as the motivation for this paper. It is possible to describe the
core in this type of economics with the tools known in the economics of homogenous type?. Under what cir-
cumstances is it possible to find a equilibrium between the representative agents of these groups?.
Equilibrium conditions are studied for an economy of pure exchange assuming convexity, monotonicity between
other characteristics of the utility functions of each individual, Iusem and Sosa [2003].

This paper presents a characterization of equilibrium in economies with pure exchange when agents have
aspects of heterogeneity. Agents may be different in their beliefs, their level of risk aversion, continuity in its
function useful or intertemporal preferences and endowments.
The objective is to describe this type of economy in high dimensions using the Schubert calculus. The latter
has a basis for the Schubert varieties described in Section 2.
Our contribution is the geometric and algebraic description of economies with pure exchange and behaviour
heterogeneity between the agent’s addition, the fees are not necessary marginal substitution and therefore the
marginal relations of substitution. Which we attribute an important leap in the literature.
Theorems Rizvi [2006] implies that strong assumptions on preferences, such as homogeneity among agents or
heterogeneity is not sufficient for stability or uniqueness of equilibrium1.

We study the impact of heterogeneous agents on the equilibrium properties. We will use Grassmannian
varieties and varieties of flags as fundamental tools to describe several aspects of a heterogeneous economy with
exchange pure. In Main Theorem we show that the set of fixed points is not empty in a minimal flag, which
means that indeed in a heterogeneous exchange economy pure equilibrium is not unique.

This paper is composed as follows: Section (2) a short motivation and some key concepts for the realization of
this paper. Here we will show an example with explicit characteristics of individuals, followed by some properties
that have an exchange space and some important facts about Grassmannian varieties and flag varieties. Section

∗alex.centeno@utalca.cl
1Mantel [1974] shows that the theorems of Rizvi [2006] results for homotetic preferences, and Kirman and Koch [1986] shows

that this results with identical preferences and non-linear endowments
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(2) it is dedicated to the main results obtained in this paper as well as some important definitions such as
Schubert cells and varieties. In particular, Theorem (3.8) shows in effect that the set of fixed points in a
minimal flag is not empty using the Borel fixed point Theorem. Section (4) shows the main proof’s of this
paper.

2 Motivation and preliminary

Let E k-dimensional vectorial space on R characterized to agents contained of the economy. We assume that
there is a partition of E in subsets {Eq}q, q = 1, . . . , k of individuals which are homogeneous among themselves
with goods to exchange. Suppose in a principle that we know the utility functions (level of risk aversion, sub-
stitution elasticity, the weight of each utility function), relative prices and initial endowments.

There are several types of preferences among agents, for example, Bernoulli type preferences, quadratic
preferences, quasi-linear preferences and additive separable preferences. With homotetic preferences, it is well
known that if the preferences they are identical, Gorman [1953], collinear endowments ,Chipman [1974], or
relatively constant risk aversion (CRRA) at most 1, Hens and Loeffler [1995], then the equilibrium is unique.
The following example shows an explicit motivation of what you want to show in this work, multiple equilibrium
are built between agents with different endowments and weights on assets with CRRA at least 1. You can see
more of this type of examples in Toda and Walsh [2017].

Example 2.1. Consider m = 4 with E = R4. Let E1 and E2 be two subspaces of E such that both are
convex, not empty and disjoint, without loss of generality suppose E1 open. For the first geometrical form of
Hanh-Banach there is a hyperplane H that separates E1 and E2, both of equal or no cardinality. Let i1 ∈ E1

and i2 ∈ E2 be the representative agents in each subspace and I ⊂ R2 some exchange space. Assume that each
agent has equal risk aversion and utility fuctions of the Bernoulli type, that is,

Ui1(x1, x2) =
1

1− γ

(
αγx1−γ

1 + (1− α)γx1−γ
2

)

Ui2(x1, x2) =
1

1− γ

(
(1− α)γx1−γ

1 + αγx1−γ
2

)

where γ > 1 is the level of risk aversion and 0 < α < 1 determines the weight of the utility function.
The initial endowments are e1 = (e, 1 − e) and e2 = (1 − e, e) where 0 < e < 1. Let p1 = 1, p2 = p, the

prices and xij(p) demand of agent i for good j, and

zj(p) =
∑2

i=1
(xij(p)− eij)

excess demand for good j. Let ǫ = 1

γ
< 1 the elasticity of substitution.

Lemma 2.2. Suppose that

ǫ < 1−
1

2

(
e

α
+

1− e

1− α

)
(1)

Then the economy has at least three equilibria. In particular, for any γ > 2 we can construct an economy
with three equilibria.

Proof. Let w1 = e + (1 − e)p the wealth of the agent 1. Since the preferences are identical to the relative risk
aversion, this demand for good 1 is

x11 =
αp−ǫ

1 w1

αp1−ǫ
1 + (1− α)p1−ǫ

2

=
α(e+ (1− e)p)

α+ (1− α)p1−ǫ

Since agents are symmetric, agent 2’s demand for good 1 can be obtained by changing α → 1−α adn e → 1−e,
Therefore the aggresate excesso demand for good 1 is

z1(p) =x11 + x21 − e− (1− e)

=
α(e+ (1− e)p)

α+ (1− α)p1−ǫ
+

(1− α)(1− e+ ep)

1− α+ αp1−ǫ
− 1

By symmetry, p = 1 is a equilibrium price. Since 0 < ǫ < 1, by direct substitution we have z1(1) = α + (1 −
α) − 1 = 0, and z(·) is continue implies limp→∞ z(p) = ∞. Therefore if z′1(1) < 0, we have z1(p) < 0 while
p > 1. As limp→∞ z(p) = ∞ by the intermediate value theorem there exist p∗ > 1 such that z1(p∗) = 0, so p∗
is an equilibrium price. By symmetry, if p∗ is a equilibrium price them 1

p∗
it is.

2



Therefore in order to show the existence of multiple equilibria, it suffices to show z′1(1) < 0. Differentiating
x11(p), we obtain

x′

11(p) = α(1− e− (1− α)(1− ǫ))

at p = 1. Changing α → 1− α and e → 1− e, the economy has at least three equilibria if

z′1(1) = x′

11 + x′

12 = α(1− e) + (1− α)e− 2α(1− α)(1− ǫ) < 0

iff

ǫ < 1−
1

2

(
e

α
+

1− e

1− α

)

which is (1).
Finally, set us show that we can construct an economy with at least three equilibria when γ > 2. Set e = α2.
Then (1) become

ǫ < 1−
1

2

(
α+ (1 + α)

)
=

1

2
− α

Hence for any γ > 2 (ǫ < 1

2
), by choosing α such that 0 < α < 1

2
− ǫ and setting e = α2, we get an economy

with at least three equilibria.

Suppose now that we don’t know any of the data previous and that we have chosen representative individ-
uals of each Eq and we want to produce an equilibrium between these agents in an exchange space I such that
dim(I) < k.

Some relevant aspects about the exchange space I are the following.

Lemma 2.3. The exchange space I is a topological vectorial space not empty, separable and finite-dimensional.

Proof. We can consider I as a metric space. Very metric subspace of a separable metric space is separable.

We will assume that I is m-dimensional. The characteristic function of I, χI is defined for each agent i

χI(i) =

{
1, i ∈ I;
0, i /∈ I.

Lemma 2.4. The volume

v(I) =

∫

I

χI(i)di

of the exchange space I is non-zero.

Lemma 2.5. The exchange space is a measurement space 2 (I,Σ, µ) Σ-finite where I is the exchange space, Σ
is a Σ-algebra of subsets of I whose elements are exchanges and µ is a measure on Σ.

Remark 2.6. Since space I has non-zero volume, it implies that I has measure non-zero.

Let r,m ∈ N, r < m. The Grassmannian varieties 3 Grr(I) is defined as the set of all vector subspaces of
dimension r on R, this is:

Grr(I) := {P ⊂ I : dimRP = r}

Fixed r. Let θ P lücker application

θ : Grr(I) → P(

r∧
I) : P = 〈u1, . . . , ur〉 7→ [u1 ∧ . . . ∧ ur]

where P ∈ Grr(I) and {u1, . . . , ur} is a base for P . Then θ is an injection. And therefore the Grassmannian
varieties they are projective varieties.

Definition 2.7. A subset of vectors ω ∈
∧r

I is is totally decomposable if ω = v1 ∧ v2 ∧ . . . ∧ vr for certain
v1, v2, . . . , vr ∈ I.

2Note that if µ is the counting measure defined as

µ(A) =

{

|A|, if A is finite;
+∞, if A is infinite.

∀A ⊂ Σ, where |A| denotes the cardinality of A.
3The Gl(r,R) group of invertible matrices act transitively on the array of dimensions of m × r by multiplication to the right

and this action does not change the column generators, that is, given P = 〈u1, · · · , ur〉, a r-plane Grr(I) = Gl(r,R)/H
And therefore, the dimension of Grr(I) as a variety is equal to the dimension of Gl(r,R) minus the size of the one-point stabilizer.
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The following result shows the relationship between the bivectors and the polynomial equation that define
exchange value. This result generalizes the result obtained in Danilov and Sotskov [1990] on exchange values in
a pure exchange economy 4.

Theorem 2.8. The image of Grr(I) under the application θ is defined by a homogeneous polynomial equation
on P(

∧r
I).

Example 2.9. Let I = Rm, suppose 2 goods. An bivector ω ∈
∧2

Rm is decomposable iff ω ∧ ω = 0

Proof. For a, b goods. We will say a ≺ b iff b is preferred to a.
Let

ω =
∑

a≺b

pabea ∧ eb

a bivector. By Theorem 2.8, ω is decomposable iff

ω ∧ ω = (
∑

a≺b

pabea ∧ eb) ∧ (
∑

c≺d

pcdec ∧ ed)

=
∑

a≺b≺c≺d

[pabpcd − pacpbd + padpbd]ea ∧ eb ∧ ec ∧ ed = 0

this means that pabpcd − padpbd + pacpbd = 0, which is the system wanted.

Remark 2.10. When r = m − 1, we obtain the case of complete markets, and P ∈ Grr(I) is the hyperplane
which defines the price vector, with free disposal and the whole of established budget restrictions are found
under this hyperplane. A consequence of the law of Walras is when r < m − 1 budget constraints correspond
to the case of incomplete markets (m− r − 1 is the number of ”missing markets”), or more generally in which
agents face a set of linear restrictions on the level of prices an the specification of asset returns; thus change in
P may correspond to changes both in the level of prices and in asset returns, this produces the region of mutual
negotiation in the cashier from Edgewordth.

Let now r = m− n the total number of different goods of each individual, where to P ⊂ I, dim(P ) = r and
codim(P ) = n. A complete flag is a sequence of vector spaces

F• =
{
{0} ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fm = I

}
(2)

with dim(Fi) = i for each agent i. The set of all flags is called a variety of flags and is denoted F . There is a
canonical inclusion

F →֒ Gr1(I)×Gr2(I)× . . .×Grr−1(I)

sending F• 7→ (F1, . . . , Fr−1). It’s

F = {(F1, . . . , Fr−1) ∈
∏

r

Grr(I) : F1 ⊂ F2 ⊂ . . . ⊂ Fm−1}

This relation is algebraic, implies that the flags are in closed sub-varieties effect of
∐

r Grr(I) and therefore
projective.
Using (2) we say that a flag is minimal if it is composed by a point (q), a line (l) that contains to q and a
hyperplane (P ) determined by q and l. Here, pictorially the not countable lines that pass through q are the
possible contract curves of each individual and the hyperplane P determine the core of this type of economy.
Under this point of view an equilibrium problem in this type economics is the realization of a ’good’ flag.
Therefore, the existence of a equilibrium is determined if the flag is minimal.

3 Main results

Lemma 3.1. Given a vector space I of dimension m on R, then there are minimal flags.

Each P ∈ Grr(I) produces a new sequence of vector spaces of the form

{0} = F0 ∩ P ⊂ F1 ∩ P ⊂ . . . ⊂ Fm ∩ P = P

which defines a sequence increasing of integers di = dim(P ∩ Fi) ∀i that satisfy

4Fixed a set K goods, bounded. An exchange value is given by a collection of positive integers {pjk}, j, k ∈ K. Here pjk denotes
how many units of j are given by a unit of k. These numbers satisfy the following natural relationship

pjk · pkl · pij = 1, j, k, l ∈ K.
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1. d0 = 0,

2. dm = r,

3. di ≤ di+1 ≤ di + 1.

Using (2) and (3), dj ≥ j − n. The sub-indices of the elements of the sequence dj are in bijection with certain
partitions. Next we will describe which. For each good j and agent i, be

j1 the first index such that dj1 = 1

...

ji the first ’index such that dji = i,

it’s j1 ≤ n+1, j2 ≤ n+2,. . ., ji ≤ n+ i, implies j1 = n+1−λ1, j2 = n+2−λ2, . . ., ji = n+ i−λi, for certain
λi ≥ 0 ∀i. This means j1 < j2 < . . . < ji so λ1 ≥ λ2 ≥ · · · ≥ λr. This produces a partition λ = (λ1, λ2, · · · , λr).
Which contains all the information on the goods j′s exchanged by the agents i′s. To this partition we associate
a Young’s diagram with r rows and n columns, this consists of an arrangement of boxes placed by rows so that
each row has a smaller or equal number of boxes that the previous row. Thus, listing the number of boxes
in each row provides a decreasing succession of positive integers. The members of the partition contain the
information of goods exchanged by the agents in this economy in said period of time. Finally, fixed the integers
of the dimensions and a partition λ, the Schubert cells5 are defined X◦

λ and the Schubert varieties6 Xλ, both
subset of Grr(I), as

X◦

λ = {P ∈ Grr(I) : dim(P ∩ Fi) = j for n+ j − λj ≤ i ≤ n+ j − λj+1, 0 ≤ j ≤ r}

y

Xλ = {P ∈ Grr(I) : dim(P ∩ Fn+j−λj
) ≥ j, 1 ≤ j < r}

Remark 3.2. The co-dimension(Xλ) = |λ|, where |λ| corresponds to the number of boxes of the partition λ.

Lemma 3.3. If {e1, . . . , em} is a standard base for I, exist a unique base {ui}
r
i=1 for P ∈ X◦

λ such that

1. ui = en+k−λi
+
∑

j<n+i−λi
xijej

2. xn+l−λl
= 0 ∀l < i.

Example 3.4. Let P ∈ Gr2(I) y I = R4, P is a 2-plane in R4 we have the following sequence

{0} = F0 ∩ P ⊂ F1 ∩ P ⊂ F2 ∩ P ⊂ F3 ∩ P ⊂ F4 ∩ P = P.

Now F0 = {0}, F1 = 〈e1〉, F2 = 〈e1, e2〉, F3 = 〈e1, e2, e3〉 y F4 = R4. Suppose that P = 〈e1 + e2, e3 + e4〉, then
P ∩ F0 = {0}, P ∩ F1 = {0}, P ∩ F2 = 〈e1 + e2〉, P ∩ F3 = 〈e1 + e2〉, P ∩ F4 = P , therefore d0 = 0, d1 = 0,
d2 = 1, d3 = 1, d4 = 2, the the associated partition is λ = (1)

This means that for i1 ∈ E1 and i2 ∈ E2 ( Assuming Hanh-Banach Theorem of Separation) with i1, i2 ∈ I the
exchange between agents consists of a single period in which a good is exchanged. Analogously to the other
agents.

5For each r-plane P en Grr(I). P is precisely the T -fixed point in Grr(I), where

T =





























α1,1 0 · · · 0
0 α2,2 0 0
...

...
. . .

...
0 0 0 αr,r





























⊂ Gl(r,R)

it is the subgroup of diagonal matrices (this is a maximal torus of Gl(r,R)). If we consider now

B =





























α1,1 α1,2 . . . α1,4

0 α2,2 . . . α2,r

...
...

. . .
...

0 0 . . . αr,r





























⊂ Gl(r,R)

the upper triangular matrix subgroup (this is the Borel subgroup of Gl(r,R)), so Schubert cells are BP .
6The Schubert varieties Xλ are the clausure of the Schubert cells X◦

λ
, i.e. Xλ = X◦

λ
with the Zarisky topology.
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One of the main advantages of this type of coding of the information on the exchanges made by the agents
of the economy, is the obtaining of the number of goods exchanged in each period of time waiting for greater
utility in each of these. This fact is relevant in this paper assuming that it can be extended to versions with
applications to Game Theory under uncertainty. The following result shows that there is indeed a stratification
on of this type of economy mainly given by Schubert varieties and this stratification can be represented by
Young diagrams.

Lemma 3.5. Given λ and µ partitions contained in a rectangle of dimensions r × n. Then Xλ ∩ Xµ 6= ∅ iff
µ ⊂ λ.

Example 3.6. Let I = R4, r = 2. We have then 4 heterogeneous agents and 2 exchange goods. Let’s show
some characteristics of Schubert cells and varieties for Gr2(R

4). λ is a partition we can make with the set
{0, 1, 2} and j ∈ {1, 2} for interesting cases, then the cells of Schubert are: X◦

00, X
◦

10, X
◦

20, X
◦

21, X
◦

11 and X◦

22.
The following table shows the relation between the dimensions and co-dimensions of Schubert cells, together
with the sequence of integers determined by the flag and partition obtained.

j n+ j − λj n+ j − λj+1 λ d• Young

1 2 3 10 00112 dim 3, codim 1

2 4 4

1 2 2 11 00122 dim 2, codim 2

2 3 4

1 1 2 21 01122 dim 1, codim 3

2 3 4

1 1 3 20 01112 dim 2, codim 2

2 4 4

1 1 1 22 01222 dim 0, codim 4

2 2 4

1 3 3 00 00012 dim 4, codim 0

2 4 4

Table 1: Representation of Schubert cells.

Note also that for Gr2(R
4) the parametrization of Schubert cells are as follows:

X◦

00 =

(
1 0 0 0
0 1 0 0

)
X◦

11 =

(
∗ 1 0 0
∗ 0 1 0

)

X◦

10 =

(
0 1 ∗ 0
0 0 1 0

)
X◦

21 =

(
∗ 1 0 0
∗ 0 ∗ 1

)

X◦

20 =

(
1 0 0 0
0 ∗ ∗ 1

)
X◦

22 =

(
∗ ∗ 1 0
∗ ∗ 0 1

)

On the other hand for Schubert varieties we have the following information:

codim 1 : X10 = {P : dim(P ∩ F2) ≥ 1}

codim 2 : X11 = {P : (P ∩ F3) ≥ 2}

X20 = {P : F1 ⊂ P}

codim 3 : X21 = {P : F1 ⊂ P ⊂ F3}.

Here, Schubert varieties of co-dimension 1 and therefore partition (1) encodes that a single good exchanged
between the agents and in a single period of time. The varieties of Schubert of co-dimension 2, produce 2
partitions (1,1) and (2,0), therefore the agents have two periods of time to exchange in which they can either
exchange 1 either in each period or the entire of your assets in a first period. Schubert’s variety of co-dimension
3, produce a partition (2,1) which encodes a exchange in all of your assets in a first period of time and 1
well exchanged in a second period. Therefore, the stratification of this economy is produced by the following
representation:
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Now as Gr2(R
4) is the variety of projective lines in P3, then a flag in P3 corresponds a q ∈ l ⊂ P ⊂ P3,

where q is a point, l is a line and P a hyperplane in P3, then

(1) The Schubert variety of co-dimension 1, X10: Parametrize the lines that intersect l.

(2) The Schubert variety of co-dimension 2, X20: Parametrizes the lines containing q.

(3) The Schubert variety of co-dimension 2, X11: Parametrizes the lines that are contained in P .

(4) The Schubert variety of co-dimension 3, X21: Parametrizes the lines that are contained in P and containing
q.

Following the same notation, let {e1, e2, . . . , em} a basis for I and set a flag F : {0} ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fm = I,

where Fi = 〈e1, . . . , ei〉. The opposite flag F̃ is defined F̃i = 〈em, . . . , em−i+1〉. Let’s denote Schubert cells and

varieties of the opposite flag by X̃◦

µ and X̃µ respectively.
There is a characterization about the exchange of two agents heterogeneous, corresponding to the varieties of
Schubert.

Lemma 3.7. Consider 2 heterogeneous agents in I. λ is the partition associated to a agent and µ to other
agent. Xλ ∩ X̃µ 6= ∅ iff λi + µr+1−i ≤ n.

Theorem 3.8. (Main Theorem.) The set of fixed points in a minimal flag is not empty.

The proof is consequently of the following discussion about the varieties of flags.

Definition 3.9. An algebraic variety X is complete if p2 : X × Y → Y for any algebraic variety Y is a closed
map (the universally closed property), i.e. the image of a closed set is closed in Y .

Remark 3.10. Projective varieties are complete.

The ”completeness” property in the category of algebraic varieties is analogous to the ”compactness” prop-
erty in the category of Hausdorff topological spaces.

Lemma 3.11. The dimension of a complete, affine variety X is zero.

Theorem 3.12. (Borel Fixed Point Theorem). If a connected solvable group H acts on a non-empty complete
variety, then the fixed point

XH := {P ∈ X : ∀B ∈ H,BP = P}

is non-empty7.

7Bich and Cornet [2004] prove a fixed point theorem for multivalued applications defined on a set of finite products of Grass-
mannian varieties and convex sets
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4 Mains proof’s

Proof. (Proof Lemma (3.1))
This is deduced by the fact that I is a Noetherian ring on R and the axiom of choice on the elements Fi

Proof. (Proof Lemma (3.3))
Let P ∈ X◦

λ. Let’s fix a base {e1, . . . , em} for I with Fi = 〈e1, . . . , ei〉. Let 〈u1, . . . , ur〉 a base for P
such that P ∩ Fn+i−λi

= 〈u1, . . . , ui〉 ∀i. Let u1 be a generator for the line P ∩ Fn+1−λ1
normalized so that

〈u1, en+1−λ1
〉 = 1; i.e.,

u1 = (∗, ∗, . . . , ∗, 1, 0, . . . , 0).

Now take u2 so that u1 and u2 together span P ∩ Fn+2−λ2
, normalized so that

〈u2, en+1−λ1
〉 = 0, 〈u2, en+2−λ2

〉 = 1.

Continue in this way, choosing ui so that u1, . . . , ui span P ∩ Fn+i−λi
and such that

〈ui, en+j−λj
〉 =

{
0, j < i;
1, j = 1.

(3)

Clearly, the choice of ui at each stage is completely specified by these conditions; thus the k-plane P has a
unique matrix representative of the form




u1

·
·
·
ur




=




∗ ∗ ∗ 1 0 0 0 · · · · · · · 0
∗ ∗ ∗ 0 ∗ 1 0 0 · · · · · · 0
∗ ∗ ∗ 0 ∗ 0 ∗ ∗ ∗ 1 0 0 0
· · · 0 0
· · ·
· · ·
∗ ∗ ∗ 0 ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ 1 0

0 0 0 0
...

...
...

...
...

∗ ∗ ∗ 0 ∗ 0 ∗ ∗ ∗ 0 ∗ . . . ∗ ∗ ∗




Proof. (Proof Lemma (3.5))
An element in Xλ is generated by the row vectors of a reduced matrix of the form




∗ . . . ∗ 1 0 . . . . . . . . . . . . . . . . . . 0
∗ . . . ∗ 0 ∗ 1 . . . . . . . . . . . . . . . 0
∗ . . . ∗ 0 ∗ 0 ∗ . . . ∗ 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∗ . . . ∗ 0 ∗ 0 ∗ . . . 0 . . . 1 0




where the 1’s are in the position n + i − λi of row i-th, and an element in Xmu is generated by the rows
vectors of a reduced matrix of the equal form where the 1’s are in the position n + i − µi of row i-th. Now,
Xλ ⊂ Xµ if and only if the position in which is the 1 most to the right of the i-th of the first matrix is less than
or equal to the position in which the 1st most to the right of the i-th of the second matrix, that is, if and only
if n+ i− λi ≤ n+ i− µi, i.e., µi ≤ λi ∀i therefore µ ⊂ λ.

Proof. (Proof Lemma (3.7)) When we are considering the intersection of Xλ and X̃µ, we will make frequent use
of the following subspace:

Ai = Fn+i−λi
, Bi = F̃n+i−µi

.

Suppose P is a subspace that is in both Xλ and X̃µ. Then for any i between 1 and r,

dim(P ∩Ai) ≥ i and dim(P ∩Br+1−i) ≥ r + 1− i.

Since these two intersections take place in the r-dimensional vector space I, and i + (r + 1 − i) − r = 1,
their intersection must have dimension at least 1. In particular, the intersection of Ai and Br+1−i must have
dimension at least.
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