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Inference for Noisy Long Run Component Process
Abstract

This paper introduces a new approach to the modelling of a stationary
long run component, which is an autoregressive process with near unit root
and small sigma innovation. We show that a combination of a noise and a
long run component can explain the long run predictability puzzle pointed
out in Fama-French (1988). Moreover in the presence of a long run com-
ponent, spurious regressions arise and misleading long run predictions are
obtained when standard statistical approaches are applied. Cleaner asymp-
totic inference is provided for models with a noisy long run component .

Keywords : Long Run, Predictability Puzzle, Weak Identification, De-
convolution, Term Structure, Near Unit Root, Small Sigma.
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1 Introduction

The idea of separating unobserved and independent transitory and perma-
nent components, that represent distinct short and long run dynamics, of
a time series appeared in the early economic literature [see e.g. Friedman
(1957) for the notion of permanent income]. This distinction is especially
relevant in impulse response analysis, which evaluates the consequences of
shocks on the short run component (resp. the long run component) [see e.g.
Bansal, Yaron (2004), where those components are present in the consump-
tion and dividend growths 2]. It is expected that such shocks can have a short
term and also potentially a long term impact (resp. a long term impact only).
If we are interested in the long term impacts, we need to ”identify” the long
run component, which is difficult if the variance of the short run component
is large. This difficulty has been pointed out from a practical point of view
in a series of papers by Fama, French (1988) a,b, (1989), and is known as
the (long run) predictability puzzle. More precisely, they considered a series
of stock returns and applied the standard approach of regressing the series
yt on its lagged value yt−1. Then they observed an absence of a significant
relationship supporting the efficient market hypothesis. However, when they

regressed the averages
1

h
(yt + . . .+ yt+h−1) ≡ yt(h), say, over a different time

unit, the regression coefficient becomes significant, for large horizon h. The
(long run) predictability puzzle3 is an empirical contradiction : ”Efficient
markets could be inefficient in the long run”, or ”profits cannot be sure in
the short term, but become possible in the long term” 4.

To paraphrase Yule (1926) on nonsense correlations : ”We sometimes
obtain between quantities varying with the time quite (low) (serial) correla-
tions 5 to which we cannot attach any (relevant) physical significance. It is
important ”clarify” how they arise and in what special cases”.

The aim of this paper is to consider a model for noisy long run component

2Extensive literature on the Long Run Risk (L.R.R.) model has followed this work. See
Hansen, Heaton, Li (2008), Malloy, Moskowitz, Vissing-Jorgensen (2009), Bansal, Kiku,
Yaron (2012), Beeler, Campbell (2012), Croce, Lettau, and Ludvigson (2014), Gramming,
Kuchlin (2016), Pohl et al. (2018).., where the L.R. component can also appear in the
volatility or the model may include several L.R. components to account for business cycles.

3See e.g. Ferson et al. (2003) for a survey on stock return predictability puzzles.
4see also Bansal, Yaron (2004), Table 3, where variance ratios increase with horizon,

Bandi, Perron (2008), Beeler, Campbell (2012), Table 4, or Bonomo et al. (2015).
5In the original Yule’s text ”low” is replaced by ”high”.
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that can explain the observed predictability puzzle. The observed series is
written as yt = ys,t + yl,t, where the short run component ys,t is a pure noise
and the long run component is an autoregressive process yl,t = ρyl,t−1 +
σεl,t, where ρ is close to one and σ close to zero, and the two components
are independent. This double condition on ρ, σ allows to generate long run
patterns in the trajectories, while conserving the stationarity of the long run
(L.R.) component. If the short run component has a much larger ”size” than
the long run component, the standard statistical inference can hardly detect
(identify) the L.R. component in such a noisy environment.

The paper is organized as follows. In Section 2, we discuss the properties
of the standard autoregressive process of order 1 : yl,t = ρyl,t−1+

√
1− ρ2εl,t,

where εl,t is i.i.d, with zero-mean and unit variance. In particular we discuss
the effect of a change of time unit, that is of a compression/dilatation of
time, on the trajectories of such a process. This allows us to discuss the
difference between the analysis in frequency domain and in term domain,
and to define this latter notion. In Section 3, we explain how to identify
semi-nonparametrically the parameters of the model, i.e. the scalar param-
eter ρ and the distributions of the two independent noises ys,t and εl,t. We
compare in Section 4 theoretical and estimated regression models with long
run components in both the dependent and regressor variables. This shows
an underestimation bias, even if the standard patterns function of the term
are still observed. Section 5 considers statistical inference. We first introduce
closed form estimators of both the scalar (ρ) and functional parameters (the
distributions of shocks). Next we explain why the standard estimators and
tests provide spurious results for the noisy long run component. We develop
a joint near unit root/small sigma asymptotics to get more reliable statisti-
cal analysis in this framework and give some insights on (large) finite sample
properties. Section 5 concludes. Proofs are gathered in Appendices.

2 Dynamic properties

Let us first recall and interpret the dynamic properties of a noisy long run
component. For expository purpose we consider a stationary series yt that
can be decomposed as :

yt = ys,t + yl,t, (2.1)
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where yl,t =
√
plxl,t, ys,t =

√
psxs,t, (2.2)

with pl > 0, ps > 0, pl + ps = 1, (2.3)

where the components xs,t, xl,t are a noise and an autoregressive process
defined below :

xs,t = εs,t, xl,t =
√
1− ρ2

εl,t
1− ρL

, 0 ≤ ρ < 1, (2.4)

and (εs,t), (εl,t) are independent i.i.d. processes, with mean-zero and unit
variance.

We are interested in the cases when the autoregressive coefficient ρ in
the xl,t component is close to 1. As shown below, in this case xl,t can be
interpreted as a long run component, and yt as a noisy long run component
process. The weight of yl,t depends on the value of pl. The condition pl+ps =
1 ensures that the aggregate process has a unit variance, equal to the variance
of each process xs,t and xl,t. Therefore ps (resp. pl) is the fraction of the total
variance due to the white noise component (resp. the L.R. component).

Our model differs from the nearly integrated, nearly white noise mod-
elling introduced in Nabeya, Perron (1994) [see also Ng, Perron (1996), Deng
(2004)], where yt = ρyt−1 + εt − θεt−1, ρ and θ being both close to 1. Their
process has a single component that features persistence in finite sample and
becomes white noise in large sample. As shown below, model (2.1)-(2.4) with
ρ close to 1 behaves as a white noise in the short run, but reveals persistence
in the long run.

2.1 The AR process

Let us focus on the process xl,t = ρxl,t−1 +
√
1− ρ2εl,t. For any value of

ρ, 0 < ρ < 1, this process is strictly stationary with mean zero and unit
variance.

Let us now consider the consequence of a variation in parameter ρ. For
expository purpose, we assume henceforth that εl,t is standard normal and
the initial condition xl,0, is drawn in the standard normal stationary dis-
tribution. In this case process (xl,t) can be viewed as a time discretized
Ornstein-Uhlenbeck process defined by :
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dxt = −kxtdt+ ηdWt, (2.5)

where k, η denote the (infinitesimal) drift and volatility parameters, and (Wt)
a Brownian motion. The parameters k and η are related to parameter ρ as
follows [see e.g. Vasicek (1977), eq. (25)-(26)] :

ρ = exp(−k) ⇐⇒ k = − log ρ, η2 = −2 log ρ = 2k. (2.6)

Let us now consider the consequences of a change of time unit of index
t. If the initial time unit is h times the new one, we dilate (resp. compress)
the time, if h > 1 (resp. 0 < h < 1). By applying the change of time unit to
stochastic diffusion equation (2.5)-(2.6), the process x̃t(h) expressed in the
new time unit satisfies :

dx̃t(h) = −k
h
x̃t(h)dt+

√
2k

h
dW̃t(h), say, (2.7)

with x̃t(1) = xt.

The infinitesimal drift and volatility parameters k, η2 = 2k, and also the
autoregressive parameter ρ depend on the time unit. More specifically the
autoregressive parameter becomes ρ1/h. Therefore a change of value of the
autoregressive parameter from ρ to any other value ρ∗ in (0,1) can be also
interpreted as multiplying the time unit by h = log ρ/ log ρ∗. The larger ρ∗,
the smaller the new time unit. This time compression/dilatation effect largely
explains the patterns of trajectories. By dilatation of time we transform a
trajectory of a process xl,t associated with autoregressive coefficient ρ into
a trajectory of a process associated with another autoregressive coefficient
ρ∗ > ρ . Then the new trajectory observed in the initial time unit appears
smoother. There are two limiting cases :

i) For ρ = 0, we get the Gaussian white noise corresponding to an infinite
compression of time, that is to the limiting case h = 0.

ii) For ρ = 1, we have an infinite dilatation, k = η2 = 0, and the process
has constant trajectories. More precisely if xl,0 is drawn in the standard
normal, we have xl,t = xl,0, ∀t. The trajectories are constant in time, but
their level is stochastic. This limiting result can be surprising as a unit root
process is usually considered as nonstationary. However, in our framework,
the innovation variance of the autoregressive process 1− ρ2 is adjusted with
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ρ. When ρ increases, the shock diminishes in order to keep the stationary
distribution unchanged.

The dilatation effect is illustrated in Figures 1a,b where we report six
trajectories of length 5000 of AR(1) Gaussian processes xl,t with variance
1, equal initial value xl,0 = 0, and ρ set equal to ρ = 1 − 1/K,K =
1, 10, 50, 100, 500, 1000. They are based on a same underlying trajectory of
εl,t. The first trajectory of xl,t corresponds to the standard Gaussian white
noise. When ρ increases, the trajectories become smoother, due to the time
dilatation.

As mentioned earlier, for ρ very close to 1, we expect the xl,t process
to be close ”in distribution” to a constant process with a stochastic level.
This feature starts to appear in the last panel of Figure 1.b. Given a zero
starting value, the trajectory remains rather close to zero as long as there is
no εl,t drawn in the ”tail” of the Gaussian distribution. Then the trajectory
remains close to this new value up to a next drawing in the ”tail” and so on,
while always preserving the same marginal distribution.

[Insert Figure 1 : Trajectories of Gaussian AR(1) Processes]

We report in Figure 2 the noisy long run component processes obtained by
combining the first and last trajectories of Figures 1a,b. Two combinations
are considered : one with equal weight : ps = pl = 0.5, and one with a
smaller weight of the long run component : ps = 0.95, pl = 0.05. In process
yt, defined in (2.1)-(2.2) the relative weights

√
ps/pl of the noise to the L.R.

component are 1 and about 4 for the two combinations, respectively. These
examples are in line with the calibration exercices in Bansal, Yaron (2004),
Bansal, Kiku, Yaron (2007), or Beeler, Campbell (2012).

In the equal weights combination, the impact of the L.R. component
becomes visible after T = 2000, i.e. when sufficiently many small shocks
have been cumulated. In the combination with a large noise, this effect is
less visible.

[Insert Figure 2 : Trajectories of Noisy Long Run Components]

The transformation ρ → ρ1/h has an alternative interpretation. Indeed
ρ1/h is the autoregressive coefficient for predicting the future value of process
xl,t at horizon (term) 1/h. Thus the inverse of a change of time unit can be
interpreted as a term. Let us now discuss the difference between the term
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analysis and frequency analysis.

2.2 Term analysis versus frequency analysis

It is common to perform a second-order analysis of weakly stationary time-
series by representing the time series as combination of sine and cosine func-
tions with stochastic coefficients :

yt ≃ Σω[A(ω) cosωt+B(ω) sinωt], say, (2.8)

where argument ω, ω ∈ (0, 2π), denotes the frequency. The coefficients
(A(ω), B(ω)) are uncorrelated for different ω′s, have mean zero and variances
such that V [A(ω) +B(ω)] ∼ f(ω) [see e.g. Gourieroux, Monfort (1977), Th.
8.21], where f(ω) is the spectral density :

f(ω) =
+∞∑

h=−∞

γ(h) exp(iωh), 0 ≤ ω ≤ 2π, (2.9)

and γ(h) is the autocovariance function. The second-order analysis can be
equivalently performed in the time domain by considering the pattern of
the autocovariance function, or in the frequency domain by considering the
pattern of the spectral density.

The analysis in frequency domain allows for decomposing a series into its
frequency components : yt = Σωyω,t, say, by means of second-order proper-
ties. It has been proposed in the literature to interpret the low frequency
component ω ∼ 0 as the long run component [see e.g. Beveridge, Nelson
(1981), Calvet, Fisher (2007) and for more recent papers Ortu et al. (2013),
Bandi et al. (2018) for a similar approach based on wavelets]. However,
this approach provides frequency components that are deterministic func-
tions of the same initial series and are mutually dependent. Therefore the
components at different frequencies cannot be shocked separately in a causal
impulse response analysis.

This is not the case with the decomposition introduced in model (2.1)-
(2.2). In general yt can have J autoregressive components J ≥ 2 :
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yt =
J∑

j=1

(
√
pj

√
1− ρ2j

εj,t
1− ρjL

)
, say, with pj > 0, j = 1, . . . , J,

J∑

j=1

pj = 1,

(2.10)
where by construction the innovations (εj,t), j = 1, . . . , J , and the compo-
nents at different time units (different terms) are independent (not only un-
correlated) and can be shocked separately. Model (2.1)-(2.2) is the special
case with J = 2, ρ1 = 0, ρ2 = ρ.

Let us now discuss the relationship between the term domain (in ρ) and
frequency domain (in ω) analysis. The spectral density of process (yt) in
(2.10) is :

f(ω) =
1

2π

J∑

j=1

{
pj

1− ρ2j
|1− ρj exp(iω)|2

}
=

1

2π

J∑

j=1

[
pj

1− ρ2j
1 + ρ2j − 2ρjcosω

]
.

(2.11)
The spectral density contains the same information as the sequence of

ρ′js and weights p′js (see Section 3.1).
Let us now examine the pattern of a baseline component of spectral den-

sity (2.11) :

f(ω; ρ) =
1

2π

1− ρ2

1 + ρ2 − 2ρcosω
. (2.12)

This function of cosω has a maximum for ω = 0, 2π, a minimum for
ω = π, and inflexion points at ω = π/2, 3π/2 (see Figure 3). Its values at

these points are :
1

2π

1 + ρ

1− ρ
,
1

2π

1− ρ

1 + ρ
and

1

2π

1− ρ2

1 + ρ2
, respectively.

[Insert Figure 3 : Component Spectral Density, ρ = 0.3, 0.8].

We see the drawback of detecting the long run component in frequency
domain. If the process satisfies (2.10), the spectral density (2.11) evaluated
at ω ≃ 0 is a mixture of AR(1) components with different ρ′s (i.e. terms).
Loosely speaking in a simple model such as a noisy long run component
(2.1)-(2.4), we want to shock separately εs,t and εl,t. In particular we want to
distinguish the long run effect by focusing on εl,t, whereas a spectral density

close to w = 0 is equal to
1

2π
Σj

(
pj
1 + ρj
1− ρj

)
, that involves all the terms.
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3 Identification

In model (2.10), with i.i.d. shocks εj,t, from a distribution gj, which is not
necessarily Gaussian, it is possible to identify semi-nonparametrically the
parameters pj, ρj, j = 1, . . . , J , and the distributions gj, j = 1, . . . , J , when-
ever the ρ′js are different with |ρj| < 1, ∀j [see Gourieroux, Jasiak (2019)].
The proof of identification is constructive and used to derive consistent semi-
parametric estimation methods (at least for ρ fixed). We apply below these
results to the noisy long run component model (2.1)-(2.4).

3.1 Identification of parameters pl, ρ

For model (2.10), the proof of identification is based on the uniqueness of the
partial fraction decomposition of spectral density (2.11) [see e.g. Maravall
(1979), Bradley, Cook (2012)]. In the special case of model (2.1)-(2.4), we
have :

γ(h) = psγs(h) + plγl(h)

= plρ
h, for any h > 1.

Therefore parameters pl, ρ are directly identifiable from γ(1), γ(2). We
have : γ(1)(= ρ(1)) = plρ, γ(2)(= ρ(2)) = plρ

2. Therefore :

ρ = γ(2)/γ(1), pl = γ(1)2/γ(2). (3.1)

This corresponds to the solutions of the two first Yule-Walker equations.
The expression of ρ corresponds to an instrumental variable approxima-

tion of the first-order autoregressive coefficient of yt with instrument yt−2.

3.2 Nonparametric identification of the distributions

Let us rewrite model (2.1)-(2.2) as :

yt = ys,t + ylt = ε̃s,t +
ε̃lt

1− ρL
,

where ε̃st =
√
psεs,t, ε̃l,t =

√
plεl,t. (3.2)

The identification result is obtained from the second characteristic func-
tions of ε̃s,t, ε̃l,t, yl,t, defined by :
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bs(u) = logE[exp(iuε̃s,t)], bl(u) = logE[exp(iuε̃l,t)], (3.3)

and

cl(u) = logE[exp(iuyl,t)]. (3.4)

The lemma below shows that it is equivalent to identify the marginal
distribution of yl,t (i.e. cl), or the marginal distribution of ε̃l,t (i.e. bl), when
ρ is given.

Lemma 1 : We have cl(u) = cl(ρu) + bl(u).

Proof : We have yl,t = ρyl,t−1+ ε̃l,t, where yl,t−1 and ε̃l,t are independent.
Therefore, by independence :

E[exp(iuyl,t)] = E[exp(iuρyt−1)]E[exp(iuε̃l,t)]

⇔ cl(u) = cl(ρu) + bl(u), by stationarity of process (yt).
�

The identification is obtained by considering the nonlinear dependencies
at order 1. Let us denote the pairwise second characteristic function at lag
1 :

ψ(u, v) = logE[exp(iuyt + ivyt−1)], u, v ∈ IR. (3.5)

Proposition 1 : We have :

i)
dbs(u)

du
=

∂ψ

∂v
(−u/ρ, u).

ii)
dcl(u)

du
=

∂ψ(0, u)

∂v
− ∂ψ

∂v
(−u/ρ, u).

Proof : See Appendix 1.

Since function ψ is identifiable, the identification of bs, cl (and then of bl
by Lemma 1) follows by integration, noting that bs(0) = cl(0) = 0.
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4 Theoretical Dynamic Properties of Noisy

Long Run Component

Before discussing statistical inference, it is important to consider the prop-
erties of theoretical regression coefficients in regressions that involve L.R.R.
components. This will provide a first explanation of the long run predictabil-
ity puzzle. Then, in a second step, we compare the difference between the
theoretical and estimated results to show that a detailed analysis of statistical
inference in the case of L.R.R. components is needed.

4.1 Theoretical regression

Let us consider a noisy AR(1) process,

yt = x1t + σε2t, (4.1)

where x1t = ρx1t−1 + ε1t, Eε1t = 0, V ε1t = 1− ρ2 ε2t is independent of (ε1t),
such that Eε2t = 0, V ε2t = 1. This model includes a long-run component
X1t, if ρ is close to 1, and a short-term component σǫ2t, as in the analysis of
permanent and temporary components of stock prices [Fama, French (1988),
Table 1] or in the Long Run Risk consumption growth model [Bansal, Yaron
(2004), Hansen et al. (2008), Gollier (2016), Section 6, Schorfheide, Song,
Yaron (2018)]. Let us now run the theoretical autoregressions :

yt+1,t+h = βhhyt−h+1,t + wht,

where yt+1,t+h = yt+1 + . . . + yt+h. We denote βhh(ρ, σ
2) the theoretical

regression coefficient and Rhh(ρ, σ
2) the theoretical correlation between the

dependent and explanatory variables.
Then we have [see Appendix 2] :

βhh(ρ, σ
2) = Rhh(ρ, σ

2) =
γ(h, h, ρ)

γ(h, ρ) + hσ2
, (4.2)

where : γ(h, h, ρ) =
ρ(1− ρh)2

(1− ρ)2
, γ(h, ρ) =

1 + ρ

1− ρ
h − 2ρ

(1− ρ)2
(1 − ρh). In

particular :
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R1,1(ρ, σ
2) =

1

ρ+ σ2
, R2,2(ρ, σ

2) =
ρ(1 + ρ)2

2(1 + ρ) + 2σ2
.

Corollary 1: Let us assume ρ > 0, then R2,2(ρ, σ
2) > R1,1(ρ, σ

2), iff

(1 + ρ)2 ≥ 2 and σ2 ≥ (1− ρ)2

(1 + ρ)2 − 2
.

Proof : The condition on correlations is :

ρ(1 + ρ)2

2(1 + ρ) + 2σ2
>

ρ

1 + σ2

⇐⇒ (1 + ρ)2(1 + σ52) > 2(1 + ρ) + 2σ2

⇐⇒ [(1 + ρ)2 − 2]σ2 > (1 + ρ)(1− ρ) > 0.

The result follows. QED

The sequence of correlations is first increasing in h, if ρ is sufficiently
large ρ >

√
2 − 1, and σ2 is large too. When ρ is close to 1, the constraint

on σ2 becomes : σ2 > 0 and is always satisfied. Thus it seems important to
analyze the behaviour of Rh,h(ρ, σ

2) close to a unit root.

Corollary 2: Let us assume ρ = 1− δ/h, where δ > 0 is fixed. Then,

limh→∞Rh,h(1− δ/h; σ2) =
[1− exp(−δ)]2

2[exp(−δ)− 1 + δ]
≡ R∞(δ).

The function R∞(δ) is a decreasing function of δ, from 1, for δ = 0, to 0
for δ = ∞.

Proof: See Appendix 2 iii).

Corollary 2 implies that one can expect a hump-shaped pattern of the the-
oretical correlation. It suggests that the hump may arise for a rather large
h and its size is determined by parameter δ. The model in Corollary 2 re-
sembles the dynamic model of consumption growth in Bansal, Yaron (2004),
where X1t is ”a small persistent predictable component which determines the
conditional expectation of consumption growth”. The hump-shaped patterns
are illustrated in Figure 4 below for parameters set equal to ρ = 0.8, σ2 =
10; ρ = 0.9, σ2 = 20; ρ = 0.99, σ2 = 100, ρ = 0.995, σ2 = 10.
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[Insert Figure 4 : βh,h = Rh,h function of h]

Such patterns are evidenced in the empirical literature [see e.g. Bandi
et al. (2018) for a similar curve, and Bandi, Perron (2008), Fig 2, for a
curve for small h]. Predictability is not observed in the short run (h small),
as the small persistent component is concealed by the large noise. When h
increases the effect of the noise diminishes. Hence, for very large h, function
Rh,h decreases slowly to zero due to the persistent component.

4.2 Estimated versus theoretical regressions

However in practice we do not know the truth and the L.R. predictatbility
puzzle is observed on estimated regressions. Thus it is important to see if
there is a systematic estimation bias.

To illustrate the size of this bias, we consider a series of simulated data
with T = 400 observations and parameters ρ = 0.99, σ2 = 10. The simulated
series is displayed in Figure 5.

[Insert Figure 5 : Simulated Series]

Despite the high value of the autoregressive coefficient, we do not observe
a trend and the trajectory is rather erratic. The estimates of ρ, σ2 in step
1 are : ρ̂T = 0.904, σ̂2

T = 10.23. In Figure 6 we plot the true values of Rhh

(dashed line), the values of Rhh(ρ̂T , σ̂
2
T ) (dotted line), as well as the values

of the standard empirical estimator R̃h,h (solid line) as functions of h . As
expected, the R̃h,h line lies considerably above the true value of Rhh and
is close to 1 for large lags h because of the overlapping observations and
the decreasing number of observations from which it is calculated when lag
h increases. The estimator Rhh(ρ̂T , σ̂

2
T ) provides the hump shaped curve,

but underestimates the true value of the determination coefficient (see the
discussion in the next Section).

[Insert Figure 6 : True and Estimated Coefficients]

5 Statistical Inference

In this section, we first introduce consistent estimators of parameters pl, ρ
and of the distributions of shocks in model (2.1)-(2.4), when pl, ρ are fixed.
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Next we show that in practice spurious results are obtained when the true
value of ρ is close to 1, in the long run interpretation of component yl,t.
This is a consequence of interpreting ρ as an autoregressive coefficient rather
than a change of time unit, that follows from the reparametrization of the
standard AR(1) model. Indeed this reparametrization implies a lack of local
identifiability for ρ = 1. We also consider the case of ρ approaching one
when the number of observations tends to infinity, that is a joint near unit
root and small sigma asymptotics [see Phillips (1987), Chan, Wei (1987)
for the introduction of near unit root asymptotics, Kadane (1971) for the
introduction of small sigma asymptotics in the econometric literature and
Gospodinov (2009), Gospodinov, Maynard and Pesavento (2017), Assump-
tion B, for both high persistence and low signal to noise ratio in cointegrated
systems]. We provide the asymptotic and (large) finite sample behaviours of
estimated parameters of interest. In the last part of this Section, we explain
how the standard Bayesian approach [see e.g. Schorfheide et al. (2018)]
has also to be modified. These new asymptotic properties call into question
the results obtained in the literature on long run risk model, when standard
asymptotic results are automatically applied [see e.g. Bansal, Yaron (2004),
Bansal, Kiku, Yaron (2007), Schorfheide et al. (2018)].

5.1 Estimators

The estimators of scalar parameters pl, ρ and of distributions of shocks are
derived by using equation (3.1) and equations i), ii) in Proposition 1, that
is by finding the solutions of these equations after replacing reduced form

parameters γ(1), γ(2) [resp.
∂ψ(u, v)

∂v
] by their sample counterparts :

γ̂(h) =
1

T

T∑

t=3

ytyt−h, h = 1, 2 [ resp.
∂ψ̂(u, v)

∂v
].

The solution of equation (3.1) is the estimator of ρ :
ρ̂ = γ̂(2)/γ̂(1).
Next we estimate the partial derivative of the pairwise second-characteristic

function :

∂ψ(u, v)

∂v
=
E[iyt−1 exp(iuyt + ivyt−1)]

E[exp(iuyt + ivyt−1)]
, (5.1)

by its sample counterpart :
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∂ψ̂(u, v)

∂v
= i

Σt[yt−1 exp(iuyt + ivyt−1)]

Σt[exp(iuyt + ivyt−1)]
. (5.2)

Then the sample counterparts of equations i), ii) in Proposition 1 are

solved for
dbs
du

,
dcl
du

after separating their real (Re) and imaginary (Im) parts
as :

Re
d̂bs(u)

du
= Re

∂̂ψ

∂v
(−u/ρ̂, u),

Im
d̂bs(u)

du
= Im

∂̂ψ

∂v
(−u/ρ̂, u),

Re
d̂cl(u)

du
= Re

∂̂ψ

∂v
(0, u)−Re

d̂bs(u)

du
,

Im
d̂cl(u)

du
= Im

∂̂ψ

∂v
(0, u)− Im

d̂bs(u)

du
,

where ρ̂ is the estimator of ρ obtained in the first step.

The closed form expressions of the real and imaginary parts of
∂̂ψ

∂v
(u, v)

are given in Appendix 3.
The estimator ρ̂ of the scalar parameter and the estimators of the func-

tional parameters
∂b̂1
du

,
∂ĉl(u)

du
are consistent, asymptotically normal, when

T tends to infinity and all (scalar and functional) parameters are fixed. For
instance,

√
T (ρ̂− plρ) is asymptotically normal with mean zero and variance

1− p2l ρ
2.

These asymptotic properties of estimators are no longer valid when ρ = ρT
tends to 1, when T tends to infinity.

5.2 Parametrization and identifiability

Before discussing the inference, let us consider two alternative parametriza-
tions of a Gaussian AR(1) model :
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xt = rxt−1 + ηεt, (5.3)

and xt = ρxt−1 + σ
√
1− ρ2εt. (5.4)

It is very important to distinguish these parametric models in which the
parameters have different economic interpretations, that are a serial correla-
tion for r and a change of time unit for ρ. This distinction is hidden when the
same notation is used for r and ρ (resp: η and σ). For instance, the model is
written as xt = ρxt−1 + (ϕσ)εt in Bansal, Yaron (2004) and the major part
of the L.R.R. literature, but it is written as : xt = ρxt−1 +

√
1− ρ2(ϕσ)εt in

Schorfheide, Song, Yaron (2018).

In model (4.3), the parametric efficiency bound for (r, η) is : B(r, η) =(
1− r2 0

0 2η4

)
. For r = 1, we get zero as the first diagonal element. This

corresponds to the limiting case of a random walk in which the speed of
convergence of the maximum likelihood estimator of r is 1/T , not 1/

√
T .

The results are different with the parametrization in (4.4). Indeed the

Jacobian to transform (r, η) into (ρ, σ) is : J =




1 0
ρσ

1− ρ2
1√

1− ρ2


 . The

last row of the Jacobian tends to infinity, when ρ tends to 1. This reveals a
weak identification in a neighbourhood of ρ = 1. This local nonidentification
explains the use of local alternatives to ρ = 1 in Section 4.4 to analyze the
behaviour of standard estimators.

Similarly, biases in ρ̂ have to be interpreted with caution. A downward
bias in ρ̂ has an impact on the time unit (time deformation), and therefore
a double effect diminishing the persistence and increasing the size of the
shocks.

5.3 Spurious inference

The framework of near unit root/small sigma can induce spurious results
when standard methods of statistical analysis are used. Table 1 gives sum-
mary statistics, including the sample mean, sample variance, 5% and 95%
sample quantiles and first-order correlations for the trajectories given in Fig-
ures 1-2, with ρ = 0.999, ps = 1 (white noise), ps = 0.5 and ps = 0.95. They
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are computed for T = 250, 500, 1000, 2000, 5000, i.e for time span of 1 year,
2 years, 4 years, 8 years, and 20 years (of opening days).

[Table 1 : Summary Statistics]

The first row of Tables 1.a-1.e corresponds to the white noise and as
expected provides the following results : the sample mean tends to 0, the
sample variance to 1, the quantiles to ±1.64 and the autocorrelation to zero.
The next row reports results for the equiweighted combination. We observe
that the sample mean, sample variance, quantiles, and the first-order cor-
relation do not seem to converge to their theoretical counterparts. In fact,
they converge theoretically, but this convergence becomes visible for much
larger number of observations. The last row of each table reports the results
on large noise process. These results are similar to those in the first row
corresponding to the white noise, except for T = 5000, where the effect of
the L.R. component starts to be revealed.

Let us now consider the ACF of yt for the series with ps = 0.5 and
ps = 0.95.

[Insert Figure 7: ACF of Noisy Long Run Components]

The ACF is inside the standard confidence band up to T = 5000 for the
large noise combination and up to T = 2000 for the equiweighted combina-
tions except at a lag of order 25, where it is slightly significant. This explains
why in practice the (weak) white noise hypothesis is not rejected (i.e. the
market efficiency hypothesis in case of stock returns), despite that the true
(yt) is not a (weak) white noise. This spurious result is due to :

i) A misleading interpretation of γ(1).
From equation (3.1) we have : γ(1) = plρ ≃ pl, if ρ is close to 1. Thus we

estimate the weight pl, which is small in the simulation. In other words the
fact that γ̂(1) is small simply means that the L.R. component of yt is small.

ii) An inadequate null hypothesis.
The standard test of ρ(1) = 0 is performed under a fixed probability of

type I error for the null hypothesis H0 = {yt = ys,t} = {yl,t = 0}, whereas
to get relevant long run predictions, we would need to avoid overrejecting
the alternative H̃0 = Hc

0 = {yl,t 6= 0}. Thus, when the interest is in long
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run predictions, the hypothesis of predictability has to be considered as the
null hypothesis, not as the alternative hypothesis [compare with Hjalmarsson
(2008), Section 5, Hjalmarsson (2011)].

This remark has important practical implications. Usually, when estimat-
ing an ARMA model for prediction purpose, there is a tendency to keep the
model parsimonious and retain low autoregressive and moving average or-
ders to avoid (in sample) overfitting. This is equivalent to underparametrize
the model [see Hirano, Wright (2017) for a recent example of this practice
in selecting prediction models]. In our L.R. setting it may be preferable to
overparametrize the model in order to get some information on the hidden
L.R. component. We suggest a slight overparametrization that would include
nonsignificant parameters, without an extensive (in sample) overfitting. The
slight overparametrization will improve the predictive power in the long run.

Moreover, some methods introduced to reduce the variance of forecasts
are not robust to the presence of a small L.R. component, and become irrel-
evant. As an example, let us consider the bootstrap aggregating (bagging)
[Breiman (1996), Efron (2014)]. If the ACF misleadingly indicates white
noise, the bagging is invalid. In this case the data misleadingly considered as
a white noise are resampled; then the forecasting methods are reapplied to
the resampled data and the results are averaged over all the bootstrap sam-
ples. Clearly the resampling neglects the small L.R. component and destroys
the persistence in the L.R. component. Therefore a bagging approach will
increase the difficulty in revealing the L.R. component.

Next the ACF of the equiweighted combination for T = 5000 [see the
South-East panel in Figure 7.a] has a pattern suggesting an integrated pro-
cess, whereas our process is stationary with just a L.R. component.

Let us now consider the implementation of estimation methods of sub-
section 4.1. We provide in Table 2 the Yule-Walker estimates of ρ computed
for the two noisy L.R. component series and for different values of T . Table
1e shows that the estimated first-order correlations are close to zero for T
up to 2000 (as well as the second-order correlation not reported here). This
explains the unexpected values of the Yule-Walker estimates of ρ. It can even
be difficult to calculate ρ̂ for T = 250 and large noise [see the X in Table 2].

[Table 2 : Estimates of ρ]
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We also provide in Figure 8, functional estimates of the distribution of
shocks for T = 1000, T = 5000 and the two noisy L.R. components. Since the
true distributions are zero-mean Gaussian, we expect second-characteristic
functions cl, bs, bl, be to be real quadratic functions of u, and their derivatives
to be real and linear in u. Thus, graphically we expect the real part for these
derivatives to be a straight line in u and their imaginary part to be zero.

[Insert Figure 8 : Functional Estimates of the Distributions]

Tables 1-2 have revealed biases in the estimates of the mean, variance,...,
and parameter ρ. Other biases can also exist in the nonparametric functional
estimates of the second-characteristic functions. For the functional estima-
tors, two types of biases can arise, which are a direct bias existing even if
ρ is evaluated at its true value (close to 1), and an indirect bias due to the
replacement of ρ by its estimate.

A priori, these biases can impact the shape of the second-characteristic
function as well as its level, slope, or curvature. In this respect the Gaussian
case is very special. Indeed let us consider the asymptotic behaviour of the
sample second-characteristic function for ρ fixed and T large, which converges
to :

ψ(u, v) = logE[exp(iuyt + ivyt−1)]

= −1

2
(u, v)

(
1 ρ(1)
ρ(1) 1

)(
u
v

)
,

which implies :
∂ψ(u, v)

∂v
= −[ρ(1)u+ v].

Therefore, when applying the estimation method of Section 5.1, with an
estimator ρ̂ of ρ that converges to ρ∗ (not necessarily equal to ρ), we get the
pseudo second-characteristic functions b∗s, c

∗

l such that :

db∗s(u)

du
=

∂ψ(−u/ρ∗, u)
∂v

= −u
[
1− ρ(1)

ρ∗

]
,

dc∗l (u)

du
=

∂ψ(0, u)

∂v
− ∂ψ

∂v
(−u/ρ∗, u) = −uρ(1)/ρ∗.

For instance, if the estimator ρ̂ is consistent : ρ∗ = ρ, we get :
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db∗s(u)

du
= −u

(
1− ρ(1)

ρ

)
= −ups,

dc∗l (u)

du
= −upl.

This means that an inconsistent ρ̂ has no visible impact on the shape
of the imaginary and real components : the imaginary components remain
equal to zero, and the real components linear in u. However, we can observe
changes in the slopes of these linear functions.

It is more difficult to describe theoretically the direct bias, when ρT tends
to 1 when T tends to infinity. In particular its impact on the shapes of the
derivatives of the second characteristic functions is difficult to derive.

The plots in Figure 8 show that, for Gaussian processes, some biases in
the shapes of second-order derivatives of the second-characteristic functions
can be detected. For T = 5000 the biases affect the imaginary component
of the noise. For T = 2000 the biases are more pronounced for all shapes.
By considering the expansion of a second characteristic function in a neigh-
bourhood6 of u = 0, we see that the shape of a polynomial of degree 3 in
Figure 8.a (x real), is capturing a kurtosis effect, and the parabolic shapes
for the imaginary component a skewness effect. These are due to biases in
the marginal and joint distributions of yt, yt−1 [see the figures in Appendix
6] .

This section demonstrated that in the presence of a L.R. component the
standard asymptotic theory does not apply even for a rather large number
of observations (T = 2000, i.e. 8 years, T = 5000, i.e. 20 years). The next
section provides a convenient framework for this non-standard analysis

6The expansion of the second-characteristic function is :

ψ(u) = logE exp(iuX) ≃ 1 + iuK1 −
u2

2
K2 −

iu3

6
K3 +

u4

24
K4 + o(u4),

where Kj denotes the cumulant of order j. Therefore the expansions of its real and
imaginary part are :

Reψ(u) = 1− u2

2
K2 +

u4

24
K4 + o(u4),

Imψ(u) = uK1 −
u3

6
K3 + o(u4).

The interpretations follow by considering the derivatives of these components with re-
spect to u.
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5.4 Near Unit Root/Small Sigma asymptotic inference

This section provides a heuristic description of near unit root/small sigma
asymptotic inference. This is related to the literature on near unit root with
fixed sigma [see e.g. Chan, Wei (1987), Phillips (1987)].

However, our approach is different and resembles the high frequency data
(HFD) analysis from an underlying virtual diffusion model. In this framework
it is known that we cannot expect to estimate consistently the drift of the
diffusion equation from the observations of the diffusion over a finite interval
[see e.g. Jiang, Knight (1997), Theorem 2, for high frequency data, and
Banon (1978) for continuous observations]. This explains the asymptotic
result below obtained for the estimator of coefficient ρ. Let us assume that
the shocks εs,t, εl,t are standard Gaussian.7

5.4.1 Asymptotic behaviour of the sample mean.

Proposition 2 : If the shocks εs,t, εl,t are standard Gaussian :
i) the conditional distribution of yt+h given ys,t, yl,t is Gaussian with

mean :

E (yt+h|ys,t, yl,t) =
√
plρ

hyl,t,

and variance :

V (yt+h|ys,t, yl,t) = (1− pl) + pl(1− ρ2h), h ≥ 1.

ii) The conditional distribution of
1

h
(yt+1 + . . . + yt+h) ≡ yt+1(h) given

ys,t, yl,t is Gaussian, with mean :

E(yt+1(h)|ys,t, yl,t) =
1

h

√
plρ

1− ρh

1− ρ
yl,t,

and variance :

7The asymptotic results can be extended to models with non Gaussian shocks by intro-
ducing conditions of weak convergence of partial sums to functionals of Brownian motion
[see e.g. Davidson (1994), Berkes, Weber (2007), Magdalinos, Phillips (2007) for conven-
tional regularity conditions]. In the Gaussian framework the analysis can be performed
directly as shown in this section.
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V (yt+1(h)|ys,t, yl,t) =
ps
h
+
pl(1 + ρ)

h(1− ρ)
−2(1 + ρ)ρpl
h2(1− ρ)2

(1−ρh)+ plρ
2

h2(1− ρ)2
(1−ρ2h).

Proof : See Appendix 4.

Let us now consider the case when h is large, ρ is close to 1, and pl is
held fixed. Since ρh ≃ exp(h log ρ) ≃ exp[−h(1 − ρ)], the conditional mean
is equivalent to :

E[yt+1(h)|ys,t, yl,t] ≃
√
pl
1− exp(−h(1− ρ))

h(1− ρ)
yl,t.

The conditional variance is equivalent to :

V [yt+1(h)|ys,t, yl,t]

≃ 2pl
h(1− ρ)

− 4pl
h2(1− ρ)2

(1− exp[−h(1− ρ)]) +
pl

h2(1− ρ)2
[1− exp(−2h(1− ρ))].

Therefore, the asymptotic behaviour of these conditional moments de-
pends on the asymptotic behaviour of h(1− ρ), when T increases.

Proposition 3 : If the shocks εs,t, εl,t are standard Gaussian, we have
the following equivalences for the first and second-order moments :

i) If limT→∞ h(1− ρ) = 0,

E[yt+1(h)|ys,t, yl,t] ≃
√
plyl,t,

V [yt+1(h)|ys,t, yl,t] = o(1).

ii) If limT→∞ h(1− ρ) = γ, then

E[yt+1(h)|ys,t, yl,t] =
√
pl
1− exp(−γ)

γ
yl,t,+o(1)

V [yt+1(h)|ys,t, yl,t] =
2pl
γ

− 4pl
γ2

[1− exp(−γ)] + pl
γ2

[1− exp(−2γ)] + o(1).

22



iii) If limT→∞ h(1− ρ) = ∞,

E[yt+1(h)|ys,t, yl,t] ≃
√
pl

h(1− ρ)
yl,t,= o(1),

V [yt+1(h)|ys,t, yl,t] ≃
2pl

h(1− ρ)
= o(1).

The asymptotic results of Proposition 3 show different behaviours when
the forecasting horizon grows with the sample size (i.e. with ρ)8.

i) If h increases slowly, the Law of Large Numbers can be applied to the
short term component, whose average tends to zero, whereas the L.R. com-
ponent is approximately constant and equal to

√
plyl,t. Then yt+1(h) tends

to a constant.

ii) If h increases at a speed that offsets the speed of convergence of ρ to
1, then yt+1(h) is conditionally Gaussian and nondegenerate.

Hence, for large h the sample average of yt does not provide a consistent
estimator of the theoretical mean of the process, which is equal to zero.

iii) If h increases very quickly, the conditional mean and variance tend to
zero at equal rates.

Therefore, it is important to consider the entire term structure of pre-
dictions, rather than the short term predictions only [as in Hirano, Wright
(2017) for instance].

Also note that, since in case ii) the estimator of the mean is not close
to the true value, a bootstrap for evaluating the confidence interval on such
a parameter does not satisfy the standard regularity conditions needed to
approximate finite sample distribution and is misleading [see e.g. Bansal,
Kiku, Yaron (2012), Section 4.1 for using bootstrap in a LRR model].

8See Valkanov (2003), Hjalmarsson (2008) for similar analysis in a framework of regres-
sion model.
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5.4.2 Asymptotic behaviour of the sample autocorrelations

More asymptotic results can be derived from extensions of Donsker Theorem
[see e.g. Berkes, Weber (2007)]. For expository purpose, we assume that the
available daily observations on the L.R. component are 9 :

yl,t =
√
plx̃l,t/T , t = 1, . . . , T, (5.5)

where (x̃c) is a continuous Ornstein-Uhlenbeck process satisfying the diffusion
equation :

dx̃c = −kx̃cdc+
√
2k dW̃c, k > 0, (5.6)

where the virtual time unit in diffusion equation (5.6) is infinitely large.
Since the frequency of observations is fixed, (the day), the observations

are defined in (5.5) by specifying an initial time unit of T , such as T = 250
(opening days) for one year, T = 25000 for a century, T = 250000 for a
millenium,.. In this framework, we have : ρT = exp(−k/T ) ≃ 1− k/T, that
tends to 1 when T tends to infinity and then

√
1− ρ2T ≃

√
2k/T 10.

Let us now reconsider Proposition 3 ii) with hT = T and limT→∞ hT (1−
ρT ) = k. We have :

yl,1(T ) =
1

T
(yl,1 + . . .+ yl,T ) =

√
pl

T
(x̃1/T + . . .+ x̃T/T ).

This is a Riemann sum that convergences in distribution to the associated
stochastic integral :11

yl,1(T )−→
T→∞

√
pl

∫ 1

0

x̃cdc. (5.7)

The Ornstein-Uhlenbeck diffusion equation (5.6) can be solved in closed
form. We have :

9A better notation would be yl,t,T to account for a triangular array. We omit index T
in the notation for expository purpose.

10Compare with the conditions in Gospodinov (2009), Assumption B, Gospodinov et al.
(2017), Assumption B. In our framework the constants c, λ of Assumption B are linked by
λ =

√
2c to get the interpretation in terms of time deformation of process yl,t/

√
pl. They

become unconstrained when process yl,t is considered.
11This is the local asymptotic normality (LAN) set up in the Le Cam sense, where

a sequence of ”experiments” converges to a limiting Gaussian experiment [see Roussas,
Bhattacharya (2011) for a discussion of LAN and its extensions.]
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x̃c = x̃0 exp(−kc) +
√
2k

∫ c

0

exp[−k(c− s)]dW̃s. (5.8)

Next we deduce by integration :

∫ 1

0

x̃cdc = x̃0
1− exp(−k)

k
+

√
2

k

∫ 1

0

(1− exp[−k(1− s)])dW̃s. (5.9)

The expressions of the conditional first and second-order moments in
Proposition 3 ii) are easily derived from (4.9). For instance the variance is
equal to :

V [yl,1(T )|yl,1] =
2pl
k

∫ 1

0

(1− exp[−k(1− s)])2ds. (5.10)

Let us now apply the HFD technique used above to derive also the asymp-
totic distribution of the sample autocorrelation. We have (see Appendix 5) :

Proposition 4 : Let us consider the sample autoregressive coefficient :

ρ̂T (1) =
T∑

t=2

ytyt−1/

T∑

t=2

y2t−1. Under (2.1)-(2.4) and (4.1)-(4.2),

ρ̂T (1)−→
T→∞

−pl
2
x̃21 + pl

∫ 1

0

x̃2cdc

ps + pl

∫ 1

0

x̃2cdc

,

where −→ denotes the convergence in distribution.

For prediction purpose, the standard point prediction is deduced from
the theoretical prediction by replacing ρ by ρ̂T . Very often the uncertainty
on coefficient ρ is disregarded in the computation of the prediction interval by
assuming implicitly that ρ̂T is consistent. In our setting, it is not the case and
even for large T there remains uncertainty on ρ̂T and considerable caution
should be exercised in interpreting evidence regarding long run predictions.
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5.4.3 Finite sample properties

To give some insights on the (large) finite sample and limiting distributions
of ρ̂T (1) that depend on parameters ρ and pl, we provide in Table 3, the
probability that ρ̂T (1) is outside the interval [−2/

√
T ,+2/

√
T ] (correspond-

ing to the standard bounds for the ACF), that is the probability of detecting
the L.R. component. This exercice is similar to the exercise in Shephard,
Harvey (1990), when they try to detect a small nonstationary deterministic
component.

[Insert Table 3 : Probability of Detecting the L.R. component]

This probability is computed for sample sizes T = 250 (one year), T = 500
(2 years), T = 1000 (4 years). The values of parameter ρ are set to ρ =
0.85, 0.875, 0.9, 0.925, 0.95, 0.975, 0.999, and the value of pl are 0.1, 0.2; 0.3, 0.4, 0.5.
By considering the ratio

√
ps/pl =

√
(1− pl)/pl, the short run component is

three times the L.R. component for pl = 0.1, twice the L.R. component for
pl = 0.2. The combination is equiweighted for pl = 0.5. The probability of
detecting the L.R. component can be very small. This probability diminishes
when pl decreases, or when ρ increases.

The finite sample confidence intervals at 95% for the first-order correlation
are provided in Table 4 :

[Insert Table 4 : Confidence Interval for ρ(1)]

These confidence intervals (CI) differ significantly from the standard con-
fidence intervals (±2/

√
T ). We observe both a drift effect, since the correct

confidence interval are systematically centred at a higher level, and a variance
effect, due to larger uncertainty on ρ̂(1), resulting in wider CI.

Table 5 shows the finite sample confidence intervals for the Yule-Walker
estimator of ρ.

[Insert Table 5 : Confidence Interval for ρ]

The confidence intervals appear very wide, even for rather large number
of observations. This is a consequence of the sample counterpart of formula
(3.1) : ρ̂ = γ̂(2)/γ̂(1), and the fact that γ̂(1), γ̂(2) take random values close
to zero.
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5.5 Bayesian analysis

In a recent paper Bayesian methods are used by Schorfheide, Song, Yaron
(2018) 12 to estimate a long run risk model under the parametric form (5.4).
The difficulties encountered to derive reasonable asymptotic distributions of
classical estimators arise also in the Bayesian framework.13

How to select a prior ? There is no clear rule except one : if a parameter
θ has a unit and if we change the unit of θ to get θ∗, then the priors have
to be changed accordingly. In model (4.4), with the interpretation of ρ as
a change of time unit, this minimal coherency is expected. In other words,
Bayesian asymptotic results similar to classical asymptotic results in Section
4.4 will be obtained, if the prior is introduced on the underlying parameter
k of the associated diffusion. Then the prior on ρT will be deduced from the
prior on k by applying the transformation k → exp(−k/T ), and will depend
on T . This modifies the standard Bayesian asymptotics, since the prior now
depends on T . It will be more concentrated in a neighbourhood of ρ = 1 to
account for the asymptotic lack of identification [see the discussion in Poirier
(1998)].

6 Concluding Remarks

A long run component has often been modelled as a near nonstationary pro-
cess, as for instance a near unit root process with fixed sigma. This modelling
approach creates trajectories with globally explosive trends, that are often
not compatible with the expected long run behaviour of the macroeconomic
or financial series of interest such as GDP growth, spot, or forward exchange
rates, commodity prices. In this paper we explored the alternative of a sta-
tionary L.R. process with both near unit root and small sigma. It accounts
for more ”local” than ”global” persistence effects. We explain how such a
modelling of the L.R. component observed with noise can help solve some
(long run) predictability puzzles mentioned in the literature.

The presence of a long run component implies that we cannot expect to
estimate consistently the theoretical mean and the autoregressive coefficient
of the long run dynamics. The asymptotic uncertainty on these estimated
parameters can be derived and has to be taken into account when performing

12see also Stambaugh (1999).
13Chosen uniform on (-1, 1) in Schorfheide et al. (2018).
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long run predictions or testing the hypothesis of market efficiency for long
run adjusted portfolios.

While detecting and/or accommodating such long run component in the
series of interest, standard impulse response analysis [see e.g. Bansal, Yaron
(2004), Gourieroux, Jasiak (2019)], cointegration analysis [Ng, Perron (1997),
Bansal, Dittmar, Kiku (2009), Gospodinov et al. (2017)], predictive regres-
sion with long run predictor [Torous, Valkanov (2000), Hjalmarsson (2008),
(2011)] need to be modified and the pricing formulas for derivatives (futures
and call options) with long time-to-maturity need to be adjusted. This also
concerns the modelling of the long run term structure of interest rate. Since
the long run prediction results are very fragile, this justifies robustness anal-
ysis based on competing scenarios (i.e. competing calibration of ρ) [see e.g.
Bidder, Dew-Becker (2016)]. This also provides a new setting for fixing the
associated technical standard for long run discounting by the supervisory
Authority in Solvency 2, for knowing ”how much (will) you pay to resolve
long run risk” [Epstein et al. (2017)] and for pricing long run products such
as life insurances, pensions, or the demographic and climate risks existing in
the balance sheets of banks and insurance companies [see Hansen, Sargent
(2010), Hansen, Scheinkman (2012), Gourieroux, Monfort, Renne (2019)].
Other types of L.R. processes can require an equivalent asymptotic analysis
to robustify the long run prediction, as rare structural change [Hirano, Wright
(2019)], or rare disasters [Wachter (2013), Barro, Liao (2016), Gourieroux et
al. (2019)].
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Appendix 1

Proof of Proposition 1

We have :

E[exp(iuyt + ivyt−1)]

= E[exp(iuys,t + ivys,t−1)]E[exp(iuyl,t + ivyl,t−1)]

= E[exp(iuys,t)]E[exp(ivys,t−1)]

E[exp[i(uρ+ v)yl,t−1]E[exp(iuε̃l,t)].

By taking the logarithm of both sides of the equality, we deduce that :

ψ(u, v) = cl(uρ+ v) + bl(u) + bs(u) + bs(v)

= cl(uρ+ v) + cl(u)− cl(ρu) + bs(u) + bs(v), (a.1)

by Lemma 1.

Therefore we get :

∂ψ(u, v)

∂v
=
dcl
du

(uρ+ v) +
dbs
du

(v), ∀u, v. (a.2)

Let us now choose appropriate values for u and v.

i) If u = 0, we get :

∂ψ(0, v)

∂v
=
dcl
du

(v) +
dbs
du

(v). (a.3)

ii) If u = −v/ρ, we have :

∂ψ(−v/ρ, v)
∂v

=
dcl
du

(0) +
dbs(v)

dv

=
dbs(v)

dv
, (a.4)
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since
dcl
du

(0) = E(yl,t) = 0.

Proposition 1 follows from (a.3)-(a.4).

Appendix 2

Theoretical Regressions

In this appendix, we consider the general framework of variables Yt re-
lated to sources Xt by Yt = AXt, where the K sources are independent
autoregressive processes:

xjt = ρjxj,t−1 + εj,t, j = 1, . . . , J,

with Eεjt = 0, V εjt = 1− ρ2j . Then we consider the regression :

y1,t+1,t+h = βhky2,t−k+1 + whkt,

with y1,t =
J∑

j=1

a1jxjt, y2t =
J∑

j=1

a2jxjt.

The formulas of Section 4 are direct consequences of the results below.

2.1 Expressions of regression coefficients

Proposition A.1: The theoretical regression coefficient is :

βhk =

K∑

j=1

a1ja2jγ(h, k, ρj)

K∑

j=1

a22jγ(h, ρj)

,

and the theoretical correlation between the dependent and explanatory vari-
ables is:
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Rhk =

K∑

j=1

a1ja2jγ(h, k, ρj)

[
K∑

j=1

a21jγ(h, ρj)

]1/2 [ K∑

j=1

a22jγ(h, ρj)

]1/2
,

where :

γ(h, k, ρ) =
ρ(1− ρk)(1− ρh)

(1− ρ)2
,

γ(h, ρ) =
1 + ρ

1− ρ
h− 2ρ

(1− ρ)2
(1− ρh).

Proof:

a) Expression of γ(h, k; ρ)

The covariance matrix between (xt, xt−1, . . . , xt−k+1)
′ and (xt+1, xt+2, . . . xt+h)

is equal to :

Γ(k, h) =




ρ ρ2 . . . ρh

ρ2 ρ3 ρh+1

...
...

ρk ρk+1 ρk+h


 .

We have : γ(h, k; ρ) = e′kΓ(k, h)eh, where eh is the h-dimensional vector with
unitary components. Therefore :

γ(h, k; ρ) = [ρ+ ρ2 + . . .+ ρk] + . . .+ [ρh + ρh+1 + . . .+ ρh+k]

= [1 + ρ+ . . .+ ρk−1][ρ+ . . .+ ρh]

= ρ
(1− ρk)(1− ρh)

(1− ρ)2
.

b) Expression of γ(h; ρ)

The variance-covariance matrix of (xt+1, . . . , xt+h)
′ is :
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Γ(h) =




1 ρ . . . ρh−1

ρ
. . .

...
...

. . .
...

ρh−1 . . . 1


 .

Therefore :

γ(h; ρ) = h+ 2
{
(ρ+ . . .+ ρh−1) + (ρ+ . . .+ ρh−2) + . . .+ ρ

}

= h+ 2ρ

{
1− ρh−1

1− ρ
+

1− ρh−2

1− ρ
+ . . .+

1− ρ

1− ρ

}

= h+
2ρ

1− ρ

[
h− 1− [ρ+ ρ2 + . . .+ ρh−1]

]

=
1 + ρ

1− ρ
h− 2ρ

1− ρ

[
1 +

ρ

1− ρ
(1− ρh−1)

]

=
1 + ρ

1− ρ
h− 2ρ

(1− ρ)2
[1− ρh].

QED

We are interested in the patterns of βhk, Rkk, for varying h, k. The corollary
below follows directly from Proposition A.1.

Corollary A.1 : limh,k→∞ βhk = limh,k→∞Rhk = 0.

Proof: This is due to the term in γ(h, ρ), which is linear in h. In particular,
the convergence to 0 is at a hyperbolic speed (not geometric), and therefore
rather slow.

2.2) Close to unit root behaviour

When ρ = 1 − δ/h, δ > 0, we get : 1 − ρh = 1 − exp[h log(1 − δ/h)] ∼
1− exp(−δ), for h large. It follows that :
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R(h, 1− δ/h, σ2) ∼ (1− exp(−δ))2
δ2

h2/

[
2h2

δ
+ hσ2 − 2(1− exp(−δ))h

2

δ2

]

∼ (1− exp(−δ))2
δ2

/

{
2

δ
− 2

(1− exp(−δ))
δ2

}

=
(1− exp(−δ))2

2[exp(−δ)− 1 + δ]
≡ R∞(δ), forh→ ∞.

Lemma : The function R∞(δ) is a decreasing function of δ, such that:
R∞(0) = 1, R∞(∞) = 0.

Proof :
dR∞(δ)

dδ
has the same sign as the function :

a(δ) = 2(1− exp(−δ))[exp(−δ)− 1 + δ]− (1− exp(−δ))2[− exp(−δ) + 1]

= (1− exp(−δ)){2[exp(−δ)− 1 + δ]− (1− exp(−δ))2]

= [1− exp(−δ)]2[exp(−δ)− 1 + δ](1−R∞(δ)),

and it is easy to see that the second factor on the right hand side is always
negative.

QED

Appendix 3

Real and Imaginary Part of
∂ψ̂

∂v
(u, v)

We have from (4.2) :

∂ψ̂

∂v
(u, v) =

−Σt[yt−1 sin(uyt + vyt−1)] + iΣt[yt−1 cos(uyt + vyt−1)]

Σt cos(uyt + vyt−1) + iΣt sin(uyt + vyt−1)
.

By multiplying the numerator and denominator by the conjugate of the
denominator, we get.
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∂̂ψ

∂v
(u, v) =

1

∆
{−Σt[yt−1 sin(uyt + vyt−1)] + iΣt[yt−1 cos(uyt + vyt−1)]}

{Σt cos(uyt + vyt−1)− iΣt sin(uyt + vyt−1)},
where :

∆ = [Σt cos(uyt + vyt−1)]
2 + [Σt sin(uyt + vyt−1)]

2. (a.5)

We deduce :

Re
∂ψ̂

∂v
(u, v) =

1

∆
{Σt[yt−1 cos(uyt + vyt−1)]Σt[sin(uyt + vyt−1)]

−Σt[yt−1 sin(uyt + vyt−1)]Σt[cos(uyt + vyt−1)]}, (a.6)

Im
∂ψ̂

∂v
(u, v) =

1

∆
{Σt[yt−1 sin(uyt + vyt−1)]Σt[sin(uyt + vyt−1)]

+Σt[yt−1 cos(uyt + vyt−1)]Σt[cos(uyt + vyt−1)]}. (a.7)

Appendix 4

Proof of Proposition 2

We have : yt+1(h) = ys,t+1(h) + yl,t+1(h),

i) Conditional mean

We get :

E[yt+1(h)|ys,t, yl,t] = E[ys,t+1(h)|ys,t] + E[yl,t+1(h)|yl,t]

=
1

h

√
pl[ρ+ . . .+ ρh]yl,t

=
1

h

√
plρ

1− ρh

1− ρ
yl,t.
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ii) Conditional variance

We have

V [yt+1(h)|ys,t, yl,t]

= V [ys,t+1(h)|ys,t] + V [yl,t+1(h)|yl,t]

=
1

h
ps + plV [xl,t+1(h)|yl,t]

=
1

h
ps +

1

h2
pl(1− ρ2)V [(1 + ρ+ . . .+ ρh−1)εl,t+1 + (1 + ρ+ . . .+ ρh−2)εl,t+2

+ . . .+ εl,t+h]

=
1

h
ps +

1

h2
pl(1− ρ2)

{
(1− ρh)2

(1− ρ)2
+

(1− ρh−1)2

(1− ρ)2
+ . . .

(1− ρ2)

(1− ρ)2

}

=
1

h
ps +

1

h2
pl
1 + ρ

1− ρ

h∑

k=1

[1− 2ρk + ρ2k]

=
1

h
ps +

1

h2
pl
1 + ρ

1− ρ

{
h− 2ρ

1− ρh

1− ρ
+ ρ2

1− ρ2h

1− ρ2

}

=
ps
h

+
pl(1 + ρ)

h(1− ρ)
− 2(1 + ρ)ρpl

h2(1− ρ)2
(1− ρh) +

plρ
2

h2(1− ρ)2
(1− ρ2h).

Appendix 5

Proof of Proposition 4

a) Let us first consider the denominator. We have :

1

T

T∑

t=2

y2t−1 =
1

T

T∑

t=2

y2s,t−1 +
2

T

T∑

t=2

ys,t−1yl,t−1 +
1

T

T∑

t=2

y2l,t−1.
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i) By the LLN, we get :
1

T

T∑

t=2

y2s,t−1 → ps.

ii)
1

T

T∑

t=2

ys,t−1yl,t−1 → 0, since E(ys,tyl,t) = Eys,tEyl,t = 0 and the series

is normally convergent :

1

T

T∑

t=1

E|ys,t−1yl,t−1| =
1

T

T∑

t=1

(E|ys,t−1|E|yl,t−1|) = E[ys,t−1|E|yl,t−1| < ∞,

by stationarity.

iii) The last term is :

1

T

T−1∑

t=1

y2l,t =
pl
T

T−1∑

t=1

x̃2t/T −→ pl

∫ 1

0

x̃2cdc,

by the convergence of Riemann sum.

b) Similarly we can decompose the numerator as :

1

T

T∑

t=2

ytyt−1 =
1

T

T∑

t=2

ys,tys,t−1 +
1

T

T∑

t=2

ys,tyl,t−1 +
1

T

T∑

t=2

yl,tys,t−1

+
1

T

T∑

t=2

yl,tyl,t−1.

It is easily checked that the three first terms tend to zero. Let us now
consider the last term. We have :

1

T

T∑

t=2

yl,tyl,t−1 =
1

T

T∑

t=2

y2l,t−1 +
1

T

T∑

t=2

[yl,t−1(yl,t − yl,t−1)]

= pl

[
1

T

T∑

t=2

x̃2t/T +
1

T

T∑

t=2

[x̃t−1/T (x̃t/T − x̃(t−1)/T ))

]
.

This quantity converges in distribution to :
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pl

[∫ 1

0

x̃2cdc+

∫ 1

0

x̃cdx̃c

]

= pl(

∫ 1

0

x̃2cdc+
1

2
x̃21).

The result follows.
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Appendix 6

Marginal and Joint Distributions of yt, yt−1

Figure 9a : Marginal Distribution, Equiweighted
(T = 2000, dot line T = 5000, black line))
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Figure 9b : Marginal Distribution, Large Noise
(T = 2000, dot line T = 5000, black line))
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Figure 10 : Joint Distribution of yt, yt−1

(equiweighted : series 1, large noise : series 2, (T = 2000, 5000)
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Table 1a : Summary Statistics : Sample Mean

number of observations 250 500 1000 2000 5000
white noise −0.026 −0.017 −0.010 −0.016 −0.017
equiweighted −0.027 −0.036 −0.109 −0.244 −0.510
large noise −0.028 −0.024 −0.042 −0.089 −0.174

Table 1b : Summary Statistics : Sample Variance

number of observations 250 500 1000 2000 5000
white noise 1.030 0.978 0.996 0.944 0.992
equiweighted 0.563 0.533 0.548 0.557 0.716
large noise 0.993 0.942 0.959 0.913 0.975

Table 1c : Summary Statistics : 5%-quantile

number of observations 250 500 1000 2000 5000
white noise −1.723 −1.627 −1.560 −1.560 −1.630
equiweighted −1.365 −1.229 −1.303 −1.455 −1.956
large noise −1.737 −1.629 −1.604 −1.641 −1.765

Table 1d : Summary Statistics : 95%-Quantile

number of observations 250 500 1000 2000 5000
white noise 1.499 1.545 1.641 1.572 1.628
equiweighted 1.172 1.147 1.108 0.992 0.864
large noise 1.477 1.527 1.568 1.494 1.460

Table 1e : Summary Statistics : First-Order Correlation

number of observations 250 500 1000 2000 5000
white noise −0.004 −0.031 −0.027 0.011 −0.002
equiweighted 0.038 0.011 0.024 0.124 0.274
large noise 0.000 −0.028 −0.024 0.019 0.021

Table 2 : Estimation of ρ

number of observations 250 500 1000 2000 5000
equiweighted 0.105 2.727 2.500 1.008 1.180
large noise X 0.250 −0.625 1.105 1.333
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Table 3 : Probability of Detecting the L.R. Component

T= 250

ρ/pl 0.1 0.2 0.3 0.4 0.5
0.85 23.50 66.00 92.75 98.75 100.00
0.875 24.25 63.25 92.75 99.50 100.00
0.9 20.50 66.50 90.50 99.00 100.00
0.925 26.00 65.25 89.25 98.50 99.75
0.95 22.25 62.50 88.50 97.25 99.50
0.975 17.50 53.75 77.00 92.75 97.50
0.999 6.50 6.00 7.50 14.00 20.75

T= 500

ρ/pl 0.1 0.2 0.3 0.4 0.5
0.85 43.50 91.50 99.75 100.00 100
0.875 47.50 90.50 99.75 100.00 100
0.9 42.75 92.50 100.00 100.00 100
0.925 46.25 92.25 99.75 100.00 100
0.95 46.00 90.50 99.25 100.00 100
0.975 40.00 85.75 97.75 100.00 100
0.999 6.00 9.50 22.00 40.25 55

T= 1000

ρ/pl 0.1 0.2 0.3 0.4 0.5
0.85 72.00 99.50 100 100.0 100.00
0.875 70.00 99.25 100 100.0 100.00
0.9 74.50 99.50 100 100.0 100.00
0.925 75.50 100.00 100 100.0 100.00
0.95 76.75 100.00 100 100.0 100.00
0.975 73.00 99.00 100 100.0 100.00
0.999 14.25 36.50 59 78.5 90.25

48



Table 4.a : Confidence Interval for ρ̂(1), T = 250

ρ/pl 0.1 0.2 0.3 0.4 0.5
0.85 −0.058, 0.205 0.005, 0.288 0.086, 0.394 0.162, 0.468 0.162, 0.468
0.875 −0.049, 0.197 0.005, 0.303 0.085, 0.385 0.164, 0.470 0.230, 0.555
0.9 −0.054, 0.215 −0.001, 0.312 0.060, 0.404 0.153, 0.490 0.250, 0.589
0.925 −0.078, 0.204 0.009, 0.323 0.068, 0.410 0.135, 0.485 0.232, 0.596
0.95 −0.068, 0.209 0.006, 0.297 0.047, 0.430 0.113, 0.530 0.189, 0.590
0.975 −0.076, 0.213 −0.026, 0.314 0.020, 0.397 0.061, 0.504 0.125, 0.637
0.999 −0.139, 0.129 −0.119, 0.136 −0.101, 0.151 −0.106, 0.177 −0.079, 0.240

Table 4.b : Confidence Interval for ρ̂(1), T = 500

ρ/pl 0.1 0.2 0.3 0.4 0.5
0.85 −0.010, 0.167 0.057, 0.257 0.139, 0.349 0.207, 0.424 0.305, 0.528
0.875 −0.011, 0.182 0.049, 0.267 0.142, 0.360 0.211, 0.456 0.211, 0.456
0.9 −0.011, 0.179 0.050, 0.279 0.139, 0.372 0.213, 0.465 0.302, 0.551
0.925 −0.011, 0.182 0.065, 0.271 0.130, 0.369 0.204, 0.466 0.303, 0.576
0.95 −0.029, 0.194 0.053, 0.286 0.128, 0.398 0.199, 0.512 0.283, 0.598
0.975 −0.024, 0.194 0.042, 0.325 0.097, 0.399 0.144, 0.525 0.224, 0.631
0.999 −0.083, 0.097 −0.066, 0.126 −0.052, 0.182 −0.047, 0.257 −0.022, 0.308

Table 4.c : Confidence Interval for ρ̂(1), T = 1000

ρ/pl 0.1 0.2 0.3 0.4 0.5
0.85 0.020, 0.150 0.096, 0.236 0.165, 0.328 0.257, 0.405 0.346, 0.498
0.875 0.023, 0.155 0.083, 0.248 0.179, 0.343 0.250, 0.423 0.342, 0.509
0.9 0.016, 0.157 0.091, 0.246 0.182, 0.349 0.255, 0.438 0.352, 0.521
0.925 0.014, 0.157 0.088, 0.260 0.170, 0.354 0.257, 0.457 0.348, 0.547
0.95 0.017, 0.158 0.093, 0.272 0.173, 0.374 0.253, 0.472 0.340, 0.556
0.975 0.013, 0.167 0.082, 0.279 0.152, 0.386 0.222, 0.501 0.292, 0.612
0.999 −0.057, 0.106 −0.027, 0.150 −0.025, 0.238 0.011, 0.309 0.030, 0.395
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Table 5.a : Confidence Interval for ρ̂, T = 250

ρ/pl 0.1 0.2 0.3 0.4 0.5
0.85 [−9.481, 6.739] [−0.174, 4.393] [0.272, 1.572] [0.449, 1.258] [0.559, 1.128]
0.875 [−8.443, 6.594] [−0.649, 5.023] [0.294, 1.738] [0.444, 1.366] [0.519, 1.139]
0.90 [−4.774, 9.938] [−0.608, 4.531] [0.350, 1.839] [0.531, 1.455] [0.536, 1.128]
0.925 [−16.306, 6.225] [−0.379, 3.277] [0.334, 1.983] [0.476, 1.486] [0.574, 1.192]
0.95 [−8.663, 6.123] [−0.574, 3.718] [0.234, 2.369] [0.547, 1.511] [0.680, 1.342]
0.975 [−9.305, 11.923] [−3.916, 8.978] [−0.195, 2.640] [0.321, 2.481] [0.553, 1.555]
0.999 [−11.724, 7.754] [−17.211, 16.444] [−9.454, 9.727] [−13.367, 11.458] [−22.019, 9.758]

Table 5.b : Confidence Interval for ρ̂, T = 500

ρ/pl 0.1 0.2 0.3 0.4 0.5
0.85 [−1.127, 6.404] [0.244, 1.859] [0.519, 1.332] [0.559, 1.127] [0.646, 1.024]
0.875 [−2.801, 10.940] [0.320, 2.511] [0.504, 1.279] [0.582, 1.154] [0.676, 1.048]
0.9 [−3.190, 8.188] [0.336, 2.157] [0.533, 1.348] [0.650, 1.150] [0.685, 1.058]
0.925 [−7.091, 8.991] [0.373, 2.015] [0.583, 1.336] [0.675, 1.192] [0.686, 1.077]
0.95 [−3.496, 6.863] [0.340, 1.919] [0.594, 1.480] [0.720, 1.224] [0.774, 1.143]
0.975 [−10.320, 6.803] [0.295, 2.451] [0.487, 1.551] [0.659, 1.298] [0.774, 1.177]
0.999 [−12.403, 15.602] [−11.252, 8.338] [−17.463, 10.186] [−3.906, 6.869] [−8.299, 4.300]

Table 5.c : Confidence Interval for ρ̂, T = 1000

ρ/pl 0.1 0.2 0.3 0.4 0.5
0.85 [−0.071, 3.516] [0.465, 1.487] [0.612, 1.106] [0.667, 1.023] [0.716, 0.961]
0.875 [0.064, 3.034] [0.518, 1.530] [0.612, 1.156] [0.712, 1.084] [0.736, 0.979]
0.90 [0.055, 3.578] [0.522, 1.444] [0.673, 1.184] [0.730, 1.053] [0.769, 1.005]
0.925 [0.099, 3.362] [0.512, 1.464] [0.700, 1.184] [0.770, 1.100] [0.804, 1.039]
0.95 [0.041, 3.037] [0.526, 1.464] [0.705, 1.215] [0.767, 1.100] [0.822, 1.058]
0.975 [0.058, 2.772] [0.582, 1.545] [0.716, 1.317] [0.823, 1.176] [0.852, 1.087]
0.999 [−8.570, 13.681] [−8.832, 6.932] [−3.405, 3.895] [−0.014, 2.862] [0.336, 2.202]
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Figure 1a : Trajectories of Gaussian AR(1) process

(small ρ, in increasing order)
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Figure 1b : Trajectories of Gaussian AR(1) process

(large ρ, in increasing order)
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Figure 2 : Trajectories of Noisy Long Run Components
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Figure 3 : Component Spectral Density, ρ = 0.3, 0.8.

(solid line ρ = 0.8, dashed line : ρ = 0.3).
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Figure 4 : βhh = Rhh, function of h.
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Figure 5 : Simulated Path
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Figure 6 : True and Estimated Coefficients
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Figure 7a : ACF of Noisy Long Run Component : Equiweighted
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Figure 7b : ACF of Noisy Long Run Component : Large Noise
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Figure 8a : Functional Estimates of the Distributions
(equiweighted, T = 2000)
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Figure 8b : Functional Estimates of the Distributions
(equiweighted, T = 5000)
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