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1 Introduction

It is widely acknowledged that the use of realized volatility measures (Hansen and

Lunde, 2011) can be beneficial for improving the accuracy of volatility forecasts on a

daily scale. This is typically done by choosing one of the following approaches.

First, dynamic models can be directly fitted to time series of realized measures.

Examples include the Heterogeneous AutoRegressive (HAR) (Corsi, 2009) and the

class of Multiplicative Error Models (MEM) (Engle, 2002; Engle and Gallo, 2006). A

drawback of this approach is that the focus is on the estimation of the expected level

of the realized measure, rather than on the estimation of the conditional variance of

returns. As it will be clarified in the next section, realized measures are designed to

consistently estimate the integrated variance which is related to, but different, from

the conditional variance. Namely, in the absence of microstructure noise and jumps,

the integrated variance can be interpreted as an unbiased estimator of the conditional

variance of returns.

The second approach makes use of time series models for daily returns, e.g.

GARCH-type models, where the conditional variance is driven by one or more

realized measures. The main idea is to replace a noisy volatility proxy, such as the

squared daily returns used in standard GARCH models, with a more efficient realized

measure. Differently from the above-mentioned approach, in this case, both low

(daily returns) and high (realized measures) frequency information are employed in

the model. Examples of models falling within this class include the HEAVY model

of Shephard and Sheppard (2010) and the Realized GARCH model of Hansen et al.

(2012). These two models are closely related but, nevertheless, they are characterized

by some distinctive features. Realized GARCH models include a measurement

equation allowing to gain, in a fully data-driven fashion, deeper insight on the statistical

properties of the realized measure and its relationship with the latent volatility. In

addition, the measurement equation offers a convenient framework for simulation

and generation of multi-step ahead forecasts. Differently, in HEAVY models, the

generation of multi-step ahead forecasts is guaranteed by the inclusion of an additional

dynamic updating equation for the conditional expectation of the chosen realized

measure.

A complication arising with both approaches is that realized measures are noisy

estimates of the underlying integrated variance, generating a classical errors-in-

variables problem. This typically leads to the rise of what is often called attenuation

bias. More precisely, the estimated response of the conditional variance to the past

realized measure will be negatively biased, compared to what we would have found

replacing the realized measure by the latent integrated variance. Although it is evident

that correcting for this attenuation bias can potentially lead to improved volatility

forecasts, this issue has not yet received much attention in the literature. Recently,

Bollerslev et al. (2016) found that, in a HAR model, letting the volatility persistence

depend on the estimated degree of measurement error leads to some improvement in

the model’s predictive performance. In the same spirit, Buccheri and Corsi (2019)

propose time-varying parameters HAR models that can account for both measurement

errors and non-linearities in the dynamics of realized measures. Moving to a GARCH

framework, Shephard and Xiu (2016) found evidence that, in a GARCH-X model,

the magnitude of the response coefficients associated with different realized volatility

measures is related to the quality of the measure itself. Finally, Hansen and Huang

(2016) observed that the response of the current conditional variance to past unexpected

volatility shocks is negatively correlated with the accuracy of the associated realized
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volatility measure.

Our contribution to research in this field is twofold. First, we develop extensions

of the standard log-linear Realized GARCH model that account for time-varying

attenuation bias effects in the conditional variance dynamics. This is achieved by

allowing the coefficients of the dynamic volatility updating equation of the standard

log-linear Realized GARCH model to vary over time as a function of an estimator of

the asymptotic variance of the realized measure. For the realized variance estimator,

this is given by a rescaling of the integrated quarticity of intra-daily returns while,

for the log-transformed realized variance, Corsi et al. (2008) show that the asymptotic

variance depends on the ratio of the integrated quarticity of intra-daily returns to the

squared integrated variance. As a consequence, the resulting model will give more

weight to lagged volatilities when these are more accurately measured. Second, we

empirically assess the impact of time-varying attenuation bias on tail risk forecasting.

The paper is organized as follows. Section 2 reviews the basic theoretical

framework behind the computation of realized measures and Section 3 discusses

the Realized GARCH model of Hansen et al. (2012). In Section 4, we then

provide theoretical and empirical insight on the occurrence of attenuation bias effects

in Realized GARCH models while Section 5 illustrates the proposed time-varying

parameters Realized GARCH models. Section 6 focuses on the associated estimation

and inference procedures and Section 7 illustrates the results of an application to tail

risk forecasting for a set of international stock market indices. Finally, Section 8

concludes.

2 Realized measures: a short review

In recent years, the availability of high-frequency financial market data has enabled

researchers to build reliable measures of the latent daily volatility based on the use of

intra-daily returns. In the econometric and financial literature, these are widely known

as realized volatility measures. The theoretical background to these measures is given

by the dynamic specification of the price process in continuous time. Formally, let the

logarithmic price pt of a financial asset be determined by the stochastic differential

process

d pt = µtdt +σtdWt 0 ≤ t ≤ T , (1)

where µt and σt are the drift and instantaneous volatility processes, respectively, whilst

Wt is a standard Brownian motion; σt is assumed to be independent of Wt . Under

assumption of a frictionless market, the logarithmic price pt follows a semi-martingale

process.

In that case, given a sequence of partitions t − 1 = τ0 ≤ τ1 ≤ . . . ≤ τM = t, the

Quadratic Variation (QV ) of log-returns rt = pt − pt−1, given by

QVt = plim
M→∞

M−1

∑
j=0

(pτ j+1
− pτ j

)2,

coincides with the Integrated Variance (IV )

IVt =
∫ t

t−1
σ2

s ds . (2)
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In the absence of microstructure noise and measurement error, Barndorff-Nielsen and

Shephard (2002) show that IV is consistently estimated by Realized Volatility (RV )

RVt =
M

∑
i=1

r2
t,i , (3)

where

rt,i = pt−1+i∆ − pt−1+(i−1)∆

is the i-th ∆-period intraday return, M = 1/∆. Although IV and the conditional variance

of returns do not coincide, there is a precise relationship between these two quantities:

under standard integrability conditions (Andersen et al., 2001) it can be shown that

E(IVt |Ft−1) = var(rt |Ft−1) , (4)

where Ft−1 denotes the information set at time (t − 1). In other words, the optimal

forecast of IV can be interpreted as the conditional variance of returns and the

difference between these two quantities is given by a zero mean error.

Barndorff-Nielsen and Shephard (2002) show that RV consistently estimates the

true latent volatility, when ∆ −→ 0. They also find that, conditional on the observed

realization of IVt , the asymptotic distribution of RVt is Normal

√
M(RVt − IVt)√

2IQt

→
d

N(0,1) , (5)

where IQt =
∫ t

t−1 σ4
s ds is the Integrated Quarticity (IQ). This, in turn, can be

consistently estimated as

RQt =
M

3

M

∑
i=1

r4
t,i . (6)

Replacing IQt by RQt in equation (5) still gives

√
M(RVt − IVt)√

2RQt

→
d

N(0,1). (7)

In financial modeling, the use of log(RVt) is often preferred to the “plain” RVt estimator

due to its better finite sample properties (see Corsi et al. (2008), among others). The

approximate asymptotic distribution of log(RVt) can be shown to be given by

(log(RVt)− log(IV t))√
2RQt

MRV 2
t

→
d

N(0,1). (8)

Furthermore, Corsi et al. (2008) provide empirical evidence that, in a HAR model,

choosing the logarithmic realized variance as a dependent variable and allowing for

time-varying volatility of realized volatility leads to substantial improvements in fit

and forecasting performance.

3 Realized GARCH models

The Realized GARCH (RGARCH), introduced by Hansen et al. (2012), extends

the class of GARCH models by first replacing squared returns, as the driver of the
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volatility dynamics, with a more efficient proxy, such as a RV measure. With this

change alone, the resulting specification can be seen as a GARCH-X model, where

the realized measure is used as an explanatory variable. A second extension is that the

Realized GARCH “completes” the GARCH-X, by adding a measurement equation that

explicitly models the contemporaneous relationship between the realized measure and

the latent conditional variance.

Formally, let {rt} be a time series of stock returns and {xt} be a time series of

realized measures of volatility. Focus here is on the logarithmic RGARCH model,

defined via

rt = µt +
√

ht zt , (9)

h̃t = ω +β h̃t−1 + γ x̃t−1 , (10)

x̃t = ξ +ϕ h̃t + τ(zt)+ut , (11)

where x̃t = log(xt), ht = var(rt |Ft−1) is the conditional variance and h̃t = log(ht). To

simplify the exposition, in the reminder, it is assumed that the conditional mean µt =
E(rt |Ft−1) = 0. The innovations zt and ut are assumed to be mutually independent,

with zt ∼
iid

(0,1) and ut ∼
iid

(0,σ2
u ).

The function τ(zt) can accommodate leverage effects, since it captures the

dependence between returns and future volatility. A common choice (see e.g. Hansen

et al. (2012)), found to be empirically satisfactory, is

τ(zt) = τ1 zt + τ2(z
2
t −1) .

Substituting the measurement equation into the volatility equation, the model implies

an AR(1) representation for h̃t

h̃t = (ω +ξ γ)+(β +ϕγ)h̃t−1 + γ wt−1 , (12)

where wt = τ(zt)+ut and E(wt) = 0. The coefficient (β +ϕγ) reflects the persistence

in (the logarithm of) volatility, whereas γ represents the impact of both the lagged

return and realized measure on future (log-)volatility. To ensure that the h̃t is

stationary, the required restriction is β +ϕγ < 1. Estimation of model parameters can

be easily performed by numerically maximizing a Gaussian Quasi-Likelihood (QL)

function. Regarding the statistical properties of these estimates, Li et al. (2019) have

recently formally proved their consistency and asymptotic normality for the log-linear

RGARCH model.

Compared to the linear RGARCH, the log-linear specification has two main

advantages: first, it is more flexible, since no constraints on the parameters are required

in order to ensure positivity of the conditional variance, which holds automatically

by construction; second, the logarithmic transformation substantially reduces the

heteroskedasticity of the measurement equation error term. For these reasons, this

paper exclusively focuses on the log-linear specification of the Realized GARCH

model.

4 Attenuation-bias effects in RGARCH models

In this section, our aim is to provide some insight on the arising of attenuation bias

effects in RGARCH models. In order to simplify the exposition, without implying any
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loss of generality, we assume that there are no leverage effects in the measurement

equation (τ1 = τ2 = 0) and exclude complications related to microstructure noise and

jumps. Also, we assume stationarity of the RGARCH processes considered in the

remainder of this section.

To start, let us consider a simple log-linear RGARCH model of order (1,0) where

the realized measure is replaced by the latent IVt . Referring to the notation defined in

the previous section, the resulting specification can be reformulated as an AR(1) for

ĨV t = log(IV t)

ĨV t = µI +πI ĨV t−1 +ut,I , (13)

where ut,I is assumed to be a sequence of zero mean iid errors with finite variance σ2
u,I ,

µI = ωIϕI +ξI and πI = ϕIγI , with the subscript I indicating that the parameters refer

to the model fitted using the true IVt . In addition, we assume γI > 0 and βI ≥ 0, that is

consistent with recurrent empirical evidence on the dynamics of time series of realized

variances.

The integrated variance is a latent variable and, in real data application, it can be

approximated by the realized variance. Letting εt be a series of iid measurement errors

with finite variance σ2
ε , we can write

R̃V t = ĨV t + εt ,

where R̃V t = log(RVt). It can be shown, by standard arguments, that equation (13)

implies an ARMA(1,1) model for R̃V t (see Bollerslev et al. (2016))

R̃V t = µI +πIR̃V t−1 + εt −πIεt−1 +ut,I . (14)

Assume now that a misspecified AR(1) model is fitted to R̃V t

R̃V t = ωR +πRR̃V t−1 +ut,R,

where ut,R is an iid sequence of zero mean errors with variance σ2
u,R. Letting γR(k) =

cov(R̃V t , R̃V t−k) and γI(k) = cov(ĨV t , ĨV t−k), for k > 0, by the assumptions made on

εt , ut,I and ut,R

γR(1) = γI(1) = πIγI(0) (15)

and

γR(0) = γI(0)+σ2
ε .

It then easily follows that

πR =
πIγI(0)

γI(0)+σ2
ε

= πI

(
1+

σ2
ε

γI(0)

)−1

, (16)

leading to the conclusion, in line with the findings of Bollerslev et al. (2016), that

modeling the noisy RVt , instead of the latent IVt , implies an autoregressive coefficient

πR lower than that characterizing the dynamics of the latent IVt . Equation (16) clearly

shows that the impact of this attenuation bias directly depends on the noise variance

ratio
σ2

ε

var(ĨV t )
: higher ratios correspond to more substantial reductions in volatility

persistence.

Since the empirical properties of the observed time series of financial returns

usually require working with models of order (1,1), it is of interest to extend our
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investigation to consider the impact of attenuation bias in this setting. Assuming a

RGARCH(1,1) for IVt implies that IVt follows the ARMA(1,1) model

ĨV t = µI +πI ĨV t−1 −βIut−1,I +ut,I , (17)

where the autoregressive coefficient is now given by πI = βI +ϕIγI , with βI > 0. By

standard theory, the following recursion holds

ρI(k) = πIρI(k−1), ∀k > 1 , (18)

where ρI(k) = γI(k)/γI(0) is the lag-k autocorrelation function of ĨV t . This implies

that

πI =
ρI(k)

ρI(k−1)
.

Also, it can be shown (see (Bollerslev, 1988), among others) that

ρI(1) =
(1−πIβI)(πI −βI)

1+β 2
I −2πIβI

. (19)

The value of βI can be then obtained as the solution to the following quadratic equation

(see Kristensen and Linton (2006))

β 2
I +bIβI +1 = 0 , (20)

where

bI =−π2
I +1−2πIρI(1)

πI −ρI(1)
.

For bI <−2, a well defined solution for βI in (20) is given by

βI =
−bI −

√
b2

I −4

2
.

The other available solution is not admissible since it is the reciprocal of the previous

one and leads to values βI > 1, in contradiction with the stationarity assumption.

Taking the same approach as for the (1,0) case, let us now assume that a misspecified

ARMA(1,1) model is identified for RVt

R̃V t = µR +πRR̃V t−1 −βRut−1,R +ut,R. (21)

By (15) and (18), it then follows that

πR =
ρR(k)

ρR(k−1)
=

ρI(k)

ρI(k−1)
= πI ,

so that the two models for IVt and RVt will be characterized by the same AR coefficient.

Regarding βR, as previously shown for the IV model, the value of βR can be obtained

as

βR =
−bR −

√
b2

R −4

2
,

where

bR =−π2
I +1−2πIρR(1)

πI −ρR(1)
.
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In order to better illustrate and interpret the relationship between the parameters

of RGARCH models of order (1,1) and the measurement error variance, we have

performed a Monte Carlo simulation study. The structure of the simulation process

can be summarized as follows

1. Generate zt ∼
iid

(0,1) and ut,I ∼
iid

N(0,σ2
u,I) , for t = 1, . . . ,T .

2. Generate an artificial log(IVt) series from the ARMA(1,1) model

ĨV t = µI +πI ĨV t−1 +wt,I −βIwt−1,I , for t = 1, . . . ,T ,

where wt,I = τI(zt)+ut,I .

3. Generate returns from a RGARCH(1,1) for ĨV t .

4. Contaminate ĨV t by an additive measurement error (εt ∼
iid

N(0,σ2
ε )), in order to

generate an artificial R̃V t series.

5. Using the ML method, fit a RGARCH(1,1) model using R̃V t as a realized

measure.

6. Repeat steps 1-5 for nsim times.

The above design is implemented setting nsim = 1000 and T = 2000, after discarding

the first 1000 observations taken as burn-in period. For the distribution of zt two

different settings have been considered: zt ∼
iid

N(0,1) and zt ∼
iid

√
ν−2

ν t(ν), with ν = 5.

Also, in order to illustrate the impact of the noise variance ratio (σε/σu,I)
2 on the

magnitude of the attenuation bias, keeping fixed to 0.4 the value of σu,I , three different

values of the measurement error standard deviation σε have been considered: σε ∈
(0.2,0.4,0.6). Finally, regarding the coefficients of the dynamic volatility equation,

in order to mimic different empirical settings, three different sets of parameter values

have been considered. The parameters of the simulated DGPs have been summarized

in Table 1 where the last six columns of the table summarize the simulation results

in terms of the simulated mean and standard deviations of the estimated (γR,βR,πR)
coefficients. The simulation results show that, as σε increases, the value of γR, in the

RGARCH model fitted to the RV series, tends to decrease while the opposite happens

for βR. The gap between the theoretical γI and βI parameters and the estimated γR and

βR tends to be more pronounced for higher values of σε . As previously remarked, the

value of πR tends to remain stable.

In conclusion of our discussion, some remarks should be done. In our simulation,

we have considered a simplified setting in which the realized measurement error

has been assumed to be homoskedastic. However, the theoretical results reviewed

in Section 2 suggest that the assumption of homoskedastic measurement errors is

an evident oversimplification. In the presence of a time-varying measurement error

variance, the size of the attenuation bias, for both γ and β , is expected to be time-

varying as a function of the value of this variance. This issue is addressed in the next

section that proposes and discusses extensions of the standard RGARCH model that

allow to take into account time-varying attenuation bias effects.
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Table 1: Simulated DGP settings and cofficients (columns 1-10), average and standard

deviation values of the estimated parameters γR, βR and πR for nsim = 1000 simulations

from RGARCH(1,1) model (columns 11-16). Key to table: θ̄ : average of estimated

θ values from the nsim simulated series; σθ : empirical standard errors of estimated θ
values from the nsim simulated series.

zt ωI γI βI ξI ϕI τ1,I τ2,I σu,I σε γ̄R σγR
β̄R σβR

π̄R σπR

N(0,1) 0.005 0.30 0.60 0.00 1.00 -0.05 0.10 0.40 0.20 0.260 0.031 0.637 0.028 0.897 0.016

N(0,1) 0.005 0.40 0.50 0.00 1.00 -0.05 0.10 0.40 0.20 0.347 0.032 0.551 0.027 0.898 0.014

N(0,1) 0.005 0.60 0.30 0.00 1.00 -0.05 0.10 0.40 0.20 0.515 0.032 0.382 0.026 0.897 0.012

N(0,1) 0.005 0.30 0.60 0.00 1.00 -0.05 0.10 0.40 0.40 0.194 0.027 0.703 0.029 0.896 0.019

N(0,1) 0.005 0.40 0.50 0.00 1.00 -0.05 0.10 0.40 0.40 0.257 0.028 0.640 0.029 0.897 0.016

N(0,1) 0.005 0.60 0.30 0.00 1.00 -0.05 0.10 0.40 0.40 0.387 0.028 0.510 0.027 0.896 0.014

N(0,1) 0.005 0.30 0.60 0.00 1.00 -0.05 0.10 0.40 0.60 0.140 0.022 0.756 0.032 0.895 0.023

N(0,1) 0.005 0.40 0.50 0.00 1.00 -0.05 0.10 0.40 0.60 0.190 0.023 0.707 0.030 0.896 0.019

N(0,1) 0.005 0.60 0.30 0.00 1.00 -0.05 0.10 0.40 0.60 0.289 0.025 0.610 0.028 0.897 0.015

t(0,1,5) 0.005 0.30 0.60 0.00 1.00 -0.05 0.10 0.40 0.20 0.267 0.032 0.629 0.027 0.897 0.015

t(0,1,5) 0.005 0.40 0.50 0.00 1.00 -0.05 0.10 0.40 0.20 0.359 0.041 0.542 0.026 0.898 0.013

t(0,1,5) 0.005 0.60 0.30 0.00 1.00 -0.05 0.10 0.40 0.20 0.534 0.048 0.368 0.027 0.898 0.012

t(0,1,5) 0.005 0.30 0.60 0.00 1.00 -0.05 0.10 0.40 0.40 0.203 0.031 0.693 0.030 0.897 0.017

t(0,1,5) 0.005 0.40 0.50 0.00 1.00 -0.05 0.10 0.40 0.40 0.275 0.035 0.621 0.030 0.897 0.015

t(0,1,5) 0.005 0.60 0.30 0.00 1.00 -0.05 0.10 0.40 0.40 0.409 0.048 0.491 0.033 0.898 0.013

t(0,1,5) 0.005 0.30 0.60 0.00 1.00 -0.05 0.10 0.40 0.60 0.154 0.034 0.739 0.063 0.893 0.062

t(0,1,5) 0.005 0.40 0.50 0.00 1.00 -0.05 0.10 0.40 0.60 0.207 0.032 0.689 0.032 0.896 0.018

t(0,1,5) 0.005 0.60 0.30 0.00 1.00 -0.05 0.10 0.40 0.60 0.313 0.039 0.586 0.035 0.897 0.015

5 Time-Varying Coefficient Realized GARCH models

with dynamic attenuation bias

In the previous section, we have provided evidence on the impact that measurement

errors, arising in the approximation of IV via the discretely sampled RV , can have on

the dynamic properties of the conditional variance in Realized GARCH models. Here,

relying on this evidence, we propose a generalization of the basic Realized GARCH

specification that accounts for dynamic attenuation bias effects due to the time-varying

variability of measurement errors in ex-post volatility estimation. As in Bollerslev et al.

(2016), a natural solution to deal with this issue is to consider time-varying parameter

models where the response of log(ht) to the lagged realized measure indirectly depends

on the value of σ2
uR,t

, through the ratio RQt−1/RV 2
t−1.

Practical implementation of these ideas in the RGARCH framework leads to the

Time-Varying Realized GARCH (TV-RGARCH) model as defined by the following

equations

h̃t = ω +βt h̃t−1 + γt R̃V t−1 , (22)

R̃V t = ξR +ϕR h̃t + τR(zt)+ut,R , (23)

γt = γ + γ1Ỹt−1 , (24)

βt = β +β1Ỹt−1 , (25)

where R̃Qt = log(
√

RQt), Ỹt = log(Yt) = log(
√

RQt/RVt) = R̃Qt − R̃V t . Consistently

with the evidence provided in Section 4, the fitted values of the γ1 and β1 coefficients

are expected to have negative and positive signs, respectively. If this holds, at time t−1,
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more accurate log-transformed realized measures will correspond to higher (lower)

values of γt (βt ). It can be immediately noted that the RGARCH model is nested in the

TV-RGARCH specification for γ1 = β1 = 0.

By simple algebra, the TV-RGARCH model can be further generalized by replacing

the specifications in equations (24)-(25) by the following

γt = γ + γ1R̃Qt−1 + γ2R̃V t−1 , (26)

βt = β +β1R̃Qt−1 +β2R̃V t−1 . (27)

We call the resulting model Extended TV-RGARCH (ETV-RGARCH). It can

immediately noted that equations (26) and (27) can be re-parameterized setting

γ2 = γ1 +ηγ ,

β2 = β1 +ηβ ,

making evident that the ETV-RGARCH nests the TV-RGARCH model for ηγ = ηβ =
0. From a different angle, under the null of a TV-RGARCH model, we have γ2 =−γ1

and β2 = −β1. So, we expect the estimated γ2 and β2 coefficients to be positive and

negative, respectively.

In order to make the (E)TV-RGARCH model dynamically complete and allow the

generation of multi-step ahead forecasts, we need to augment equations (22)-(25) with

a further measurement equation for R̃Qt

R̃Qt = ξQ +ϕQ h̃t + τQ(zt)+ut,Q . (28)

Conditional on Ft−1, we assume that (ut,R,ut,Q) and zt are stochastically independent

and

(
ut,R

ut,Q

∣∣∣∣Ft−1

)
∼
iid

MV N2(0,Σu), Σu =

(
σ2

u,R ρR,Qσu,Rσu,Q

ρR,Qσu,Rσu,Q σ2
u,Q

)
,

where the notation MV N2(µ,Σ) indicates a bivariate Normal distribution with

expectation µ and variance-covariance matrix Σ.

Remark 1. We model ut,R, the error term in the measurement equation for R̃V t , as being

conditionally homoskedastic. This assumption is indeed not central to our approach

and could be easily relaxed. Under this respect, reminding the discussion in Section

4, it is worth noting that ut,R has a complex nature being given by some function of

two different error sources. Of these, the first is given by the random measurement

error related to the discrepancy between the log-transformed realized measure and the

latent ĨV t , that is εt , in the example provided in Section 4. The second source of

error is related to the discrepancy between ĨV t and the log-transformed conditional

variance h̃t , that is wt,I = ut,I + τI(zt), adding leverage effects to the example provided

in Section 4. While it could be a reasonable simplification to assume that ut,I and

zt are homoskedastic, as reminded in Section 2, the same of course does not hold

for the realized measurement error εt . So, conditional heteroskedasticity of εt could

potentially provide support for the hypothesis of conditional heteroskedasticity of ut,R.

However, the size of this effect, and its empirical detectability, will inevitably depend

on the relative variabilities of the components of ut,R that is εt and wt,I . To investigate

the presence of conditional heteroskedasticity in the ut,R series, as a robustness check,

10



we have considered an alternative model specification where the conditional variance

of the RV measurement equation noise is time-varying, i.e.

(ut,R|Ft−1) ∼
iid

(0,σ2
uR,t

).

Since the variance of the realized measurement error εt is a function of the ratio

IQt/IV 2
t , it seems natural to model σ2

uR,t
as a function of its empirical counterpart

RQt/RV 2
t . Namely, motivated by standard results on the asymptotic distribution of R̃V t ,

in order to model the dynamics of σ2
uR,t

, letting Yt =
√

RQt/RVt , we have considered

the following specification

σ2
uR,t

= exp{δ0 +δ1V (Yt−1)} , (29)

where the function V (.) has been chosen to be either the log or the identity function;

the exponential formulation guarantees the positivity of the estimated variance, thus

avoiding to impose any constraints on the parameters δ0 and δ1. For δ1 = 0 the (E)TV-

RGARCH model is obtained as a special case.

Remark 2. As shown by Hansen et al. (2012) for the basic RGARCH model, the TV-

RGARCH model can be also represented as a Hidden Markov Model (HMM) driven

by the latent chain h̃t . Namely, substituting the measurement equations for R̃V t and

R̃Qt in h̃t we obtain the following representation of the conditional variance equation

of the ETV-RGARCH model

h̃t = λ0 +λ1,t h̃t−1 +λ2h̃2
t−1 +w∗

t−1 , (30)

where, under the stated assumptions, w∗
t is a sequence of iid errors2 defined as

w∗
t = κ3wR,t + γ1ξR wQ,t + γ1wR,t wQ,t + γ2w2

R,t (31)

and

λ0 = ω + γξR + γ1ξRξQ + γ2ξ 2
R ,

λ1,t = κ0 +κ1wR,t−1 +κ2wQ,t−1 ,

λ2 = β1ϕQ +β2ϕR + γ1ϕRϕQ + γ2ϕ2
R ,

κ0 = β +β1ξQ +β2ξR + γϕR + γ1ξRϕQ + γ1ξQϕR +2γ2ξRϕR ,

κ1 = β2 + γ1ϕQ +2γ2ϕR ,

κ2 = β1 + γ1ϕR ,

κ3 = γ + γ1ξQ +2γ2ξR.

The equivalent representation for TV-RGARCH models can be easily obtained by

substituting γ2 =−γ1 and β2 =−β1 in the above equations. So, although both (E)TV-

RGARCH and RGARCH models can be written as HMM models, the stochastic

structure of the (E)TV-RGARCH model is more complex than that of the RGARCH

model since the model is now driven by a non-linear latent chain. This feature

substantially complicates the derivation of stationarity and ergodicity conditions for

the proposed TV-RGARCH models. Investigation of these problems goes beyond the

scope of this paper and has been currently left for future research.

2Note that E(w∗
t ) 6= 0. However, without any loss of generality, equation (30) could be written as

h̃t = λ̄0 +λ1,t h̃t−1 +λ2h̃2
t−1 + w̄t−1 ,

where λ̄0 = λ0 +E(w∗
t ) and w̄t = w∗

t −E(w∗
t ), so that E(w̄t) = 0. The value of E(w∗

t ) can be easily derived

by simple algebra.
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6 Estimation and inference

The estimation of model parameters can be easily done by numerically maximizing

the likelihood function implied by appropriate assumptions made on the model’s error

terms zt , ut,R and ut,Q. In particular, the joint conditional density of (rt , R̃V t , R̃Qt) can

be factorized as

fr,R,Q(rt , R̃V t , R̃Qt |Ft−1) = fr(rt |Ft−1) fR,Q(R̃V t , R̃Qt |rt ,Ft−1) .

It follows that the contribution of the t-th observation to the overall log-likelihood can

be decomposed as

ℓ(rt , R̃V t , R̃Qt |Ft−1,θ) = log
(

fr,R,Q(rt , R̃V t , R̃Qt |Ft−1)
)
= log( fr(rt |Ft−1))

+ log
(

fR,Q(R̃V t , R̃Qt |rtFt−1)
)
. (32)

Due to the normality assumption for ut formulated in Section 5, (R̃V t , R̃Qt |rt ,Ft−1)

follows a MV N2 distribution. Further, we assume zt ∼
√

ν−2
ν tν , where tν denotes a

Student’s t distribution with ν degrees of freedom. The overall log-likelihood will be

then given by

L (r, R̃V, R̃Q|θ) =
T

∑
t=1

log( fr(rt |Ft−1))+
T

∑
t=1

log
(

fR,Q(R̃V t , R̃Qt |rt ,Ft−1)
)

= ℓr + ℓR,Q .

We will refer to ℓr and ℓR,Q as the partial and measurement log-likelihoods respectively.

Under the stated distributional assumptions, we get

ℓ(rt , R̃V t , R̃Qt |Ft−1,θ) = K̃(ν)− 1

2
h̃t −

ν +1

2
log

[
1+

r2
t

ht(ν −2)

]

− 1

2
log(|Σu|)−

1

2
u
′
tΣ

−1
u ut , (33)

for t = 1, . . . ,T , where θ is the vector of unknown model parameters, ut = (ut,R ,ut,Q)
′

and K̃(ν) = log(K(ν)), with

K(ν) =
Γ( ν+1

2
)√

π(ν −2)Γ( ν
2
)
.

The MLE of θ can be obtained by numerically maximizing the aggregated log-

likelihood

θ̂ T = argmax
θ

T

∑
t=1

L (r, R̃V, R̃Q|θ).

Under the usual regularity conditions, standard errors for the elements of θ̂ T can be

easily obtained from the numerically approximated observed Fisher information matrix

and inference can be performed relying on the asymptotic normality of θ̂ T . In order

to double check the validity of the standard asymptotic results on the distribution of

θ̂ T , as in Borup and Jakobsen (2019), we have implemented a parametric Bootstrap

resampling algorithm along the lines described in Paparoditis and Politis (2009). The
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main steps of the Bootstrap resampling procedure are summarized below. Throughout

the presentation, the following notational conventions will be adopted: the notation ψ̂
denotes the estimate of coefficient ψ based on in-sample data and X (B) denotes the

Bootstrap replicate of X .

1. Save the residual vector from in-sample estimation

et = (ẑt , ût,R, ût,Q)
′

and standardize it using the estimated variance and covariance matrix of et

at = Σ̂
−1/2
e et , t = 1, . . . ,T ,

where

Σ̂e =

(
1 01,2

02,1 Σ̂u

)

with A−1/2 denoting the Cholesky decomposition of the matrix A and 0r,s being

a (r× s) matrix of zeros.

2. Resample with replacement the time series of at to generate the time series of

Bootstrap residuals e
(B)
t = Σ̂

1/2
e a

(B)
t =

(
ẑ
(B)
t , û

(B)
t,R , û

(B)
t,Q

)′
.

3. Using the e
(B)
t , recursively generate a Bootstrap replicate of (rt ,RVt ,RQt)

′ for

t = 1, . . . ,T . The set of recursions needed to generate
(

r
(B)
t ,RV

(B)
t ,RQ

(B)
t

)′
is

given by

β̂
(B)
t = β̂ + β̂1 log

(√
RQ

(B)
t−1/RV

(B)
t−1

)
= β̂ + β̂1Ỹ

(B)
t−1 ,

γ̂
(B)
t = γ̂ + γ̂1 log

(√
RQ

(B)
t−1/RV

(B)
t−1

)
= γ̂ + γ̂1Ỹ

(B)
t−1 ,

h̃
(B)
t = ω̂ + γ̂

(B)
t R̃V

(B)

t−1 + β̂t h̃
(B)
t−1 ,

r
(B)
t =

√
h
(B)
t z

(B)
t ,

q
(B)
t = ξ̂ + ϕ̂ h̃

(B)
t + M̂τ ζ

(B)
t +u

(B)
t ,

for t = 1 . . . ,T , where ξ̂ =
(

ξ̂R, ξ̂Q

)′
, ϕ̂ = (ϕ̂R, ϕ̂Q)

′
, q

(B)
t =

(
R̃Q

(B)

t , R̃V
(B)

t

)′
,

u
(B)
t =

(
u
(B)
t,R ,u

(B)
t,Q

)′
, ζ

(B)
t =

(
z
(B)
t ,
(

z
(B)
t

)2

−1

)′
and

M̂τ =

(
τ̂1,R τ̂2,R

τ̂1,Q τ̂2,Q

)
.

4. Fit the model to the Bootstrapped data

(
r
(B)
t , R̃V

(B)

t , R̃Q
(B)

t

)′
and save the

estimated parameter vector θ̂
(B)

.

5. Repeat steps 2-4 for B = 999 times.
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7 Empirical application

7.1 Data

In order to assess the merits of the proposed approach for risk management, we present

the results of an empirical application to four major stock market indices: DAX 30

(Germany), FTSE 100 (UK), Hang Seng (Hong Kong) and S&P 500 (US). For each

of these markets, 5-minute time series of the index value were downloaded from

Thomson Reuters Tick History considering the period from January 2002 to April

2018. Daily open-to-close returns and realized measures were then computed limiting

the attention to the official trading hours of each index. Furthermore, the data were

cleaned removing the last day of each year, some extreme outliers and the last 5-

minute observation of each trading day, as usual. Due to the cleaning procedure,

different trading days and holiday variations, the sample period consists of 4096 daily

observations for DAX 30, 4063 for FTSE 100, 3951 for Hang Seng (HSI) and 4014 for

S&P 500.

Looking at the time plots of the daily open-to-close log-returns (Figure 1) and 5-

minute RVs (Figure 2), four important events can be detected. First, the effects of the

2008-2009 financial crisis are clearly visible in all the series while the effects of the

2011-2012 sovereign debt crisis are more easily detectable in the US and European

series, being particularly evident for the DAX series. Similarly, at the beginning of

the sample period, a high volatility period, mainly related to the explosion of the dot-

com bubble and the introduction of Euro, is mostly visible for the DAX and FTSE

indices, less clearly evident in the S&P 500 and not detectable in the HSI index. Last, a

high volatility period affects with different intensities, all the markets across 2015 and

2016. Different events can be identified as potential determinants of this phenomenon

including the Chinese stock market turbulence, the Greek debt default in 2015, the end

of quantitative easing in the United States at the end of 2014 and the Brexit referendum

in 2016. The main descriptive statistics of returns are reported in Table 15 in the

Empirical Appendix.

Figure 1: Time series of daily open-to-close log-returns
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left) and S&P500 (bottom-right) for the full sample period 2002/01/01 – 2018/04/30.
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Figure 2: Time series of 5-min Realized Volatility

DAX 30

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0.000

0.002

0.004

0.006

FTSE 100

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0.000

0.002

0.004

0.006

HSI

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0.000

0.002

0.004

0.006

S&P 500

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0.000

0.002

0.004

0.006
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Hang Seng (bottom-left) and S&P500 (bottom-right) for the full sample period 2002/01/01 – 2018/04/30.

In line with asymptotic theory, a point measure of the accuracy of the log-

transformed realized variance is obtained by computing the ratio Yt . The time series

plots in Figure 3 reveal that, for all markets considered, the log-ratio Ỹt is characterized

by remarkable short term fluctuations thus supporting the intuition that accounting

for a time-varying attenuation bias effect could be beneficial for volatility and risk

forecasting.

Figure 3: Time series of log
(√

RQt

RVt

)
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Table 2: Sample correlations between γt and βt fitted by TV-RGARCH and ETV-

RGARCH models.

DAX 30 FTSE 100 HSI S&P 500

ργ 0.640 0.722 0.811 0.952

ρβ 0.720 0.799 0.892 1.000

7.2 In-sample analysis

Referring to the four stock market indices considered, this section assesses the in-

sample performance of the proposed models, taking the standard RGARCH model as

a benchmark and considering the full sample period from 2002/01/01 to 2018/04/30.

Model parameters have been estimated by maximum likelihood as described in Section

6. Table 3 reports the estimated coefficients and standard errors, based on the observed

information matrix. Overall, the fitted coefficients are in most cases significantly

different from 0 at the usual 5% level. The only exceptions are the intercepts of the

volatility, ω , and measurement equations, ξR and ξQ, that, in some cases, result to be

not significantly different from 0, and, for DAX 30 and FTSE 100, the β coefficient.

Similarly, the τ1,R and τ1,Q coefficients are never significant for the HSI index. The ξR

and ϕR coefficients are, overall, very close to 0 and 1, respectively, suggesting that the

log-transformed RV is an approximately unbiased proxy of the latent log(ht).
Focusing on the TV-RGARCH models, it is interesting to see that the estimated γ1

and β1 coefficients are significantly different from 0 at the usual 5% level providing

evidence in favor of the presence of time-varying attenuation bias effects. Also, as

expected, γ1 and β1 have negative and positive signs, respectively, confirming the

intuition that, when log(RVt−1) provides a more (less) accurate estimate of the latent

signal log(IVt), the following hold: i) the impact of R̃V t−1 on h̃t , as measured by γt ,

is higher (lower) ii) the contribution of the inertial component log(ht−1) to the value

of log(ht), as measured by βt , is lower (higher). This regularity is clearly evident

from Figure 4 that represents the time series of the fitted γt and βt coefficients for the

TV-RGARCH model. Furthermore, the plots reveal another interesting feature: the

average of the fitted γt (dashed line in the plot) is substantially higher than the fitted

time-invariant γ coefficient of the standard RGARCH model (solid line in the plot). A

similar argument holds, reversed, for βt . This implies that the volatility and tail risk

estimates generated by the fitted RGARCH and TV-RGARCH models will differ due

to the action of two different factors. The first is a level effect related to the discrepancy

between E(γt) and E(βt), on one side, and the RGARCH parameters γ and β , on the

other. Differently, the second factor depends on short term fluctuations of the ratio Yt

around its mean level.

The same general picture applies to the ETV-RGARCH model, with the estimated

γ1 and β1 being negative and positive, respectively, as for the TV-RGARCH model. On

the other hand, as expected, γ2 and β2 take opposite signs. The dynamic profiles of the

time-varying coefficients γt and βt (Figure 5) are qualitatively not different from what

observed for the TV-RGARCH model. This is confirmed by the sample correlation

coefficients between γt and βt fitted by TV-RGARCH and ETV-RGARCH, respectively

(Table 2).

In Table 4 we report the results of three sets of likelihood ratio tests. First, we

separately test the validity of the restrictions implied by the standard RGARCH models

against the alternative TV-RGARCH and ETV-RGARCH models. Second, we test

16



the TV-RGARCH hypothesis against the alternative of a more general ETV-RGARCH

model. In the first case, the reference asymptotic distribution of the test statistic under

the null is given by a χ2
2 , for the TV-RGARCH model, and by a χ2

4 , if the alternative

corresponds to an ETV-RGARCH model. In the second set, the reference distribution

for testing the TV-RGARCH model against a more general ETV-RGARCH is given

by a χ2
2 distribution. In both cases, since the full-likelihoods of RGARCH and (E)TV-

RGARCH are based on different information sets, testing is based on the partial log-

likelihood component ℓr. For all the markets considered, the benchmark RGARCH

model is always rejected at the usual 5% significance level against both alternatives:

TV-RGARCH and ETV-RGARCH. When testing the TV-RGARCH against the more

general ETV-RGARCH, the data provide mixed evidence, since we find that only in

two cases out of four, DAX 30 and HSI, the null is rejected. The last set of likelihood

ratio tests, in the bottom panel of Table 4, again compares the TV-RGARCH model,

under the null, against the alternative hypothesis of an ETV-RGARCH but using the

full likelihood L (θ). The results show that, when considering the full likelihood,

the TV-RGARCH model is always rejected against the more flexible ETV-RGARCH

model.

As a robustness check, we also consider the estimation of heteroskedastic variants

of the TV-RGARCH and ETV-RGARCH, as described in Remark 1 at the end of

Section 5. Our data, however, do not provide strong evidence in favor of the presence

of heteroskedasticity, for both the conditional variance specifications considered.

Namely, the estimation results for heteroskedastic models, reported in Table 18 in

the Empirical Appendix, suggest that the homoskedasticity assumption (corresponding

to δ1 = 0) cannot be rejected in the majority of cases. Also, the introduction of

the heteroskedastic component does not seem to have a remarkable impact on the

estimates of the other model parameters. Accordingly, a simple likelihood ratio

test, comparing heteroskedastic vs homoskedastic models, would reveal that the

introduction of the heteroskedastic component, in the vast majority of cases, does not

bring to any significant improvement in the overall likelihood L . Finally, we focused

our attention on the partial likelihood ℓr which measures the ability of the fitted model

to reproduce the conditional distribution of returns, hence being a the critical entity for

risk management applications. Our findings indeed show that increments in ℓr, when

present, are always negligible. So, the introduction of the heteroskedastic component

is not expected to bring any noticeable gains for tail risk forecasting. It is worth noting

that, under this respect, our findings are in line with those of and Hansen et al. (2012)

and Hansen and Huang (2016).

The above results are based on standard maximum likelihood theory. In order

to double check the validity of the implied asymptotic approximation, we have

implemented the Bootstrap resampling procedure described in Section 6 for all the

model specifications considered. However, in order to save space, in this section

we only report results for the ETV-RGARCH model. The results obtained for the

RGARCH and TV-RGARCH models, qualitatively similar to those reported for the

ETV-RGARCH, have been reported in the Empirical Appendix.

Figure 6 reports the histograms of the standardized Bootstrap estimates for the

ETV-RGARCH model’s parameters. In general, the plots suggest that the empirical

distributions of the estimates are consistent with the asymptotic normality assumption.

Mild positive skewness is detected only for the estimated degrees of freedom parameter

ν . Furthermore, Table 5 shows that the Bootstrap means and standard errors are in

general very close to the ML estimated coefficients and associated asymptotic standard

errors. In addition, the table also reports the 95% Bootstrap percentile confidence
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Figure 4: Time series of estimated γt and βt for TV-RGARCH
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Time-varying γt and βt of TV-RGARCH model for the stock market indices DAX 30 (top-left), FTSE 100

(top-right), Hang Seng (bottom-left) and S&P500 (bottom-right) for the full sample period 2002/01/01 –

2018/04/30. Gray solid-line: RGARCH coefficient. Gray dashed-line: average of TV-RGARCH time-

varying coefficient.

intervals for each of the estimated coefficients. Looking at the estimated intervals it can

be immediately noted how the assessment of the significance of estimated coefficients

based on asymptotic theory is in close agreement with the findings deriving from the

analysis of the Bootstrap intervals.

7.3 Out-of-sample analysis

In this section the proposed model specifications are used to generate out-of-sample

one-step-ahead forecasts of volatility, VaR and ES. Our forecasting design is based on

a rolling window scheme with daily re-estimation. For all markets, the initial in-sample

period covers the time interval from 2002/01/01 to 2008/05/31, resulting in different

time series lengths for the different indices considered: 1604 for the DAX 30, 1590 for

the FTSE 100, 1555 for the HSI and 1558 for the S&P 500. For each index, subsequent

re-estimations are then based over moving windows of the same length.
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Figure 5: Time series of estimated γt and βt for ETV-RGARCH
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Time-varying γt and βt of ETV-RGARCH model for the stock market indices DAX 30 (top-left), FTSE

100 (top-right), Hang Seng (bottom-left) and S&P500 (bottom-right) for the full sample period 2002/01/01

– 2018/04/30. Gray solid-line: RGARCH coefficient. Gray dashed-line: average of TV-RGARCH time-

varying coefficient. Gray dotted-line: average of ETV-RGARCH time-varying coefficient.

The performances of the proposed models are compared with those of the standard

RGARCH, taken as a benchmark. Also, as a further robustness check, we consider

a set of alternative specifications of TV-RGARCH models characterized by different

specifications of the time-varying coefficients βt and γt . These have been summarized

in Table 6. The aim is here to double check the appropriateness of the specifications of

γt and βt discussed in Section 5 and the sensitivity of our empirical results to the model

assumed for γt and βt .

Next, we assess the out-of-sample forecasting ability of the model considering

different loss functions. First, the ability to accurately forecast the distribution of future

returns, for each model, is assessed by computing, as in Hansen et al. (2012), the out-

of-sample partial predictive log-likelihood

ℓ̂r

(
θ̂
)

t+1
= K̃(ν̂)− 1

2
log
(
ĥt+1

)
− ν̂ +1

2
log

[
1+

r2
t+1

ĥt+1(ν̂ −2)

]
, (34)
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for t = T, . . . ,T + H − 1, with H being the length of the out-of-sample forecasting

period.

The accuracy in forecasting future volatility is then evaluated by means of the

QLIKE loss function. This choice is motivated by two considerations. First, the QLIKE

is robust to noisy volatility proxies (Patton, 2011). Second, compared to other robust

alternatives, this loss function has been found to be more powerful in rejecting poorly

performing predictors (Liu et al., 2015). The QLIKE loss has been computed according

to the formula

QLIKE =
1

H

H

∑
j=1

(
log(ĥT+ j)+

RVT+ j

ĥT+ j

)
, (35)

where ĥT+ j is the 1-step-ahead conditional variance forecast at time T + j. It is trivial

to show that models providing better forecasts will be characterized by lower values

of QLIKE. Furthermore, the quality of individual VaR forecasts is assessed using the

Conditional Coverage test of Christoffersen (1998) and the Dynamic Quantile test of

Engle and Manganelli (2004). The usual Quantile Loss (Koenker, 2005) is then used

to rank models according to their ability to accurately forecast VaR. Namely, letting

VaRt(α) be the α-level one-step-ahead VaR forecast at time t, the Quantile Loss at

level α (QLα ) is given by

QLα =
H

∑
j=1

(α −LT+ j)(rT+ j −VaRT+ j(α)), (0 < α < 1) , (36)

where Lt = I(rt <VaRt(α)).
Finally, to assess the ability of the proposed models to jointly forecast VaR and ES,

we rely on the results of Fissler and Ziegel (2016) on the joint elicitability of the couple

(VaR, ES). In particular, they show that (VaR, ES) is jointly elicitable with respect to

the following class of strictly consistent loss functions

FZt(rt ,vt ,et |α,G1,G2) = (Lt −α)

(
G1(vt)−G1(rt)+

1

α
G2(et)vt

)

− G2(et)

(
1

α
Ltrt − et

)
−G2(et), (37)

where G1 is weakly increasing, G2 is strictly increasing and strictly positive, and G ′
2 =

G2. It can be shown that the expected value of the loss in (37) is uniquely minimized by

setting vt and et equal to the level-α VaR and ES series, respectively. Following Patton

et al. (2019), we assume VaR and ES to be strictly negative and ESt(α)≤VaRt(α)< 0,

with G1(x) = 0 and G2(x) =−1/x, resulting in the following loss function

FZ
(0)
t =

1

αESt(α)
Lt (rt −VaRt(α))+

VaRt(α)

ESt(α)
+ log(−ESt(α))−1 , (38)

where ESt(α) is the α-level one-step-ahead ES at time t. As for the other loss

functions, models that, over the chosen forecasting period, show lower average values

of FZ
(0)
t are preferred.

The significance of performance gaps across different models is assessed by means

of the Model Confidence Set (MCS) (Hansen et al., 2011).

For the partial predictive log-likelihood, the results reported in Table 7 show that

the ETV-RGARCH is always returning the minimum value of the (negative) partial
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predictive log-likelihood and both the TV-RGARCH and ETV-RGARCH are always

included in the 75% MCS for both the Range (R) and Semi-Quadratic (SQ) statistics.

The standard RGARCH model is always excluded from the MCS at both levels

considered for DAX 30, FTSE 100 and HSI and enters the 90% MCS only for S&P

500.

Moving to consider the QLIKE loss (Table 8), the ETV-RGARCH is returning the

minimum value of the loss function in three cases out of four and is the only model

always included in the 75% MCS for both the R and SQ statistics. For HSI, no other

model is included in the MCS at any level while, for the remaining indices and for both

R and SQ, the considered variants of the TV-RGARCH enter the MCS at the 90% or

75% level. The RGARCH model is always excluded from the MCS for both confidence

levels and test statistics considered.

Next we consider the results of the backtesting VaR for two different risk levels:

0.01 and 0.025. At the 0.01 level (Table 9), models incorporating a correction for

dynamic attenuation bias always pass the diagnostic tests at the usual 5% level. The

only exceptions are the ETV-RGARCH model, signficant only at the 1% level for the

S&P 500, and the TV-RGARCH∗-S2, for which, in the case of the FTSE 100, the DQ

tests returns a p-value slightly below 5%. The RGARCH model, although performing

well for the other three indices, does not pass the diagnostic tests for the S&P 500. It

should be however noted that, for the S&P 500 dataset, all the models considered have a

borderline performance returning p-values very close to the 5% acceptance threshold.

Differently, at the 0.025 level (Table 10), the TV-RGARCH type models are always

passing the diagnostic tests while, for the DAX 30, the RGARCH model does not pass

the DQ test.

When considering the accuracy in predictive VaR, assessed via the Quantile Loss,

we find that, at the 0.01 level (Table 11), the TV-RGARCH is the only model always

included in the 75% MCS for, both the R and SQ statistics, while the ETV-RGARCH

models enters the 75% MCS for all indices except for the S&P 500. The RGARCH is

always excluded from the MCS for FTSE 100 and S&P 500 but it enters the 90% MCS

for DAX 30 and HSI. For the 0.025 level (Table 12), we find that the TV-RGARCH

and ETV-RGARCH are the only models always included in the 75% MCS while, on

the other hand, the RGARCH never enters the MCS.

A similar picture is observed when jointly evaluating the quality of VaR and ES

forecasts via the FZ(0) loss function (Tables 13 and 14). For both the 0.01 and 0.025

levels the following facts arise: both the TV-RGARCH and ETV-RGARCH models are

always entering the 75% MCS, exception made for TV-RGARCH that, for S&P 500 at

the 0.025 risk level, only enters the 90% MCS; the RGARCH-model is never included

in the 75% MCS and enters the 90% MCS only for the HSI at the 0.01 level; For both

risk levels, the ETV-RGARCH model is returning the minimum average FZ(0) value

for three out of the four indices considered (excluding FTSE 100, for the 0.01 level,

and DAX 30, for the 0.025 risk level).

In conclusion: the results of our out-of-sample forecasting experiment show

that i) for both volatility and tail risk forecasting, the proposed time-varying

RGARCH models, TV-RGARCH and ETV-RGARCH, always outperform the standard

RGARCH model ii) the proposed TV-RGARCH and ETV-RGARCH models are not

outperformed by the alternative time-varying specifications considered as robustness

checks iii) the results are in general robust to the specification of the functional form

of the γt and βt coefficients.
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8 Concluding Remarks

We have proposed novel model specifications, that generalize the log-linear RGARCH

model proposed by Hansen et al. (2012) to account for time-varying attenuation bias

effects. The proposed models appear to be effective in capturing the dependency of

volatility dynamics on the variability of the measurement error of the reference log-

transformed realized measure. The results of an application to VaR and ES forecasting,

for four major stock market indices, support the profitability of the proposed model in

risk management applications. Estimation of model parameters can be efficiently done

via ML estimation. Furthermore, accurate finite sample inference has been obtained

implementing a parametric Bootstrap procedure.

The derivation of the statistical properties of the proposed models is an interesting

but challenging issue that has not been investigated in this paper. Although it is easy

to show that, as for the standard RGARCH model, the TV-RGARCH model, and its

extensions, can be written as Hidden Markov Models, depending on a latent Markov

chain, analytical derivation of stationarity and ergodicity conditions is troublesome by

the non-linearity of the latent chain. So, investigation of these issues has been currently

left for future research.
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Table 3: In-sample estimation results

DAX 30 FTSE 100 HSI S&P 500

RG TV-RG ETV-RG RG TV-RG ETV-RG RG TV-RG ETV-RG RG TV-RG ETV-RG

ω -0.171 -0.352 -0.085 -0.039 -0.090 0.190 -0.096 -0.262 0.260 -0.002 -0.157 1.082

(0.082) (0.096) (0.367) (0.089) (0.100) (0.108) (0.062) (0.076) (0.559) (0.109) (0.111) (0.322)

γ 0.362 0.471 1.061 0.363 0.442 0.876 0.226 0.304 0.668 0.479 0.546 0.796

(0.016) (0.022) (0.111) (0.016) (0.022) (0.120) (0.013) (0.018) (0.097) (0.019) (0.021) (0.129)

γ1 – -0.134 -0.195 – -0.113 -0.204 – -0.126 -0.164 – -0.214 -0.210

(0.034) (0.037) (0.043) (0.050) (0.035) (0.036) (0.057) (0.059)

γ2 – – 0.252 – – 0.242 – – 0.194 – – 0.222

(0.043) (0.056) (0.039) (0.063)

β 0.614 0.474 -0.060 0.619 0.523 0.139 0.752 0.646 0.380 0.508 0.419 0.420

(0.015) (0.022) (0.137) (0.015) (0.021) (0.125) (0.014) (0.019) (0.138) (0.017) (0.020) (0.128)

β1 – 0.166 0.227 – 0.148 0.241 – 0.159 0.197 – 0.250 0.248

(0.034) (0.036) (0.044) (0.051) (0.036) (0.037) (0.058) (0.060)

β2 – – -0.281 – – -0.277 – – -0.224 – – -0.247

(0.043) (0.057) (0.041) (0.064)

ξR -0.068 0.008 0.037 -0.401 -0.385 -0.282 -0.257 -0.380 -0.373 -0.629 -0.557 -0.628

(0.213) (0.210) (0.193) (0.225) (0.221) (0.184) (0.243) (0.251) (0.370) (0.205) (0.188) (0.199)

ϕR 1.008 1.015 1.018 1.000 1.001 1.011 1.023 1.010 1.010 0.963 0.970 0.963

(0.023) (0.023) (0.021) (0.023) (0.022) (0.018) (0.025) (0.026) (0.038) (0.021) (0.019) (0.020)

τ1,R -0.135 -0.133 -0.134 -0.087 -0.089 -0.090 0.002 0.003 0.003 -0.107 -0.107 -0.108

(0.008) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.008) (0.008) (0.008)

τ2,R 0.107 0.108 0.107 0.100 0.098 0.097 0.141 0.140 0.140 0.099 0.099 0.099

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.005) (0.005) (0.005)

σ2
u,R 0.219 0.213 0.211 0.181 0.177 0.176 0.212 0.208 0.207 0.234 0.231 0.230

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

ξQ – -0.015 0.015 – -0.289 -0.187 – -0.817 -0.796 – -0.767 -0.834

(0.208) (0.191) (0.221) (0.186) (0.249) (0.359) (0.182) (0.194)

ϕQ – 0.979 0.981 – 0.984 0.994 – 0.936 0.938 – 0.933 0.926

(0.022) (0.021) (0.022) (0.019) (0.026) (0.036) (0.018) (0.019)

τ1,Q – -0.115 -0.115 – -0.077 -0.077 – 0.006 0.006 – -0.080 -0.081

(0.010) (0.010) (0.008) (0.008) (0.009) (0.009) (0.009) (0.009)

τ2,Q – 0.137 0.138 – 0.114 0.114 – 0.153 0.153 – 0.110 0.110

(0.007) (0.007) (0.006) (0.006) (0.007) (0.007) (0.006) (0.006)

σ2
u,Q – 0.366 0.363 – 0.273 0.272 – 0.326 0.325 – 0.291 0.290

(0.008) (0.008) (0.006) (0.006) (0.007) (0.007) (0.007) (0.006)

ρ – 0.911 0.911 – 0.927 0.927 – 0.932 0.931 – 0.946 0.946

(0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

ν 8.696 8.947 9.161 11.565 11.882 12.152 7.049 6.998 7.303 8.493 8.819 8.850

(0.811) (0.377) (0.215) (0.520) (0.278) (1.862) (0.342) (0.351) (0.675) (0.258) (0.362) (0.364)

ℓr 13215.061 13223.392 13227.509 14271.797 14281.768 14284.177 13521.888 13528.673 13532.320 14253.075 14257.277 14258.017

L (θ) 10510.500 10463.282 10481.143 11980.648 12895.611 12903.836 10982.892 11639.085 11649.732 11469.198 12816.408 12828.051

In-sample parameter estimates for the full sample period 2002/01/01 – 2018/04/30. ℓr: partial log-likelihood. L (θ): log-likelihood. Standard errors are reported in

parenthesis below coefficient estimates. In bold parameter not significant at 5% level.
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Table 4: Likelihood ratio statistics for the full sample period 2002/01/01 – 2018/04/30.

Top panel: likelihood ratio statistics for the partial log-likelihood ℓr. Bottom panel:

likelihood ratio statistics for the full log-likelihood L (θ). P-values in parentheses.

DAX 30 FTSE 100 HSI S&P 500

TV-RG ETV-RG TV-RG ETV-RG TV-RG ETV-RG TV-RG ETV-RG

RG 16.663
(0.0002)

24.896
(0.0000)

19.941
(0.0000)

24.760
(0.0000)

13.570
(0.0011)

20.864
(0.0003)

8.404
(0.0150)

9.890
(0.0423)

TV-RG – 8.233
(0.0163)

– 4.818
(0.0899)

– 7.295
(0.0261)

– 1.481
(0.4769)

TV-RG – 35.722
(0.0000)

– 16.450
(0.0003)

– 21.294
(0.0000)

– 23.286
(0.0000)
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Figure 6: Histograms and superimposed non-parametric densities of 999 standardized

Bootstrap estimates of the parameters of the ETV-RGARCH model
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Table 5: Summary of Bootstrap estimates for the ETV-RGARCH model

DAX 30 FTSE 100 HSI S&P 500

Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975

ω -0.085 -0.168 0.367 0.402 -1.049 0.551 0.190 0.121 0.108 0.374 -0.682 0.805 0.260 0.175 0.559 0.497 -0.983 1.051 1.082 0.822 0.322 0.340 0.078 1.360

γ 1.061 1.056 0.111 0.104 0.854 1.256 0.876 0.870 0.120 0.121 0.638 1.099 0.668 0.667 0.097 0.106 0.469 0.880 0.796 0.779 0.129 0.125 0.535 1.019

γ1 -0.195 -0.194 0.037 0.036 -0.267 -0.122 -0.204 -0.203 0.050 0.044 -0.291 -0.113 -0.164 -0.165 0.036 0.038 -0.240 -0.087 -0.210 -0.211 0.059 0.062 -0.341 -0.095

γ2 0.252 0.251 0.043 0.040 0.172 0.328 0.242 0.241 0.056 0.048 0.151 0.334 0.194 0.197 0.039 0.042 0.114 0.276 0.222 0.224 0.063 0.064 0.098 0.357

β -0.060 -0.072 0.137 0.111 -0.302 0.153 0.139 0.133 0.125 0.125 -0.106 0.373 0.380 0.365 0.138 0.119 0.120 0.604 0.420 0.387 0.128 0.129 0.129 0.631

β1 0.227 0.226 0.036 0.036 0.154 0.297 0.241 0.240 0.051 0.045 0.150 0.330 0.197 0.199 0.037 0.040 0.118 0.276 0.248 0.248 0.060 0.062 0.131 0.379

β2 -0.281 -0.282 0.043 0.040 -0.359 -0.203 -0.277 -0.277 0.057 0.050 -0.372 -0.183 -0.224 -0.227 0.041 0.044 -0.313 -0.139 -0.247 -0.251 0.064 0.065 -0.382 -0.123

ξR 0.037 0.054 0.193 0.279 -0.463 0.619 -0.282 -0.264 0.184 0.289 -0.791 0.357 -0.373 -0.350 0.370 0.361 -1.021 0.391 -0.628 -0.615 0.199 0.250 -1.073 -0.116

ϕR 1.018 1.020 0.021 0.030 0.964 1.081 1.011 1.013 0.018 0.029 0.959 1.075 1.010 1.013 0.038 0.037 0.942 1.089 0.963 0.964 0.020 0.025 0.919 1.015

τ1,R -0.134 -0.133 0.007 0.008 -0.150 -0.119 -0.090 -0.090 0.007 0.007 -0.103 -0.077 0.003 0.002 0.007 0.008 -0.013 0.017 -0.108 -0.108 0.008 0.008 -0.123 -0.094

τ2,R 0.107 0.109 0.005 0.007 0.096 0.124 0.097 0.097 0.005 0.006 0.085 0.108 0.140 0.140 0.006 0.006 0.130 0.151 0.099 0.099 0.005 0.006 0.088 0.111

σ2
u,R 0.211 0.211 0.005 0.005 0.200 0.221 0.176 0.175 0.004 0.005 0.165 0.186 0.207 0.206 0.005 0.007 0.194 0.220 0.230 0.229 0.005 0.006 0.218 0.241

ξQ 0.015 0.030 0.191 0.269 -0.474 0.566 -0.187 -0.170 0.186 0.286 -0.701 0.445 -0.796 -0.777 0.359 0.343 -1.412 -0.081 -0.834 -0.824 0.194 0.243 -1.271 -0.337

ϕQ 0.981 0.983 0.021 0.029 0.929 1.040 0.994 0.996 0.019 0.029 0.943 1.058 0.938 0.940 0.036 0.035 0.874 1.012 0.926 0.927 0.019 0.024 0.882 0.976

τ1,Q -0.115 -0.115 0.010 0.012 -0.138 -0.093 -0.077 -0.077 0.008 0.009 -0.094 -0.061 0.006 0.005 0.009 0.010 -0.014 0.026 -0.081 -0.081 0.009 0.010 -0.099 -0.061

τ2,Q 0.138 0.141 0.007 0.011 0.120 0.164 0.114 0.114 0.006 0.007 0.100 0.128 0.153 0.153 0.007 0.007 0.140 0.166 0.110 0.110 0.006 0.007 0.096 0.125

σ2
u,Q 0.363 0.362 0.008 0.010 0.342 0.382 0.272 0.271 0.006 0.009 0.254 0.291 0.325 0.324 0.007 0.010 0.305 0.345 0.290 0.289 0.006 0.008 0.274 0.305

ρ 0.911 0.911 0.003 0.003 0.905 0.916 0.927 0.927 0.002 0.003 0.921 0.932 0.931 0.931 0.002 0.002 0.927 0.936 0.946 0.946 0.002 0.002 0.942 0.950

ν 9.161 9.257 0.215 1.430 7.136 12.820 12.152 12.568 1.862 2.365 9.179 18.831 7.303 7.399 0.675 0.789 6.013 9.220 8.850 9.042 0.364 1.239 7.104 11.717

Coef: estimated coefficient; µB: mean of Bootstrap estimates; SE: asymptotic standard error ; SE.B: standard error of Bootstrap estimates; q0.025: 2.5% Bootstrap

percentile; q0.975: 97.5% Bootstrap percentile.
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Table 6: Model specifications for robustness check

Model βt equation γt equation Error distribution

TV-RGARCH∗ βt = β +β1 (Yt−1) γt = γ + γ1 (Yt−1) ut ∼ MV N2(0,Σu)

TV-RGARCH∗-S βt = β +β1 (
√

Yt−1) γt = γ + γ1 (
√

Yt−1) ut ∼ MV N2(0,Σu)

TV-RGARCH∗-S2 βt = β +β1 (Yt−1)
2 γt = γ + γ1 (Yt−1)

2
ut ∼ MV N2(0,Σu)

TV-RGARCH∗-2 βt = β +β1 (Yt−1)
β2 γt = γ + γ1 (Yt−1)

γ2 ut ∼ MV N2(0,Σu)

Table 7: Predictive Partial log-likelihood (ℓ̂r) and MCS p-values using both Range (p-

value R) and Semi-Quadratic (p-value SQ) statistics. For each stock in bold the highest

maximized log-likelihood value, in box models ∈ 90% MCS and in box models ∈
75% MCS. The out-of-sample period for the stock market indices is 2008/06/01 –

2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396 for Hang Seng

and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500

ℓ̂r p-value R p-value SQ ℓ̂r p-value R p-value SQ ℓ̂r p-value R p-value SQ ℓ̂r p-value R p-value SQ

RGARCH 8070.297 0.0002 0.0044 8668.795 0.0266 0.0674 8175.131 0.0840 0.0394 8856.416 0.1236 0.2352

TV-RGARCH∗-S2 8079.344 0.7550 0.7062 8676.778 0.8720 0.8566 8181.348 0.3012 0.1780 8860.155 0.7496 0.6716

TV-RGARCH∗-S 8079.940 0.8546 0.7914 8677.034 0.8720 0.8566 8182.594 0.4852 0.3628 8860.901 0.7960 0.8566

TV-RGARCH∗-2 8079.059 0.1378 0.3638 8676.838 0.8652 0.8566 8182.614 0.3012 0.3134 8860.358 0.7496 0.7164

TV-RGARCH∗ 8079.773 0.8546 0.7914 8677.070 0.8720 0.8566 8182.023 0.1504 0.1352 8860.609 0.7496 0.7164

TV-RGARCH 8079.530 0.3694 0.6176 8676.870 0.8652 0.8566 8182.835 0.4852 0.3628 8861.089 0.9914 0.9914

ETV-RGARCH 8080.683 1.0000 1.0000 8677.526 1.0000 1.0000 8183.642 1.0000 1.0000 8861.099 1.0000 1.0000

Table 8: Average values of QLIKE loss using 5-min RV as volatility proxy and MCS

p-values using both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics. For

each stock in bold minimum loss, in box models ∈ 90% MCS and in box models

∈ 75% MCS. The out-of-sample period for the stock market indices is 2008/06/01 –

2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396 for Hang Seng

and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500

Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ

RGARCH -8.2741 0.0004 0.0016 -9.0421 0.0412 0.0732 -8.8664 0.0004 0.0018 -9.0741 0.0538 0.0546

TV-RGARCH∗-S2 -8.2780 0.1170 0.1202 -9.0462 1.0000 1.0000 -8.8797 0.0074 0.0068 -9.0771 0.1654 0.1274

TV-RGARCH∗-S -8.2787 0.1580 0.1490 -9.0458 0.2040 0.4238 -8.8821 0.0076 0.0068 -9.0780 0.2058 0.1554

TV-RGARCH∗-2 -8.2786 0.1580 0.1490 -9.0455 0.2040 0.2770 -8.8825 0.0076 0.0084 -9.0765 0.1674 0.1390

TV-RGARCH∗ -8.2785 0.1580 0.1490 -9.0461 0.8480 0.7760 -8.8812 0.0074 0.0068 -9.0777 0.1908 0.1554

TV-RGARCH -8.2787 0.1580 0.1490 -9.0455 0.1886 0.2300 -8.8826 0.0076 0.0084 -9.0782 0.2058 0.1554

ETV-RGARCH -8.2814 1.0000 1.0000 -9.0458 0.8480 0.7760 -8.8853 1.0000 1.0000 -9.0797 1.0000 1.0000
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Table 9: One-step ahead Value at Risk backtesting at the risk level α = 0.01. VRate

shows the Violation Rate as proportion of returns smaller than VaR during the forecast

period at the risk level of 1%. CC p-value and DQ p-value report the p-values for the

Conditional Coverage test and Dynamic Quantile test, respectively. In bold models

showing the Violation Rate closest to the assumed nominal value. Boxes indicate

p-values lower than 5%. The out-of-sample period for the stock market indices is

2008/06/01 – 2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396

for Hang Seng and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500

VRate CC p-value DQ p-value VRate CC p-value DQ p-value VRate CC p-value DQ p-value VRate CC p-value DQ p-value

RGARCH 0.0132 0.1932 0.3669 0.0125 0.3365 0.0598 0.0134 0.1890 0.3133 0.0159 0.0140 0.0156

TV-RGARCH∗-S2 0.0112 0.6046 0.6912 0.0113 0.5006 0.0471 0.0117 0.5181 0.4681 0.0147 0.0556 0.0664

TV-RGARCH∗-S 0.0116 0.5158 0.6352 0.0117 0.4554 0.5392 0.0121 0.4243 0.4360 0.0147 0.0556 0.0702

TV-RGARCH∗-2 0.0116 0.5158 0.6339 0.0121 0.3988 0.6166 0.0121 0.4243 0.4335 0.0143 0.0832 0.1100

TV-RGARCH∗ 0.0116 0.5158 0.6327 0.0113 0.5006 0.6129 0.0117 0.5181 0.4698 0.0147 0.0556 0.0690

TV-RGARCH-S 0.0116 0.5158 0.6351 0.0117 0.4554 0.5413 0.0121 0.4243 0.4377 0.0147 0.0556 0.0708

ETV-RGARCH 0.0128 0.2596 0.5031 0.0121 0.3988 0.4762 0.0121 0.4243 0.4591 0.0155 0.0228 0.0405

Table 10: One-step ahead Value at Risk backtesting at the risk level α = 0.025. VRate

shows the Violation Rate as proportion of returns smaller than VaR during the forecast

period at the risk level of 2.5%. CC p-value and DQ p-value report the p-values for the

Conditional Coverage test and Dynamic Quantile test, respectively. In bold models

showing the Violation Rate closest to the assumed nominal value. Boxes indicate

p-values lower than 5%. The out-of-sample period for the stock market indices is

2008/06/01 – 2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396

for Hang Seng and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500

VRate CC p-value DQ p-value VRate CC p-value DQ p-value VRate CC p-value DQ p-value VRate CC p-value DQ p-value

RGARCH 0.0321 0.0901 0.0069 0.0295 0.1906 0.0889 0.0263 0.5778 0.9433 0.0293 0.4094 0.7492

TV-RGARCH∗-S2 0.0289 0.4772 0.2694 0.0275 0.2759 0.5183 0.0275 0.2577 0.6865 0.0281 0.6280 0.8063

TV-RGARCH∗-S 0.0293 0.4070 0.2405 0.0263 0.6028 0.7301 0.0275 0.2577 0.5997 0.0281 0.6280 0.8178

TV-RGARCH∗-2 0.0297 0.3418 0.2222 0.0259 0.9287 0.8624 0.0275 0.2577 0.6001 0.0281 0.6280 0.8227

TV-RGARCH∗ 0.0293 0.4070 0.2389 0.0271 0.2819 0.5128 0.0271 0.2627 0.7164 0.0281 0.6280 0.8146

TV-RGARCH 0.0301 0.2825 0.2583 0.0259 0.9287 0.8626 0.0275 0.2577 0.6045 0.0281 0.6280 0.8198

ETV-RGARCH 0.0305 0.1427 0.2238 0.0271 0.7978 0.8649 0.0259 0.2484 0.5682 0.0289 0.4799 0.8336

Table 11: Average Quantile Loss function at the risk level α = 0.01 and MCS p-

values using both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics. For

each stock in bold minimum loss, in box models ∈ 90% MCS and in box models

∈ 75% MCS. The out-of-sample period for the stock market indices is 2008/06/01 –

2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396 for Hang Seng

and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500

Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ

RGARCH 0.7984 0.1058 0.2030 0.6214 0.0004 0.0024 0.7134 0.1168 0.2192 0.6295 0.0014 0.0010

TV-RGARCH∗-S2 0.7899 0.7684 0.6698 0.6100 0.4922 0.4946 0.7076 0.2470 0.3192 0.6224 0.0014 0.0018

TV-RGARCH∗-S 0.7886 1.0000 1.0000 0.6087 1.0000 1.0000 0.7067 0.4184 0.3520 0.6193 0.1732 0.2430

TV-RGARCH∗-2 0.7892 0.7684 0.6698 0.6093 0.4998 0.5628 0.7076 0.2470 0.2932 0.6188 0.6834 0.6834

TV-RGARCH∗ 0.7892 0.7684 0.6698 0.6089 0.7768 0.7768 0.7075 0.2470 0.2932 0.6204 0.0014 0.0046

TV-RGARCH 0.7889 0.7684 0.6698 0.6093 0.4998 0.5628 0.7062 0.4184 0.3520 0.6186 1.0000 1.0000

ETV-RGARCH 0.7950 0.6656 0.5460 0.6119 0.4854 0.3806 0.7038 1.0000 1.0000 0.6229 0.0014 0.0046
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Table 12: Average Quantile Loss function at the risk level α = 0.025 and MCS p-

values using both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics. For

each stock in bold minimum loss, in box models ∈ 90% MCS and in box models

∈ 75% MCS. The out-of-sample period for the stock market indices is 2008/06/01 –

2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396 for Hang Seng

and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500

Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ

RGARCH 1.7258 0.0022 0.0350 1.3221 0.0094 0.0140 1.4184 0.0500 0.0430 1.3164 0.0014 0.0002

TV-RGARCH∗-S2 1.7065 0.5556 0.6260 1.3089 0.3106 0.3950 1.4011 0.1056 0.1022 1.2997 0.0092 0.0166

TV-RGARCH∗-S 1.7047 1.0000 1.0000 1.3053 1.0000 1.0000 1.3963 0.1056 0.2172 1.2951 0.2748 0.2908

TV-RGARCH∗-2 1.7052 0.8234 0.8496 1.3059 0.7922 0.6484 1.3963 0.1056 0.2172 1.2932 1.0000 1.0000

TV-RGARCH∗ 1.7049 0.8368 0.8496 1.3061 0.7922 0.6484 1.3981 0.1056 0.1304 1.2966 0.0368 0.0592

TV-RGARCH 1.7056 0.5556 0.6260 1.3057 0.7922 0.6484 1.3950 0.5488 0.5488 1.2941 0.4624 0.4624

ETV-RGARCH 1.7185 0.2594 0.2914 1.3074 0.7922 0.6484 1.3925 1.0000 1.0000 1.2967 0.2748 0.2908

Table 13: Average FZ loss function at the risk level α = 0.01 and MCS p-values using

both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics. For each stock in

bold minimum loss, in box models ∈ 90% MCS and in box models ∈ 75% MCS.

The out-of-sample period for the stock market indices is 2008/06/01 – 2018/04/30, for

a total of 2492 for DAX 30, 2473 for FTSE 100, 2396 for Hang Seng and 2456 for

S&P 500.

DAX 30 FTSE 100 HSI S&P 500

Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ

RGARCH -3.4690 0.0002 0.0818 -3.7516 0.0008 0.0106 -3.5748 0.1208 0.1566 -3.7224 0.0124 0.0264

TV-RGARCH∗-S2 -3.4834 0.3670 0.4266 -3.7732 0.5256 0.5238 -3.5872 0.5370 0.5156 -3.7327 0.0124 0.0220

TV-RGARCH∗-S -3.4868 0.5458 0.5458 -3.7766 1.0000 1.0000 -3.5891 0.5370 0.5156 -3.7387 0.0880 0.1518

TV-RGARCH∗-2 -3.4858 0.3670 0.4514 -3.7761 0.8300 0.8234 -3.5880 0.1208 0.3898 -3.7386 0.3682 0.2574

TV-RGARCH∗ -3.4855 0.3670 0.4514 -3.7760 0.8300 0.8234 -3.5880 0.1208 0.3898 -3.7362 0.0124 0.0264

TV-RGARCH -3.4864 0.5310 0.5306 -3.7756 0.5562 0.6646 -3.5897 0.5370 0.5156 -3.7407 0.3682 0.2574

ETV-RGARCH -3.4918 1.0000 1.0000 -3.7751 0.8300 0.8234 -3.5934 1.0000 1.0000 -3.7475 1.0000 1.0000

Table 14: Average FZ loss function at the risk level α = 0.025 and MCS p-values using

both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics. For each stock in

bold minimum loss, in box models ∈ 90% MCS and in box models ∈ 75% MCS.

The out-of-sample period for the stock market indices is 2008/06/01 – 2018/04/30, for

a total of 2492 for DAX 30, 2473 for FTSE 100, 2396 for Hang Seng and 2456 for

S&P 500.

DAX 30 FTSE 100 HSI S&P 500

Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ

RGARCH -3.6346 0.0128 0.0850 -3.9302 0.0180 0.0232 -3.7916 0.0254 0.0304 -3.9322 0.0026 0.0016

TV-RGARCH∗-S2 -3.6507 0.7078 0.7698 -3.9409 0.3416 0.3202 -3.8077 0.1280 0.1488 -3.9462 0.0098 0.0024

TV-RGARCH∗-S -3.6527 1.0000 1.0000 -3.9456 0.8370 0.8370 -3.8108 0.3742 0.2840 -3.9512 0.0550 0.0624

TV-RGARCH∗-2 -3.6521 0.7078 0.8564 -3.9452 0.7824 0.8056 -3.8106 0.1280 0.1822 -3.9526 0.2100 0.2172

TV-RGARCH∗ -3.6522 0.7078 0.8564 -3.9443 0.6018 0.6874 -3.8098 0.1280 0.1822 -3.9495 0.0098 0.0066

TV-RGARCH -3.6521 0.7078 0.8564 -3.9451 0.7824 0.8056 -3.8115 0.3742 0.2840 -3.9524 0.2100 0.2172

ETV-RGARCH -3.6515 0.7078 0.8564 -3.9460 1.0000 1.0000 -3.8143 1.0000 1.0000 -3.9581 1.0000 1.0000
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Empirical Appendix

Table 15: Summary statistics

DAX 30 FTSE 100 HSI S&P 500

rt RV
†

t rt RV
†

t rt RV
†

t rt RV
†

t

n.obs 4096 4096 4063 4063 3951 3951 4014 4014

Min -0.071 0.035 -0.070 0.026 -0.132 0.039 -0.082 0.017

Max 0.092 67.627 0.088 58.520 0.095 40.069 0.074 57.833

Q1 -0.005 0.396 -0.004 0.172 -0.005 0.222 -0.004 0.181

Median 0.001 0.749 0.000 0.305 0.000 0.368 0.000 0.334

Q3 0.006 1.512 0.005 0.643 0.004 0.628 0.004 0.736

Mean 0.000 1.525 0.000 0.677 -0.001 0.661 0.000 0.814

Stdev 0.012 2.762 0.009 1.661 0.010 1.425 0.010 2.041

Skew 0.127 8.303 0.096 16.169 -0.220 13.531 -0.204 11.571

Kurt 5.216 123.868 8.403 430.361 15.997 275.734 9.306 214.716

Summary statistics of daily log-returns rt and daily Realized Volatilities RVt († :

intra-daily returns rt,i × 100) for the stock market indices DAX 30, FTSE 100, Hang Seng and

S&P500 for the full sample period 2002/01/01 – 2018/04/30. n.obs: number of observations for

each series; Min: Minimum; Max: Maximum; Q1: First Quartile; Q3: Third Quartile; Median;

Mean; Stdev: Standard deviation; Skew: Skewness; Kurt: Kurtosis.
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Figure 7: Histograms and superimposed non-parametric densities of 999 standardized

Bootstrap estimates of the parameters of the RGARCH model
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Figure 8: Histograms and superimposed non-parametric densities of 999 standardized

Bootstrap estimates of the parameters of the TV-RGARCH model
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Table 16: Summary of Bootstrap estimates for the RGARCH model

DAX 30 FTSE 100 HSI S&P 500

Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975

ω -0.171 -0.178 0.082 0.112 -0.393 0.029 -0.039 -0.046 0.089 0.110 -0.267 0.163 -0.096 -0.106 0.062 0.089 -0.296 0.050 -0.002 -0.014 0.109 0.123 -0.252 0.229

γ 0.362 0.362 0.016 0.017 0.331 0.394 0.363 0.363 0.016 0.016 0.330 0.392 0.226 0.226 0.013 0.013 0.202 0.253 0.479 0.478 0.019 0.018 0.443 0.514

β 0.614 0.614 0.015 0.013 0.590 0.640 0.619 0.618 0.015 0.013 0.593 0.642 0.752 0.752 0.014 0.012 0.729 0.774 0.508 0.508 0.017 0.014 0.481 0.536

ξR -0.068 -0.064 0.213 0.284 -0.589 0.510 -0.401 -0.401 0.225 0.278 -0.921 0.169 -0.257 -0.239 0.243 0.356 -0.896 0.505 -0.629 -0.614 0.205 0.228 -1.031 -0.152

ϕR 1.008 1.008 0.023 0.030 0.952 1.070 1.000 1.000 0.023 0.028 0.947 1.058 1.023 1.025 0.025 0.037 0.957 1.100 0.963 0.965 0.021 0.023 0.922 1.013

τ1,R -0.135 -0.135 0.008 0.008 -0.152 -0.119 -0.087 -0.088 0.007 0.007 -0.101 -0.074 0.002 0.002 0.007 0.008 -0.013 0.017 -0.107 -0.107 0.008 0.008 -0.122 -0.092

τ2,R 0.107 0.109 0.005 0.008 0.095 0.124 0.100 0.100 0.005 0.006 0.088 0.112 0.141 0.142 0.006 0.006 0.131 0.153 0.099 0.099 0.005 0.006 0.088 0.111

σ2
u,R 0.219 0.219 0.005 0.006 0.207 0.231 0.181 0.180 0.004 0.006 0.170 0.192 0.212 0.211 0.005 0.007 0.199 0.225 0.234 0.234 0.005 0.006 0.222 0.246

ν 8.696 8.923 0.811 1.347 6.797 12.012 11.565 11.944 0.520 2.084 8.913 17.064 7.049 7.169 0.342 0.731 5.976 8.778 8.493 8.704 0.258 1.200 6.840 11.553

Coef: estimated coefficient; µB: mean of Bootstrap estimates; SE: asymptotic standard error ; SE.B: standard error of Bootstrap estimates; q0.025: 2.5% Bootstrap

percentile; q0.975: 97.5% Bootstrap percentile.
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Table 17: Summary of Bootstrap estimates for the TV-RGARCH model

DAX 30 FTSE 100 HSI S&P 500

Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975

ω -0.352 -0.351 0.096 0.137 -0.622 -0.086 -0.090 -0.093 0.100 0.117 -0.322 0.129 -0.262 -0.276 0.076 0.102 -0.489 -0.084 -0.157 -0.166 0.111 0.131 -0.426 0.068

γ 0.471 0.470 0.022 0.024 0.424 0.519 0.442 0.443 0.022 0.021 0.403 0.486 0.304 0.302 0.018 0.019 0.267 0.338 0.546 0.544 0.021 0.022 0.502 0.586

γ1 -0.134 -0.132 0.034 0.037 -0.205 -0.061 -0.113 -0.113 0.043 0.042 -0.193 -0.030 -0.126 -0.125 0.035 0.037 -0.197 -0.056 -0.214 -0.215 0.057 0.060 -0.334 -0.106

β 0.474 0.474 0.022 0.020 0.435 0.516 0.523 0.521 0.021 0.018 0.486 0.556 0.646 0.647 0.019 0.017 0.613 0.681 0.419 0.419 0.020 0.019 0.382 0.455

β1 0.166 0.165 0.034 0.037 0.092 0.238 0.148 0.149 0.044 0.043 0.065 0.228 0.159 0.157 0.036 0.038 0.084 0.233 0.250 0.251 0.058 0.060 0.140 0.370

ξR 0.008 0.004 0.210 0.295 -0.561 0.592 -0.385 -0.394 0.221 0.253 -0.876 0.121 -0.380 -0.348 0.251 0.319 -0.980 0.329 -0.557 -0.555 0.188 0.226 -0.981 -0.082

ϕR 1.015 1.015 0.023 0.032 0.955 1.077 1.001 1.000 0.022 0.026 0.951 1.053 1.010 1.013 0.026 0.033 0.947 1.082 0.970 0.970 0.019 0.023 0.928 1.017

τ1,R -0.133 -0.134 0.007 0.008 -0.148 -0.118 -0.089 -0.090 0.007 0.007 -0.104 -0.076 0.003 0.003 0.007 0.008 -0.013 0.018 -0.107 -0.108 0.008 0.008 -0.123 -0.092

τ2,R 0.108 0.109 0.005 0.007 0.097 0.123 0.098 0.098 0.005 0.006 0.087 0.110 0.140 0.140 0.006 0.006 0.129 0.150 0.099 0.099 0.005 0.006 0.088 0.111

σ2
u,R 0.213 0.212 0.005 0.006 0.202 0.223 0.177 0.176 0.004 0.005 0.166 0.187 0.208 0.208 0.005 0.007 0.195 0.221 0.231 0.231 0.005 0.006 0.219 0.242

ξQ -0.015 -0.014 0.208 0.285 -0.556 0.563 -0.289 -0.297 0.221 0.251 -0.775 0.195 -0.817 -0.785 0.249 0.298 -1.351 -0.150 -0.767 -0.766 0.182 0.223 -1.165 -0.311

ϕQ 0.979 0.979 0.022 0.030 0.922 1.040 0.984 0.984 0.022 0.025 0.935 1.034 0.936 0.939 0.026 0.031 0.879 1.002 0.933 0.933 0.018 0.022 0.893 0.978

τ1,Q -0.115 -0.115 0.010 0.012 -0.138 -0.092 -0.077 -0.077 0.008 0.009 -0.095 -0.059 0.006 0.006 0.009 0.010 -0.015 0.026 -0.080 -0.081 0.009 0.010 -0.100 -0.062

τ2,Q 0.137 0.140 0.007 0.011 0.119 0.161 0.114 0.115 0.006 0.008 0.101 0.130 0.153 0.153 0.007 0.007 0.140 0.166 0.110 0.110 0.006 0.008 0.096 0.126

σ2
u,Q 0.366 0.365 0.008 0.010 0.346 0.385 0.273 0.273 0.006 0.009 0.255 0.290 0.326 0.326 0.007 0.010 0.306 0.346 0.291 0.291 0.007 0.008 0.276 0.306

ρ 0.911 0.911 0.003 0.003 0.905 0.917 0.927 0.927 0.002 0.003 0.922 0.932 0.932 0.932 0.002 0.002 0.927 0.937 0.946 0.946 0.002 0.002 0.942 0.950

ν 8.947 9.166 0.377 1.478 7.119 12.989 11.882 12.268 0.278 2.206 9.055 17.743 6.998 7.277 0.351 0.771 5.987 9.053 8.819 9.027 0.362 1.153 7.175 11.751

Coef: estimated coefficient; µB: mean of Bootstrap estimates; SE: asymptotic standard error ; SE.B: standard error of Bootstrap estimates; q0.025: 2.5% Bootstrap

percentile; q0.975: 97.5% Bootstrap percentile.

3
6



Table 18: In-sample estimation results for TV-RGARCH and ETV-RGARCH with time-varying variance of the measurement error uR,t .

DAX 30 FTSE 100 HSI S&P 500

TV-HRG TV-HRG∗ ETV-HRG ETV-HRG∗ TV-HRG TV-HRG∗ ETV-HRG ETV-HRG∗ TV-HRG TV-HRG∗ ETV-HRG ETV-HRG∗ TV-HRG TV-HRG∗ ETV-HRG ETV-HRG∗

ω -0.345 -0.345 -0.078 -0.090 -0.094 -0.093 0.149 0.155 -0.259 -0.257 0.271 0.272 -0.157 -0.157 1.083 1.083

(0.070) (0.095) (0.435) (0.342) (0.102) (0.093) (0.409) (0.386) (0.065) (0.066) (0.571) (0.687) (0.127) (0.105) (0.329) (0.311)

γ 0.472 0.472 1.075 1.073 0.442 0.442 0.853 0.856 0.301 0.301 0.675 0.675 0.545 0.545 0.797 0.797

(0.020) (0.022) (0.113) (0.110) (0.022) (0.022) (0.119) (0.118) (0.018) (0.018) (0.095) (0.101) (0.022) (0.021) (0.128) (0.120)

γ1 -0.136 -0.136 -0.199 -0.199 -0.113 -0.113 -0.201 -0.201 -0.119 -0.120 -0.157 -0.158 -0.212 -0.211 -0.208 -0.207

(0.035) (0.035) (0.038) (0.037) (0.041) (0.042) (0.049) (0.049) (0.034) (0.034) (0.035) (0.035) (0.058) (0.058) (0.060) (0.059)

γ2 – – 0.257 0.257 – – 0.237 0.238 – – 0.189 0.189 – – 0.220 0.219

(0.044) (0.043) (0.055) (0.056) (0.039) (0.039) (0.064) (0.063)

β 0.473 0.473 -0.074 -0.074 0.523 0.522 0.155 0.153 0.650 0.650 0.374 0.374 0.419 0.419 0.419 0.419

(0.022) (0.022) (0.142) (0.132) (0.021) (0.021) (0.142) (0.146) (0.019) (0.019) (0.142) (0.146) (0.020) (0.020) (0.130) (0.126)

β1 0.168 0.169 0.231 0.231 0.149 0.149 0.238 0.239 0.152 0.152 0.191 0.191 0.248 0.247 0.245 0.244

(0.034) (0.035) (0.037) (0.037) (0.042) (0.043) (0.050) (0.050) (0.035) (0.035) (0.036) (0.037) (0.059) (0.059) (0.061) (0.060)

β2 – – -0.287 -0.287 – – -0.273 -0.273 – – -0.218 -0.219 – – -0.245 -0.244

(0.045) (0.043) (0.056) (0.057) (0.041) (0.041) (0.065) (0.064)

ξR 0.000 -0.002 0.025 0.025 -0.389 -0.391 -0.281 -0.282 -0.381 -0.386 -0.392 -0.396 -0.558 -0.559 -0.628 -0.628

(0.134) (0.208) (0.240) (0.186) (0.229) (0.204) (0.253) (0.230) (0.197) (0.200) (0.260) (0.329) (0.221) (0.160) (0.214) (0.182)

ϕR 1.014 1.014 1.017 1.017 1.001 1.001 1.011 1.011 1.010 1.009 1.008 1.008 0.970 0.970 0.963 0.963

(0.016) (0.022) (0.026) (0.020) (0.023) (0.021) (0.026) (0.023) (0.020) (0.021) (0.027) (0.034) (0.022) (0.015) (0.021) (0.018)

τ1,R -0.133 -0.133 -0.134 -0.134 -0.089 -0.089 -0.090 -0.089 0.004 0.004 0.004 0.004 -0.107 -0.107 -0.108 -0.108

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.008) (0.008) (0.008) (0.008)

τ2,R 0.108 0.108 0.107 0.107 0.098 0.098 0.097 0.097 0.140 0.140 0.141 0.141 0.099 0.099 0.099 0.099

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.006) (0.005) (0.005) (0.005) (0.005)

δ0 -1.598 -1.572 -1.615 -1.581 -1.656 -1.706 -1.679 -1.716 -1.479 -1.538 -1.473 -1.541 -1.459 -1.463 -1.459 -1.467

(0.042) (0.027) (0.042) (0.026) (0.045) (0.026) (0.046) (0.026) (0.048) (0.026) (0.048) (0.026) (0.048) (0.024) (0.049) (0.024)

δ1 0.035 0.074 0.041 0.079 -0.058 -0.100 -0.043 -0.082 -0.067 -0.114 -0.076 -0.127 -0.006 -0.017 -0.010 -0.022

(0.025) (0.044) (0.025) (0.044) (0.029) (0.050) (0.030) (0.050) (0.031) (0.048) (0.031) (0.048) (0.036) (0.050) (0.036) (0.051)

ξQ -0.021 -0.022 0.005 0.005 -0.296 -0.297 -0.187 -0.188 -0.813 -0.817 -0.811 -0.815 -0.768 -0.769 -0.834 -0.834

(0.130) (0.205) (0.234) (0.182) (0.228) (0.204) (0.251) (0.229) (0.195) (0.198) (0.251) (0.315) (0.215) (0.152) (0.208) (0.176)

ϕQ 0.978 0.978 0.980 0.980 0.984 0.984 0.994 0.994 0.937 0.936 0.936 0.936 0.933 0.933 0.926 0.926

(0.016) (0.022) (0.025) (0.020) (0.023) (0.021) (0.025) (0.023) (0.020) (0.020) (0.026) (0.032) (0.022) (0.014) (0.021) (0.018)

τ1,Q -0.115 -0.115 -0.115 -0.115 -0.076 -0.076 -0.077 -0.077 0.007 0.007 0.006 0.006 -0.080 -0.080 -0.081 -0.081

(0.010) (0.010) (0.010) (0.010) (0.008) (0.008) (0.008) (0.008) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

τ2,Q 0.137 0.137 0.137 0.138 0.115 0.115 0.114 0.114 0.153 0.153 0.153 0.153 0.110 0.110 0.110 0.110

(0.006) (0.007) (0.007) (0.007) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.007) (0.006) (0.005) (0.006) (0.006)

σ2
u,Q 0.366 0.366 0.363 0.363 0.273 0.273 0.272 0.272 0.326 0.326 0.325 0.325 0.291 0.291 0.290 0.290

(0.008) (0.008) (0.008) (0.008) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.006) (0.006)

ρ 0.911 0.911 0.911 0.911 0.927 0.927 0.927 0.927 0.932 0.932 0.932 0.932 0.946 0.946 0.946 0.946

(0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

ν 8.935 8.936 9.146 9.140 11.886 11.889 12.130 12.145 7.139 7.139 7.295 7.296 8.808 8.811 8.850 8.850

(1.783) (0.814) (0.365) (0.285) (0.699) (0.279) (0.586) (0.442) (0.354) (0.385) (0.305) (0.501) (0.377) (1.920) (0.563) (0.702)

ℓr 13223.361 13223.359 13227.531 13227.518 14281.794 14281.803 14284.034 14284.063 13528.720 13528.737 13532.400 13532.409 14257.275 14257.274 14258.011 14258.012

L (θ) 10464.304 10464.722 10482.557 10482.767 12897.490 12897.626 12904.855 12905.156 11641.340 11641.923 11652.579 11653.158 12816.422 12816.466 12828.086 12828.140

In-sample parameter estimates for the full sample period 2002/01/01 – 2018/04/30. Estimates refer to the TV-RGARCH (TV-RG) and ETV-RGARCH (ETV-RG)

models which are based on the time-varying variance of the measurement error: σ2
uR,t = exp{δ0 +δ1V (Yt−1)}. The function V (·) corresponds to the identity function

for TV-(Heteroskedastic)RG and ETV-(Heteroskedastic)RG and the logarithm for TV-HRG∗ and ETV-HRG∗. ℓr: partial log-likelihood. L (θ): log-likelihood.

Standard errors are reported in parenthesis below coefficient estimates. In bold parameters not significant at 5% level.
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