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Abstract 

Optimal planning of biodiversity conservation and habitat location is paramount for the cost-

effective implementation of nature and biodiversity conservation measures. Established approaches for 

land use planning and conservation site selection however might not be optimal in a world with 

changing climatic conditions. Generally, conservation organizations can choose one of two main 

governance modes: (1) buy land to implement conservation measures themselves on their land, or (2) 

compensate landowners for their voluntary provision of conservation measures on their land. We 

analyse in a conceptual ecological-economic simulation four different conservation site selection 

strategies in either of the two governance modes. Afterwards, we investigate the ecological and 

economic effectiveness of each governance-mode-strategy combination in a climatically changing 

environment, and in particular the influence of climate change characteristics. We show that the choice 

of the two governance modes and four patch selection strategies influences the cost-effectiveness of 

the implementation, generally suggesting that buying land, combined with the a species targeting 

patch selection strategy generates the highest cost-effectiveness. 
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1 Introduction 

Financial resources for biodiversity conservation projects are scarce. A cost-effective use of these 

resources – understood as maximising conservation goals for given financial resources or minimising 

financial resources to achieve given goals – is thus of utmost importance (Ando et al., 1998; Ferraro 

and Pattanayak, 2006). A growing field of research hence focuses on the cost-effectiveness analysis of 

biodiversity conservation policies (Ansell et al., 2016; Drechsler, 2017; Wätzold et al., 2016). 

Examples include studies on the cost-effective selection of habitat types (Petersen et al., 2016) and of 

land for conservation in an uncertain environment (Armsworth, 2018), on the cost-effective design of 

conservation payments (Drechsler et al., 2016, 2017), and on the empirical assessment of conservation 

contracts (Hily et al., 2015; Schöttker and Santos, 2019).  

A novel perspective regarding the cost-effective design of conservation measures is related to the 

question of governance (Schöttker et al., 2016; Wang et al., 2016). Applying Williamson’s analysis of 

the firm (Williamson, 1998, 1989) to biodiversity conservation, it is of interest how the conservation 

agency chooses among several alternative governance modes (GMs) representing different levels of 

vertical integration of conservation measure provision into the agency’s organizational structure. 

Following Schöttker et al. (2016), we assume that conservation agencies in principle have the choice 

between two GMs: (1) to buy land and implement biodiversity conservation measures on this land 

themselves, or through delegating the actual implementation to a contractor, e.g. a farmer (buy 

alternative), or (2) to compensate landowners for voluntary implementing conservation measures on 

their own land by offsetting implementation costs with a compensation payment (compensation 

alternative).  

Literature addresses aspects such as the conceptual analysis of optimal GM choice (Muradian and 

Rival, 2012), the development of ecological-economic models to assess the cost-effectiveness of 

different GM (Schöttker et al., 2016), specific conservation settings like forestry and corresponding 

GM options in developed (Juutinen et al., 2008) and developing countries (Curran et al., 2016), and 

cost assessments of specific GMs related to conservation projects (Schöttker and Santos, 2019; 
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Schöttker and Wätzold, 2018). These studies suggest a substantial impact of GM choice on the cost-

effective implementation of conservation policies.  

A key threat to global biodiversity, which has not been discussed in the context of cost-effective 

GMs, is climate change. According to Thomas et al. (2004) between 15% and 37% of species face a 

high risk of extinction due to climate change in sampled regions worldwide. Araújo et al. (2011) state 

that by 2080 58% of currently protected species in Europe will lose suitable habitat. In order to 

conserve biodiversity, the development of climate change compatible conservation strategies and 

policies is important (Heller and Zavaleta, 2009; Jones et al., 2016; Reside et al., 2018). However, 

most research in this field considers the ecological effectiveness of conservation policies (e.g. Zomer 

et al., 2015), and only a few studies analyse conservation policies from an economic perspective 

(Gerling and Wätzold, 2019; Hily et al., 2017; Lewis and Polasky, 2018; Mallory and Ando, 2014); 

and to our knowledge no study from the perspective of cost-effective GM. 

The purpose of this work is to contribute filling this research gap. We analyse the effects of GM 

choices on biodiversity and conservation costs against the background of variations in climatic 

conditions. Our background is species conservation in cultural landscapes. This implies that a 

conservation agency has to provide land with appropriate climate characteristics for a species but also 

that it has to ensure that specific conservation measures are carried out on that land (for example 

specific mowing or grazing regimes for endangered grassland birds, Wätzold et al. 2016). 

We develop a conceptual, spatially explicit ecological-economic model in a dynamic landscape. 

We calculate for the considered two GMs the cost-effectiveness of four different implementation 

strategies under climate change. These strategies include spatial targeting of conservation areas with 

respect to (a) implementation costs, (b) species abundance, (c) local climatic conditions and (d) 

climate change direction. The underlying ecological metapopulation model (Hanski, 1999) is used to 

determine the ecological benefit of the different GMs and site selection strategies. 
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In a Monte-Carlo simulation, we analyse the different GM options. The impact of varying model 

parameters is then assessed in sensitivity analysis, climatic characteristics such as spatial climate 

characteristics and climate change speed. 

 

2 The Model 

2.1 Landscape and conservation costs 

We assume a landscape with 10 × 20 = 200 equally sized, square patches 𝑖 (Table 1 provides an 

overview of all conceptual variables used in the model and Table 2 of all parameter values used in the 

computation). The landscape has a size of 10 patches in the east-west dimension and 20 patches in the 

south-north dimension (Fig. 1a). 

We assume Euclidean distances 𝑑𝑖𝑗 between the midpoints of patches 𝑖 and 𝑗, i.e. the distance 𝑑𝑖𝑗 

between patches (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗, 𝑦𝑗) is 𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2. Without loss of generality, we 

assume for the eight nearest patches a distance of one, equalling the minimum dispersal distance of the 

target species.  

Each patch in the landscape can potentially serve as a habitat for a target species under two 

conditions. First, each patch has a certain, time-dependent, climate suitability value, which determines 

to what degree the target species can find suitable habitat on the patch. Second, conservation measures 

need to be carried out on a patch 𝑖 in a specific time-step 𝑡 (𝑐𝑖,𝑡𝑐𝑜𝑛𝑠  =  1). This causes opportunity costs 

of conservation of 𝑂𝐶𝑖 which are assumed to be constant over all time steps. If no conservation 

measures are carried out (𝑐𝑖,𝑡𝑐𝑜𝑛𝑠  =  0) the patch may be used for economic purposes, e.g. intensive 

agricultural production, and no conservation costs arise.  
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Figure 1: (a) Spatially explicit landscape consisting of 10 × 20 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 including the 

climatically suitable zone (CSZ, shaded area) at time-steps 𝑡 = 0 and 𝑡 = 100, (b) climate suitability 

bell curves according to Eq. (1) in their respective base case parametrization (see Table 2) and 

climate suitability threshold 𝑐𝑠𝑡ℎ𝑟 = 0.5, leading to the CSZ at the different time steps 𝑡 ∈ {0,100}. 

The shaded area and the corresponding borders represents the CSZ at each given time-step. 

 

Conservation costs are spatially heterogeneous and follow a random distribution within a range of [𝑂𝐶̅̅ ̅̅ + 𝜎𝑂𝐶 , 𝑂𝐶̅̅ ̅̅ − 𝜎𝑂𝐶], where 𝜎𝑂𝐶 is the standard variation and 𝑂𝐶̅̅ ̅̅  the mean conservation costs which 

equals 1. 
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Table 1: Overview and description of model variables. 

Variable name Variable description 𝐵𝑏𝑢𝑦 Budget for purchasing patches 𝐵𝑡𝑏𝑢𝑦 Budget to purchase land within a specific time-step 𝑡 𝐵𝑐𝑜𝑚𝑝 Budget to compensate landowners 𝐵𝑡𝑐𝑜𝑚𝑝 Budget to compensate landowners within a specific time-step 𝑡 𝑐𝑖,𝑡𝑐𝑜𝑛𝑠 Conservation status of patch 𝑖 𝑐𝑖𝑐𝑜𝑚𝑝 Total expenses to compensate a single patch 𝑖 for one time period 𝑐𝑖𝑏𝑢𝑦 Total expenses to buy a patch 𝑖 𝑐𝑖𝑠𝑒𝑙𝑙 Total amount of money received when selling a patch 𝑖 𝑐𝑠𝑖(𝑡) Climate suitability of patch 𝑖 at time-step 𝑡 𝑑𝑖𝑗 Distance between patches 𝑖 and 𝑗 𝜀 Residual budget in the compensation alternative ℎ𝑖,𝑡 Dummy variable to indicate if a patch 𝑖 is colonized at time-step 𝑡 𝐼𝑚𝑖,𝑡 Immigration rate into patch 𝑖 at time-step 𝑡 𝐾 All patches within the climatically suitable zone 𝑚𝑐𝑖 Monitoring costs of patch 𝑖 𝑂𝐶𝑖 Opportunity costs of conservation of patch 𝑖 𝑝𝑖𝑏𝑢𝑦 Purchasing price of a patch 𝑖 𝑝𝑏𝑢𝑦̅̅ ̅̅ ̅̅  Mean purchasing price of patches in the landscape 𝑆 Number of all climatically suitable patches that can be reached by 
dispersal of the target species from already occupied patches 𝜎𝑝𝑏𝑢𝑦 Standard deviation of purchasing prices 𝑡 Time-step 𝜏𝑖,𝑡 Colonization probability of patch 𝑖 at time-step 𝑡  𝑡𝑐𝑖𝑏𝑢𝑦 Transaction costs of purchasing a patch 𝑖 𝑡𝑐𝑖𝑐𝑜𝑚𝑝 Transaction costs to compensate the landowner of patch 𝑖 (𝑥𝑖 , 𝑦𝑖) Coordinates of patch 𝑖 
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2.2 Climate Change 

The modelling of climate change is based on Hily et al. (2017) and we slightly adapted it to fit our 

simulation model. We assign a climate suitability value 𝑐𝑠𝑖(𝑡) ∈ [0,1] to each patch in the landscape, 

representing the probability with which habitat is provided if that patch is under conservation. Over 

time, the climate suitability of a patch 𝑐𝑠𝑖(𝑡) changes in every time-step 𝑡 such that 

𝑐𝑠𝑖(𝑡) =  exp (−(𝑗−𝜇𝑡)22×𝜌2 )         (1) 

with 𝜇𝑡 = 𝜌 + 𝑡 × 𝑗−2×𝜌𝑇  being the centre of the climate suitability bell curve at time-step 𝑡 ∈[1,100], 𝜌 an indicator for the bell shapes curvature and 𝑗 the y-coordinate of patch 𝑖. The bell-shaped 

climate suitability distribution in the landscape moves through the landscape from south to north (Fig. 

1b). 

A patch provides only suitable habitat for a target species, if the climate suitability of a patch at a 

specific point in time is larger than a threshold value (𝑐𝑠𝑖(𝑡) > 𝑐𝑠𝑡ℎ𝑟). Due to the general bell shape 

nature of the climate suitability in the landscape, the introduction of a climate suitability threshold 𝑐𝑠𝑡ℎ𝑟 generates a climatically suitable zone (CSZ), containing all patches in the landscape which are 

suitable for a target species’ habitat. Smaller (larger) values of 𝑐𝑠𝑡ℎ𝑟 generate a larger (smaller) CSZ 

by allowing the target species to colonize patches with lower (higher) climate suitability and the CA to 

set respective patches under conservation. The CSZ moves through the landscape form south to north 

over time, implying that the target species can only survive if it relocates northwards.  

2.3 Ecological Dynamics 

We assume the target species to populate the landscape and colonize new patches according to 

metapopulation dynamics (Hanski, 1999). The occupation of a patch by the target species depends on 

an immigration rate 𝐼𝑚𝑖,𝑡 of the species into that patch, an immigration threshold necessary for 

successful colonization 𝜃, and a resulting colonization probability 
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𝜏𝑖,𝑡 = 𝐼𝑚𝑖,𝑡2𝐼𝑚𝑖,𝑡2 +𝜃2  if 𝑐𝑠𝑖(𝑡) ≥ 𝑐𝑠𝑡ℎ𝑟 and 𝑐𝑖,𝑡𝑐𝑜𝑛𝑠 = 1     (2) 

and 0 otherwise. The immigration rate is defined as 

𝐼𝑚𝑖,𝑡 =  ∑ ℎ𝑘,𝑡𝜈 exp(−𝑑𝑖,𝑘/𝛿)𝑆𝑡𝐾𝑘=1 ,        (3) 

with K being the number of all patches within the CSZ in principle available for colonization, ℎ𝑘,𝑡 

a dummy variable indicating if a patch 𝑘 is occupied at time 𝑡, 𝜈 the emigration rate from patch 𝑘, 𝑑𝑖,𝑘 

the distance between patches 𝑖 and 𝑘, 𝛿 the dispersal distance of the target species, and 𝑆𝑡 the number 

of climatically suitable patches in the neighborhood of patch 𝑘 (the neighborhood of a patch consists 

of all patches within the dispersal distance of the target species). By migrating from an occupied patch 𝑖 to an unoccupied patch 𝑗, the target species can colonize new habitat over time, while also facing the 

probability of extinction on already occupied patches. These colonisation and extinction processes 

generate dynamics in the metapopulation model.  

Climatic conditions are updated for each patch in every time step. With a northward shift of CSZ 

the climate suitability of patches at the southern end of the CSZ falls below the climate suitability 

threshold 𝑐𝑠𝑡ℎ𝑟 and these patches become unsuitable for the species. 

We calculate the overall share of simulation runs in which the target species goes extinct as an 

indicator for the ecological outcome of our model. Hence, increasing (decreasing) extinction risks 

reduce (increase) the cost-effectiveness of a selected GM and implementation strategy. 

2.4 Decision Problem of the Conservation Agency 

In order to reach a desired conservation outcome, a conservation agency (CA) implements certain 

conservation measures in the landscape. The CA chooses between two GMs: (1) buy land and 

implement conservation measures itself (buy alternative), or (2) pay landowners for their voluntary 

provision (compensation alternative) of equally designed conservation measures. For the 
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implementation of conservation measures, the CA has to develop a patch selection strategy (PSS) to 

decide which patches to conserve. We consider four strategies resulting for each of the two GM 

resulting in eight GM-PSS pairs. In the following, we first introduce the budget available for covering 

conservation costs and its allocation over time. We then explain how we model the two GMs and the 

corresponding budget equations, before we finally describe the four PSS. 

 Budget Comparability 

The implementation of conservation measures within a certain GM-PSS combination causes costs, 

which are covered by the agency’s budget. For all 8 GM-PSS pairs we assume equal available budgets 

at the beginning and the end of the simulation to allow comparability of the ecological outcomes and 

thus be able to assess the relative cost-effectiveness of the GM-PSS pairs.  

As the two different GM alternatives generate different cost streams, with high initial costs for 

buying and relatively high recurring costs for compensation, we assume that the present value (PV) of 

the two cost-streams has to be equal. The available budgets in each GM-PSS pair and each time-step 

thus differ and the relation of present values of the respective budgets, 𝑃𝑉(∑ 𝐵𝑡𝑏𝑢𝑦𝑇𝑡=0 ) =𝑃𝑉(∑ 𝐵𝑡𝑐𝑜𝑚𝑝𝑇𝑡=0 ), translates into : 

𝐵𝑏𝑢𝑦 =  ∑ 𝐵𝑡𝑐𝑜𝑚𝑝𝑡=𝑇0 × 𝑑𝑡.         (4) 

𝐵𝑡𝑐𝑜𝑚𝑝 =  −𝑟×(𝐵𝑏𝑢𝑦×𝑟𝑇−𝜀)1−𝑟𝑇+1 ,         (5) 

with 𝐵𝑏𝑢𝑦 being the budget available for patch purchase, 𝑇 the length of the total timeframe (i.e. 

100 time-steps), 𝑟 the interest rate, and 𝜀 the residual budget at the end of period 𝑇 (necessary to keep 

the budgets for the two GMs comparable over the complete timeframe). The whole budget is available 

at the beginning of time-step 𝑡 = 0 for the buy alternative. For the compensation alternative, we 

assume that 𝐵𝑡𝑐𝑜𝑚𝑝 is set so that in each time-step 𝑡 an equal monetary amount (compensation annuity) 

is available for the CA to be spend, i.e. 𝐵𝑡𝑐𝑜𝑚𝑝 of eq. 8 (for a detailed explanation, see Appendix A4). 
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The CA conserves as many patches as possible for a given budget in a certain period 𝑡. Any leftover 

budget at the end of a period is transferred to the next period and added to the respective budget, 

including interest.  

 Buy Alternative 

The buy alternative characterizes the CA’s option to purchase and consecutively manage patches 

for conservation. The costs of an individual patch purchase are defined as  

𝑐𝑖𝑏𝑢𝑦 = 𝑝𝑖𝑏𝑢𝑦 +  𝑡𝑐𝑖𝑏𝑢𝑦,         (6) 

with 𝑝𝑖𝑏𝑢𝑦 = 𝑝𝑏𝑢𝑦̅̅ ̅̅ ̅̅  ± 𝜎𝑝𝑏𝑢𝑦 being the uniform randomly distributed purchasing price, 𝑝𝑏𝑢𝑦̅̅ ̅̅ ̅̅ = 𝑂𝐶̅̅ ̅̅𝑟  

the mean purchasing price of patches in the landscape, 𝜎𝑝𝑏𝑢𝑦 = 𝜎𝑂𝐶 × 𝑝𝑏𝑢𝑦̅̅ ̅̅ ̅̅  the standard deviation of 

purchasing prices, 𝑂𝐶̅̅ ̅̅  the mean conservation costs, 𝑟 the interest rate, 𝜎𝑂𝐶 the standard deviation of 

conservation costs. Transaction costs for purchasing a patch 𝑡𝑐𝑖𝑏𝑢𝑦 = 𝑡𝑐𝑏𝑢𝑦̅̅ ̅̅ ̅̅ ̅  ±  𝜎𝑡𝑐 (such as notary 

fees, contract negotiation costs, legal counsel) are uniform randomly distributed. For simplicity, we 

assume that patch prices do not change over time. 

The CA is able to purchase new patches as long as the remaining budget is high enough. The CA 

is not allowed to have negative budgets, i.e. taking loans to fund patch purchase. We assume myopic 

spending behavior of the CA, thus strategically saving budget for later periods is not allowed. 

Purchased patches are managed in the prescribed conservation sense. Following Schöttker et al. (2016) 

we assume, that the costs of managing patches are equal to potential income generated from these 

measures, hence we need to consider only the costs of purchasing patches in the buy alternative. 

Depending on the chosen PSS species monitoring costs might occur. These are recurring 

monitoring costs of 𝑚𝑐𝑖 = 𝑚𝑐̅̅ ̅̅ ± 𝜎𝑚𝑐 per patch in each time-step, with 𝑚𝑐̅̅ ̅̅  the mean monitoring costs 

and 𝜎𝑚𝑐 the variation bandwidth. Monitoring costs are initially drawn randomly, like transaction costs, 

from a uniform distribution (according to 𝑚𝑐̅̅ ̅̅  and 𝜎𝑚𝑐) and do not change over time.. 
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After a patch 𝑖 is purchased it is set under conservation, resulting in habitat generation on this 

patch, if climatic conditions for the target species on that patch are good enough, i.e. 𝑐𝑠𝑖(𝑡) ≥ 𝑐𝑠𝑡ℎ𝑟. 

Patch purchase then results in 𝑐𝑖,𝑡𝑐𝑜𝑛𝑠 = 1.  

We assume that in all four PSS the agency only purchases patches within the CSZ as 𝑐𝑠𝑖(𝑡) <𝑐𝑠𝑡ℎ𝑟 for all patches outside the CSZ. We also assume that if an earlier purchased patch after some 

time falls out of the CSZ due to climate change, the CA sells the respective patch and receives the 

amount 

𝑐𝑖𝑠𝑒𝑙𝑙 = 𝑝𝑖𝑠𝑒𝑙𝑙 − 𝑡𝑐𝑖𝑠𝑒𝑙𝑙.         (7) 

Following from the assumption that purchasing prices do not change over time, the CA receives 

the same amount from selling a patch as it paid for its acquisition (𝑝𝑖𝑠𝑒𝑙𝑙 = 𝑝𝑖𝑏𝑢𝑦). However, it has to 

bear the transaction costs, which are assumed to be equal for patch purchase and sale (𝑡𝑐𝑖𝑠𝑒𝑙𝑙 = 𝑡𝑐𝑖𝑏𝑢𝑦). 

 Compensation Alternative 

In the compensation alternative, the CA does not purchase areas for conservation, but offers a 

compensation payment to landowners to incentivize them to implement conservation measures 

voluntarily (equivalent to the measures in the buy alternative) on their land. Compensation payments 

are spatially homogeneous and are selected such that they equal the opportunity costs 𝑜𝑐𝑖 of the 

landowner who has the highest conservation costs of the participating landowners. 

For each patch under conservation, the CA has to pay 

𝑐𝑖𝑐𝑜𝑚𝑝 = 𝑜𝑐𝑖 +  𝑡𝑐𝑖𝑐𝑜𝑚𝑝         (8) 

in every time period, resulting in a periodical payment subtracted from the budget in each time-step, 

with 𝑡𝑐𝑖𝑐𝑜𝑚𝑝 the transaction cost for each time-step for setting up and implementing a conservation 

measure (such as patch finding costs, contract negotiation, etc.). 
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After a patch is set under conservation (𝑐𝑖𝑐𝑜𝑛𝑠 = 1), it remains in that state for one time-step. In the 

next time-step, the CA renegotiates conservation contracts. Depending on the PSS, the CA might want 

to keep certain patches under conservation for more than one time-step, or wants to alter the 

conservation location according to its priorities (see Section 2.4.4). 

Comparable to the buy alternative, the CA also chooses potential conservation areas only within 

the CSZ. Hence, 𝑐𝑠𝑖(𝑡) ≥ 𝑐𝑠𝑡ℎ𝑟 for all patches under conservation. The periodically renewed 

conservation decision of the CA results in potentially varying locations of patches under conservation.  

 Patch Selection Strategies 

To implement conservation measures, the CA has to identify suitable patches. We consider four 

different PSS for this purpose (‘price prioritization’, ‘species abundance prioritization’, ‘climate 

suitability prioritization’, ‘climate change direction prioritization’). The first PSS is motivated purely 

by cost concerns, whereas PSS 2-4 follows the notion that prioritization of potential habitats based on 

natural processes and characteristics (here species abundance and general climate-related suitability of 

potential habitats) most likely provides a cost-effective conservation strategy (Reside et al., 2019). 

(1) ‘Price prioritization’ characterizes a PSS in which the CA prefers cheaper patches over more 

expensive ones. This translates for the CA, in case of the buy alternative, to buy the cheapest available 

patches in the CSZ. In case of the compensation alternative, the patches with the lowest compensation 

payment requests are added to the conserved patches (Fig. 2a). The resulting conservation patches do 

not necessarily consist of connected patches in which a target species can successfully migrate 

between patches under conservation, thus potentially inhibiting colonization. However, this PSS will 

generate the highest number of patches under conservation for a given budget. 

(2) For the PSS ‘species abundance prioritization’ the CA only buys or compensates patches, 

which are within the dispersal distance of colonized patches (Fig. 2b). This generates a cluster of 

conserved patches around existing habitat and leads to connected areas for the target species to 
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colonize. However, as not all patches are available for conservation, more expensive patches might 

have to be added leading to a lower number of conserved patches than with PSS ‘price prioritization’. 

Due to the need to identify colonized patches in this PSS, monitoring costs of 𝑚𝑐𝑖 = 𝑚𝑐̅̅ ̅̅ ± 𝜎𝑚𝑐 arise 

for the CA in each time-step. 

 

Figure 2: Visualization of the four different PSSs and the corresponding patch location. (a) ‘Price 
prioritization’ allows for patch selection in the complete CSZ, only depending on the purchase price 

or compensation costs. (b) ‘Species abundance prioritization’ only selects patches within the dispersal 
distance of already occupied patches. (c) ‘Climate change prioritization’, prefers patches with higher 

climate suitability over patches with lower climate suitability, and (d) ‘Climate change direction 

prioritization’, prefers patches at the northern end of the CSZ over patches at the southern end of the 

CSZ. 
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 (3) We assume that the CA has full information of the climate suitability of all patches in the 

landscape. The PSS ‘climate suitability prioritization’ prefers patches with a high climate suitability 

(Fig. 2c), specifically, patches in the center of the climate suitability bell curve, as here the climate 

suitability value is highest. However, if only sufficiently cheap, also more northern or southern 

patches can be selected, allowing for a spatial spread of the conserved patches over the CSZ. By 

introducing a scaling factor 𝜆 (Eq. 7), we are able to foster or loosen this prioritization and thus either 

allow the CA to almost exclusively focus on the most centered patches (high 𝜆), or to allow a broader 

spread of patches as (for given climate suitability) less expensive but further away patches are selected 

(low 𝜆). In order to include costs into this PSS, we introduce the “suitability price” of each patch, 

which is a non-homogeneous payment, depending on a combination of the climate suitability of a 

patch and its opportunity costs. The “suitability price” includes both the (normalized) price and the 

(normalized) climate suitability of that patch as follows:  

𝑝𝑖𝑠𝑢𝑖𝑡 = 𝑝𝑖𝑛𝑜𝑟𝑚 + 𝑐𝑠𝑖𝑛𝑜𝑟𝑚(𝑡) × 𝜆,        (9) 

with 𝑝𝑖𝑛𝑜𝑟𝑚 the price of patch 𝑖 normalized on a scale of 0 to 1 (on which the cheapest patch price 

in the landscape is 0 and the most expensive price is 1), 𝑐𝑠𝑖𝑛𝑜𝑟𝑚(𝑡) the normalized climate suitability 

of patch 𝑖 and 𝜆 the scaling factor. Instead of using only the price for patch selection (as in the PSS 

‘price prioritization’), now the suitability price is used as a selection criterion. Obviously, we use the 

regular price with respect to budgetary calculations. 

(4) Due to the CSZ’s movement into the northern direction over time, already selected and 

colonized patches move to the southern edge of the CSZ. By assuming that the CA has full 

information on the direction of climate change, we can design a fourth PSS in which the CA prioritizes 

patches closer to the northern edge of the CSZ (Fig. 2d). These patches will, due to the northward 

movement of the CSZ, stay in the CSZ for a long time with a high possibility of being colonized. The 

resulting conserved patches are comparable to the ones under the ‘climate suitability prioritization’, 

but biased towards northern patches. By introducing a scaling factor 𝜅 into this PSS, we can vary the 
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CA’s prioritization strength and either allow for a more or less strict patch selection close to the 

northern edge of the CSZ. Similar to the PSS ‘climate suitability prioritization’, we calculate a 

“suitability price” for each patch, which includes both the (normalized) price and the (normalized) 

climate suitability of that patch and represents a non-homogeneous payment to the individual 

landowners:  

𝑝𝑖𝑠𝑢𝑖𝑡 = 𝑝𝑖𝑛𝑜𝑟𝑚 + 𝑐𝑠𝑧𝑖𝑟𝑜𝑤(𝑡) × 𝜅,        (10) 

with 𝑝𝑖𝑛𝑜𝑟𝑚 the price of patch 𝑖 normalized on a scale of 0 to 1 (on which the cheapest patch price 

in the landscape is 0 and the most expensive price is 1), and 𝑐𝑠𝑧𝑖𝑟𝑜𝑤(𝑡) the normalized row number in 

which within the CSZ a certain patch 𝑖 is located (more northern patches have higher row numbers and 

thus higher 𝑐𝑠𝑧𝑖𝑟𝑜𝑤(𝑡) leading to the intended prioritization). 

 

3 Analysis 

For model analysis we apply a Monte-Carlo-simulation, in which each parameter set – i.e. selected 

combinations of parameters specified in Table 2 – is simulated 2000 times to allow an analysis of the 

whole bandwidth of potential outcomes and to avoid randomly extreme results resulting from the 

model inherent stochasticity. A simulation run refers to one single calculation of the model for one 

parameter set. 

The parameters 𝑐𝑠𝑡ℎ𝑟, 𝜌, 𝑚𝑡, and 𝜃 influence the shape of the climate bell curve, and thus have 

potentially an effect on both GM and all PSS. In contrast, 𝜆 and 𝜅 affect the prioritization strength of 

the two climate sensitive PSS, and hence may only influence the outcome of these PSS. The economic 

parameters 𝑂𝐶̅̅ ̅̅ , 𝑡𝑐𝑏𝑢𝑦̅̅ ̅̅ ̅̅ ̅, and 𝑚𝑐̅̅ ̅̅  impact the different cost measures, while the interest rate 𝑟 is used for 

discounting and budget calculations in all GM-PSS pairs. 𝜎𝑂𝐶, 𝜎𝑡𝑐𝑏𝑢𝑦, and 𝜎𝑚𝑐 determine the range of 
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all randomly drawn cost parameters in the simulation. The ecological parameters 𝜈 and 𝛿 influence the 

dispersal ability of the target species affecting the ecological dynamics in all GM-PSS pairs. 

Table 2: Overview and description of parameters and parametrization values specified for 

computation of the Monte-Carlo-Simulation and the sensitivity analysis.  

Parameter 

name 
Parameter description Parametrization Value 𝑖 Patch index ∈ [1,200] 𝜇𝑡 Centre of the climate suitability bell curve at time-step 𝑡 1 𝜎𝑂𝐶 Standard deviation of opportunity 𝑂𝐶̅̅ ̅̅  0.1 𝜎𝑡𝑐 Standard deviation of transaction costs 0.01 𝜎𝑚𝑐 Standard deviation of monitoring costs 0.01 𝜃 Immigration threshold for successful colonization 5 

   

Economic parameters   𝑂𝐶̅̅ ̅̅  Mean opportunity costs in the landscape 1.0 𝑡𝑐𝑏𝑢𝑦̅̅ ̅̅ ̅̅ ̅ Mean transaction costs of purchasing a patch 1.0 𝑚𝑐̅̅ ̅̅  Mean monitoring costs 0.1 𝑟 Interest rate 0.03 

   

Ecological Parameters   𝜈 Emigration rate from any patch 100 𝛿 Dispersal distance of the target species 1 

   

Climate Parameters Value Range Base case 𝑇 Maximum number of time steps ∈ {50,100,150} 100 𝑐𝑠𝑡ℎ𝑟 Climate suitability threshold ∈ {0.3,0.5,0.7} 0.5 𝜌 Curvature of the climate suitability bell shape ∈ {2,3,4} 2 𝜆 Scaling factor for PSS ‘climate suitability prioritization’ ∈ {1.5,2.0,4.0} 2.0 𝜅 Scaling factor for PSS ‘climate change direction 
prioritization’ 

∈ {1.5,2.0,2.5} 2.0 
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We calculate a reference base case with a respective base case parametrization, which was 

selected to resemble economic, ecological, and climatic conditions, which allow the model to generate 

inherently consistent outcomes (see Table 2). Afterwards, we individually vary some parameters in 

specified ranges to values lower and higher than the base case value to identify the impact of each 

parameter on the cost-effectiveness of each GM-PSS pair (sensitivity analysis). 

 

4 Results 

We first present the results of the base case parametrization of the eight GM-PSS pairs as it 

already provides valuable and general insights into the choice of the cost-effective GM. To identify 

factors influencing the relative performance of the eight GM-PSS pairs, we then present results of a 

sensitivity analysis in which climatic model parameters are varied individually. The analysis of the 

results revealed four effects influencing the cost-effectiveness of each GM-PSS pair. Wätzold and 

Drechsler (2014) have identified already two of the effects – the patch restriction effect and the 

connectivity effect –, while the remaining two effects – the climate prioritization effect and the 

flexibility effect – are newly identified in this work. In particular, the effects are:  

(1) The patch restriction effect, which exists as due to the limitation of eligible patches, if 

connected habitat network requirements or certain climate suitability restrictions are to be met 

by a specific GM-PSS pair. In these cases, most likely more costly patches are to be selected 

compared to a situation in which the CA can freely choose patches in the whole CSZ. 

Therefore, a restriction of eligible patches tends to increase conservation cost and hence to 

reduce cost-effectiveness.  

(2) The connectivity effect, as with improved connectivity of conserved patches, the ecological 

outcome increases, and hence the cost-effectiveness increases.  
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(3) The climate prioritization effect, which leads to improved ecological conditions of patches 

under conservation as they are chosen in climatically more suitable areas within the CSZ.  

(4) The flexibility effect, which exists as due to the selected GM, the adaptability of the 

conservation network (e.g. to changing climatic conditions) can be fast (for the compensation 

alternative) and slow (for the buy alternative). This adaptation possibility increases 

conservation costs, but allows for a flexible selection of suitable patches and hence increases 

ecological outcome. The net effect depends on the respective GM-PSS pair. 

4.1 Scenarios 

In the following, the influence of changes in climatic parameters on the cost-effectiveness and 

extinction probabilities of the different GM-PSS pairs is analysed. Results of the influence of 

ecological and economic parameters are found in Appendix A4. 

 Climate Change Speed 

The cost-effectiveness of three GM-PSS pairs was influenced by variations of climate change 

speed, i.e. variations of the overall simulation timeframe 𝑇. A short timeframe (small 𝑇) represents 

fast climate change as it takes less time steps for the climate suitability to vary and the CSZ to move 

across the landscape (Fig. 3).  

Generally we find that patch selection in the compensation alternative is more flexible compared 

to the buy alternative. Patches can be reselected anew in every time step in the compensation 

alternative, depending on patch price, climate suitability and occupation status, while they are fixed 

for a longer time (until they are no more in the CSZ) in the buy alternative and thus cannot react to 

changing climatic conditions or occupation status. Hence, a strong flexibility effect exists which causes 

improved ecological outcome in the compensation alternative compared to the buy alternative.  

For the ‘price prioritization’ strategy (Fig. 3a), we find that the cost-effectiveness of the 

compensation alternative decreases with increasing climate change speed whereas it remains constant 
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for the buy alternative. We explain this result with the combination of a generally reduced ecological 

suitability of the landscape for the target species due to faster climate change, and the counteracting 

flexibility effect. In the compensation alternative, reduced ecological suitability and a strong patch 

restriction effect outperform the flexibility effect compared to the buy alternative, and hence lead to a 

reduced cost-effectiveness. In contrast, in the buy alternative the stability of the selected conservation 

network compensates the negative ecological effects of fast climate change on the cost-effectiveness. 

Furthermore, prioritizing patches by price generally results in more patches under conservation as 

cheaper areas are selected, which at the same time are not necessarily well connected 

Increasing climate change speed, however, increases the cost-effectiveness of the ‘species 

abundance prioritization’ strategy for the buy alternative in comparison to the compensation 

alternative (Fig. 3b). This result is somewhat surprising, as this strategy prioritizes patch selection 

around already existing habitat and hence allows for easy migration to new nearby habitat. Differences 

in climate change speed should not interfere with this effect. An explanation may be that the 

connectivity effect is increasingly relevant with increasing climate change speeds, which also would 

explain, why the other strategies result in increasing extinction rates, as there the connectivity effect is 

less pronounced. Against the background of more volatile conservation networks in the compensation 

alternative, it is however unclear why no cost-effectiveness reduction can be observed in the ‘species 

abundance prioritization’ strategy in the compensation alternative. 

We do not observe any influence of changing climate change speed on the extinction probability 

and hence cost-effectiveness in the ‘climate suitability prioritization’ strategy in any of the two GMs 

(Fig 3c). A possible explanation is that conserved patches are located in well-functioning conservation 

networks in case of the buy alternative, or adapt quickly enough to location changes of the CSZ in 

case of the compensation alternative, so that eventually extinction rates are not affected. 

Moreover, we find faster climate change speed increases extinction rates in the ‘climate change 

direction prioritization’ strategy for the buy alternative, and hence a decrease in cost-effectiveness of 
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the GM-PSS pair compared to the compensation alternative (Fig 3d). This result is expected as the 

period when patches are located inside the CSZ is reduced with a shorter timeframe. This is especially 

true for this strategy, which prioritizes patches at the northern-edge of the CSZ that stay in the CSZ 

longer compared to other PSS. Within the compensation alternative, for every parameter setting the 

survival rates are at 100%, indicating a strong flexibility effect, which leads to increased survival rates. 

 

Figure 3: Changes in extinction rates due to changes in maximum length of the simulation 

timeframe T, (i.e. climate change speed decreases with increasing T). (a)-(d) represent the extinction 

probabilities for all four strategies in the buy and compensation alternative. 

 

 Strength of climate prioritization 

Within the PSSs ‘climate suitability prioritization’ and ‘climate change direction prioritization’, 

patch selection takes place according to either climate suitability or climate change direction. We 

introduced a scaling factor 𝜆 for each strategy to define the strength of prioritization of respective 

patches. A higher 𝜆 (𝜅) results in a stronger prioritization for climate suitability (climate change 

direction) relative to patch prices. Thus, increases in either parameter generate a patch restriction 

effect and climate prioritization effect by narrowing the spatial extent of the conserved patches in the 

respective strategies. Changes in 𝜆 only affect the ‘climate suitability prioritization strategy’, and 

changes in 𝜅 only affect the ‘climate direction prioritization strategy’. The ‘prize prioritization 
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strategy’ and the ‘species abundance prioritization strategy’ remain unaffected, as both parameters do 

not alter their respective patch selection mechanism.  

We did not find any influence of the climate suitability scaling factor 𝜆, neither in the buy nor the 

compensation alternative within our parameter range (compare graphical analysis in Appendix A4). 

This is somewhat surprising as increasing values of 𝜆 cause a prioritization of patch selection in the 

center of the CSZ, and hence have a patch restriction effect and climate prioritization effect. Both 

effects are probably cancelling each other out in their influence on the cost-effectiveness.  

However, changes in 𝜅 do show an influence on the cost-effectiveness of the ‘climate change 

direction prioritization strategy’ for the buy alternative, while the compensation alternative remains 

unaffected (see Fig. 4d). Low values of 𝜅 (low prioritization for climate change direction) result in an 

increased cost-effectiveness compared to larger values of 𝜅 due to the high connectivity effect. With 

increasing 𝜅 newly added patches are predominantly located in the most northern part of the CSZ 

while large portions of the CSZ remain unconsidered for selection. Hence, conserved patches are 

spread far across the complete CSZ, resulting in large distances between conserved patches and 

leading to an increase in extinction probability with increasing 𝜅, and hence a reduction of cost-

effectiveness. For lower values of 𝜅 however, new patches are selected in a larger proportion of the 

landscape, hence are more likely located closer to already occupied patches, which results in better 

migration possibilities and increased cost-effectiveness. Also, with larger (smaller) parts of the CSZ 

eligible for patch selection with smaller values of (larger) 𝜅, the patch restriction effect becomes 

weaker (stronger), hence also increasing (decreasing) the cost-effectiveness. 

We did not find any influence on the compensation alternative strategies by variations in 𝜅. A 

possible explanation is the interplay between connectivity effect and flexibility effect in either 

alternative. Due to repeated reselection of new patches in the prioritized area they are relatively well 

connected in the compensation alternative, compared to the wide spatial spread in the buy alternative, 
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leading to relatively good migration possibilities and hence a better cost-effectiveness of the 

compensation alternative, compared to the buy alternative. 

 

Figure 4: Influence of changes in 𝜅 on the extinction probability in the buy alternative and the 

compensation alternative for each of the four PSSs.  

 

 Climate suitability threshold 

Changes in the climate suitability threshold value 𝑐𝑠𝑡ℎ𝑟influence the cost-effectiveness of four 

GM-PSS pairs (Fig. 5). The value of the climate suitability threshold 𝑐𝑠𝑡ℎ𝑟 determines the width of the 

CSZ and hence has potentially an effect due to the connectivity and patch restriction effects. Generally 

speaking, with an increasing CSZ (low 𝑐𝑠𝑡ℎ𝑟) the connectivity effect weakens, while the patch 

restriction effect is decreasing for all GM-PSS pairs.  

We find with increasing CSZ size (decreasing 𝑐𝑠𝑡ℎ𝑟) for both GMs in the ‘price prioritization 

strategy’ (Fig 5a) a decrease in cost-effectiveness suggesting that the patch restriction effect dominates 

the connectivity effect. However, the reduction of cost-effectiveness in the compensation alternative is 

stronger than in the buy alternative. This effect may be explained as the size of the CSZ and hence the 

number of eligible patches increases with decreasing 𝑐𝑠𝑡ℎ𝑟. For the compensation alternative, more 

volatile patch selection (compared to the buy alternative) causes frequent changes of habitat location 
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(potentially every period), and hence reduces migration possibilities as selected patches are potentially 

far apart. This effect is especially prominent in the ‘price prioritization strategy’ as patches are purely 

selected based on compensation costs and hence will be selected randomly across the whole CSZ. In 

other strategies (see details below), patch selection is restricted to a more narrow area within the CSZ, 

leading to a more compact conservation network and hence decreased extinction probabilities, 

compared to the ‘price prioritization strategy’.  

In the ‘species abundance prioritization strategy’ however, only the cost-effectiveness of the buy 

alternative decreases with increasing 𝑐𝑠𝑡ℎ𝑟 (see Fig. 5b). A decreasing size of the CSZ due to 

increasing 𝑐𝑠𝑡ℎ𝑟 limits the CA to purchase patches nearby already occupied patches. If a CA wants to 

select further patches within this strategy, it would be necessary to select patches outside of the 

dispersal distance of the target species and which thus could not be colonized in the current time step 

(though they would still be connected to the habitat network). Hence, a decreasing connectivity effect 

causes a reduction of the cost-effectiveness in the ‘species abundance prioritization strategy’ in the buy 

alternative. A higher flexibility effect in the compensation alternative positively contributes to the 

cost-effectiveness compared to the buy alternative. This impact is not present in the buy alternative.  

In the ‘climate suitability prioritization strategy’, no negative effect occurs with a decreasing 

climate threshold on the cost-effectiveness of both GMs within the chosen parametrization range (Fig 

5c). Our explanation is that the patch restriction and connectivity effect cancel each other out. 

A strong negative effect on cost-effectiveness can be observed for small values of 𝑐𝑠𝑡ℎ𝑟 (large 

CSZ), in the ‘climate change direction prioritization strategy’ (Fig. 5d) for the buy alternative, while 

no effect can be seen in the compensation alternative. This may again be explained by a combination 

of the connectivity effect and the climate prioritization effect. While patches remain under 

conservation in the buy alternative as long as they are located within the CSZ, this duration grows, as 

well as the resulting gaps between conserved areas and unoccupied patches, with a decrease in 𝑐𝑠𝑡ℎ𝑟, 

eventually leading to a lower cost-effectiveness. In the compensation alternative, patches under 
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conservation in contrast might be reselected anew if they are unoccupied at the end of the time step. 

Reselection then happens in the northern part of the CSZ, automatically locating newly added patches 

close to other patches in the conservation network, hence leading to low extinction probabilities and 

high cost-effectiveness. 

Generally, compensation alternative strategies perform well even with large CSZs because of the 

flexibility effect with the exception of the ‘price prioritization strategy’, in which the flexibility effect is 

counteracted by a small connectivity effect. 

 

Figure 5: Extinction probabilities of the different GM-PSS pairs with changing climate threshold, 

resulting in changing CSZ< sizes. 

 

 Shape of the climate suitability bell curve 

We only find small effects of variations in 𝜌 (influencing the curvature of the climate suitability 

bell shape) on the cost-effectiveness of the GM-PSS pairs. A possible reason might be that the climate 

suitability bell shape determines the climate suitability in the complete landscape, while only a 

relatively narrow strip around the center (which the CSZ covers) is actually eligible for patch 

selection. Because changes in the curvature of the bell shape are not necessarily very strong within the 

CSZ and only have marginal effects on CSZ size, the effects on GM-PSS pairs performances is 

negligible (compare graphical analysis in Appendix A4). 
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5 Summary and Discussion 

The purpose of this paper was to analyse with a conceptual model the impact of changes in climate 

parameters on the cost-effectiveness of different governance modes (GM) and specific implementation 

strategies (PSS). We assume that conservation agencies (CA) have two alternative GM to select. (1) 

Buy conservation areas and implement conservation activities on this land (buy alternative), and 

compensate private landowners for their voluntary provision of conservation measures on their own 

land (compensation alternative). We further assume that the CA chooses from four PSS. (1) Select the 

cheapest patches in the landscape (‘price prioritization’), (2) select patches close to areas already 

populated by a target species (‘species abundance prioritization’), (3) select patches with highest 

climate suitability (‘climate suitability prioritization’), and (4) select patches which remain 

climatically suitable for the longest time (‘climate change direction prioritization’). 

We wish to highlight the following two general key insights. First, buying areas for conservation 

produces a relatively rigid spatial selection of conserved patches due to the long-term commitment for 

certain conservation areas within the landscape. While more rigid patch location improves the 

ecological effectiveness by e.g. reducing habitat turnover it does not allow swift adaptation to 

changing climatic conditions. In contrast, the compensation alternative is more flexible, i.e. patches 

are potentially changing their conservation status more often as compensation contracts are typically 

only valid for short time periods (cp. also Gerling and Wätzold, 2019). More specifically, differences 

in flexibility result in a higher possibility of the compensation alternative to adapt to changing 

conditions and thus being a more robust choice against uncertain and changing climatic conditions 

than the buy alternative. 

Second, we find that against the presence of changing climatic conditions, the cost-effectiveness 

of GM strongly depends on the choice of the PSS. In this context, to buy conservation areas yields a 

higher cost-effectiveness against changing climatic conditions when focusing on the cheapest available 

conservation sites (i.e. applying the ‘prize prioritization strategy’), while private landowner 

compensation seems to be more cost-effective with more specific PSS (i.e. the ‘species abundance 
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prioritization’, ‘climate suitability prioritization’ or ‘climate change direction prioritization’ strategy). 

While purchasing areas for conservation typically generates high up-front and one-off costs, the 

resulting areas should stay under conservation for as long as possible. Prioritizing cheaper patches 

then allows for an increase in total conservation areas as more patches can be selected, which in turn 

improves the ecological outcome and increases cost-effectiveness. Given the advantages in terms of 

flexibility of the compensation alternative, a more specific site selection by prioritizing either 

ecological or climatic characteristics has a stronger influence than in the buy alternative and, hence, 

price prioritization is comparatively less relevant.  

In designing the ecological-economic model, we made several simplifying assumptions, which 

deserve discussion. We only considered two GMs, which are polar types of governance structures and 

ignored hybrid GMs. For example, a CA might split its budget and spend part of it to buy areas and the 

rest on compensation contracts with landowners. By doing so, benefits of both GMs might be 

combined (e.g. fixed location of purchased patches with ecologically beneficial effects, and flexibility 

of compensated areas with fast adaptability to changing climatic conditions). However, to what extent 

this happens and what other effects occur is a matter of further research. 

We further assumed that landowners are willing to sell their land or take part in compensation 

contracts as long as the monetary benefits from participation exceed the costs. Some authors question 

the assumption that landowners are always willing to sell their land and suggest strategies to optimally 

time the purchase of land for reserves in insecure ecological and economic conditions (Costello and 

Polasky, 2004; McDonald-Madden et al., 2008), and with changing land prices (Dissanayake and 

Önal, 2011). Moreover, literature suggests factors which influence the general willingness to 

participate in compensation schemes (e.g. contract duration and flexibility, land productivity, and farm 

size; cp. Greiner (2016) and Unay-Gailhard and Bojnec (2016)), and indicate that the willingness to 

participate may also be reversed due to e.g. cost-related learning effects (Frondel et al., 2012). A 

reduced willingness to participate would directly increase the costs of conservation projects, as more 

costly areas would have to be chosen. In addition, the ecological effectiveness might be reduced, as 
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less suitable patches might have to be selected or due to increased habitat turnover (cp. Schöttker et 

al., 2016). Ultimately, both effects negatively influence the cost-effectiveness of the corresponding 

GM. However, more research is required to understand which GM is likely to suffer from higher cost-

effectiveness losses of modified assumptions on landowners’ behaviour.  

We also assumed that conservation costs in the landscape are constant over the complete 

timeframe and unaffected by the CA’s behaviour. By assuming constant costs we ignore any kind of 

strategic behaviour, for example from landowners by overstating conservation costs to achieve higher 

payments or a higher price if they intend to sell their land (Banerjee et al., 2016; Gerling and Wätzold, 

2019; Kuhfuss et al., 2016). A strategic overstatement of conservation costs could increase patch 

prices in both GMs, in turn reducing their cost-effectiveness. Further research is necessary to 

understand which GM is more prone to strategic behaviour and how to design possible mechanisms to 

reduce it. 

We further assumed that the CA is allowed to sell patches in the buy alternative, as patches which 

are no longer in the CSZ for a specific species do not provide any more suitable habitat for this 

species. Thus, the potentially regained budget by selling these patches can be utilized to purchase new 

patches at more suitable locations. It has to be mentioned however that selling conserved land may not 

be possible in reality for a CA due to legal restrictions regarding the permanence of conservation areas 

(Schöttker and Wätzold, 2018). 

The conceptual nature of our model limits the possibility for direct policy implications of our 

results. Nevertheless, our model improves the general understanding of the influence of climate 

change on the cost-effective choice of GMs for biodiversity conservation. We show that the cost-

effectiveness of GMs and PSS may be influenced by changing climatic conditions and thus policy 

makers are advised to explicitly include climate change concerns in their design. The availability of 

respective conservation strategies to allow for specific targeting of species or climatic conditions is 

important in this context.  
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In addition, the more flexible or more rigid character of conservation networks due to different 

GMs and the resulting implications on cost-effectiveness should be accounted for in the decision about 

the optimal GM choice. Similarly, dependent on climatic characteristics, the optimal choice for CA 

may vary, as may the optimal choice of PSS.  

Further research may investigate the topic of this work with more empirical data in real 

landscapes. Climate models are able to provide precise estimations about future climate developments 

on a regional level, species-specific ecological models are able to assess the impacts of conservation 

measures in a changing climate and the development of scenarios about future costs is feasible. Such 

models and data may be combined in empirical climate-ecological-economic models providing policy 

makers with important recommendations about cost-effective GM and PSS choices. We hope our 

model motivates such future work and provides a useful basis for it.  
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Appendix 

A1 Distance Calculation 

We define the distance between the midpoints of any two patches 𝑖 and 𝑗 as follows: 

𝑑𝑖𝑗 = { 1 𝑖𝑓: |𝑥𝑖 − 𝑥𝑗| = 1 𝑎𝑛𝑑 |𝑦𝑖 − 𝑦𝑗| = 1√(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑖 𝑎𝑛𝑑 𝑗    (A1) 

 

Figure F1: Distance between two patches calculated by Eq. (A1). The yellow-shaded and red-

framed area represents the climatically suitable zone (CSZ). The blue- shaded area represents a patch 

selected for conservation; the star-symbol indicates that this patch is occupied by the target species. 

Numbers indicate the distance of the respective patch to the highlighted blue patch. Note that the 

distance for all patches directly neighbouring the blue patch is 1. 

We chose this method of distance calculation, as it seems agreed upon in the literature and is 

relatively easy to handle in the implementation of the model. The exception made for the distance of 

diagonally neighbouring patches to calculate as 1 instead of √2 results in an overestimation of species 

dispersal, especially if the dispersal distance of a species is only 1. Without this exception, in this case 
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a dispersal would only be possible to vertically and horizontally neighbouring patches but not to the 

diagonally neighbouring ones, causing distortions and model artefacts. 

A2 Patch Selection Strategies 

 

Figure A2: ‘Prize prioritization strategy’. The red-framed area represents the climatically 

suitable zone (CSZ), within which the orange-shaded area represents patches eligible for patch 

selection in the ‘prize prioritization strategy’. The blue-shaded area represents a patch selected for 

conservation; the star-symbol indicates that this patch is occupied by the target species. 

Figure A2 illustrates a conservation network in the model landscape, created by the ‘prize 

prioritization strategy’. Within the CSZ potential conservation areas are located. Patches marked with 

a star are patches occupied by the target species. 
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Figure A3: ‘Species abundance targeting strategy’. The red-framed area represents the climatically 

suitable zone (CSZ), within which the orange-shaded area represents patches eligible for patch selection 

in the ‘species abundance targeting strategy’. The yellow-shaded areas represent patches, which are 

non- eligible for selection in this strategy. The blue shaded area represents a patch selected for 

conservation; the star-symbol indicates that this patch is occupied by the target species. 

Figure A3 illustrates a potential conservation network generated by a ‘species abundance targeting 

strategy’. Conservation areas are clustered together around occupied patches. Patches eligible for 

future extension (i.e. newly bought or compensated areas) represent all patches within the dispersal 

distance of the target species. All yellow shaded areas, although within the CSZ, are outside the 

dispersal distance of the target species and thus not eligible for conservation 
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Figure A4: ‘Climate suitability prioritization strategy’. The red-framed area represents the 

climatically suitable zone (CSZ), within which the orange-shaded area represents patches eligible for 

patch selection in the ‘climate suitability prioritization strategy’. The degree of orange depicts the 
level of eligibility of a particular patch; darker-shaded areas have a higher eligibility than lighter-

shaded areas. The blue shaded area represents a patch selected for conservation; the star-symbol 

indicates that this patch is occupied by the target species. 

Figure A4 visualizes a habitat network created by a ‘climate suitability prioritization strategy’. 

Patches cluster around the centre of the CSZ, representing the area with highest climate suitability for 

the target species. Due to the closer proximity of conservation area location, the complete network has 

a higher degree of connectedness, and the target species is more likely to be able to migrate to other 

conservation areas in the network, compared to the price prioritization strategy (Fig. A2). For 

simplicity, we ignored the eligibility differentiation made in combination of climate suitability and 

conservation opportunity costs per patch as described and used in the simulation model, and only 

depicted the climate differentiation aspect here. 
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Figure A5: ’Climate change directional prioritization strategy’. The red-framed area represents 

the climatically suitable zone (CSZ), within which the orange-shaded area represents patches eligible 

for patch selection in the ’climate change directional prioritization strategy’. The degree of orange 

depicts the level of eligibility of a particular patch; darker-shaded areas have a higher eligibility than 

lighter-shaded areas. The blue shaded area represents a patch selected for conservation; the star-

symbol indicates that this patch is occupied by the target species. 

Figure A5 illustrates the ‘climate change direction prioritization strategy’. This strategy locates 

newly generated patches in the more northern range of the CSZ compared to the ‘climate suitability 

prioritization strategy’. Patches selected closer to the northern border of the CSZ are located within the 

CSZ for the longest time. This is due to the northwards propagation of the CSZ through the landscape 

as a result of climate change. If a patch close to the northern border is selected for conservation, it 

takes longer for the CSZ to move across this patch and to eventually drop out of the CSZ, compared to 

a patch closer to the southern border which drops out of the CSZ earlier. This results in a generally 

more stretched out conservation network as patches can potentially be located throughout the whole 
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CSZ, while being added most likely at the norther edge, compared to the climate suitability 

prioritization strategy. 

A3 Patch restriction effect 

 

Figure A6: Patch restriction effect in the ‘species abundance prioritization strategy’ due to 

changes in CSZ sizes due to varying 𝑐𝑠𝑡ℎ𝑟. The red-framed area represents the climatically suitable 

zone (CSZ), within which the orange-shaded area represents patches eligible for patch selection in the 

‘species abundance prioritization strategy’. The degree of orange depicts the level of eligibility of a 

particular patch; darker-shaded areas have a higher eligibility than lighter-shaded areas. The blue 

shaded area represents a patch selected for conservation; the star-symbol indicates that this patch is 

occupied by the target species. The red-shaded areas represent patches which could have been 

selected by the respective strategy, if the CSZ was large enough, but in fact are restricted in eligibility 

by the patch restriction effect. 

Decreasing the climate suitability threshold parameter 𝑐𝑠𝑡ℎ𝑟 leads a decreasing extend of the CSZ 

(see Fig A6.a; visualized for the ‘species abundance prioritization strategy’). In any strategy, this can 

lead to an exclusion of otherwise potentially eligible patches from the selection mechanism. The result 

is a patch restriction effect (see main paper, Section 4) leading to an increased necessity to select 

patches in the remaining (smaller) CSZ, which in consequence are likely to be more expensive. 

Additionally, a connectivity effect can be observed, as the selected patches are closer together in case 

of a smaller CSZ and thus more likely to be well connected. 

 



41 
 
 

A4 Influence of economic and ecological variables 

Additional to the sensitivity analysis for changes in climatic model parametrization presented in 

Section 4 of the main paper, we performed a sensitivity analysis with respect to changes in ecological 

and economic parameters, presented in the following. The corresponding parameter values can be seen 

in Table A1. 

Table A1: Overview about the parametrization value and value ranges specified for computation 

of the Monte-Carlo-Simulation and used in the sensitivity analysis for non-climatic factors. 

Parameter 

name 
Parameter description 

Parametrization 

Values Range 
Base case 

    

Economic parameters   𝑂𝐶̅̅ ̅̅  Mean opportunity costs in the landscape ∈ {0.8,1.0,1.2} 1.0 𝑡𝑐𝑏𝑢𝑦̅̅ ̅̅ ̅̅ ̅ Mean transaction costs of purchasing a patch ∈ {0.8, 1.0, 1.2} 1.0 𝑚𝑐̅̅ ̅̅  Mean monitoring costs ∈ {0.08, 0.10, 0.12} 0.1 𝑟 Interest rate ∈ {0.01, 0.015, 0.02,  0.025,0.03, 0.035, 0.04, 0.045, 0.05} 

0.03 

   

Ecological Parameters   𝜈 Emigration rate from any patch ∈ {90,100,110} 100 𝛿 Dispersal distance of the target species ∈ {1,2,3} 1 

 

Regarding the impact of interest rates on the cost-effectiveness of the different GM-PSS pairs we 

find that with decreasing interest rates, the cost-effectiveness is reduced in all GM-PSS pairs. These 

result is expectable, as reductions in the parameter eventually decreases the CA’s possibility to buy or 

compensate new patches, either by reducing their available budgets or by increasing patch prices or 

compensation requirements through increases in the discount factor (compare Schöttker et al. 2016). A 

graphical analysis can be found in Figure A7. 
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Figure A7: Extinction probabilities of the different GM-PSS pairs with changing interest rates, 

resulting in changes in available budgets and discount rates. The red line represents results for the 

buy alternative, the green line for the compensation alternative. 

A direct increase of patch prices (by increasing 𝑂𝐶̅̅ ̅̅ ) has a negative effect on the cost-effectiveness 

of the GM-PSS pairs (see Figure A8). 

 

Figure A8: Extinction probabilities of the different GM-PSS pairs with changing mean 

opportunity costs. The red line represents results for the buy alternative, the green line for the 

compensation alternative. 

Variations in the emigration rate (𝜈) did not result in observable changes of the extinction rates of 

the GM-PSS pairs (Fig. A9), and increasing the dispersal distance (𝛿) slightly reduced the extinction 

rate of the buy alternative’s ‘climate change direction prioritization strategy’, while the other GM-PSS 

pairs remained unaffected (Fig. A10).  
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Figure A9: Extinction probabilities of the different GM-PSS pairs with changing emigration rates. 

The red line represents results for the buy alternative, the green line for the compensation alternative. 

 

Figure A10: Extinction probabilities of the different GM-PSS pairs with changing dispersal 

distances. The red line represents results for the buy alternative, the green line for the compensation 

alternative. 

Decreasing land purchase related mean transaction costs 𝑡𝑐𝑏𝑢𝑦̅̅ ̅̅ ̅̅ ̅ only showed an influence on the in 

the climate direction prioritization strategy where cost-effectiveness increases (see Fig. A11). Other 

strategies where not influence by changes in mean transaction costs as the underlying model 

parametrization already resulted in complete species survival and no changes in cost-effectiveness 

where observable. 
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Figure A11: Extinction probabilities of the different GM-PSS pairs with changing mean 

transaction costs. The red line represents results for the buy alternative, the green line for the 

compensation alternative. 

Similarly, a decrease in mean monitoring costs resulted in an increase in cost-effectiveness as 

general conservation costs where reduced (Fig. A12). 

 

Figure A12: Extinction probabilities of the different GM-PSS pairs with changing mean 

monitoring costs. The red line represents results for the buy alternative, the green line for the 

compensation alternative. 

As discussed in the main part, changes in the parameter 𝜌, influencing the curvature of the climate 

suitability bell shape, can be considered negligible (see Fig A13). Variation in 𝜌 only influences the 
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size of the CSZ and the absolute values of patch level climate suitability within the CSZ. These effects 

however are only marginal. 

 

 

Figure A13: Extinction probabilities of the different GM-PSS pairs with changing climate 

suitability bell curvature parameter 𝜌. The red line represents results for the buy alternative, the green 

line for the compensation alternative. 

Variations in the climate direction prioritization strength parameter 𝜆 only have an effect on the 

respective PSS (compare Figure A14). In particular, a marginal increasing effect on the cost-

effectiveness of the buy alternative due to decreases in 𝜆 can be observed. The direction of this effect 

is reasonable, as a decreasing value of 𝜆 results in a less restrictive and thus less costly patch selection 

within the CSZ. This in turn increases the cost-effectiveness of the corresponding GM-PSS pair. 
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Figure A14: Extinction probabilities of the different GM-PSS pairs with changing climate 

direction prioritization strength 𝜆. The red line represents results for the buy alternative, the green 

line for the compensation alternative. 
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