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Abstract

Childhood obesity is one of the major public health challenges of the 21st century.

Evidence suggests that timely nutrition and stimulation interventions can prevent ex-

cessive weight gain, however little is known about the effects of scaled-up programs.

I use a national administrative dataset to explore the short- and long-run exposure

effects to the Chilean School Meal Program (SMP) on the nutritional status of chil-

dren attending public and subsidized schools. I estimate the effects on the standarized

body mass index (BAZ) using a Regression Discontinuity design based on the SMP

eligibility cutoffs over a household vulnerability score. Participation in 1st grade re-

duces average BAZ of girls but not boys in the same year. Effects are concentrated

among overweight or obese children and driven by improvements in nutritional quality

of meals. Non-sedentary students, children with higher socioemotional development,

and those receiving mental health services reap larger benefits from the SMP. Contin-

ued participation from 1st grade reduces boys’ average BAZ at 5th grade, relative to

never participants.
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1 Introduction

Socioeconomic vulnerability, inadequate nutrition and psychosocial deprivation prevents

nearly one of every two children from reaching their developmental potential worldwide

(Grantham McGregor et al. 2014; Black et al. 2017).1 In middle- and high-income coun-

tries, early gaps in health are often reflected as excessive weight gain, particularly among

resource-constrained households (Popkin 2002; Popkin et al. 2012). Childhood obesity has

long-lasting effects in physical, cognitive and socioemotional development (SED) (Ebbeling

et al. 2002; Conti et al. 2015; Palermo and Dowd 2012; Wang et al. 2016). From a life-cycle

perspective, the costs of overweight and obesity are substantial: decreased quality of life,

elevated risk of mortality, chronic physical and mental health conditions, increased health-

care consumption, productivity losses and absenteeism, and social stigma (OECD 2019; Dee

et al. 2014; Puhl and Brownell 2006; Withrow and Alter 2011). Obese individuals spend

roughly 30% more on direct medical costs alone, compared to normal weight peers. Obesity

has increased dramatically since 1980 (Ng, Fleming et al. 2014). 60% of adults and nearly

30% of children are overweight or obese in the OECD area (OECD 2019). Changes are

particularly striking in developed and developing countries that experienced rapid growth

in disposable income. The Chilean case is of particular concern as childhood obesity rates

nearly doubled in the last two decades, and one of every two children attending public or

subsidized schools is overweight by the time they reach first grade of school (JUNAEB 2017).

The World Health Organization (WHO) declared childhood obesity one of the most serious

public health challenges of the 21st century (WHO 2016).

The scientific community has emphasized the importance of integrated strategies to ad-

dress developmental gaps, given the dynamic complementarities between physical, cognitive

and socioemotional development (Alderman and Fernald 2017; Grantham McGregor et al.

2014; Black et al. 2017). Evidence from small, randomized controlled trials (RCT) suggests

that integrated interventions (nutrition and stimulation) reduces developmental gaps on both

nutrition and SED during pre-school (Conti et al. 2015; Grantham McGregor et al. 2014;

Attanasio et al. 2015a; Campbell et al. 2014). In countries with high obesity prevalence,

less is known about whether large school-based programs, such as school meals, can success-

fully promote healthy nutritional status. To date, causal evidence on the impact of school

meal programs (SMP) on weight gain is rather inconclusive (Millimet and Tchernis 2013;

Schanzenbach 2009; Gundersen et al. 2012). Some studies suggests that SMP with high

nutritional standards can improve weight status (Fung et al. 2013; Schwartz et al. 2015).

1Productivity losses from gaps in early development are estimated on an average loss of 19.8% in adult
annual income (Grantham McGregor et al. 2007).
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However, to date there limited evidence on which supply and demand characteristics can

drive program effectiveness. For example, students with higher socioemotional development

and/or those who engage in healthy behaviors (e.g. physical activity outside school) could

benefit more, on average, from a nutritious SMP. Similarly, children who receive higher

parental stimulation or school-based mental health services could also be more receptive to

the meals, all else equal. Effects can also be larger among overweight students, if the SMP

substitutes high-calorie, less nutritious foods at home. Finally, as noted with other targeted

programs, SMP eligibility could induce bullying and stigma, negatively impacting program

participation and socioemotional development (Bhatia et al. 2011).

This study contributes new evidence connecting large early childhood interventions,

parental behavior, SED and nutritional status in a context of high overweight status preva-

lence, using rich administrative data from the National Board of School Aid and Scholarships

(JUNAEB, Spanish acronym). The analysis follows two cohorts of children that started Pre-

Kindergarten in 2012 and 2013, with repeated measurements at Pre-Kindergarten, Kinder-

garten, First and Fifth grade. I estimate the local Intent-to-Treat effects of short- and

long-run exposure to the Chilean SMP on the z-score of the body mass index (BAZ) of boys

and girls attending public and subsidized schools in urban areas, under a fuzzy regression dis-

continuity (FRD) framework. The running variable approximates a household vulnerability

score and treatment status is determined at the individual level based on two pre-determined

cutoffs.

In order to understand underlying demand and supply side mechanisms, I present het-

erogeneous effects in different dimensions. First, I estimate local treatment effects across the

BAZ distribution based on the quantile FRD method proposed by Frandsen et al. (2012).

Given the potential for seasonal effects, I also present results for children measured at fall

versus spring semester. Secondly, I explore exogenous variation on the nutritional quality of

the meals provided by switching contracts with different nutritional standards. Third, based

on the methods discussed by Carril et al. (2017), I estimate the effects for students attend-

ing schools that participate in Abilities for Life program (AfLP), a massive mental health

intervention covering nearly a third of all schools, based on their vulnerability (Murphy et

al. 2017) (see Appendix A). Finally, I conduct sub-group analysis based on the student’s

socioemotional development, parental time investments and health behaviors. To measure

socioemotional development and parental time investments, I estimate underlying factors

from noisy measures contained a the household questionnaire (see Heckman et al. (2013)

and Attanasio et al. (2015b)).

Results from the measurement system identify several skills with an analogous inter-

pretation to dimensions of the Big Five Inventory (Externalizing Behavior, Openness to
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Experience, Extroversion). Local average treatment effects reveal that girls (but not boys)

eligible for the program have a significant post summer decrease in average BAZ in the 2015

cohort. In contrast, there are no significant effects in the 2014 cohort, before the implementa-

tion of improved nutritional standards. Furthermore, the effect occurs at the top half of the

BAZ distribution, i.e., children that are obese or overweight. Additional analysis confirms

that effects are mainly driven by improvements in the nutritional quality of meals provided.

Openness to Experience and Neuroticism (also referred as Externalizing Behavior), moder-

ate the SMP effects on BAZ, consistent with prior evidence from observational studies and

randomized experiments (Heckman et al. 2013). Conversely, I find no evidence that program

eligibility has any impact on socioemotional development. In addition, children who attend

to schools providing additional mental health services (the AfLP) exhibit larger reductions

in BAZ. Using data from the 2014 cohort, evidence shows that continuous SMP participa-

tion from 1st grade until 5th grade (i.e. long-run exposure) significantly decreases BAZ on

boys, relative to never participants, specially if they are overweight. Exogenous variation

in participation status between 4th and 5th grade due to policy changes in 2016 had no

significant effects on average BAZ in 5th grade (during 2018).

This research builds on several studies connecting SMP participation and children’s nu-

tritional status in contexts of high obesity prevalence (Schanzenbach 2009; Millimet and

Tchernis 2013; Gundersen et al. 2012; Miyawaki et al. 2018; Taber et al. 2013; Bhattacharya

et al. 2006). Previous evidence indicates that free meals with high nutritional standards

could improve children’s’ BAZ through a reduction in the availability of energy-rich foods

(Alderman and Bundy 2011; Woodward-Lopez et al. 2010). The latter is consistent with

evidence from SMP in the U.S. and elsewhere (Millimet and Tchernis 2013; Gundersen et al.

2012; Bhattacharya et al. 2006).2. Overall, I found that the nutritional quality of the Chilean

SMP contributes to preventing excess weight among overweight students in the short- and

long-run. This study also contributes additional evidence regarding the impact of scaling-up

pre-school integrated nutrition and stimulation interventions (Alderman and Bundy 2011;

Kautz et al. 2014). The effectiveness of the SMP is higher for students with high socioemo-

tional development and those receiving a mental health intervention delivered at the school

level.

The paper proceeds as follows. Section 2 provides background on the biological basis of

weight gain in early life and describes the particular characteristics of the Chilean school

2Methodologically, the closest study is Schanzenbach (2009), which shows an increase in obesity preva-
lence for children that are eligible for the U.S. National School Lunch Program (NSLP), based on a sharp
discontinuity in eligibility status. However, it is important to note that in the U.S. there is large hetero-
geneity in the nutritional quality of meals provided at each school given that food operations are managed
at the school-level.
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meal program. Section 3 introduces the theoretical framework and its empirical implemen-

tation. Section 4 discusses the estimation approach. Section 5 describes the SMP data,

with emphasis on the measures of child development. Section 6 presents the main results,

sub-analysis and robustness tests. Section 7 concludes.

2 Background

2.1 Early development and excessive weight gain

Individual obesity risk starts at conception due to epigenetic characteristics that can be

triggered by factors such as maternal overnutrition during pregnancy or absence of exclusive

breastfeeding in the first six months of life (Anderson and Butcher 2006; Lillycrop and Burdge

2011). From an early age, increased availability and marketing of foods high in critical

nutrients (i.e. sugars and fats) can have a substantial effect on weight gain among children

(Wyatt et al. 2006; Birch and Anzman 2010; Swinburn et al. 2011; Anderson et al. 2019). As

such, the rise in childhood obesity through the last decades can be explained substantially by

striking changes in health behaviors (increased sedentarism and energy intake) as a response

to environmental cues, particularly among vulnerable households. Despite the emergence of

structural food policy schemes aiming to transform obesogenic environments, recent available

data from Chile indicates that obesity (and severe obesity) has increased over the last years

(OECD 2019; Vandevijvere et al. 2019; JUNAEB 2015). There is also striking evidence

of seasonal effects in weight gain. Children (particularly those obese) gain more weight

during the summer, and are also likely to lose weight starting the school year as the is more

structure in their diet, physical activity and leisure time (Baranowski et al. 2014; Kobayashi

and Kobayashi 2006).

Another important factor associated with early weight gain is insufficient socioemotional

development. SED, such as self-regulation, are strong predictors of obesity among children

(Graziano et al. 2010). This result is striking, as there is substantial evidence of an increase

in the prevalence of emotional and behavioral problems among children and adolescents in

recent decades (Tick et al. 2007; Collishaw et al. 2004). Insufficient nurturing care to promote

socioemotional development and nutritional health create a vicious circle: limited SED leads

to unhealthy behaviors that promote obesity. In turn, overweight children are more likely to

be marginalized and bullied, stunting their socioemotional development (Strauss and Pollack

2003; Cornette 2011).

Disentangling the relationship between socioemotional development and weight gain is

rather challenging. First, insufficient parental investments can lead to both limited socioe-
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motional development and obesity. Poor households not only have less time and resources

to invest in SED, but also are more likely to provide meals rich in simple carbohydrates

and fats and scarce in key micro-nutrients. Secondly, limited SED in the form of poor self-

regulation and executive functioning skills can be conducive to increased eating in absence

of hunger. The association between self-regulation, caloric intake and weight gain among

children has been substantially documented in observational studies (Francis and Susman

2009). In a similar way, poor SED can preclude the adoption of other health behaviors, such

as physical activity. Third, early evidence on the microbiota-gut-brain axis suggests that the

gut modulates the reward system and affects mood, stimulating the intake of calorie-dense

foods under emotional distress (Torres-Fuentes et al. 2017). As such, poor diets can actually

become an additional stressor to child development. Finally, peers can influence not only

socioemotional development (e.g. bullying) but also the adoption of unhealthy behaviors,

which is consistent with evidence of behaviors ”spreading” in social networks (Christakis and

Fowler 2007; Dishion and Tipsord 2011). Given such complexities, relying on randomized

interventions is one promising avenue to understand the complementarities among different

dimensions of early childhood development (Heckman et al. 2013; Alderman et al. 2014).

2.2 The Chilean School Meals Program

The SMP was implemented in 1964, as part of the creation of the National Board of School

Aid and Scholarships (JUNAEB), an agency within the Ministry of Education, in a coordi-

nated strategy to address the high levels of undernutrition among children in Chile. In 1950,

63% of 0-5 year old children were undernourished; dropping to 0.5% by 2012 (Mönckeberg

2014). However, since 1985 childhood obesity more than doubled in the same age group

(Vio and Albala 2000; Atalah 2012). The SMP has responded to the obesity epidemic by

continuously improving the nutritional quality of the meals, while increasing the fraction of

eligible students (particularly since 2015). Currently, the SMP covers 60% of all students at-

tending public or private subsidized schools (i.e. target schools), and virtually all students in

pre-school, with a focus on optimal nutrition and acceptability.3 Children receive daily meals

for more than 200 days a year, covering up to 70% and 33% of daily energy requirements in

pre-school and school levels, respectively (Salinas and Correa 2013).

JUNAEB determines program eligibility based on multiple criteria depending on house-

hold characteristics (see Figure 2.1). Until 2015, the Household Vulnerability Score (Ficha

de Protecion Social or FPS, in Spanish), constructed by the Ministry of Social Develop-

3in 2014, 90% of students attended municipal or private subsidized schools.
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ment (MDS), was a major input to determine program participation. 4 SMP elegibility

before 2016 can be described as follows. High-vulnerable beneficiaries were ensured to re-

ceive the program fully, accounting for three meals a day (FPS<4,213), while low-vulnerable

had a high probability (but not certainty) to be eligible for two meals, breakfast and lunch

(4,213<FPS<8,500). While the FPS is not the only information used to determine eligi-

bility, the predetermined cut-offs are linked to strong changes in the probability of being

eligible. In principle, the high-vulnerable group are students in extremely poor households,

while the low-vulnerable group include individuals within poor households. Lastly, non-

beneficiaries had no access to any meals (HVS>8,500) and usually sourced food from home

or purchased meals at school kiosks (roughly 25% of 1st grade students attending public or

subsidized schools in 2015). Since 2016, JUNAEB considers students eligible for the SMP

if they belong to the 60% most vulnerable households, using the Household Social Registry

(HSR), a tool developed by the MDS to replace the FPS.5 Given the multiplicity of factors

determining program eligibility and to protect households’ private information, JUNAEB

also calculates a child vulnerability score (CVS) as the continuous latent variable that arises

from the ordered choice model associated with eligibility. 6 Once children’s eligibility status

is determined, JUNAEB calculates the school vulnerability score (IVE) as the percentage of

vulnerable (eligible) students at each school (from 0 to 100). Public and subsidized Chilean

schools rarely have private cafeteria services, rather kiosks are available for snacks and light

meals to be purchased. SMP services are provided by external companies and a fixed number

of servings are cooked at the school based on the number of eligible students. Most schools

are equipped with kitchens and dining halls provide meals to students. Meal distribution is

assisted by school staff to ensure that only beneficiaries receive meals.

Due to the centralized nature of the SMP and for administrative purposes, JUNAEB bid

meal services through staggered contracts that cover random, mutually exclusive geographic

areas, with a duration of three years. 7 Contracts specify the number of meals to be allo-

cated in each school, the nutritional content of the meals, frequency limits of different food

groups, and other characteristics of food processing and meal delivery. Each year JUNAEB

4The FPS was widely utilized by many public institutions to determine the allocation of subsidies and
other social welfare benefits. This score summarizes the self-reported information of households and housing
conditions from the Social Protection Registry.

5For the small fraction of students without HSR (or FPS before 2016), JUNAEB used other available
information to determine participation, such as mother’s education, residence and health insurance status.

6The CVS preserves the two cut-off points observed in the FPS, and similarly, it has no interpretable
scale.

7Each contract is associated with macro area that contains a pre-fixed subset of geographic units, spread
out randomly through the country (Duran and JUNAEB-DII 2006). There are 102 geographic units, each
containing several schools.
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Figure 2.1: The SMP Logic Model
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Notes: Blocks in blue represent key variables in the eligibility process.

auctions one contract, so in any given year there are three different contracts operating

simultaneously. Given the constant commitment of JUNAEB to improve SMP nutritional

quality, providers operating under newer contracts, particularly from 2015 onwards, incor-

porated significant changes in the nutritional quality and acceptability of meals, particularly

increasing frequency of healthy foods, such as fruits, vegetables and whole grains. 8

3 Theoretical Framework

The model described below is adapted to incorporate nutritional status into the theory of

human capital production in early childhood, drawing substantially from the frameworks

discussed in the relevant literature (Cunha et al. 2010; Cunha and Heckman 2007; Attanasio

2015; Conti et al. 2015; Agostinelli and Wiswall 2016). Nutritional status as an input (Ht)

can be described by an inverted u-shape, given that both low or excessively high BAZ-for-

age are related to poor nutritional status. For simplicity, In this model I assume that Ht

increases as individuals move from obesity towards normal nutritional status (consistent with

a context of high overweight prevalence). There is also a vector of other relevant inputs or

skills (θt), which could include cognition, socioemotional development and other measures

of health. All inputs can be determined by parental investments, school and household

8Overall, JUNAEB enforces a high nutritional standard for the meals offered in the SMP, including
mostly traditional (home-style) preparations and low levels of added sugar, fat or salt.
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background, and the past history of nutritional status and SED. The model follows (children

are not indexed to simplify notation):

Ht+1 = ht(θt, Ht, It, Pt, Xt, et) (1)

θt+1 = gt(θt, Ht, It, Pt, Xt, vt) (2)

In the model described above It corresponds to parental investments, Pt captures parents

stocks of human capital and Xt is a set of covariates that can affect the total factor produc-

tivity (Attanasio et al. 2015b). et and vt are random variables that reflect unobserved shocks.

g(.) is the high-dimensional skills formation technology, where nutritional status is a direct

input in this function, based on the idea that improved nutritional status facilitates skill

accumulation. h(.) approximates the metabolic balance equation, where future nutritional

status is a function of present choices and previous nutritional background. In this frame-

work, (school) interventions can impact both the stock of inputs and their productivity, as

noted by Heckman et al. (2013). In turn, households can change the allocation of resources

provided to children in response to external shocks (Todd and Wolpin 2003; Yi et al. 2015;

Das et al. 2013; Attanasio 2015). Formally, we can describe the household’s demand for

parental investments as:

It = ft(θt, Ht, Pt, Xt, Zt, ut) (3)

In this framework, parents make investment choices in each period given childrens SED

and nutritional status history (Attanasio (2015) formalizes a simple model consistent with

this setup). Investments also respond to households characteristics, such as income (included

in Xt) and to other variables that measure the market prices and quality of parental inputs,

contained in Zt. Finally, ut reflects other shocks that might affect investment decisions.

Under this framework, I can empirically test the presence of complementarity between

SED and nutritional status, and also between school characteristics and parental investments.

Moreover, this approach can be used to explore heterogeneity on treatment effects by several

household characteristics. However, the simplicity of this model does not allow accounting

for other relevant aspects that could influence nutritional status and SED such as peer

effects, food availability outside the school, and fertility decisions. Moreover, is important

to acknowledge that in most empirical applications not all inputs are observed, which can

lead to biased estimates. 9

9In this empirical analysis, the absence of cognition measures implies that the moderator effects of
socioemotional development could be overestimated due to the (static) positive relationship between inputs.
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4 Estimation strategy

4.1 Latent factors and the measurement system

In the SMP data, SED are partially captured by many variables that characterize children’s

behavior (self-reported by caregivers). To avoid model selection over potential proxies and to

address measurement error, I obtain latent factors from noisy proxies using a measurement

system, that both reduces dimensionality and accounts for measurement error (Gorsuch 2003;

Cunha et al. 2010). Methods are discussed in detail in Appendix B. The structure of the

measurement system was chosen based on exploratory factor analysis.

While the estimated factors contain (classical) measurement error, is expected to be

random at the local cut-off points, thus no adjustment is required. Moreover, given the

characteristics of the sample, and the fact that the system is linear, it is not necessary to

incorporate adjustments to the standard errors in this step. However, preliminary analysis

of the data indicates a strong presence of response styles from parents in the behavioral ob-

servation of children’s behavior. As such, following Aichholzer (2014), I allow the intercepts

to have a common (random) component across measurements for each individual (parent)

that is orthogonal to the underlying factors. This random intercept captures the individual

preference to report consistently lower (or higher) responses across all measures (see Ap-

pendix B for more details). Finally, I choose to estimate separately a measurement system

for skills and investments, in order to use all available data. Results from estimating the

system jointly or separately show that there is no significant differences (see Appendix C).

4.2 Identifying average treatment effects

Given the SMP eligibility criteria, local average treatment effects (LATE) can be estimated

in a Regression Discontinuity (RD) Framework, with BAZ as the outcome variable. A

natural candidate as running variable is the FPS. While there is no evidence of the FPS

being manipulated around the cut-offs, the empirical distribution is largely skewed, over-

representing vulnerable households (Larrañaga et al. 2014). Additionally, 16% of students

do not have FPS score, affecting external validity of the results. An alternative is to rely

on the underlying latent score that arises from the eligibility criteria under a ordered choice

model that incorporate all the criteria used by JUNAEB to determine eligibility, previously

defined as CVS. The density of CVS replicates the discontinuous changes in probability

from the FPS cut-offs, albeit introducing some degree of smoothness given functional form

assumptions. More importantly, given that all data are used, it reflects properly the relative

vulnerability of children with and without FPS.
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The LATE reflects the intent-to-treat impact of the SMP on BAZ, as CVS does not

uniquely determines eligibility (hence a fuzzy design). Students allocated to the low-vulnerable

group have a very high probability of receiving meals, but not certainty (mostly due to bud-

get restrictions). In addition, there is scope for non-compliance, i.e. beneficiary students can

opt not to consume meals, or alternatively, teachers might allow non-beneficiary children

to have meals if there are available after eligible children have been served. There are no

available data to measure the degree of non-compliance, although based on interactions with

JUNAEB officials, this issue arises among upper middle and high school students. Formally,

if we define Xi as the CVS, and c as (one of the two) cut-off, the estimand can be identified

as:

τFSD = E(Hi(1)−Hi(0)|Xi = c, Ti(1)− Ti(0) = 1) (4)

Where Ti determines SMP elegibility. Under standard assumptions (Todd and Wolpin

2003; Calonico et al. 2014), the LATE can be estimated as the ratio of two sharp local-linear

RD estimators:

τ̂FSD(hn) =
µ̂Y,+(hn)− µ̂T,−(hn)

µ̂Y,+(hn)− µ̂T,−(hn)
(5)

Where µ̂U,+(hn) and µ̂U,−(hn) are the local-linear estimators for a random variable Ui.

As in any RD design, there are several critical considerations: bandwidth selection, func-

tional form (polynomial degree), and construction of robust variance estimators. Recent

advances in the statistical properties of the RD estimators allows for a data-driven ap-

proach to determine optimal bandwidth selection and functional form, in order to compute

covariate-adjusted LATE estimates with robust (bias-corrected) standard errors (Calonico et

al. 2014; Calonico et al. 2018; Gelman and Imbens 2018; Bartalotti and Brummet 2017). In

this paper, analysis are conducted separately for boys and girls for two important reasons.

First, there are significant gender differences in body fat and energy requirements during

early childhood (Sweeting 2008). Secondly, several studies have documented important dif-

ferences in socioemotional development by gender (see Heckman et al. (2013) for a detailed

example from the Perry Program).

I extend the fuzzy RD setup to understand heterogeneous effects by segmenting the

sample in (binary) sub-groups by parental investments and SED, using the method proposed

by Carril et al. (2017). As mentioned, this approach is valid under the additional assumptions

that treatment is continuous on the running variable over the support of the covariates of

interest, and that there are compilers over the conditional distribution of such variables. The

method balances the sub-groups in other covariates using an inverse propensity weighting
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(IPW) approach, in order to avoid bias. A rich set of information on child health and

household characteristics are used for balancing the sample across sub-groups. I also explore

heterogeneous effects by season (of measurement) and provider contracts in service for a given

year. Contracts are bid exogenously (to students) and service areas are pre-defined based on

random assignment. If newer contracts have better quality, I expect they might affect the

impact of SMP participation, at least for some sub-populations. In terms of peer effects, given

that program participation is virtually universal in pre-school, I use the sub-group analysis

proposed by Carril et al. (2017) to determine if children with a large fraction of overweight

peers in the previous year (Kindergarten) are more (or less) sensitive to program eligibility.

An additional concern is that local effects could vary along the distribution of the outcome

variable, as noted in previous studies (Frolich and Melly 2010; Hsu and Shen 2016; Frandsen

et al. 2012). In particular, children with higher risk of obesity or undernutrition might be

more sensitive to the treatment. Hence, I used the quartile treatment effect approach to the

RD framework proposed by Frandsen et al. (2012).

In terms of long-exposure effects, eligibility does not change significantly between 1st

and 5th grade. The same approaches are used for long and short exposure effects, while

accounting for vulnerable children in 5th grade that were not eligible in 1st grade, due to

changes in their vulnerability and due to the expansion of the SMP in 2016.

5 Data and descriptive statistics

The main dataset follows two cohorts of children that start Pre-K in 2012 and 2013. As an

example, in 2015, roughly 230,000 children attend First Grade in over 10,000 public or sub-

sidized schools. JUNAEB collects administrative, individual data each year directly through

schools that have at least one student eligible for SMP. Teachers measure and collect infor-

mation on childrens anthropometrics (e.g. height and weight), constructing the Nutritional

Map data. Parents provide comprehensive household background information for children

in schools eligible for the SMP, during three consecutive years from Pre-K to First Grade,

Fifth Grade (since 2018) and then when students are high school freshmen. This question-

naire is known as the Vulnerability Survey. Schools consolidate and suBAZt the information

directly to JUNAEB each year during the the school cycle. The household questionnaire in-

cludes background on household characteristics, socioemotional development, health status

(including birth weight and premature status), parenting beliefs and parental investments.

Appendix A details the information contained in the Vulnerability Survey data. The main

outcome is the z-score of body mass index, calculated by JUNAEB using the WHO reference

guide (2007). SED are built based on a set of Likert-scale measures that characterize child’s
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health and behavior (see Appendix C for more details). Similarly, parental investments

are constructed from questions regarding time inputs (e.g. reading together, play music or

sports, and took children to play with others).

Table 5.1: Descriptive statistics

First grade 2015 ELPI 2012
Anthropometrics Boys Girls Boys Girls

Age (months) 79.8 79.1 73.2 73.3
5.6 5.2 3.5 3.5

Height-for-age (Z-score) 0.26 0.32 0.15 0.14
1.27 1.15 1.13 1.08

BMI-for-age (Z-score) 1.06 0.92 1.05 1.03
1.49 1.32 1.01 1.03

Fraction overweight 52.7% 49.3% 52.3% 50.3%
Sample size 101,736 98,306 6,031 6,326

First grade 2015 CASEN 2015
School characteristics Boys Girls Boys Girls
SMP participation =1 0.74 0.74 0.66 0.66

School vulnerability index (IVE) 70.3 69.5 72.8 72.4
17.4 17.4 16.9 16.9

Public school = 1 0.44 0.41 0.42 0.40
Attended Kindergarten = 1 0.98 0.97

Household characteristics
Mother’s education (years) 12.0 12.0 11.6 11.7

4.0 3.9 3.0 3.4
Mother’s age (years) 33.1 33.1 35.8 35.3

6.9 6.9 6.6 6.6
Household size 4.7 4.6 4.9 4.8

1.7 1.7 1.8 1.7
Mother in labor force = 1 0.61 0.62 0.55 0.53

Lives with father = 1 0.65 0.64 0.73 0.73
Ethnic background = 1 0.13 0.13 0.12 0.13

Sample size 101,736 98,306 1,957 1,844

Notes: First Grade data includes children aged 61-107 months old. ELPI: Early
Childhood Longitudinal Survey 2012 (restricted to children between 68-83 months
old, weighted values). CASEN: National Survey of Socioeconomic Characterization
(restricted to families with children attending 1st grade to public or subsidized
schools, weighted values). Mother’s age and education in CASEN only available
for children living with mother at time of survey. SMP: School Meals Program.
Standard deviations in italics, if applicable.

There are two main estimation samples in this study. First, I analyze the effects on SMP

eligibility on all students attending the First Grade in urban schools during 2015 that have
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a vulnerability measurement (CVS).10 Given the large variation in local food and schooling

systems, rural households are excluded from the primary analysis. I also exclude implausible

weight and height measurements.11 I refer to this sample interchangeably as the First Grade

(urban) or overall sample. The second estimation sample includes children that have CVS

and are linked longitudinally, hereon referred as RD Panel (for more detail see Appendix A).

Table 5.1 shows basic descriptive statistics of the JUNAEB data in contrast with two

nationally representative surveys: the 2012 Longitudinal Survey of Early Life (ELPI, Spanish

acronym) and the 2015 National Socioeconomic Characterization Survey (CASEN, Spanish

acronym). There are not significant differences in the anthropometric data, albeit children

in the ELPI data are slightly younger at time of measurement. In terms of household

characteristics, we observe that, while eligibility is substantial (almost three of every four

children), self-reported participation is lower (66%). Also, 1st grade children in CASEN

have mothers that are older and less likely to participate in the labor force. Children in the

Vulnerability Survey data are more likely to live without a father (35%) in comparison to

the CASEN data (27%).

Figure 5.1 shows the evolution of obesity prevalence from the 2012 Pre-Kinder cohort

by height-for-age z-scores (HAZ) at baseline. Taller children more likely to be obese by

First Grade. However, by Fifth Grade, while boys obesity prevalence increases for all HAZ

groups (being as high as 40%), obesity declines (or stays) among girls in all HAZ groups.

The results are consistent with two epidemiological phenomena: (1) there is evidence of

increased adiposity in First Grade, leading to accelerated linear growth, an early marker

of metabolic syndrome, and (2) in Fifth Grade, boys are at substantially higher obesity

risk than girls (which risk actually decreases relative to First Grade). Together, both are

important markers of obesity and metabolic risk factors in adulthood.

The estimated measurement system for behavioral and health measurements elicit three

latent SED that are consistent with measures of the BFI: Extroversion (θE), Openness to

Experience (θO) and Neuroticism (θN) and one learning capacity or process factor (L) 12 (see

10Although CVS is calculated for virtually every children in the sample, I restrict the estimation of local
treatment effects to children that have FPS scores. The main reason is that I concentrate on the local effects
around the eligibility thresholds over the continuous dimension of the CVS. Incorporating the students that
do not have FPS introduces lumps in the distribution of the CVS that affect estimation. As shown, there
are no major differences between children with and without FPS score.

11Measurements are considered implausible if they are 0.5 standard deviations above or below the 1st
and 99th percentile of the distribution, respectively. Among the students that are linked longitudinally, I
also exclude cases where there are implausible changes in anthropometric measurements as well (e.g. height
is lower in First Grade relative to Kindergarten). The total number of excluded observations represents less
than 2% of the raw data.

12By process, I refer to the extent that socioemotional (and other) skills contribute to the learning
capacities of a child, in a similar way that they contribute to other behaviors or abilities
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Figure 5.1: Obesity prevalence by HAZ in Pre-Kinder
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Notes: Calculations based on the longitudinally matched JUNAEB data.

Appendix B for a discussion on SED measurement and latent factors). Results from those

measurement systems indicate that deviations from normality are important; the estimated

mixing parameter is 0.514 [0.508 , 0.520]. The random intercept allows to remove bias

introduced by response styles (small in magnitude). The distribution of response styles

and its correlation with parent’s education is consistent with social desirability bias. (see

Appendix B for additional results). In the case of parental time investments (I), results are

remarkably close in terms of model fit and all measures relate to the underlying factor in a

similar magnitude.13

6 Results

6.1 Short-exposure Intent-to-Treat effects

Figure C.1 shows the discontinuity on eligibility at 1st Grade for low vulnerable and high

vulnerable groups respectively in 2015, using CVS as the running variable. In both cut-

off points there is a large change in average probability of being eligible (to either high or

low vulnerable). In the case of high vulnerable students, many children on the right of the

cut-off are eligible, which is due to the interaction with another important social program,

Chile Solidario or CHS for short, which makes children SMP eligible as high vulnerable

regardless of their FPS if their families belong to this program. When we exclude that group

13Additional results of the confirmatory factor analysis on parental time investments are available upon
request.
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(about half of the high vulnerable students), both cut-offs have a very similar distribution.

Based on the manipulation test proposed by Cattaneo et al. (2018), there is no evidence

of potential manipulation of the running variable around the eligibility thresholds, in either

case. However, the test is sensitive to the cases of students eligible for CHS, therefore LATE

estimates are presented in both cases.

Figure 6.1: Local polynomial fit of BAZ as a function of CVS (centered)
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Notes: CVS: child vulnerability score (JUNAEB). Bandwidth on CVS limited avoid overlap with high
vulnerable cut-off. Triangular kernel and bin selection based on Integrated Mean Squared Error optimal

quantile-spaced method.

Table 6.1 reports the LATE estimates for both cut-off for the 2014 and 2015 cohorts

(First grade). Figure 6.1 shows the local polynomial fit of the BAZ mean at each side of

the eligibility cut-off for low vulnerable students (boys and girls) in 2015. The following co-

variates are included to improve the precision of the estimated standard errors: age, school

type (public/subsidized), school size (enrollment), birth weight and z-score of height-for-age.

LATE is significant and negative among girls that are eligible as low-vulnerable (compared

to non-eligible similar students) in 2015. The average difference in BAZ between groups is

0.15 SD. Using obesity prevalence as the outcome variable, the effect size is consistent with

a reduction of obesity rates of 5 percent points. The LATE estimates between high and low

vulnerable students are not significant. The latter is reasonable, given that the additional

calories received by low vulnerable students (relative to not eligible) are substantially more

relative to the extra calories that the high vulnerable students receive, at the margin.

Several specification and robustness tests are conducted to determine the validity of

the SMP effects on low vulnerable girls and boys (see Appendix Tables C.3 and C.4 and
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Table 6.1: SMP local average treatment effects (dependent variable: BAZ)

Vulnerability high vs low high vs low (chs=0) low vs no
Boys Girls Boys Girls Boys Girls

Panel a) 2015 cohort
First Stage 0.66 0.69 0.90 0.91 0.97 0.97

0.02 0.015 0.011 0.008 0.005 0.005
LATE 0.016 -0.023 0.007 0.004 0.08 -0.15

0.091 0.073 0.07 0.067 0.091 0.069
Bandwidth 0.32 0.36 0.39 0.35 0.66 0.67

N 11018 13197 10560 8934 12009 12157
Panel b) 2014 cohort

First Stage 0.63 0.68 0.80 0.86 0.9 0.87

0.027 0.027 0.029 0.019 0.012 0.013
LATE 0.075 -0.067 0.232 0.01 0.029 0.006

0.183 0.153 0.187 0.116 0.095 0.082
Bandwidth 0.34 0.31 0.31 0.42 0.86 0.88

N 7125 6341 4607 7177 11741 12546

Notes: significant values in bold (p<0.1). Standard errors based on optimal MSE (mean squared
error). Standard errors in italics.

additional figures in Appendix C). Results indicate that the SMP effect on girls is accurately

estimated locally, regardless of the functional form, and increasing the bandwidth creates

more imprecise estimates. Moreover, estimates are not much changed if I use the RD panel

sample instead of the full sample. The results among students in rural schools are somewhat

similar but very imprecise (see Table C.4).

6.2 Long-exposure effects and policy changes

In 2016, three major policy changes were introduced, impacting SMP eligibility criteria and

availability of food in schools. The extension in coverage allows estimation of the LATE on

children that were not eligible for the program before 2016. In addition, the introduction of

the RSH as eligibility measure changed a continuity feature of the SMP until 2015. Before

2016, children classified as vulnerable remained in the program for at least three consecutive

years, while from 2016 onward, children have a probability of changing eligibility status

every year. Finally, in the context of the Food Labelling and Regulation Act of 2012, foods

classified as ”unhealthy” according to the new regulation standards were banned from schools

(and 100 meters around them) since June 2016. As such, food availability for students inside

schools changed dramatically.

In this section I present estimates for different sub-samples to understand both the po-
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tential long exposure effects of the SMP (by 5th grade), as well as the effects that might

arise from policy changes, summarized on Table 6.2. The first two columns give estimates

of the LATE between students that participated in the SMP continuously until Fifth grade

versus those who never participate in the program, or ”continuity”. Columns 3 and 4 esti-

mates the effect of being continuously eligible in the program until Fifth grade versus those

that”dropout” from the program based on their RSH assessment. Finally, columns 5 and

6 compare the effect of students that were eligible for the program only during Fourth and

Fifth grade, relative to students that never participated in the SMP, due to the program

”extension” in coverage.

Table 6.2: LATE for boys and girls, 2014 cohort by sub-group
(dependent variable: BAZ in 5th grade)

Continuity Dropouts Extension
Boys Girls Boys Girls Boys Girls

LATE 0.033 0.094 0.053 0.007 -0.009 0.042
0.031 0.031 0.046 0.041 0.028 0.028

LATE (weighted) 0.036 0.076 0.03 0.016 -0.001 0.042
0.032 0.033 0.048 0.042 0.029 0.028

LATE (RDD) -0.342 0.219
0.152 0.184

Mean CVS treated 0.54 0.55 0.54 0.55 -0.96 -0.96
Mean CVS untreated -0.96 -0.96 0.39 0.37 -0.69 -0.71

Bandwidth 0.65 0.57
N 5,383 5,414 3,841 4,007 5,986 6,050

Notes: HSR cut-off since 2016 is percentile 60. Sample restricted to students between
40 and 80 percentile on the HSR (low vulnerable and no eligible students only). Sig-
nificant values in bold (p<0.1). Robust standard errors in italics. LATE weighted
estimates based on the inverse of absolute distance from CVS low-vulnerable cutoff.
RDD indicate fuzzy regression discontinuity estimates. Optimal bandwidth based on
optimal MSE in the full sample.

In the 2014 cohort, girls with continuous participation in the SMP until Fifth grade had

higher BAZ relative to students that were never eligible. However, treatment and control

groups are remarkably different in their vulnerability, hence direct estimates introduce bias.

While accounting for the discontinuity on eligibility in 1st Grade, LATE estimates for the

same group show that locally, continuous participation in the SMP significantly reduces

average BAZ in boys but not girls, relative to never participants.14 Evidence is consistent

14Regression discontinuity estimates at 5th grade for all students (including SMP movers between Fourth
and Fifth grade) are similar. To understand the results it is important to note the variations in program
participation due to the SMP expansion and change of eligibility criteria of 2016. There is significantly
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with the significant differences in obesity risk between boys and girls at Fifth Grade. Again,

local estimates indicate that boys who are overweight or obese are more likely to benefit

from the SMP, while there are no significant differences among students with normal BAZ

(results in Appendix C).

For those children who were eligible to the SMP continuously, average BAZ is not different

from those students that dropped out from the program due to a change in their household

vulnerability status. Students who only recently participated in the program due to the

extension of the SMP coverage have similar average BAZ relative to students who never

participated in the program. Overall, the evidence suggests that within this cohort, short-

term effects are not apparent for Fifth grade BAZ on boys or girls, however sustained effects

in 5th grade indicate that overweight boys who continuously participated in the SMP had

lower BAZ relative to non-participants. Similarly, the latter suggests that program exposure

in early years (ages 5-9) could carry persistent effects on BAZ, at least for some students.

6.3 Heterogeneity on short-exposure effects

The average estimates suggest that both characteristics of students and the program itself

can lead to heterogeneous effects and highlight potential demand and supply side drivers.

To determine potential mechanisms, I explore heterogeneous effects by student’s nutritional

status, socioemotional development, parental time investments, and nutritional quality of

the meals provided.

6.3.1 Quantile RD

Figure 6.2 shows the local effects of the SMP at different deciles of the BAZ distribution for

girls (between low vulnerable and not eligible). Estimates suggest that the LATE is larger

and significant for the top half of the distribution, i.e., for students that are either overweight

or obese, but non-significant in the lower half of the distribution. The latter supports the

idea that students with excess weight are the ones benefiting from the SMP nutritional

quality, potentially substituting nutrient rich meals offered at school for the energy dense

meals offered at home. Additional analysis on the long-exposure effects on boys in Fifth

Grade reveals that reductions on BAZ also occurs at the upper half of the BAZ distribution,

i.e. among overweight students.15

limited overlap in CVS across never participants and always participants. However, movers are distributed
across all the distribution of the CVS.

15Results available upon request.
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Figure 6.2: Average treatment effects by decile of BAZ for girls
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Notes: CI in right panel estimated using bandwidth based on optimal CER (coverage error rate) and in left
panel using bandwidth based on optimal MSE (mean squared error). CVS: child vulnerability score

(JUNAEB).

6.3.2 Seasonal weight variation

Given that children’s anthropometrics are evaluated through the school year, we can ex-

pect differences in LATE among students measured during the fall versus those assessed at

springtime.16 Estimates in Table 6.3 show that the LATE among girls in 2015 occurs mostly

during the first part of the school year (after summer vacation), while there is limited effect

observed amongst the girls measured in spring. The evidence is consistent with the seasonal

pattern; weight reduction after the summer and a rebound during springtime.

Table 6.3: LATE for low vulnerable versus non eligible students, by semester
(dependent variable: BAZ)

boys girls
Fall Spring Fall Spring

LATE 0.096 0.072 -0.361 0.018
0.115 0.134 0.148 0.091

Bandwidth 0.84 0.6 0.93 0.68
N 7466 5603 6100 8062

Notes: significant values in bold (p<0.1), adjusted for multiple hypothesis testing using the Sidak
method. Bandwidth based on optimal MSE (mean squared error). Robust standard errors, in
italics.

16Data analysis shows no systematic differences in the timing of measurement based on school and indi-
vidual characteristics.
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6.3.3 Nutritional quality of services provided

Another important source of variation comes from the quality of the meal services provided.

A new bid contract started in 2015, which included more strict nutritional requirements

(reduced calories and increased frequency of healthy foods). Differences in the quality of the

meals offered could explain the reported differences between the two cohorts. In order to

control for potential differences in environmental characteristics, Table 6.4 reports the LATE

for each major contract operating in 2014 and 2015, restricting the sample only to students

in the Santiago Metropolitan Region (36% of total sample).17 In schools where there was a

change in the contract during 2015, the LATE is large and significant. Conversely, in schools

where no change in contract took place, local average effects from the SMP are not significant.

Overall, we can conclude that the SMP effects observed in 2015 can be attributed to a short-

term reduction in BAZ on girls, mainly in schools where the nutritional characteristics of

the meals improved.

Table 6.4: LATE for low vulnerable versus non eligible girls in the Metropolitan Region by
contract during Fall semester (dependent variable: z-BAZ)

2014 2015
Contract 16LP12 35LP11 35LP11* 16LP12 35LP11 10LP14

LATE 0.146 -0.42 0.548 -0.381 -0.077 -1.06

0.322 0.27 0.237 0.543 0.384 0.362
Bandwidth 0.93 0.72 0.84 0.57 0.68 0.48

N 814 1105 1342 303 683 447

Notes: significant values in bold (p<0.1), adjusted for multiple hypothesis testing using
the Sidak method. Bandwidth based on optimal MSE (mean squared error). Standard
errors in italics. *Indicates schools in 2014 that switched to contract 10LP14 in 2015.

6.3.4 The role of skills, paternal investment and physical activity

Table 6.5 summarizes the LATE for girls, between low vulnerable and not eligible, for several

different sub-groups of interest. There are small differences by parental time investments (in

the previous year), but they are not significant. However, SED are a meaningful moderator

for the SMP local effects. Between girls that are in the top quartile of Neuroticism and

Openness to Experience, the effects are quite large and more significant than in the rest of

the distribution. An important concern with this results is potential spillover effects of the

SMP on SED that could bias the results. Results in Appendix C show no effect of program

eligibility on the measures of socioemotional development.

17The three major contracts in 2015 cover 92% of the total demand for meal services.
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In addition, there is suggestive evidence of complementarity of the SMP with a large

mental health intervention, the Abilities for Life Program, which covers a third of schools,

based on vulnerability. Table C.5 shows that among children in AfLP participating schools,

the SMP local effect is significantly larger, compared to children attending equivalent non-

participant schools. 18

Table 6.5: LATE for low vulnerable versus non eligible girls, by sub-group
(dependent variable: BAZ)

Sample Parental investment Neuroticism Openness Physical activity
<p(75) >p(75) <p(75) >p(75) <p(75) >p(75) none some

LATE -0.113 -0.207 -0.088 -0.289 -0.068 -0.32 -0.046 -0.166

0.233 0.241 0.089 0.148 0.089 0.141 0.170 0.084
Bandwidth 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65

N 11464 11464 11215 11215 11463 11463 11470 11470

Notes: significant values in bold (p<0.1), adjusted for multiple hypothesis testing using the Sidak method.
Bandwidth based on optimal MSE (mean squared error). Robust standard errors, in italics.

Finally, given the importance that sedentarism and diet have on energy balance, I com-

pared children that engage in some type of physical activity outside the Physical Education

versus those who do not. Results suggests that children that engage in physical activity

benefit more from SMP eligibility, while girls that are sedentary do not. The latter can be

interpreted in, at least, two different ways: sedentary children might also be more likely to

consume more snacks and junk foods, and/or active children might be more likely to avoid

weight gain if the majority of their meals come from sources low in added sugars and fats.19

6.4 Discussion

Evidence from the Chilean school meal program suggests that eligible (low vulnerable) over-

weight girls have lower average body mass index during 1st grade, relative to non-eligible

in 2015. There does not seem to be a meaningful difference between low and high vulner-

able students in the same period. The short-term effects seem to be driven by improved

nutritional quality in 2015. International evidence indicates that students have the largest

18School eligibility for the AfLP is loosely related to school vulnerability. To compare across similar
schools, the analysis was conducted balancing schools on their IVE, and restricting the sample only to
schools with an IVE higher than 60.

19The SMP guidelines not only restrict the total amount of calories in the meals that are delivered but
also enforces the frequency of specific foods, reducing the availability of added sugars or fats.
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weight gain during the summer (particularly those who are overweight or obese), hence it is

expected that major effects appear during the first months of the school year (Baranowski et

al. 2014; Moreno et al. 2013; Kobayashi and Kobayashi 2006). Additional evidence is needed

to understand whether significant differences persist after prolonged exposure, specially as

student reach high-school age.

When conducting sub-group analysis, evidence suggests that Neuroticism and Openness

to Experience are important moderators of the SMP effects, consistent with previous lit-

erature. Given the attributes of personality associated with both skills, it seems plausible

that self-control is limited among children that are more prone to stress and negative feel-

ings, while students that show curiosity and intellectual vocation are more likely to develop

more in their executive functioning skills.20 Evidence from observational studies support the

premise that young children that are less neurotic and open to experience are also more likely

to eat fewer fruits and vegetables, while increasing the consumption of sweet drinks (Voll-

rath et al. 2012a; Vollrath et al. 2012b). Regarding potential bidirectional effects, results

suggests that differences in consumed meals to not affect socioemotional development at this

age. Similarly, parental time investments in the previous year do not directly act as mod-

erator of the program. Rather, parental investments can contribute through increased SED

accumulation. The latter might reflect a divergence between parental behaviors regarding

stimulation and feeding practices. Unfortunately, the available data does not provide addi-

tional information on other types of parental behaviors that might be conducive to healthier

diets. Finally, there is important evidence of complementarity between the SMP and a large,

community-based mental health program (AfLP), consistent with previous evidence.

Why are there no short term SMP effects on boys in the First grade? First, boys consis-

tently have lower SED, compared to girls. 21 Observational evidence from Chile suggests that

boys from similar age are more likely to snack and eat foods richer in sugars and fats, which

are the main contributors to weight gain, which is consistent with the overall differences in

BAZ (Correa-Burrows et al. 2015; Jensen et al. 2019). In addition, evidence suggest that the

influence of different (and multiple) caregivers vary by gender (of both the student and care-

giver). Preliminary evidence from the Vulnerability Survey data suggests that the presence

of a father figure as caretaker can significantly reduce the effects of the SMP among girls.

Similarly, the absence of a grandmother as caretaker is associated with a large SMP effect on

boys in the First grade, while the presence of a grandmother, all else equal, drives the effect

20Results for extroversion and learning as moderators for girls are not significant. Results for boys are
not significant using skills as moderators. Results are available upon request.

21Results from the measurement system show that differences by gender are related to differences in the
estimated latent factors and not to differences in the factor loadings.
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to zero.22 These estimates are consistent with previous evidence that Chilean children living

with grandmothers are at a higher risk of being obese (Marshall 2015). Additional informa-

tion is needed to understand whether specific caregiver arrangements promote excess weight

gain among boys, for example, by repeating meals at home and school. This is particularly

relevant in the Chilean context, as grandmothers are the second most important caregiver

for these children. Only 14% of fathers report taking care of the child outside school, while

the same response from grandmothers and mothers are 24% and 68% respectively.

In terms of long-run effects and policy changes introduced to the SMP, early continuous

exposure to the program has significant effects on BAZ for boys, relative to students that

never participated in the SMP by Fifth grade. Lack of effects from continuous exposure for

girls in 5th grade could be linked to female students reaching the growth spur associated with

puberty at this age, while it occurs later for boys. While there are not apparent short-term

effects in this cohort, by 2018 all children are receiving meals with improved nutritional

quality, due to the changes introduced since 2015. Finally, there is no evidence short-

term effects due to the expansion of the program in 2016, relative to (locally) comparable

students. Lack of short-term effects in 4th and 5th grade could be explained due to the

ban on ”unhealthy foods” from schools introduced in 2016. Additional evidence is needed to

understand if long term effects are consistent across cohorts and meal contract characteristics.

7 Conclusion

School meal programs have been subject to extensive controversy, particularly for countries

undergoing a nutritional transition. In the case of Chile, the SMP is contributing to mitigate

the obesity epidemic, mostly impacting overweight and obese students attending public and

subsidized schools. Children with higher socioemotional development are the ones largely

benefiting from meals with high nutritional quality. This can introduce a significant gradient

of inequality, as children with lower SED are also those living in more vulnerable households,

thus more likely to be exposed to unhealthy diets. Based on this study, integration of stim-

ulation and nutritional support through the school system is key to prevent such disparities

early in life.

While producing novel evidence of the effect of school meal programs on nutritional

status and its connection to socioemotional development, this analysis leaves many open

questions to be addressed in future studies. First, parental investments are treated as exoge-

nous. While differences might be random in an RD study, there is still scope for sorting on

22Results available upon request.
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unobserved characteristics. Hence, studying the production functions of nutritional health

and socioemotional development, while accounting for endogenous parental investments is

a next logic step. Second, I have been silent about the scope for peer effects. Available

data indicates that there is no tracking on Chilean schools at this grade, however there is

important scope for parental choice and sorting. Incorporating peer effects in regression

discontinuity designs is a challenging but promising area of study.23 Third, there is scope to

take advantage of other sources of exogenous variation to understand the evolution of early

human capital. The sixth largest earthquake recorded in history impacted the coast of the

central part of Chile in 2010. High quality geo-referenced data can be useful to study early

life shocks, mitigation and human capital accumulation in this context. Fourth, the data

on this analysis only partially accounts for the important changes introduced by the Food

Labelling and Regulation Act of 2012, which prohibits the sale of junk foods inside schools

since July of 2016. Studying more closely the interaction between the SMP and changes in

the food environment by relying on compliance data from schools is a promising avenue to

understand the effects of regulations that target obesogenic environments. Finally, while I

account for physical activity in this study, body mass is only a proxy to understand how SED

influence behavior. In the following years, additional data from JUNAEB will be available

to directly explore the link between early development and eating behaviors.

Many countries are concentrating their efforts on enacting strict regulations to shape

their food systems in order to mitigate the obesity epidemic, with limited success. However,

results from this study contribute to the recent RCT evidence that investing in children’s

socioemotional development and optimal nutrition through pre-school and beyond can be

extremely effective to prevent obesity among children in the short term, but also to avoid

excess weight over the life-cycle.

23Preliminary analysis using the proportion of obese peers in the previous year shows no significant
differences in the LATE among students exposed to a higher or lower proportion of obese classmates.
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A The Chilean National Board of School Aid and Schol-

arships

Chile has several long-standing social programs directed to children and their families in the

school context. Since 1964, the National Board of School Aid and Scholarships (JUNAEB,

Spanish acronym), an agency part of the Ministry of Education, has been responsible for

assessing students’ needs and allocating resources through different programs. Their mission

statement follows24:

To support all students in a condition of social, economic, psychological and/or

biological disadvantage, by providing quality, comprehensive products and ser-

vices, that contribute to the realization of equal opportunities, human development

and social mobility.

JUNAEB manages programs and services covering all educational levels from pre-school

to college. The range of programs includes: medical and dental services, nutrition, stim-

ulation and mental health, scholarships, transport, housing and school supplies. The two

largest programs within JUNAEB are the School Meals Program (since 1964) and the Abil-

ities for Life Program, AfLP, (since 1999). Both programs are considered large relative to

the served population (as a fraction of target students), in comparison to similar programs

in other countries (McEwan 2013; Murphy et al. 2017). Since 2016, the SMP covers the

60% of students based on vulnerability at the individual level.25 As of 2018, AfLP provided

services to 30% of public and subsidized schools, targeted by the proportion of vulnerable

students attending each school. Given eligibility, participation in the AfLP for schools (and

their communities) is voluntary(Murphy et al. 2017). During the last decades, both pro-

grams have provided support to hundreds of thousands of families with adequate nutrition

and mental health services.

24Translated from JUNAEB website
25Vulnerability and eligibility criteria is defined and measured as explained in Section 2.
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As discussed in the Introduction, countries during and post nutritional transition face

a particular challenges when it comes to nutrition and stimulation during childhood. After

toddlerhood, rapid weight gain among children can be a cause and consequence of insuf-

ficient socioemotional stimulation. As noted by Alderman and Bundy (2011), SMPs can

provide significant support to low income students and their families, promoting parental

investments. In obesogenic environments, SMPs with high nutritional value and adequate

energy contribution can help to protect children from obesity risk induced by less nutritional

food options outside the school. Moreover, integrated interventions such as the SMP and

AfLP have a substantial potential to impact students’ development over the life-cycle.

While identifying and estimating the effects of the AfLP on children’s development is

outside the scope of this paper, I do report differential effects of the SMP across schools

participating and not participating in the AfLP (Appendix Table C.5). Given the scope and

size of the AfLP, it seems reasonable to expect differential effects of the SMP across schools.

Preliminary results suggest that after balancing the sample by eligibility criteria for the AfLP

and other relevant characteristics of students, for girls that attend schools participating on

the AfLP, the protective effect of the SMP is much larger and significant. Results for boys

show a similar direction but with a substantial variation. Overall, given the limited evidence

from large scale nutrition or stimulation programs (Kautz et al. 2014), together, the SMP

and AfLP constitute an unique starting point to contextualize the potential effects of RCT-

based interventions when they are scaled up to population level using mean-tested eligibility

criteria.

A.1 JUNAEB administrative data

Every year, JUNAEB requires the assistance of all schools participating in the SMP to col-

lect a census on the health and vulnerability of children attending such schools (regardless of

SMP eligibility). Children from pre-school, first, fifth and ninth grade participate in anthro-

pometric measurements and their parents complete an extensive household and child survey.
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These two components form the Nutritional Map (NM) the Vulnerability Survey (VS). In

2015, 742,489 children had both instruments applied, this is 90% of all students attending

public or private subsidised schools.26 The coverage of the instruments is remarkable, con-

sidering that average daily attendance rates in Chile, as well as many developed countries,

is close to 90%. Annual reports from JUNAEB show that coverage rates for the instruments

has not changed significantly over time.27 As noted in section 3, I refer to SMP data as

the dataset for the sub-sample of students with valid NP and VS instruments. Appendix

Table A.2 summarizes a comparison between official enrollment data and the population

with SMP data in the 2014-2015 cohort.28 Compared to Kindergarten, SMP data coverage

is lower in first grade, which can be explained by two factors. First, While SMP in pre-school

is virtually universal, several subsidized schools have no participation in the program, hence

SMP data is not collected. Secondly, average daily attendance decreases as children move

through the educational system.29

The NM is conducted by the class professor (or the professor designated by the school)

through direct measurement of children’s weight and height, as well as presence of cavities.

While there is significant variation in the methods and instruments used for the measure-

ments, the distribution of data is consistent across sub-populations and over time. Studies

conducted in random samples of Chilean students show that while the distribution of mea-

surements from teachers are not substantially different than trained professionals, there is

room for missclassification of nutritional status due to noise introduced by variation in the

methods and instruments used by teachersKain et al. 2010; Amigo et al. 2008. Evidence

suggests that teachers are more likely than trained professionals to heap (round) weight and

height measures, which create important discrepancies in the BMI-z averages. Appendix

Figures A.1 and A.2 show heaping in height and weight in the SMP data for children in the

2014-2015 cohort when attending first grade. Average BMI-z is significantly lower in the ob-

26For further information on the Chilean voucher system, see Mizala and Torche (2012).
27For more see JUNAEB Nutritional Map.
28Similar calculations for the 2012-2018 cohort are available upon request.
29For an example with U.S. data visit the following link.
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servations with heaped weight data, which represent three quarters of the sample (.96 versus

1.12 in the non-heaped weight observations). Differences between heaped and non-heaped

height data are not significant. However, heaping does not appear to be statistically related

to school or other student level characteristics.

The VS contains rich information at the household level to characterize vulnerability

along with several dimensions of child’s health and development. The instrument presents

some differences between each educational level. The common information is: household

composition and interactions with index child, geographic location and cultural background,

educational attainment and occupation of caregivers, physical resources for learning and

development, children’s health status and educational attainment. Also in all years there

are questions regarding birth and breastfeeding frequency. There are two sections that are

different between pre-school and the school years. The first one relates to paternal time

investments (only available in pre-school) and the second one relates to social and emotional

aspects the child (only available in school grades, with slight variation across grades).30

VS data has been consistently collected and coded since 2007 (including the generation of

standarized anthropometric measurements from the MN using 2007 WHO reference guide).

However, there are two important caveats to constructing longitudinal information at the

household level. First, the quality of the data in the year 2013 is limited due to changes in the

questionnaire recording format, affecting all grades. Secondly, the surveys before and after

2015 contain slight variations in the context of the questionnaire. For example, a section on

children health difficulties is only introduced from year 2014. As a result, for the 2014-2015

cohort, it is not possible to construct latent factors in both periods. Information on the

effect that variation in the sections of the VS questionnaire affects the model specification

in each cohort is explained in Appendix B.

30A version of the VS questionnaires (in Spanish) can be acquired from JUNAEB, upon request.
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A.2 Estimation sample

Table B.2 shows descriptive information on the estimation samples, including the sample

of all children linked longitudinally (Panel sample). There are not significant differences

across estimation samples, however the sample size decreases significantly when data is

linked longitudinally. The main reasons for the loss of data are: random absences, repeating

grades, postponing entry to First Grade, and children not attending Kindergarten.
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Table A.1: Descriptive statistics

1st grade 2015 1st grade 2015 (urban) Panel (2014-2015) RD Panel (2014-2015)
Anthropometrics Boys Girls Boys Girls Boys Girls Boys Girls
Age (months) 79.8 79.1 79.8 79.1 79.0 78.6 79.0 78.6

5.6 5.2 5.5 5.2 4.6 4.5 4.6 4.5
Height-for-age (Z-score) 0.26 0.32 0.27 0.33 0.31 0.37 0.30 0.35

1.2 1.16 1.19 1.16 1.16 1.14 1.16 1.14
BMI-for-age (Z-score) 1.06 0.92 1.05 0.91 1.04 0.92 1.05 0.93

1.49 1.32 1.48 1.31 1.46 1.31 1.46 1.31
Fraction overweight 52.7% 49.3% 49.8% 46.0% 49.7% 46.4% 50.0% 46.8%
School characteristics
SMP participation =1 0.74 0.74 0.72 0.72 0.72 0.72 0.78 0.78
School vulnerability index (IVE) 70.3 69.5 68.3 67.5 68.3 67.7 70.5 69.8

17.4 17.4 17.2 17.2 16.9 16.9 15.5 15.5
Public school = 1 0.44 0.41 0.39 0.37 0.38 0.37 0.41 0.39
Attended Kindergarten = 1 0.98 0.97 0.98 0.98 0.99 0.99 0.99 0.99
Household characteristics
Mother’s education (years) 12.0 12.0 12.2 12.2 12.3 12.3 12.1 12.1

4.0 3.9 4.0 3.9 3.8 3.8 3.6 3.6
Mother’s age (years) 33.1 33.1 33.2 33.2 33.1 33.2 32.7 32.8

6.9 6.9 6.9 6.9 6.8 6.9 6.8 6.9
Household size 4.7 4.6 4.7 4.7 4.6 4.6 4.7 4.7

1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7
Mother in labor force = 1 0.61 0.62 0.62 0.61 0.63 0.64 0.61 0.62
Lives with father = 1 0.65 0.64 0.65 0.64 0.65 0.65 0.63 0.63
Ethnic background = 1 0.13 0.13 0.13 0.13 0.12 0.12 0.13 0.13
Sample size 101,736 98,306 89,781 87,120 70,681 72,421 58,941 60,342

Notes: Panel indicates children in urban households matched with Kindergarten data. RD Panel indicates children in urban households matched
with Kindergarden data and Household Vulnerability Score (FPS). Standard deviations in italics, if applicable.
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Table A.2: School enrollment and SMP data

Kindergarten 2014 1st Grade 2015
MINEDUC JUNAEB MINEDUC JUNAEB

Public and subsidized 193,713 188,512 97% 236,201 200,063 85%
Public 74,098 70,067 95% 94,152 85,082 90%

Subsidized 119,615 118,445 99% 142,049 114,965 81%

SMP: School Meal Program (JUNAEB).
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Figure A.1: Weight distribution for children in first grade during 2015 (kgs.)
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Figure A.2: Height distribution for children in first grade during 2015 (cms.)
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B Measuring socioemotional development and parental

investments

In the last decade, several economists have provided a strong framework to incorporate

psychological constructs into economic models (Almlund et al. 2011; Alderman et al. 2014;

Attanasio 2015; Heckman et al. 2013; Cunha et al. 2010). This framework is often referred as

the production technology of early human capital (or skills). Alderman et al. (2014) does an

excellent job of characterizing the types of human capital inputs in three groups: cognitive,

socioemotional and physical health. Although measuring cognition and physical development

has been widely studied, less consensus exists on characterizing and measuring SED (Kautz

et al. 2014). A main issue is that SED can only be proxied. Psychology, neuroscience and

similar fields provide strong theoretical background and extensive evidence on survey items

and inventories that consistently identify a given personality (or character) construct. As

noted by Kautz et al. (2014), personality constructs contain a mixture of two components:

the part that is malleable over time and the portion that is mostly inheritable and stable in

the life-cycle. Throughout this paper, I refer to SED as those that, at least to some extent,

can be shaped during developmental stages. These skills can be considered equivalent to

character constructs discussed in the psychology literature, such as personality traits.31

A prominent theoretical model in psychology is the Big Five Inventory (BFI), developed

by [cite]. The BFI consists in 44 items that are rated in a 1-5 Likert scale (e.g. strongly

agree to strongly dissagree). The BFI questionnaire aims to elicit five key dimensions of

personality: Extraversion, Agreeableness, Conscientiousness, Neuroticism and Openness.

Statistical analysis from several sources confirms the existence of personality traits that are

consistent with this model and stable across different populations, although not necessarily

fixed over time (Donnellan and Lucas 2008; Specht et al. 2011). However, the extent that

personality traits relate to behavior is part of a larger and complex system (Almlund et al.

31Some studies refer to these traits as the stable, inheritable part of personality. However, I avoid such
distinction in order to remain consistent with the language used in economics and psychology
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2011). As such, for any given level of personality traits, these can be interpreted as the anchor

from which behavior varies depending on the situation (Fleeson and Noftle 2008). In the

economic and psychology literature, several authors have model socioemotional development

among children using these personality traits and other measures of behavioral performance

(e.g. inhibitory control, executive functioning, resilience), as they are consistent with the

definition of skills: malleable over time and predict relevant economic and social outcomes

in the short and long term (Ehrler et al. 1999; Heckman et al. 2013).

Current evidence from several programs and interventions at different ages elucidates a

joint production of cognition, physical health and SED during early childhood (Attanasio et

al. 2015b; Heckman and Pinto 2015; Kautz et al. 2014; Alderman et al. 2014; Behrman et al.

2004). The link between physical health and cognition has been widely studied (see Heckman

(2007) and Behrman (1996)). The connection between socioemotional development and

mental health in children (and adults) is less understood. While some personality traits have

been associated with higher likelihood of mental disorders (depression, ADHD, addiction),

neuroscience scholars are only beginning to study the biological basis of how cognition,

personality, values, identity and memory direct behavior. Nevertheless, personality traits

are consistent predictors of behavior and can be fostered during early childhood, thus being

a policy-relevant starting point to study the connection between socioemotional development

and specific health behaviors.

From an empirical perspective, consistently measuring SED relies in the psychometric

properties of the questionnaires that are developed to elicit specific constructs. There is a

myriad of different inventories and scales that capture different dimensions of personality,

development and behavior. Some of this off-the-shelf questionnaires have been extensively

studied in terms of their construct validity. However, in many cases, instead of relying on

off-the-shelf surveys, programs and interventions develop their own ad-hoc questionnaires

(e.g. Perry Program). Regardless, the same principles and methods for analysis of construct

validity can be applied, in order to develop consistent measures of skills. In the remainder
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of this section I further describe the steps to obtain SED and parental investment factors

from the items in the Vulnerability Survey data.

B.1 Measures available in the Vulnerability Survey data

Here I discuss the model implemented to estimate short-term SMP effects in the 2014-2015

cohort, however the procedures are similar in other reported analyses with slight differences

due to small changes in the questions over time. The Vulnerability Survey in first grade has

two sections where aspects of socioemotional and cognitive development arise. The first set

of questions document health-related behavioral difficulties, including motor, visual/hearing,

self-control, learning and task performance (items D1-D9). The second set measures aspects

of affection, social interactions and curiosity (items S1-S13). Appendix Table B.3 lists the

Vulnerability Survey items used to construct SED and the questions used to measure parental

time investments in Kindergarten (which are not available in first grade), items I1-I7.

An important feature of the proxy measures in the Vulnerability Survey is the emergence

of response styles, i.e., consistent patterns of response across items for each individual(He

et al. 2014). In this case, a large fraction of parents have a tendency of consistently re-

port ”desirable” behavior from their children, alongside with minimal behavioral difficulties

(13% of parents respond the lowest value on the scale to 20/22 items). Extensive literature

proposed methods to address the presence of response styles when measuring personality

constructs. Following Aichholzer (2014), I model response styles as individual (random)

intercepts that are common across all measures. Another feature of the survey items on the

Vulnerability Survey data is how questions are framed to elicit a given response. All but one

of the questions are phrased such that lower values are associated with desirable/healthy

behavior. Question S7 is inverted relative to the rest of survey items, eliciting a different

response pattern. This introduced an additional challenge to identification.
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B.2 Exploratory factor analysis

A starting point to characterize skill constructs is to conduct Exploratory Factor Analysis

(EFA), to unveil the potential structure of the measurement system (Gorsuch 2003). In

contrast to Attanasio et al. (2015b), in the analysis of the 2014-2015 cohort, I separately

estimate the measurement system for skills and investments, for two reasons. First, a large

fraction of students are not linked longitudinally, and excluding them from analysis can af-

fect the underlying distribution of underlying factors. Secondly, while response styles are

observed when parents respond to child’s behavior, answers directed towards time invest-

ments do not present similar skewness. Thus, imposing a random intercept across all survey

items would not be recommended. In Appendix Table C.2, I report the differences between

the estimated correlations between investment and skills when the measurement system is es-

timated jointly versus separated within the same sample. Estimates suggest that estimating

factors separately does not introduce significant changes in the underlying distribution.

Apppendix B.4 reports the (quartimin) rotated factor loadings from EFA with random

intercepts. Most questions load into one factor, consistent with previous studies that propose

a dedicated measurement system, i.e. each measurement loads into one factor. Many criteria

have been proposed to determine the number of factors. In this analysis, based on the

Kaiser’s eigenvalue rule and the Cattrell’s scree plot criteria (Figure B.2, data suggests that

after accounting for response styles, four factors can be identified. Based on the questions’

content and structure, as well as the rotated factor loadings, I consider three of the factors

to be consistent with dimensions of the BFI (extroversion, openess, neuroticism) and one

factor that represents a process measure (dubbed as ”learning” skill).

B.3 Confirmatory factor analysis

The next step is to estimate the dedicated measurement system, as presented in Methods

section. The scale in all questions used to elicit socioemotional skill factors are inverted

to facilitate interpretation. As discussed, I follow standard normalization of loadings and
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mean factors for identification, while introducing a random intercept across measurements

to capture response styles. Based on Cunha et al. (2010) and Attanasio et al. (2015b),

the measurement system is estimated by approximating the distribution of latent factors by

mixture or joint normal distributions and allowing the error terms to be independent and

normally distributed.

I define θ as the vector of all unobserved factors (skills and investments, to simplify

notation). For each j factor, I have k measurements (M). The measurement system can be

defined as:

Measures:M j
kt = a

j
kt + λ

j
ktlnθ

j
t + η

j
kt (6)

Factor Means: E(lnθjt ) = µ
j
t (7)

Factor Covariance: V ar(Θ) = Ωθ (8)

Where a denotes factor intercepts, λ indicates factor loadings, and η are independent

gaussian errors. This is a dedicated system, where each measure can only be associated with

one factor. The structure of the measurement system was chosen based on exploratory factor

analysis, or EFA for short. To recognize the deviations from multivariate normality in the

distribution of the data, I approximate the joint distribution of latent factors as a mixture of

two gaussians: Fθ = πφ(µA,ΩA)+(1−π)φ(µB,ΩB). where π is the mixing factor. In matrix

form, the measurement system can be represented as M = Λlnθ + Ση, where Λ is a matrix

that incorporates the normalizations required for the dedicated measurement system, and Σ

is a diagonal variance-covariance matrix. As such, the mixture factor model to be estimated

from data is:

FM = πφ(ΠA,ΓA) + (1− π)φ(ΠB,ΓB) (9)

Where Π = Λµ and Γ = ΛΩθΛ + Σ, and the normalization πµA + (1 − π)µB = 0 is im-
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posed for identification. Given the restrictions between measurement and underlying factors

described above, we can identify all the parameters in the system with one additional nor-

malization: the factor loading for the first measurement associated with each factor is fixed

as one, which determines the scale of the factor.32 The joint distribution of the measurement

system can be estimated by maximum likelihood. With the estimated parameters, we can

predict the factor (Barlett) scores for each individual with the following formula:

θ̂t = (Ψ′Σ−1Ψ)−1Ψ′Σ−1Mt (10)

Given the potential for response sytles across measurements, I allow the intercepts to

have a common (random) component across measurements for each individual (parent) that

is orthogonal to the underlying factors: ajikt = ait + a
j
kt.

Initially, the system was estimated allowing for different loading for each SMP eligibility

group, however there are not statistically significant differences between eligibility groups and

the factor loadings or mixture weights. Therefore, the final system is estimated assuming

equal factor loadings across eligibility groups. Appendix Figure B.1 shows the density of the

estimated random intercept. Most parents in the data express a significant response style

that correlates positively with parent’s education and expectations regarding their children’s

human capital attainment, which suggests social desirability bias. Appendix Table B.5 shows

the estimated factor loadings in each measurement equation. Appendix B.6 summarizes the

correlation among all factors. As expected, all factors have a positive relationship with time

investments, although of different magnitudes.

A common way to understand the importance of the measurement system is to analyze

the signal to noise ratios, which captures the information content of each measure to the

common factor.

32In this case, all measurements have the same domain, since they are all based on Likert-type scales.
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s
lnθkt
j =

(λj
kt)

2V ar(lnθkt)

(λj
kt)

2V ar(lnθkt) + V ar(ηjkt)
(11)

Table B.1 shows the structure of the measurement system for skills and investments as

well as the signal to noise ratios. The results are very similar to comparable studies (At-

tanasio et al. 2015b; Attanasio et al. 2015a), confirming the importance of using multiple

measures to mitigate measurement error. Extroversion indicates high energy levels, socia-

bility and emotional expressiveness. Neuroticism refers to emotional instability, anxiety,

sadness and irritability (scale is reverse so all the scale of the factor reflects absence of the

trait, i.e., emotional stability). Openness characterizes curiosity, independent-minded, in-

tellectual and imaginative (John and Srivastava 1999). An additional confirmation of the

statistical characteristics of the obtained factors comes from comparing the results from the

measurement system against the simple averages of BFI measurements on a sub-sample of

young caregivers (20 years of younger) in the ELPI data. Table B.2 shows correlation among

the estimated socioemotionalskills from the Vulnerability Survey and those in the ELPI sam-

ple. The similarities in the relative relationships among factors is remarkable, as extroversion

and openness are closely related, while neuroticism seems to relate to the other two skills

to a similar degree. Moreover, in terms of the learning factor, it seems that neuroticism

correlates, to a great extent, with learning skills, followed by openness, while extroversion is

less meaningful.33

As expected, we noted important differences in SED by gender. Figures B.3 and B.4

show the kernel density for skills and parental time investments by gender. In a similar

way, there are also meaningful differences in the accumulation of socioemotionalskills and

parental time investment by years of education and the presence of a father figure.34 Overall,

at the same age (on average), girls have significantly lower BAZ and higher socioemotional

development. In particular, differences in neuroticism are important as they have been

33Note that in part this can be due to the timing in which data is collected, therefore interpretation
should proceed with caution.

34Detailed results are available upon request.
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Table B.1: Signal to noise ratios

θE L

affection to family 39.6% difficult to learn 46.1%
affection to peers 45.0% difficult to perform a task 84.5%
express feelings 40.9% difficult to complete homework 85.3%

shows feelings physically 50.4% θN

plays with peers 31.5% difficult to understand others 33.2%
shares with peers 24.5% explosive/aggressive 11.6%

θO difficult to control behavior 61.9%

ask adults 38.3% difficult to get along with peers 40.6%

interested in books 36.8% I

interested in environment 54.0% reads to child 39.3%
plays to (dis)assemble 30.8% plays music with child 34.2%
shows artistic interest 28.3% paints or writes with child 36.3%

cultural activities with child 47.5%
goes to parks with child 32.7%
plays outside with child 41.8%

takes child to play with peers 26.1%

Questions refer to index child in each case. Calculations done to the skills and investments in
log scale.

Table B.2: Correlations among socioemotional factors

ELPI Big Five Inventory, (unadjusted average scores, n = 2,842)
θE θN θO

θE 1
θN 0.191 1
θO 0.368 0.197 1

VS (random intercept CFA, n = 193,539)
θE θN θO

θE 1
θN 0.276 1
θO 0.753 0.335 1
L 0.158 0.752 0.341

ELPI: 2012 Longitudinal Survey of Early Life (Big Five Inventory applied to primary
caregivers younger than 20 years). Calculations done to the skills and investments in
log scale.

49



previously associated to adoption of healthy behaviors (Heckman et al. 2013).

B.4 Available measures across cohorts

Following the same approach presented here, Appendix Table B.7 shows the availability of

measures to characterize different constructs in every year of data available for each cohort.

Although in the analysis of the 2014-2015 cohort there is only one observation of each factor

per child, the study of long term effects (cohort 2012-2018) includes measures of SED in

more than one time period. In the latter case, the model is estimated in the panel sample,

this is the students that are linked longitudinally. The main reason to favor estimating the

dynamic measurement system while losing a large fraction of the sample, is to maintain the

scale of factors over time. As noted in Agostinelli and Wiswall (2016), re-normalizing the

data in each time period can introduce bias and obscures the interpretation of within child

variation in skills over time.
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Table B.3: Vulnerability Survey questions used in measurement system

Item Question Item Question
How often does the child: How difficult is for the child to:

S1 show affection to family D1 perform a task
S2 show affection to peers D2 complete homework
S3 express feelings D3 see without glasses
S4 shows feeligs phisically D4 hear without aid
S5 plays with peers D5 walk without assistance
S6 shares with peers D6 understand others
S7 is explosive/aggressive with others D7 learn
S8 participates actively in games D8 control behavior
S9 ask questions to adults D9 get along with peers
S10 is interested in books
S11 is interested in his/her environment With the child, how often:
S12 plays to (dis)assemble objects I1 read or tell stories
S13 shows artistic interest I2 sing or play an instrument

I3 paint or write
I4 participate in cultural activity
I5 participate in sports
I6 play in a public park or square
I7 took to play with peers

Vulnerability Survey: Vulnerability Survey (JUNAEB).
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Table B.4: Quatimin-rotated factor loadings (random intercept EFA, standarized values)

Factors
Measurements θO θE θN L
difficult to perform a task -0.014 0.001 0.028 0.001 -0.014 0.002 0.920 0.002
difficult to complete homework -0.008 0.001 0.026 0.001 0.007 0.002 0.904 0.002
difficult to understand others 0.125 0.006 -0.096 0.006 0.313 0.007 0.255 0.006
difficult to learn 0.161 0.005 -0.108 0.005 0.212 0.006 0.495 0.006
difficult to control behavior 0.027 0.003 -0.052 0.003 0.678 0.007 0.127 0.007
difficult to get along with peers -0.041 0.003 0.108 0.005 0.686 0.004 -0.058 0.002
affection to family 0.034 0.005 0.580 0.006 -0.005 0.004 0.022 0.003
affection to peers -0.012 0.005 0.632 0.006 0.132 0.005 -0.002 0.003
express feelings 0.025 0.005 0.638 0.006 -0.081 0.003 0.059 0.003
shows feeligs phisically 0.030 0.005 0.687 0.006 -0.043 0.003 0.042 0.002
plays with peers 0.102 0.008 0.458 0.009 0.147 0.007 -0.056 0.005
shares with peers 0.116 0.007 0.353 0.008 0.208 0.006 -0.052 0.004
explosive/aggressive -0.036 0.004 0.021 0.005 0.342 0.004 -0.002 0.004
participates actively 0.267 0.008 0.224 0.008 0.077 0.006 -0.045 0.004
ask adults 0.522 0.005 0.152 0.005 -0.056 0.003 -0.003 0.003
interested in books 0.604 0.004 -0.076 0.003 0.025 0.004 0.146 0.004
interested in environment 0.712 0.004 0.040 0.004 -0.006 0.002 -0.046 0.002
plays to (dis)assemble 0.569 0.005 0.025 0.004 -0.035 0.003 -0.049 0.003
shows artistic interest 0.519 0.005 0.027 0.004 0.017 0.004 -0.021 0.003

Notes: RI-EFA estimates by maximum likelihood on panel data sample. Variables representing dedicated system
in bold, standard error in italics.
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Table B.5: Factor loadings (random intercept CFA)

Factor
Measurements θO θE θN L
difficult to complete homework 0 0 0 1.000
difficult to perform a task 0 0 0 0.981
difficult to learn 0 0 0 0.592
difficult to understand others 0 0 0.444 0
difficult to control behavior 0 0 1.000 0
difficult to get along with peers 0 0 0.556 0
affection to family 0 0.756 0 0
affection to peers 0 0.123 0 0
express feelings 0 1.110 0 0
shows feeligs phisically 0 1.212 0 0
plays with peers 0 0.889 0 0
shares with peers 0 1.000 0 0
ask adults 0.733 0 0 0
interested in books 1.000 0 0 0
interested in environment 0.899 0 0 0
plays to (dis)assemble 0.816 0 0 0
shows artistic interest 0.956 0 0 0

Notes: RI-CFA estimates by maximum likelihood on panel data sample.
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Table B.6: Estimated correlation among predicted factors

Unadjusted average scores
θE θN θO

θE 1
θN 0.258 1
θO 0.539 0.199 1
L 0.272 0.751 0.413

Confirmatory factor analysis
θE θN θO

θE 1
θN 0.475 1
θO 0.823 0.393 1
L 0.284 0.768 0.422

Random intercept confirmatory factor analysis
θE θN θO

θE 1
θN 0.258 1
θO 0.748 0.314 1
L 0.141 0.739 0.320

Vulnerability Survey: Vulnerability Survey (JUNAEB). CFA: Confirmatory
Factor Analysis.

Table B.7: Latent factors based on available EVS data

Pre-school
2012 2014 2015 2016

θE

θN X X
θO

L X X
I X X X X

Elementary school
2014 2015 2017 2018

θE X X X X
θN X X X
θO X X X X
L b X X X

Vulnerability Survey: Vulnerability Survey (JUNAEB).
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Figure B.1: Distribution of random intercept in the measurement system
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Figure B.2: Scree plot for Exploratory Factor Analysis (skills)
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Figure B.3: socioemotionalskills by gender
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Figure B.4: Parental time investments and learning skills by gender
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C Specification analysis and robustness checks

C.1 Factor analysis

Results from Confirmatory Factor Analysis suggests that there are no major differences in

the relationship between different factors when investments and skills are estimated jointly

or as independent measurement systems. Appendix Table C.1 reports the variances of the

estimated skill factors in the overall sample versus the Panel sample for the 2014-2015 cohort.

Appendix Table C.2 shows the correlations between in the skill and investment factors when

measurement system is estimated jointly versus separated, using the Panel sample for the

2014-2015 cohort.35

C.2 Local average treatment effects

This section reports different complementary analysis to understand the validity of the SMP

local average treatment effects. Appendix Figure C.1 shows the elibility to the program

for the different cut-offs. Appendix Table C.3 reports standard specification tests to the

regression discontinuity LATE estimates. I include the impact on the LATE estimates for

boys and girls from the following changes on specification: functional form (linear versus

quadratic), placebo test (age) and bandwidth selection . Appendix Table C.4 shows further

robustness checks due to different characteristics of the data. I report sensitivity of LATE

estimates that might arise from estimating the LATE using the RD Panel data only. Simi-

larly, I show the estimated LATE on rural schools. Figures C.2 andC.3 show placebo tests

on other variables as well as the potential LATE of the SMP on SED. Finally, Figure C.4

presents the quantile estimates for the long-run exposure effects of the SMP in 5th grade.

35Additional specification checks for different cohort years are available upon request.

58



Figure C.1: Program eligibility by CVS
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Notes: Panel (a) indicates change in probability between low vulnerable and no vulnerable children. Panels
(b) and (c) indicates change in probability between low and high vulnerable. Panel (c) excludes children in
families participating on Chile Solidario, a comprehensive program that makes children automatically high

vulnerable, regardless of their FPS score. Each point represents one percentile of the data. Excludes
students without a FPS score. CVS: child vulnerability score (JUNAEB).
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Table C.1: Standard deviation of SED and investment factors, cohort 2014-2015

θE θN θO L I
Full sample 0.309 0.541 0.481 0.784 0.699

Panel sample 0.398 0.578 0.544 0.802 0.697

Skills notation as follows; E: extroversion, N: neuroticism, O:
openness, L: learning

Table C.2: Correlations between investment and socioemotional factors (Panel 2014-2015)

θE θN θO L
Investment (separated) 0.087 0.108 0.136 0.114

Investment (joint) 0.097 0.123 0.175 0.144

Skills notation as follows; E: extroversion, N: neuroticism, O:
openness, L: learning

Table C.3: Local average treatment effects: specification tests (dep var: BAZ)

linear polynomial placebo test (age) twice optimal bandwidth
Boys Girls Boys Girls Boys Girls

First Stage -0.97 -0.97 -0.98 -0.97 -0.97 -0.97

0.005 0.005 0.005 0.005 0.005 0.005
LATE 0.059 -0.128 -0.187 0.129 -0.006 -0.069

0.079 0.071 0.271 0.282 0.057 0.055
Cut-off 1.59 1.59 1.59 1.59 3.2 3.2

Bandwidth 0.4 0.4 0.41 0.37 1.60 1.40
N 7374 7134 7480 6198 14742 16477

Notes: significant values in bold (p<0.1) Bandwidth based on optimal MSE (mean squared error).
Standard errors in italics.

Table C.4: Further specification tests (dep var: BAZ)

rural schools RD panel
Boys Girls Boys Girls

First Stage - - -0.98 -0.98

- - 0.005 0.005
LATE 0.3 -0.234 0.109 -0.133

0.274 0.213 0.096 0.079
Cut-off 1.59 1.59 1.59 1.59

Bandwidth 0.638 0.634 0.714 0.77
N 3760 1410 1471 11750

Notes: significant values in bold (p<0.1 based on optimal MSE). Standard errors in italics. First
stage not available for rural schools due to perfect compliance for low vulnerable students.
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Table C.5: LATE by school participation in the Abilities for Life Program (AfLP)

boys girls
no AfLP AfLP no AfLP AfLP

LATE 0.026 -0.101 -0.178 -0.361

0.135 0.206 0.115 0.199
Bandwidth 0.59 0.59

N 10753 10442

Notes: significant values in bold (p<0.1) Bandwidth based on optimal MSE (mean squared error).
Standard errors in italics.

Figure C.2: Placebo tests (low vulnerable girls in 1st grade 2015)
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Notes: Panels: (a) Age (months), (b) Visual problems (1-5), (c) Height (cm). Excludes students without a
FPS score. CVS: child vulnerability score (JUNAEB).
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Figure C.3: Local polynomial fit for socioemotionalskills (low vulnerable girls in 1st grade
2015)
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Notes: Panels: (a) Openness, (b) Extroversion, (c) Externalizing behavior. Excludes students without a
FPS score. CVS: child vulnerability score (JUNAEB).
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Figure C.4: Average treatment effects by decile of BAZ for boys and girls in 5th grade
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Notes: Estimates for boys and girls using bandwidth based on optimal mean squared error. CVS: child
vulnerability score (JUNAEB).
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