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1 Introduction

It is widely acknowledged that the use of realized volatility measures (Hansen and
Lunde, 2011) can be beneficial for improving the accuracy of volatility forecasts on a
daily scale. This is typically done by choosing one of the following approaches.

First, dynamic models can be directly fitted to time series of realized measures.
Examples include the Heterogeneous AutoRegressive (HAR) (Corsi, 2009) and the
class of Multiplicative Error Models (MEM) (Engle, 2002; Engle and Gallo, 2006). A
drawback of this approach is that the focus is on the estimation of the expected level
of the realized measure, rather than on the estimation of the conditional variance of
returns. As it will be clarified in the next section, realized measures are designed to
consistently estimate the integrated variance which is related to, but different, from
the conditional variance. Namely, in the absence of microstructure noise and jumps,
the integrated variance can be interpreted as an unbiased estimator of the conditional
variance of returns.

The second approach makes use of time series models for daily returns, e.g.
GARCH-type models, where the conditional variance is driven by one or more
realized measures. The main idea is to replace a noisy volatility proxy, such as the
squared daily returns used in standard GARCH models, with a more efficient realized
measure. Differently from the above-mentioned approach, in this case, both low
(daily returns) and high (realized measures) frequency information are employed in
the model. Examples of models falling within this class include the HEAVY model
of Shephard and Sheppard (2010) and the Realized GARCH model of Hansen et al.
(2012). These two models are closely related but, nevertheless, they are characterized
by some distinctive features. Realized GARCH models include a measurement
equation allowing to gain, in a fully data-driven fashion, deeper insight on the statistical
properties of the realized measure and its relationship with the latent volatility. In
addition, the measurement equation offers a convenient framework for simulation
and generation of multi-step ahead forecasts. Differently, in HEAVY models, the
generation of multi-step ahead forecasts is guaranteed by the inclusion of an additional
dynamic updating equation for the conditional expectation of the chosen realized
measure.

A complication arising with both approaches is that realized measures are noisy
estimates of the underlying integrated variance, generating a classical errors-in-
variables problem. This typically leads to the rise of what is often called attenuation
bias. More precisely, the estimated response of the conditional variance to the past
realized measure will be negatively biased, compared to what we would have found
replacing the realized measure by the latent integrated variance. Although it is evident
that correcting for this attenuation bias can potentially lead to improved volatility
forecasts, this issue has not yet received much attention in the literature. Recently,
Bollerslev et al. (2016) found that, in a HAR model, letting the volatility persistence
depend on the estimated degree of measurement error leads to some improvement in
the model’s predictive performance. In the same spirit, Buccheri and Corsi (2019)
propose time-varying parameters HAR models that can account for both measurement
errors and non-linearities in the dynamics of realized measures. Moving to a GARCH
framework, Shephard and Xiu (2016) found evidence that, in a GARCH-X model,
the magnitude of the response coefficients associated with different realized volatility
measures is related to the quality of the measure itself. Finally, Hansen and Huang
(2016) observed that the response of the current conditional variance to past unexpected
volatility shocks is negatively correlated with the accuracy of the associated realized



volatility measure.

Our contribution to research in this field is twofold. First, we develop extensions
of the standard log-linear Realized GARCH model that account for time-varying
attenuation bias effects in the conditional variance dynamics. This is achieved by
allowing the coefficients of the dynamic volatility updating equation of the standard
log-linear Realized GARCH model to vary over time as a function of an estimator of
the asymptotic variance of the realized measure. For the realized variance estimator,
this is given by a rescaling of the integrated quarticity of intra-daily returns while,
for the log-transformed realized variance, Corsi et al. (2008) show that the asymptotic
variance depends on the ratio of the integrated quarticity of intra-daily returns to the
squared integrated variance. As a consequence, the resulting model will give more
weight to lagged volatilities when these are more accurately measured. Second, we
empirically assess the impact of time-varying attenuation bias on tail risk forecasting.

The paper is organized as follows. Section 2 reviews the basic theoretical
framework behind the computation of realized measures and Section 3 discusses
the Realized GARCH model of Hansen et al. (2012). In Section 4, we then
provide theoretical and empirical insight on the occurrence of attenuation bias effects
in Realized GARCH models while Section 5 illustrates the proposed time-varying
parameters Realized GARCH models. Section 6 focuses on the associated estimation
and inference procedures and Section 7 illustrates the results of an application to tail
risk forecasting for a set of international stock market indices. Finally, Section 8
concludes.

2 Realized measures: a short review

In recent years, the availability of high-frequency financial market data has enabled
researchers to build reliable measures of the latent daily volatility based on the use of
intra-daily returns. In the econometric and financial literature, these are widely known
as realized volatility measures. The theoretical background to these measures is given
by the dynamic specification of the price process in continuous time. Formally, let the
logarithmic price p, of a financial asset be determined by the stochastic differential
process

dp, = dt+c,dW,  0<t<T, €]

where 1, and o; are the drift and instantaneous volatility processes, respectively, whilst
W; is a standard Brownian motion; o; is assumed to be independent of W;. Under
assumption of a frictionless market, the logarithmic price p; follows a semi-martingale
process.
In that case, given a sequence of partitions t — 1 =7 < 71 < ... < Ty = ¢, the
Quadratic Variation (QV) of log-returns r, = p, — p;—1, given by
M—1
oV, :pllm Z (ijH _ij)Z’
M—yoo j=0

coincides with the Integrated Variance (1V)

13
v, = / o2ds . )
t—1



In the absence of microstructure noise and measurement error, Barndorff-Nielsen and
Shephard (2002) show that IV is consistently estimated by Realized Volatility (RV')

M
RV, =Y 17, (3)
i=1

where
Ttji = Pt—14iA = Pi—1+(i—1)A
is the i-th A-period intraday return, M = 1 /A. Although IV and the conditional variance

of returns do not coincide, there is a precise relationship between these two quantities:
under standard integrability conditions (Andersen et al., 2001) it can be shown that

E(I‘/t|§,,1):var(rt|ﬂzfl) , “)

where .%,_; denotes the information set at time (# — 1). In other words, the optimal
forecast of IV can be interpreted as the conditional variance of returns and the
difference between these two quantities is given by a zero mean error.

Barndorff-Nielsen and Shephard (2002) show that RV consistently estimates the
true latent volatility, when A — 0. They also find that, conditional on the observed
realization of /V;, the asymptotic distribution of RV; is Normal

VMRV, —1V,)
V200,

where 1Q; = [/ | o}ds is the Integrated Quarticity (1Q). This, in turn, can be
consistently estimated as

2N, 5)

MM
RO ==} ;- (6)
i=1
Replacing 1Q; by RQ; in equation (5) still gives

VMRV, —1V,)
VRO,

In financial modeling, the use of log(RV;) is often preferred to the “plain” RV, estimator
due to its better finite sample properties (see Corsi et al. (2008), among others). The
approximate asymptotic distribution of log(RV;) can be shown to be given by

(log(RV:) —log(1V))

2RO

MRV?
Furthermore, Corsi et al. (2008) provide empirical evidence that, in a HAR model,
choosing the logarithmic realized variance as a dependent variable and allowing for

time-varying volatility of realized volatility leads to substantial improvements in fit
and forecasting performance.

5 N(O,1). )

7N(0,1). (®)

3 Realized GARCH models

The Realized GARCH (RGARCH), introduced by Hansen et al. (2012), extends
the class of GARCH models by first replacing squared returns, as the driver of the



volatility dynamics, with a more efficient proxy, such as a RV measure. With this
change alone, the resulting specification can be seen as a GARCH-X model, where
the realized measure is used as an explanatory variable. A second extension is that the
Realized GARCH “completes” the GARCH-X, by adding a measurement equation that
explicitly models the contemporaneous relationship between the realized measure and
the latent conditional variance.

Formally, let {r;} be a time series of stock returns and {x,} be a time series of
realized measures of volatility. Focus here is on the logarithmic RGARCH model,
defined via

=MW+ htZt» 9
hy=o+Bh_1+ Y%, (10)
ftzg‘*‘(Pzt‘FT(Zt)‘Fut, (11)

where X; = log(x;), by = var(r;|%,_1) is the conditional variance and E =log(h). To
simplify the exposition, in the reminder, it is assumed that the conditional mean y, =
E(r{|.#—1) = 0. The innovations z; and u, are assumed to be mutually independent,
with z; ~ (0,1) and u, ~ (0,072).
iid iid

The function 7(z) can accommodate leverage effects, since it captures the
dependence between returns and future volatility. A common choice (see e.g. Hansen
et al. (2012)), found to be empirically satisfactory, is

() =Tz + 0 -1).

Substituting the measurement equation into the volatility equation, the model implies
an AR(1) representation for 4,

B = (@+EY)+ (B+ @V h—1 +ywi_1 , (12)

where w, = 7(z;) +u, and E(w;) = 0. The coefficient (8 + ¢@7) reflects the persistence
in (the logarithm of) volatility, whereas 7y represents the impact of both the lagged
return and realized measure on future (log-)volatility. To ensure that the E is
stationary, the required restriction is § + @y < 1. Estimation of model parameters can
be easily performed by numerically maximizing a Gaussian Quasi-Likelihood (QL)
function. Regarding the statistical properties of these estimates, Li et al. (2019) have
recently formally proved their consistency and asymptotic normality for the log-linear
RGARCH model.

Compared to the linear RGARCH, the log-linear specification has two main
advantages: first, it is more flexible, since no constraints on the parameters are required
in order to ensure positivity of the conditional variance, which holds automatically
by construction; second, the logarithmic transformation substantially reduces the
heteroskedasticity of the measurement equation error term. For these reasons, this
paper exclusively focuses on the log-linear specification of the Realized GARCH
model.

4 Attenuation-bias effects in RGARCH models

In this section, our aim is to provide some insight on the arising of attenuation bias
effects in RGARCH models. In order to simplify the exposition, without implying any



loss of generality, we assume that there are no leverage effects in the measurement
equation (7] = 7p = 0) and exclude complications related to microstructure noise and
jumps. Also, we assume stationarity of the RGARCH processes considered in the
remainder of this section.

To start, let us consider a simple log-linear RGARCH model of order (1,0) where
the realized measure is replaced by the latent /V;. Referring to the notation defined in
the previous section, the resulting specification can be reformulated as an AR(1) for
IV, =log(1V,)

IV =y +mldV_y +u g, (13)

where u; 1 is assumed to be a sequence of zero mean iid errors with finite variance 61,42. I
W = op; + & and m; = @py;, with the subscript I indicating that the parameters refer
to the model fitted using the true IV;. In addition, we assume y; > 0 and 3; > 0, that is
consistent with recurrent empirical evidence on the dynamics of time series of realized
variances.

The integrated variance is a latent variable and, in real data application, it can be
approximated by the realized variance. Letting & be a series of iid measurement errors

with finite variance 0'52, we can write
RV[ = IV[ + 8[ 5

where RV, = log(RV;). It can be shown, by standard arguments, that equation (13)
implies an ARMA(1,1) model for RV, (see Bollerslev et al. (2016))

ﬁ/t:N1+7flﬁ/t—l+£z—ﬂ1€t—1+ut,1~ (14)
Assume now that a misspecified AR(1) model is fitted to RV ¢
ﬁ/z = R+ ”Rﬁ/zfl + s R,

where u, g is an iid sequence of zero mean errors with variance 62 . Letting z(k) =
cov(RV,,RV,_;) and y;(k) = cov(IV,,1V,_;), for k > 0, by the assumptions made on
&, usy and u; g
(1) =71(1) =mm(0) (15)
and
1 (0) = 1(0) + 07

It then easily follows that

_omy(0) 0_82 )1
”R‘w<0>+oz‘”’<”m0> ’ (10

leading to the conclusion, in line with the findings of Bollerslev et al. (2016), that
modeling the noisy RV}, instead of the latent /V;, implies an autoregressive coefficient
7g lower than that characterizing the dynamics of the latent /V;. Equation (16) clearly
shows that the impact of this attenuation bias directly depends on the noise variance

2
ratio ((,;‘7 ): higher ratios correspond to more substantial reductions in volatility
var(IV;

persistence.
Since the empirical properties of the observed time series of financial returns
usually require working with models of order (1,1), it is of interest to extend our



investigation to consider the impact of attenuation bias in this setting. Assuming a
RGARCH(1,1) for 1V, implies that IV, follows the ARMA(1,1) model

IV, =w+mlV, — Bru—11+us g, )

where the autoregressive coefficient is now given by ; = ; + ¢;%;, with §; > 0. By
standard theory, the following recursion holds

pi(k) = mpi(k—1), Vk>1, (18)
where p;(k) = y(k)/y(0) is the lag-k autocorrelation function of IV,. This implies
that w

pr
n=——".
" k-1

Also, it can be shown (see (Bollerslev, 1988), among others) that

(I =mB)(m—Br)
pil) = 1+B7—2mpB 1)

The value of f; can be then obtained as the solution to the following quadratic equation
(see Kristensen and Linton (2006))

B +bi+1=0, (20)

where

_ 71?12 +1-— 271'1[)1(1)
m—pi(1)

For b; < —2, a well defined solution for 3; in (20) is given by

—by— /b2 —4

2

by =

Br=

The other available solution is not admissible since it is the reciprocal of the previous
one and leads to values fB; > 1, in contradiction with the stationarity assumption.
Taking the same approach as for the (1,0) case, let us now assume that a misspecified
ARMAC(1,1) model is identified for RV,

RV, = g + TrRV,_; — Brur—1.r + s . 21
By (15) and (18), it then follows that

T — pr(k)  pi(k) —,

T orle—1)  pyk—1)

so that the two models for /V; and RV, will be characterized by the same AR coefficient.
Regarding P, as previously shown for the IV model, the value of Bz can be obtained

as
—bg — b12374
Br=
where 5
by = T +1 —ZﬂlpR(l)

i —pr(1)



In order to better illustrate and interpret the relationship between the parameters
of RGARCH models of order (1,1) and the measurement error variance, we have
performed a Monte Carlo simulation study. The structure of the simulation process
can be summarized as follows

1. Generate z; ~ (0,1) and u; s ff:lN(O, c2,), forr=1,....,T.

ii ii ’
2. Generate an artificial log(IV;) series from the ARMA(1,1) model
INVt=.u1+7T1INVt—1+Wt,1—ﬁ1Wt—1,1, fort=1,...,T,
where w; r = T7(z;) +ur 1.

3. Generate returns from a RGARCH(1,1) for v £

4. Contaminate IV, by an additive measurement error (& ~ N(0,067)), in order to
11

generate an artificial RV, series.

5. Using the ML method, fit a RGARCH(1,1) model using RV ; as a realized
measure.

6. Repeat steps 1-5 for ny, times.

The above design is implemented setting g, = 1000 and T = 2000, after discarding
the first 1000 observations taken as burn-in period. For the distribution of z; two

different settings have been considered: z ~ N(0,1) and z ~ / VT_zt(v), with v =5.
12 11

Also, in order to illustrate the impact of the noise variance ratio (0¢/0,)> on the
magnitude of the attenuation bias, keeping fixed to 0.4 the value of 0, ;, three different
values of the measurement error standard deviation o, have been considered: o, €
(0.2,0.4,0.6). Finally, regarding the coefficients of the dynamic volatility equation,
in order to mimic different empirical settings, three different sets of parameter values
have been considered. The parameters of the simulated DGPs have been summarized
in Table 1 where the last six columns of the table summarize the simulation results
in terms of the simulated mean and standard deviations of the estimated (Y, Br, 7g)
coefficients. The simulation results show that, as o, increases, the value of ¥, in the
RGARCH model fitted to the RV series, tends to decrease while the opposite happens
for Bg. The gap between the theoretical 97 and f3; parameters and the estimated Yz and
Br tends to be more pronounced for higher values of og. As previously remarked, the
value of mg tends to remain stable.

In conclusion of our discussion, some remarks should be done. In our simulation,
we have considered a simplified setting in which the realized measurement error
has been assumed to be homoskedastic. However, the theoretical results reviewed
in Section 2 suggest that the assumption of homoskedastic measurement errors is
an evident oversimplification. In the presence of a time-varying measurement error
variance, the size of the attenuation bias, for both ¥ and 3, is expected to be time-
varying as a function of the value of this variance. This issue is addressed in the next
section that proposes and discusses extensions of the standard RGARCH model that
allow to take into account time-varying attenuation bias effects.



Table 1: Simulated DGP settings and cofficients (columns 1-10), average and standard
deviation values of the estimated parameters Yz, Br and 7g for ng,, = 1000 simulations
from RGARCH(1,1) model (columns 11-16). Key to table: 6: average of estimated
0 values from the ny;,, simulated series; Gg: empirical standard errors of estimated 0
values from the ng;,, simulated series.

o o] Y B & ¢ Ty Ty Ou  O¢ W Oy Br Oy TR Oy
N(0,1) 0.005 030 0.60 0.00 1.00 -0.05 0.10 040 020 0.260 0.031 0.637 0.028 0.897 0.016
(0,1) 0.005 040 0.50 0.00 1.00 -0.05 0.10 040 0.20 0.347 0.032 0551 0.027 0.898 0.014
(0,1) 0.005 0.60 030 0.00 1.00 -0.05 0.10 040 0.20 0.515 0.032 0382 0.026 0.897 0.012

N(0,1) 0.005 030 060 0.00 1.00 -0.05 0.10 040 040 0.194 0.027 0.703 0.029 0.896 0.019
N(0,1) 0.005 040 050 0.00 1.00 -0.05 0.10 040 040 0257 0.028 0.640 0.029 0.897 0.016
N(0,1) 0.005 0.60 030 0.00 1.00 -0.05 0.10 040 040 0387 0.028 0510 0.027 0.896 0.014

N(0,1) 0.005 030 060 0.00 1.00 -0.05 0.10 040 0.60 0.140 0.022 0.756 0.032 0.895 0.023
N(0,1) 0.005 040 050 0.00 1.00 -0.05 0.10 040 0.60 0.190 0.023 0.707 0.030 0.896 0.019
N(0,1) 0.005 0.60 030 0.00 1.00 -0.05 0.10 040 0.60 0.289 0.025 0.610 0.028 0.897 0.015

1(0,1,5) 0.005 030 0.60 0.00 1.00 -0.05 0.10 040 020 0267 0.032 0629 0.027 0.897 0.015
1(0,1,5) 0.005 040 050 0.00 1.00 -0.05 0.10 040 020 0359 0.041 0542 0.026 0.898 0.013
1(0,1,5) 0.005 0.60 030 0.00 1.00 -0.05 0.10 040 020 0.534 0.048 0368 0.027 0.898 0.012
1(0,1,5) 0.005 030 0.60 0.00 1.00 -0.05 0.10 040 040 0203 0.031 0.693 0.030 0.897 0.017
1(0,1,5) 0.005 040 050 0.00 1.00 -0.05 0.10 040 040 0.275 0.035 0.621 0.030 0.897 0.015
1(0,1,5) 0.005 0.60 030 0.00 1.00 -0.05 0.10 040 040 0409 0.048 0491 0.033 0.898 0.013
t(0, 0.005 030 0.60 0.00 1.00 -0.05 0.10 040 0.60 0.154 0.034 0.739 0.063 0.893 0.062
0,

5)
5) 0.005 040 0.50 0.00 1.00 -0.05 0.10 040 0.60 0.207 0.032 0.689 0.032 0.896 0.018
5) 0.005 0.60 030 0.00 1.00 -0.05 010 040 060 0.313 0.039 0.586 0.035 0.897 0.015

S Time-Varying Coefficient Realized GARCH models
with dynamic attenuation bias

In the previous section, we have provided evidence on the impact that measurement
errors, arising in the approximation of /V via the discretely sampled RV, can have on
the dynamic properties of the conditional variance in Realized GARCH models. Here,
relying on this evidence, we propose a generalization of the basic Realized GARCH
specification that accounts for dynamic attenuation bias effects due to the time-varying
variability of measurement errors in ex-post volatility estimation. As in Bollerslev et al.
(2016), a natural solution to deal with this issue is to consider time-varying parameter
models where the response of log(h; ) to the lagged realized measure indirectly depends
on the value of GfR),, through the ratio RQ,_1/ RV,{I.

Practical implementation of these ideas in the RGARCH framework leads to the
Time-Varying Realized GARCH (TV-RGARCH) model as defined by the following

equations

h=0+Bh_1+%RV, 1, (22)
RV, = &+ Qrhy + Tr(2) + ek (23)
%=y+nY1, (24)
B =B+pBiYi1, (25)

where RQ, = log(vRQ,), Y, = log(Y;) = log(v/RQ; /RV;) = RQ, — RV,. Consistently
with the evidence provided in Section 4, the fitted values of the ; and B; coefficients
are expected to have negative and positive signs, respectively. If this holds, at time  — 1,



more accurate log-transformed realized measures will correspond to higher (lower)
values of % (). It can be immediately noted that the RGARCH model is nested in the
TV-RGARCH specification for y; = f8; = 0.

By simple algebra, the TV-RGARCH model can be further generalized by replacing
the specifications in equations (24)-(25) by the following

% =Y+NRO,_1 + 1RV, 1, (26)
B =B +BiRO,_ + PRV, 1. 27)

We call the resulting model Extended TV-RGARCH (ETV-RGARCH). It can
immediately noted that equations (26) and (27) can be re-parameterized setting

YZZYIJFTI%
B2=Bi+mp,

making evident that the ETV-RGARCH nests the TV-RGARCH model for ny = ng =
0. From a different angle, under the null of a TV-RGARCH model, we have p» = —71
and B, = —f;. So, we expect the estimated J» and B, coefficients to be positive and
negative, respectively.

In order to make the (E)TV-RGARCH model dynamically complete and allow the
generation of multi-step ahead forecasts, we need to augment equations (22)-(25) with
a further measurement equation for @,

RO, = &g+ @ohi+To(z) + 140 (28)
Conditional on .%;_1, we assume that (i g,u; o) and z; are stochastically independent
and
2
o, OuRO,
ut’R %71 ~ MVN2 (Oa le)a Z“ll = uR pR-’Q ’ng w0 9
U0 iid PR,0Ou,ROu,0 Gth

where the notation MVN,(u,X) indicates a bivariate Normal distribution with
expectation u and variance-covariance matrix X.

Remark 1. We model u; g, the error term in the measurement equation for RV ¢, as being
conditionally homoskedastic. This assumption is indeed not central to our approach
and could be easily relaxed. Under this respect, reminding the discussion in Section
4, it is worth noting that u; g has a complex nature being given by some function of
two different error sources. Of these, the first is given by the random measurement
error related to the discrepancy between the log-transformed realized measure and the
latent 1V, that is &, in the example provided in Section 4. The second source of
error is related to the discrepancy between IV, and the log-transformed conditional
variance h;, that is w; ; = u; 1 + 71 (z/), adding leverage effects to the example provided
in Section 4. While it could be a reasonable simplification to assume that u; ; and
z; are homoskedastic, as reminded in Section 2, the same of course does not hold
for the realized measurement error &. So, conditional heteroskedasticity of & could
potentially provide support for the hypothesis of conditional heteroskedasticity of u; g.
However, the size of this effect, and its empirical detectability, will inevitably depend
on the relative variabilities of the components of u;  that is & and w; ;. To investigate
the presence of conditional heteroskedasticity in the u; g series, as a robustness check,

10



we have considered an alternative model specification where the conditional variance
of the RV measurement equation noise is time-varying, i.e.

(ur g|-Fi-1) “;(0762 )-

. UuR,t
ii R

Since the variance of the realized measurement error & is a function of the ratio

1Q,/IV?, it seems natural to model GI%R-I as a function of its empirical counterpart

RO,/ RVtZ. Namely, motivated by standard results on the asymptotic distribution of RV ts
in order to model the dynamics of Gqu’,, letting ¥; = /RO, /RV;, we have considered
the following specification

ol =exp{8+ 8V (Y1)}, (29)

where the function V(.) has been chosen to be either the log or the identity function;
the exponential formulation guarantees the positivity of the estimated variance, thus
avoiding to impose any constraints on the parameters & and ;. For 6; = 0 the (E)TV-
RGARCH model is obtained as a special case.

Remark 2. As shown by Hansen et al. (2012) for the basic RGARCH model, the TV-
RGARCH model can be also represented as a Hidden Markov Model (HMM) driven
by the latent chain /#,. Namely, substituting the measurement equations for RV, and

RQ; in h, we obtain the following representation of the conditional variance equation
of the ETV-RGARCH model

he = Mo+ Ashe 1+ Aokt +wiy, (30)
where, under the stated assumptions, w; is a sequence of iid errors? defined as

w; = K3wr; + Y1ErWo + YiWr Wo s + %W%e,, (31)

and

Ao = 0+ Yer + 11ErEp + 1ER,
Ay =Ko+ KiWgs—1 +KoWo -1,

X2 = Bi9o + Bo@r + 11 PrP0 + 120k

Ko =B+ Bi&o+ B2br + YOr + 11ERPo + Y180 PR+ 2Y28R PR s

ki =P+ 1Po+20¢r,

K2 =B+ 7i¢r,

K3 =7+ 780 +218k.
The equivalent representation for TV-RGARCH models can be easily obtained by
substituting ¥» = —y; and B, = —; in the above equations. So, although both (E)TV-
RGARCH and RGARCH models can be written as HMM models, the stochastic
structure of the (E)TV-RGARCH model is more complex than that of the RGARCH
model since the model is now driven by a non-linear latent chain. This feature
substantially complicates the derivation of stationarity and ergodicity conditions for

the proposed TV-RGARCH models. Investigation of these problems goes beyond the
scope of this paper and has been currently left for future research.

2Note that E(w?) # 0. However, without any loss of generality, equation (30) could be written as
};z = 20+11‘,Z,_1 JFZZEZ_] + w1 3

where g = A9 + E(w}) and W, = w} — E(w}), so that E(w,;) = 0. The value of E(w;") can be easily derived
by simple algebra.
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6 Estimation and inference

The estimation of model parameters can be easily done by numerically maximizing
the likelihood function implied by appropriate assumptions made on the model’s error
terms z;, u; g and u; . In particular, the joint conditional density of (rhﬁ/ ,,@,) can
be factorized as

frro(rs RV, RO 1) = fr(ri| Zi 1) fro(RV:, RO, 11, Ty 1)

It follows that the contribution of the ¢-th observation to the overall log-likelihood can
be decomposed as

Ui RV1 RO Fi-1,6) = 1og (furo(ri, RV, RO, Fi1) ) = log (11| Fi-1))

+ log (fro(RV:.RO,|nFi1)). (32)

Due to the normality assumption for u, formulated in Section 5, (ﬁ/ ,,@Ar,,%_l)

follows a MV N, distribution. Further, we assume z; ~ \/VT’Qtv, where t, denotes a

Student’s t distribution with v degrees of freedom. The overall log-likelihood will be
then given by

Z(rRV.RQO) = Y log(fi(nlFi-1)+ Y 1og (fro(RV,RQ|ri. Fi1))

=1 t=1

= £r+€R.Q-

We will refer to £, and (g ¢ as the partial and measurement log-likelihoods respectively.
Under the stated distributional assumptions, we get

~ — 1~ v+l r
0(r;,RV, RQ,|.F_1,0) = K(V)—=hj———Ilog|l+ ——
(rla ty Qt| t—1 ) (V) 2 1 2 Og|: +ht(v_2):|
1 1/
= log(IZul) - Juxylw, (33)
forr=1,...,T, where 0 is the vector of unknown model parameters, u; = (i g ,u,AQ),

—~—

and K(v) =log(K(v)), with

K(v) = a(v—2r(%)

The MLE of 0 can be obtained by numerically maximizing the aggregated log-
likelihood

T
Or = argmaxz f(r,l,ﬁ],il\@e).
60 =1
Under the usual regularity conditions, standard errors for the elements of 87 can be
easily obtained from the numerically approximated observed Fisher information matrix
and inference can be performed relying on the asymptotic normality of 67. In order
to double check the validity of the standard asymptotic results on the distribution of
67, as in Borup and Jakobsen (2019), we have implemented a parametric Bootstrap
resampling algorithm along the lines described in Paparoditis and Politis (2009). The
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main steps of the Bootstrap resampling procedure are summarized below. Throughout
the presentation, the following notational conventions will be adopted: the notation {r
denotes the estimate of coefficient y based on in-sample data and X (B) denotes the
Bootstrap replicate of X.

1. Save the residual vector from in-sample estimation
A A ~ /
€ = (Ztaut,Raut,Q)
and standardize it using the estimated variance and covariance matrix of e,

12
a[ / [, tzl,...,T,

o (1 0,
Te = (02,1 iu)

with A~!/2 denoting the Cholesky decomposition of the matrix A and 0, ; being
a (r x s) matrix of zeros.

where

2. Resample with replacement the time series of a, to generate the time series of

N /
Bootstrap residuals et(B> = Zé/ zal(B) = (2,(3), ﬁf?,ﬁfg) .

3. Using the efB), recursively generate a Bootstrap replicate of (r;,RV;,RQ;)’ for
!
t =1,...,T. The set of recursions needed to generate (r,(B),R\/t<B),RQ,(B)) is

given by
BB — pip, log( RQf‘_”l/vaf> =B+pr%,
# = log( RQSB)I/RVt“BI)) = 7+n1,
R L
n? = PP,
0 = E+on® 0l +u®,

A A A /A R R B !
fort:]...,T,where.ﬁ:(§R7§Q),q):((pR’(pQ)’, (B) :(RQt ”),

2 /
Uz(B> - (MI(R7 [Q) Cl - < )7 <Z[(B)) - 1) and
W — TR Tor
T f’]_’Q f'27Q ’

!
—~—(B) ~—(B
4. Fit the model to the Bootstrapped data (r,(B>,RVt(B),RQt( >> and save the

. A (B
estimated parameter vector 9< ).

5. Repeat steps 2-4 for B = 999 times.
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7 Empirical application

7.1 Data

In order to assess the merits of the proposed approach for risk management, we present
the results of an empirical application to four major stock market indices: DAX 30
(Germany), FTSE 100 (UK), Hang Seng (Hong Kong) and S&P 500 (US). For each
of these markets, 5-minute time series of the index value were downloaded from
Thomson Reuters Tick History considering the period from January 2002 to April
2018. Daily open-to-close returns and realized measures were then computed limiting
the attention to the official trading hours of each index. Furthermore, the data were
cleaned removing the last day of each year, some extreme outliers and the last 5-
minute observation of each trading day, as usual. Due to the cleaning procedure,
different trading days and holiday variations, the sample period consists of 4096 daily
observations for DAX 30, 4063 for FTSE 100, 3951 for Hang Seng (HSI) and 4014 for
S&P 500.

Looking at the time plots of the daily open-to-close log-returns (Figure 1) and 5-
minute RVs (Figure 2), four important events can be detected. First, the effects of the
2008-2009 financial crisis are clearly visible in all the series while the effects of the
2011-2012 sovereign debt crisis are more easily detectable in the US and European
series, being particularly evident for the DAX series. Similarly, at the beginning of
the sample period, a high volatility period, mainly related to the explosion of the dot-
com bubble and the introduction of Euro, is mostly visible for the DAX and FTSE
indices, less clearly evident in the S&P 500 and not detectable in the HSI index. Last, a
high volatility period affects with different intensities, all the markets across 2015 and
2016. Different events can be identified as potential determinants of this phenomenon
including the Chinese stock market turbulence, the Greek debt default in 2015, the end
of quantitative easing in the United States at the end of 2014 and the Brexit referendum
in 2016. The main descriptive statistics of returns are reported in Table 15 in the
Empirical Appendix.

Figure 1: Time series of daily open-to-close log-returns

DAX 30 FTSE 100
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Daily log-returns for the stock market indices DAX 30 (top-left), FTSE 100 (top-right), Hang Seng (bottom-
left) and S&P500 (bottom-right) for the full sample period 2002/01/01 — 2018/04/30.
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Figure 2: Time series of 5-min Realized Volatility
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Daily 5-minute Realized Volatility for the stock market indices DAX 30 (top-left), FTSE 100 (top-right),
Hang Seng (bottom-left) and S&P500 (bottom-right) for the full sample period 2002/01/01 — 2018/04/30.

In line with asymptotic theory, a point measure of the accuracy of the log-
transformed realized variance is obtained by computing the ratio ¥;. The time series
plots in Figure 3 reveal that, for all markets considered, the log-ratio Y, is characterized
by remarkable short term fluctuations thus supporting the intuition that accounting
for a time-varying attenuation bias effect could be beneficial for volatility and risk

forecasting.

Figure 3: Time series of log (
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Daily log-ratio log (\/RQ, / RV,) for the stock market indices DAX 30 (top-left), FTSE 100 (top-right), Hang
Seng (bottom-left) and S&P500 (bottom-right) for the full sample period 2002/01/01 — 2018/04/30.
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Table 2: Sample correlations between ¥ and f; fitted by TV-RGARCH and ETV-
RGARCH models.

DAX 30 FTSE100 HSI S&P 500
py  0.640 0.722 0.811 0.952
Pp 0.720 0.799 0.892 1.000

7.2 In-sample analysis

Referring to the four stock market indices considered, this section assesses the in-
sample performance of the proposed models, taking the standard RGARCH model as
a benchmark and considering the full sample period from 2002/01/01 to 2018/04/30.
Model parameters have been estimated by maximum likelihood as described in Section
6. Table 3 reports the estimated coefficients and standard errors, based on the observed
information matrix. Overall, the fitted coefficients are in most cases significantly
different from O at the usual 5% level. The only exceptions are the intercepts of the
volatility, @, and measurement equations, &g and §Q, that, in some cases, result to be
not significantly different from 0, and, for DAX 30 and FTSE 100, the 8 coefficient.
Similarly, the 7| g and 7| ¢ coefficients are never significant for the HSI index. The Er
and @ coefficients are, overall, very close to 0 and 1, respectively, suggesting that the
log-transformed RV is an approximately unbiased proxy of the latent log (/).

Focusing on the TV-RGARCH models, it is interesting to see that the estimated ¥,
and B; coefficients are significantly different from O at the usual 5% level providing
evidence in favor of the presence of time-varying attenuation bias effects. Also, as
expected, 71 and ; have negative and positive signs, respectively, confirming the
intuition that, when log(RV;_;) provides a more (less) accurate estimate of the latent
signal log(IV;), the following hold: i) the impact of RV f—1 On E, as measured by ¥,
is higher (lower) ii) the contribution of the inertial component log(s,_;) to the value
of log(h;), as measured by f, is lower (higher). This regularity is clearly evident
from Figure 4 that represents the time series of the fitted % and f; coefficients for the
TV-RGARCH model. Furthermore, the plots reveal another interesting feature: the
average of the fitted ¥ (dashed line in the plot) is substantially higher than the fitted
time-invariant Y coefficient of the standard RGARCH model (solid line in the plot). A
similar argument holds, reversed, for ;. This implies that the volatility and tail risk
estimates generated by the fitted RGARCH and TV-RGARCH models will differ due
to the action of two different factors. The first is a level effect related to the discrepancy
between E(%) and E(f;), on one side, and the RGARCH parameters ¥ and 3, on the
other. Differently, the second factor depends on short term fluctuations of the ratio Y;
around its mean level.

The same general picture applies to the ETV-RGARCH model, with the estimated
11 and 31 being negative and positive, respectively, as for the TV-RGARCH model. On
the other hand, as expected, }» and f3, take opposite signs. The dynamic profiles of the
time-varying coefficients % and B, (Figure 5) are qualitatively not different from what
observed for the TV-RGARCH model. This is confirmed by the sample correlation
coefficients between ¥ and f3; fitted by TV-RGARCH and ETV-RGARCH, respectively
(Table 2).

In Table 4 we report the results of three sets of likelihood ratio tests. First, we
separately test the validity of the restrictions implied by the standard RGARCH models
against the alternative TV-RGARCH and ETV-RGARCH models. Second, we test
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the TV-RGARCH hypothesis against the alternative of a more general ETV-RGARCH
model. In the first case, the reference asymptotic distribution of the test statistic under
the null is given by a xzz, for the TV-RGARCH model, and by a )(f, if the alternative
corresponds to an ETV-RGARCH model. In the second set, the reference distribution
for testing the TV-RGARCH model against a more general ETV-RGARCH is given
by a )(22 distribution. In both cases, since the full-likelihoods of RGARCH and (E)TV-
RGARCH are based on different information sets, testing is based on the partial log-
likelihood component ¢,. For all the markets considered, the benchmark RGARCH
model is always rejected at the usual 5% significance level against both alternatives:
TV-RGARCH and ETV-RGARCH. When testing the TV-RGARCH against the more
general ETV-RGARCH, the data provide mixed evidence, since we find that only in
two cases out of four, DAX 30 and HSI, the null is rejected. The last set of likelihood
ratio tests, in the bottom panel of Table 4, again compares the TV-RGARCH model,
under the null, against the alternative hypothesis of an ETV-RGARCH but using the
full likelihood .#(6). The results show that, when considering the full likelihood,
the TV-RGARCH model is always rejected against the more flexible ETV-RGARCH
model.

As a robustness check, we also consider the estimation of heteroskedastic variants
of the TV-RGARCH and ETV-RGARCH, as described in Remark 1 at the end of
Section 5. Our data, however, do not provide strong evidence in favor of the presence
of heteroskedasticity, for both the conditional variance specifications considered.
Namely, the estimation results for heteroskedastic models, reported in Table 18 in
the Empirical Appendix, suggest that the homoskedasticity assumption (corresponding
to 8; = 0) cannot be rejected in the majority of cases. Also, the introduction of
the heteroskedastic component does not seem to have a remarkable impact on the
estimates of the other model parameters. Accordingly, a simple likelihood ratio
test, comparing heteroskedastic vs homoskedastic models, would reveal that the
introduction of the heteroskedastic component, in the vast majority of cases, does not
bring to any significant improvement in the overall likelihood .. Finally, we focused
our attention on the partial likelihood ¢, which measures the ability of the fitted model
to reproduce the conditional distribution of returns, hence being a the critical entity for
risk management applications. Our findings indeed show that increments in ¢,, when
present, are always negligible. So, the introduction of the heteroskedastic component
is not expected to bring any noticeable gains for tail risk forecasting. It is worth noting
that, under this respect, our findings are in line with those of and Hansen et al. (2012)
and Hansen and Huang (2016).

The above results are based on standard maximum likelihood theory. In order
to double check the validity of the implied asymptotic approximation, we have
implemented the Bootstrap resampling procedure described in Section 6 for all the
model specifications considered. However, in order to save space, in this section
we only report results for the ETV-RGARCH model. The results obtained for the
RGARCH and TV-RGARCH models, qualitatively similar to those reported for the
ETV-RGARCH, have been reported in the Empirical Appendix.

Figure 6 reports the histograms of the standardized Bootstrap estimates for the
ETV-RGARCH model’s parameters. In general, the plots suggest that the empirical
distributions of the estimates are consistent with the asymptotic normality assumption.
Mild positive skewness is detected only for the estimated degrees of freedom parameter
v. Furthermore, Table 5 shows that the Bootstrap means and standard errors are in
general very close to the ML estimated coefficients and associated asymptotic standard
errors. In addition, the table also reports the 95% Bootstrap percentile confidence
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Figure 4: Time series of estimated ¥ and f§; for TV-RGARCH
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Time-varying % and f; of TV-RGARCH model for the stock market indices DAX 30 (top-left), FTSE 100
(top-right), Hang Seng (bottom-left) and S&P500 (bottom-right) for the full sample period 2002/01/01 —
2018/04/30. Gray solid-line: RGARCH coefficient. Gray dashed-line: average of TV-RGARCH time-
varying coefficient.

intervals for each of the estimated coefficients. Looking at the estimated intervals it can
be immediately noted how the assessment of the significance of estimated coefficients
based on asymptotic theory is in close agreement with the findings deriving from the
analysis of the Bootstrap intervals.

7.3 Out-of-sample analysis

In this section the proposed model specifications are used to generate out-of-sample
one-step-ahead forecasts of volatility, VaR and ES. Our forecasting design is based on
arolling window scheme with daily re-estimation. For all markets, the initial in-sample
period covers the time interval from 2002/01/01 to 2008/05/31, resulting in different
time series lengths for the different indices considered: 1604 for the DAX 30, 1590 for
the FTSE 100, 1555 for the HSI and 1558 for the S&P 500. For each index, subsequent
re-estimations are then based over moving windows of the same length.
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Figure 5: Time series of estimated ¥ and f; for ETV-RGARCH
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Time-varying % and 3, of ETV-RGARCH model for the stock market indices DAX 30 (top-left), FTSE
100 (top-right), Hang Seng (bottom-left) and S&P500 (bottom-right) for the full sample period 2002/01/01
—2018/04/30. Gray solid-line: RGARCH coefficient. Gray dashed-line: average of TV-RGARCH time-
varying coefficient. Gray dotted-line: average of ETV-RGARCH time-varying coefficient.

The performances of the proposed models are compared with those of the standard
RGARCH, taken as a benchmark. Also, as a further robustness check, we consider
a set of alternative specifications of TV-RGARCH models characterized by different
specifications of the time-varying coefficients §; and . These have been summarized
in Table 6. The aim is here to double check the appropriateness of the specifications of
¥ and B, discussed in Section 5 and the sensitivity of our empirical results to the model
assumed for ¥ and S;.

Next, we assess the out-of-sample forecasting ability of the model considering
different loss functions. First, the ability to accurately forecast the distribution of future
returns, for each model, is assessed by computing, as in Hansen et al. (2012), the out-
of-sample partial predictive log-likelihood

A

v+1

——

0:(6),. =K(¥) -

r2
log [14 —F—1 | (34)

log (iltJrl) - o (v—2)
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fort =T,...,T +H — 1, with H being the length of the out-of-sample forecasting
period.

The accuracy in forecasting future volatility is then evaluated by means of the
QLIKE loss function. This choice is motivated by two considerations. First, the QLIKE
is robust to noisy volatility proxies (Patton, 2011). Second, compared to other robust
alternatives, this loss function has been found to be more powerful in rejecting poorly
performing predictors (Liu et al., 2015). The QLIKE loss has been computed according

to the formula
H

1 . RV
QLIKE = — ). <10g(hT+j) + f) : (35)

=1 T+j

where hir . j is the 1-step-ahead conditional variance forecast at time T + j. It is trivial
to show that models providing better forecasts will be characterized by lower values
of QLIKE. Furthermore, the quality of individual VaR forecasts is assessed using the
Conditional Coverage test of Christoffersen (1998) and the Dynamic Quantile test of
Engle and Manganelli (2004). The usual Quantile Loss (Koenker, 2005) is then used
to rank models according to their ability to accurately forecast VaR. Namely, letting
VaR, (o) be the a-level one-step-ahead VaR forecast at time 7, the Quantile Loss at
level a (QLy) is given by

H
OLg =Y (a—Lryj)(rryj—VaRrij(@), (0<a<l), (36)
=1

where L, = I(r; < VaR,;(at)).

Finally, to assess the ability of the proposed models to jointly forecast VaR and ES,
we rely on the results of Fissler and Ziegel (2016) on the joint elicitability of the couple
(VaR, ES). In particular, they show that (VaR, ES) is jointly elicitable with respect to
the following class of strictly consistent loss functions

1
FZ,(I’,,V,,e,\OC,Gth) = (L,—OC) <G1(vt)—G1(r,)+an(e,)V,)
1
— Gz(et) (aLtrt e,) 7%2(9[), (37)

where G is weakly increasing, G- is strictly increasing and strictly positive, and ¥, =
G». It can be shown that the expected value of the loss in (37) is uniquely minimized by
setting v; and e, equal to the level-a VaR and ES series, respectively. Following Patton
etal. (2019), we assume VaR and ES to be strictly negative and ES; (@) < VaR,(a) <0,
with G| (x) = 0 and G, (x) = —1/x, resulting in the following loss function

1 VaR,(ct)

(0)
FzZ,5~ = L —VaR —_—
1 ¢ (rr —VaR,(a)) + ES.(@)

" aES(a) +log(~ES (@) =1, (38)

where ES;(o) is the a-level one-step-ahead ES at time 7. As for the other loss
functions, models that, over the chosen forecasting period, show lower average values
of F Z,(O) are preferred.

The significance of performance gaps across different models is assessed by means
of the Model Confidence Set (MCS) (Hansen et al., 2011).

For the partial predictive log-likelihood, the results reported in Table 7 show that
the ETV-RGARCH is always returning the minimum value of the (negative) partial
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predictive log-likelihood and both the TV-RGARCH and ETV-RGARCH are always
included in the 75% MCS for both the Range (R) and Semi-Quadratic (SQ) statistics.
The standard RGARCH model is always excluded from the MCS at both levels
considered for DAX 30, FTSE 100 and HSI and enters the 90% MCS only for S&P
500.

Moving to consider the QLIKE loss (Table 8), the ETV-RGARCH is returning the
minimum value of the loss function in three cases out of four and is the only model
always included in the 75% MCS for both the R and SQ statistics. For HSI, no other
model is included in the MCS at any level while, for the remaining indices and for both
R and SQ, the considered variants of the TV-RGARCH enter the MCS at the 90% or
75% level. The RGARCH model is always excluded from the MCS for both confidence
levels and test statistics considered.

Next we consider the results of the backtesting VaR for two different risk levels:
0.01 and 0.025. At the 0.01 level (Table 9), models incorporating a correction for
dynamic attenuation bias always pass the diagnostic tests at the usual 5% level. The
only exceptions are the ETV-RGARCH model, signficant only at the 1% level for the
S&P 500, and the TV-RGARCH*-S2, for which, in the case of the FTSE 100, the DQ
tests returns a p-value slightly below 5%. The RGARCH model, although performing
well for the other three indices, does not pass the diagnostic tests for the S&P 500. It
should be however noted that, for the S&P 500 dataset, all the models considered have a
borderline performance returning p-values very close to the 5% acceptance threshold.
Differently, at the 0.025 level (Table 10), the TV-RGARCH type models are always
passing the diagnostic tests while, for the DAX 30, the RGARCH model does not pass
the DQ test.

When considering the accuracy in predictive VaR, assessed via the Quantile Loss,
we find that, at the 0.01 level (Table 11), the TV-RGARCH is the only model always
included in the 75% MCS for, both the R and SQ statistics, while the ETV-RGARCH
models enters the 75% MCS for all indices except for the S&P 500. The RGARCH is
always excluded from the MCS for FTSE 100 and S&P 500 but it enters the 90% MCS
for DAX 30 and HSI. For the 0.025 level (Table 12), we find that the TV-RGARCH
and ETV-RGARCH are the only models always included in the 75% MCS while, on
the other hand, the RGARCH never enters the MCS.

A similar picture is observed when jointly evaluating the quality of VaR and ES
forecasts via the FZ(© loss function (Tables 13 and 14). For both the 0.01 and 0.025
levels the following facts arise: both the TV-RGARCH and ETV-RGARCH models are
always entering the 75% MCS, exception made for TV-RGARCH that, for S&P 500 at
the 0.025 risk level, only enters the 90% MCS; the RGARCH-model is never included
in the 75% MCS and enters the 90% MCS only for the HSI at the 0.01 level; For both
risk levels, the ETV-RGARCH model is returning the minimum average FZ(©) value
for three out of the four indices considered (excluding FTSE 100, for the 0.01 level,
and DAX 30, for the 0.025 risk level).

In conclusion: the results of our out-of-sample forecasting experiment show
that i) for both volatility and tail risk forecasting, the proposed time-varying
RGARCH models, TV-RGARCH and ETV-RGARCH, always outperform the standard
RGARCH model ii) the proposed TV-RGARCH and ETV-RGARCH models are not
outperformed by the alternative time-varying specifications considered as robustness
checks iii) the results are in general robust to the specification of the functional form
of the % and B coefficients.
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8 Concluding Remarks

We have proposed novel model specifications, that generalize the log-linear RGARCH
model proposed by Hansen et al. (2012) to account for time-varying attenuation bias
effects. The proposed models appear to be effective in capturing the dependency of
volatility dynamics on the variability of the measurement error of the reference log-
transformed realized measure. The results of an application to VaR and ES forecasting,
for four major stock market indices, support the profitability of the proposed model in
risk management applications. Estimation of model parameters can be efficiently done
via ML estimation. Furthermore, accurate finite sample inference has been obtained
implementing a parametric Bootstrap procedure.

The derivation of the statistical properties of the proposed models is an interesting
but challenging issue that has not been investigated in this paper. Although it is easy
to show that, as for the standard RGARCH model, the TV-RGARCH model, and its
extensions, can be written as Hidden Markov Models, depending on a latent Markov
chain, analytical derivation of stationarity and ergodicity conditions is troublesome by
the non-linearity of the latent chain. So, investigation of these issues has been currently
left for future research.
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Table 3: In-sample estimation results

DAX 30 FTSE 100 HSI S&P 500
RG TV-RG  ETV-RG RG TV.RG  ETV-RG RG TV-RG  ETV-RG RG TV.RG  ETV-RG
o 20.171 20352 -0.085 -0.039 -0.090 0.190 -0.096 20.262 0.260 -0.002 -0.157 1.082
(0.082) (0.096) (0.367) (0.089) (0.100) (0.108) (0.062) (0.076) (0.559) (0.109) (0.111) (0.322)
y 0.362 0.471 1.061 0.363 0.442 0.876 0.226 0.304 0.668 0.479 0.546 0.796
(0.016) (0.022) (0.111) (0.016) (0.022) (0.120) (0.013) (0.018) (0.097) (0.019) (0.021) (0.129)
7 - -0.134 -0.195 - -0.113 -0.204 - -0.126 -0.164 - -0.214 -0.210
(0.034) (0.037) (0.043) (0.050) (0.035) (0.036) (0.057) (0.059)
» - - 0.252 - - 0.242 - - 0.194 - - 0.222
(0.043) (0.056) (0.039) (0.063)
B 0.614 0.474 -0.060 0.619 0.523 0.139 0.752 0.646 0.380 0.508 0.419 0.420
(0.015) (0.022) (0.137) (0.015) (0.021) (0.125) (0.014) (0.019) (0.138) (0.017) (0.020) (0.128)
Bi - 0.166 0.227 - 0.148 0.241 - 0.159 0.197 - 0.250 0.248
(0.034) (0.036) (0.044) (0.051) (0.036) (0.037) (0.058) (0.060)
B> - - -0.281 - - -0.277 - - -0.224 - - 0.247
(0.043) (0.057) (0.041) (0.064)
& -0.068 0.008 0.037 -0.401 -0.385 -0.282 -0.257 -0.380 -0.373 0.629 0.557 0.628
(0.213) (0.210) (0.193) (0.225) 0.221) (0.184) (0.243) (0.251) (0.370) (0.205) (0.188) (0.199)
ok 1.008 1.015 1.018 1.000 1.001 1.011 1.023 1.010 1.010 0.963 0.970 0.963
(0.023) (0.023) (0.021) (0.023) (0.022) (0.018) (0.025) (0.026) (0.038) (0.021) (0.019) (0.020)
TR -0.135 0.133 -0.134 -0.087 -0.089 -0.090 0.002 0.003 0.003 -0.107 -0.107 -0.108
(0.008) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.008) (0.008) (0.008)
TR 0.107 0.108 0.107 0.100 0.098 0.097 0.141 0.140 0.140 0.099 0.099 0.099
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.005) (0.005) (0.005)
olx 0.219 0.213 0.211 0.181 0.177 0.176 0.212 0.208 0.207 0.234 0.231 0.230
(0.005) (0.005) (0.005) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
& - -0.015 0.015 - -0.289 -0.187 - -0.817 -0.796 - -0.767 -0.834
(0.208) (0.191) 0.221) (0.186) (0.249) (0.359) (0.182) (0.194)
00 - 0.979 0.981 - 0.984 0.994 - 0.936 0.938 - 0.933 0.926
(0.022) (0.021) (0.022) (0.019) (0.026) (0.036) (0.018) (0.019)
Tio - 0.115 0.115 - -0.077 0.077 - 0.006 0.006 - -0.080 -0.081
(0.010) (0.010) (0.008) (0.008) (0.009) (0.009) (0.009) (0.009)
To - 0.137 0.138 - 0.114 0.114 - 0.153 0.153 - 0.110 0.110
(0.007) (0.007) (0.006) (0.006) (0.007) (0.007) (0.006) (0.006)
ol - 0.366 0.363 - 0.273 0.272 - 0.326 0.325 - 0.291 0.290
(0.008) (0.008) (0.006) (0.006) (0.007) (0.007) (0.007) (0.006)
p - 0911 0911 - 0.927 0.927 - 0.932 0.931 - 0.946 0.946
(0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
v 8.696 8.947 9.161 11.565 11.882 12.152 7.049 6.998 7.303 8.493 8.819 8.850
(0.811) (0.377) (0.215) (0.520) 0.278) (1.862) (0.342) (0.351) (0.675) (0.258) (0.362) (0.364)
(, 13215.061  13223.392  13227.509 14271.797 14281.768 14284.177 13521.888 13528.673 13532.320 14253.075 14257277 14258.017
Z£(6) 10510.500 10463282 10481.143 11980.648 12895.611 12903.836 10982.892 11639.085 11649.732 11469.198  12816.408 12828.051

In-sample parameter estimates for the full sample period 2002/01/01 — 2018/04/30. ¢, partial log-likelihood. .Z(0): log-likelihood. Standard errors are reported in
parenthesis below coefficient estimates. In bold parameter not significant at 5% level.



Table 4: Likelihood ratio statistics for the full sample period 2002/01/01 —2018/04/30.
Top panel: likelihood ratio statistics for the partial log-likelihood ¢,. Bottom panel:
likelihood ratio statistics for the full log-likelihood .#(6). P-values in parentheses.

DAX 30 FTSE 100 HSI S&P 500

TV-RG ETV-RG TV-RG ETV-RG TV-RG ETV-RG TV-RG ETV-RG

RG 16.663 24.896 19.941 24.760 13.570 20.864 8.404 9.890
(0.0002) (0.0000) (0.0000) (0.0000) (0.0011) (0.0003) (0.0150) (0.0423)
TV-RG - 8.233 - 4.818 - 7.295 - 1.481
(0.0163) (0.0899) (0.0261) (0.4769)

TV-RG - 35.722 - 16.450 - 21.294 - 23.286
(0.0000) (0.0003) (0.0000) (0.0000)
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Figure 6: Histograms and superimposed non-parametric densities of 999 standardized

Bootstrap estimates of the parameters of the ETV-RGARCH model

DAX 30

_A__L

**

3
B
)

_L_‘L

_4_+

_A__L

_L_A_

FTSE 100

8

%H

?“

»

dialld

b

=

>>

H

Sedd

HsI

8

=

Sess
Sedd
>

s

S&P 500

Pra

qeds

>




9C

Table 5: Summary of Bootstrap estimates for the ETV-RGARCH model
DAX 30 FTSE 100 HSI S&P 500

Coef HB SE  SEB  qo0s  qo9s Coef Up SE  SEB  goo2s 40975 Coef Up SE  SEB  qo0s 40975 Coef Up SE  SEB  qoos 40975
0] -0.085 -0.168 0.367 0.402 -1.049 0.551 0.190 0.121  0.108 0.374 -0.682  0.805 0260 0.175 0.559 0497 -0.983 1.051 1.082 0.822 0.322 0340 0.078 1.360
Y 1.061 1.056 0.111 0.104 0.854 1.256 0.876 0.870 0.120 0.121  0.638 1.099 0.668 0.667 0.097 0.106 0.469 0.880 0.796  0.779 0.129 0.125 0.535 1.019
N -0.195 -0.194 0.037 0.036 -0.267 -0.122 -0.204  -0.203 0.050 0.044 -0.291 -0.113 -0.164 -0.165 0.036 0.038 -0.240 -0.087 -0.210 -0.211 0.059 0.062 -0.341 -0.095
r 0.252  0.251 0.043 0.040 0.172  0.328 0.242 0.241  0.056 0.048 0.151 0.334 0.194  0.197 0.039 0.042 0.114 0.276 0.222  0.224 0.063 0.064 0.098 0.357
B -0.060 -0.072 0.137 0.111 -0.302 0.153 0.139 0.133  0.125 0.125 -0.106 0.373 0.380 0365 0.138 0.119 0.120  0.604 0420 0387 0.128 0.129 0.129  0.631
Bi 0.227  0.226 0.036 0.036 0.154  0.297 0.241 0.240  0.051 0.045 0.150 0.330 0.197 0.199 0.037 0.040 0.118 0.276 0.248 0.248 0.060 0.062 0.131 0.379
B -0.281 -0.282 0.043 0.040 -0.359 -0.203 -0.277  -0.277 0.057 0.050 -0.372 -0.183 -0.224  -0.227 0.041 0.044 -0.313 -0.139 -0.247 -0.251 0.064 0.065 -0.382 -0.123
&r 0.037 0.054 0.193 0.279 -0463 0.619 -0.282  -0.264 0.184 0.289 -0.791 0.357 -0.373  -0.350 0.370 0.361 -1.021 0.391 -0.628 -0.615 0.199 0250 -1.073 -0.116
Pr 1.018 1.020 0.021 0.030 0.964 1.081 1.011 1.013  0.018 0.029 0.959 1.075 1.010 1.013 0.038 0.037 0.942 1.089 0.963 0964 0.020 0.025 0919 1.015
g -0.134 -0.133 0.007 0.008 -0.150 -0.119 -0.090 -0.090 0.007 0.007 -0.103 -0.077 0.003  0.002 0.007 0.008 -0.013 0.017 -0.108 -0.108 0.008 0.008 -0.123 -0.094
g 0.107  0.109 0.005 0.007 0.096 0.124 0.097 0.097 0.005 0.006 0.085 0.108 0.140  0.140 0.006 0.006 0.130 0.151 0.099 0.099 0.005 0.006 0.088 0.111
Guz_k 0.211  0.211 0.005 0.005 0.200 0.221 0.176 0.175 0.004 0.005 0.165 0.186 0.207 0.206 0.005 0.007 0.194 0.220 0.230  0.229 0.005 0.006 0218 0.241
&o 0.015 0.030 0.191 0.269 -0474 0.566 -0.187 -0.170 0.186 0.286 -0.701  0.445 -0.796  -0.777 0.359 0343 -1.412 -0.081 -0.834 -0.824 0.194 0243 -1.271 -0.337
[0%) 0981 0983 0.021 0.029 0.929 1.040 0.994 0.996 0.019 0.029 0.943 1.058 0938 0940 0.036 0.035 0.874 1.012 0.926 0927 0.019 0.024 0882 0976
T -0.115 -0.115 0.010 0.012 -0.138 -0.093 -0.077  -0.077 0.008 0.009 -0.094 -0.061 0.006  0.005 0.009 0.010 -0.014 0.026 -0.081 -0.081 0.009 0.010 -0.099 -0.061
T 0138 0.141 0.007 0.011 0.120 0.164 0.114 0.114  0.006 0.007 0.100  0.128 0.153  0.153 0.007 0.007 0.140 0.166 0.110  0.110  0.006 0.007 0.096  0.125
GIZZ_Q 0.363  0.362 0.008 0.010 0.342 0.382 0.272 0.271  0.006 0.009 0.254 0.291 0.325 0.324 0.007 0.010 0.305 0.345 0.290 0.289 0.006 0.008 0.274  0.305
p 0911 0911 0.003 0.003 0905 0916 0.927 0.927 0.002 0.003 0.921 0.932 0.931 0.931 0.002 0.002 0927 0.936 0.946 0946 0.002 0.002 0942 0.950
v 9.161 9.257 0.215 1430 7.136 12.820 12.152  12.568 1.862 2365 9.179 18.831 7.303 7.399 0.675 0.789 6.013  9.220 8.850 9.042 0364 1239 7.104 11.717

Coef: estimated coefficient; tp: mean of Bootstrap estimates; SE: asymptotic standard error ; SE.B: standard

percentile; g 975: 97.5% Bootstrap percentile.

error of Bootstrap estimates; gg.o25: 2.5% Bootstrap



Table 6: Model specifications for robustness check

Model B equation % equation Error distribution
TV-RGARCH* ﬁt = ﬁ +ﬁ1 (Yz,l) =Y+tn (Yt—l) u, ~MVN, (0 Zu)
TV-RGARCH*-S B =B+B (VY1) Y =7+n(Y-1) u, ~ MVN>(0,%,)
TV-RGARCH*-S2 Bi=B+pB (Y,_l)2 Y=7+n (1/,_1)2 u, ~ MVN,(0,%,)
TV-RGARCH"-2 B=B+Bi(Y-)”  y=v+n(-)®  uw~MVN(0,%,)

Table 7: Predictive Partial log-likelihood (¢,) and MCS p-values using both Range (p-
value R) and Semi-Quadratic (p-value SQ) statistics. For each stock in bold the highest
maximized log-likelihood value, in 'box models € 90% MCS and in - models €
75% MCS. The out-of-sample period for the stock market indices is 2008/06/01 —
2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396 for Hang Seng
and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500
A p-value R p-value SQ A p-value R p-value SQ i, p-value R p-value SQ i, p-value R p-value SQ
RGARCH 8070.297 0.0002 0.0044 8668.795 0.0266 0.0674 8175.131 0.0840 0.0394 8856.416 0.1236 0.2352
TV-RGARCH"-S2  8079.344 8676.778 8181.348 0.1780 8860.155
TV-RGARCH'™-S  8079.940 8677.034 8182.594 8860.901

TV-RGARCH"-2 8079.059
TV-RGARCH" 8079.773
TV-RGARCH 8079.530
ETV-RGARCH 8080.683

8676.838 8182.614 8860.358
8182.023 0.1504 0.1352 8860.609
8182.835 8861.089

8183.642 8861.099

8677.070
8676.870
8677.526

Table 8: Average values of QLIKE loss using 5-min RV as volatility proxy and MCS
p-values using both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics. For
each stock in bold minimum loss, in box models € 90% MCS and in - models
€ 75% MCS. The out-of-sample period for the stock market indices is 2008/06/01 —
2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396 for Hang Seng
and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500
Average p-valueR  p-value SQ  Average p-valueR  p-valueSQ  Average p-valueR  pvalue SQ  Average p-valueR  p-value SQ

RGARCH 82741 0.0004 0.0016 9.0421  0.0412 0.0732 -8.8664  0.0004 0.0018 90741 00538 0.0546
TV-RGARCH*-S2  -82780 | 0.1170 0.1202 9.0462 88797 0.0074 0.0068 90771 | 0.1654 0.1274
TV-RGARCH™-S 82787 | 0.1580 0.1490 9.0458 | 0.2040 -8.8821  0.0076 0.0068 9.0780 | 02058 0.1554
TV-RGARCH'-2  -82786 | 0.1580 0.1490 29,0455 | 02040 88825 0.0076 0.0084 90765 | 0.1674 0.1390
TV-RGARCH* 82785 | 0.1580 0.1490 9.0461 88812 0.0074 0.0068 9.0777 | 0.1908 0.1554
TV-RGARCH 82787 0.1580 0.1490 29,0455 0.1886 0.2300 88826 0.0076 0.0084 90782 02058 0.1554
ETV-RGARCH _ -8.2814 -9.0458 -8.8853 9.0797
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Table 9: One-step ahead Value at Risk backtesting at the risk level o = 0.01. VRate
shows the Violation Rate as proportion of returns smaller than VaR during the forecast
period at the risk level of 1%. CC p-value and DQ p-value report the p-values for the
Conditional Coverage test and Dynamic Quantile test, respectively. In bold models
showing the Violation Rate closest to the assumed nominal value. Boxes indicate
p-values lower than 5%. The out-of-sample period for the stock market indices is
2008/06/01 — 2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396
for Hang Seng and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500
VRate CCpvalue DQp-value ~ VRate CCp-value DQp-value ~ VRate CCp-value DQp-value  VRate CCp-value DQ p-value
RGARCH 00132 0.1932 03669 00125 03365 0.0598 00134 0.1890 03133 00159 [0.0140 00156

TV-RGARCH*-S2  0.0112 0.6046 0.6912 0.0113 0.5006 0.0117 0.5181 0.4681 0.0147 0.0556 0.0664
TV-RGARCH*-S 0.0116 0.5158 0.6352 0.0117 0.4554 0.5392 0.0121 0.4243 0.4360 0.0147 0.0556 0.0702
TV-RGARCH"-2 0.0116 0.5158 0.6339 0.0121 0.3988 0.6166 0.0121 0.4243 0.4335 0.0143 0.0832 0.1100
TV-RGARCH* 0.0116 0.5158 0.6327 0.0113 0.5006 0.6129 0.0117 0.5181 0.4698 0.0147 0.0556 0.0690
TVRGARCH-S 00116 05158 0.6351 00117 04554 0.5413 00121 04243 04377 00147 00556 0.0708
ETV-RGARCH 00128 02596 05031 00121 03988 04762 00121 04243 04591 00155

Table 10: One-step ahead Value at Risk backtesting at the risk level @ = 0.025. VRate
shows the Violation Rate as proportion of returns smaller than VaR during the forecast
period at the risk level of 2.5%. CC p-value and DQ p-value report the p-values for the
Conditional Coverage test and Dynamic Quantile test, respectively. In bold models
showing the Violation Rate closest to the assumed nominal value. Boxes indicate
p-values lower than 5%. The out-of-sample period for the stock market indices is
2008/06/01 — 2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396
for Hang Seng and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500
VRate CCp-value DQp-value  VRate CCp-value DQp-value ~ VRate CCp-value DQp-value  VRate CCp-value DQ p-value

RGARCH 00321 0.0901 00295 0.1906 0.0889 00263 05778 09433 00203 04094 07492
TV-RGARCH'-S2  0.0289 04772 0.2694 00275 02759 05183 00275 02577 0.6865 0.0281  0.6280 0.8063
TV-RGARCH'-S 00293 04070 02405 00263 0.6028 07301 00275 02577 05997 0.0281  0.6280 08178
TV-RGARCH'-2 00297 03418 02222 00259 09287 0.8624 00275 02577 0.6001 0.0281  0.6280 08227
TV-RGARCH* 00293 04070 0.2389 00271 02819 05128 00271 02627 07164 00281  0.6280 08146
TV-RGARCH 00301 02825 02583 00259 09287 0.8626 00275 02577 0.6045 00281 0.6280 08198
ETV-RGARCH 00305 0.1427 02238 00271 0.7978 0.8649 00259 02484 05682 00289 04799 0.8336

Table 11: Average Quantile Loss function at the risk level o = 0.01 and MCS p-
values using both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics. For
each stock in bold minimum loss, in ' box models € 90% MCS and in - models
€ 75% MCS. The out-of-sample period for the stock market indices is 2008/06/01 —
2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396 for Hang Seng
and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500

Average  pvalue R pvalue SQ  Average p-value R p-value SQ  Average p-valueR  p-value SQ  Average p-value R p-value SQ

RGARCH 0.7984 0.1058 0.2030 0.6214 0.0004 0.0024 0.7134 0.1168 0.2192 0.6295 0.0014 0.0010
TV-RGARCH*-S2  0.7899 0.6100 0.7076 0.2470 0.6224 0.0014 0.0018
TV-RGARCH*-S 0.7886 0.6087 0.7067 0.6193 0.1732 0.2430
TV-RGARCH*-2 0.7892 0.6093 0.7076 0.6188

TV-RGARCH* 0.7892 0.6089 0.7075 0.6204 0.0014 0.0046
TV-RGARCH 0.7889 0.6093 0.7062 0.6186
ETV-RGARCH 0.7950 0.6119 0.7038 0.6229 0.0014 0.0046
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Table 12: Average Quantile Loss function at the risk level a = 0.025 and MCS p-
values using both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics. For
each stock in bold minimum loss, in box models € 90% MCS and in - models
€ 75% MCS. The out-of-sample period for the stock market indices is 2008/06/01 —
2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396 for Hang Seng
and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500
Average  p-valueR _ p-value SQ  Average p-valueR  pvalue SQ  Average p-valueR  p-value SQ  Average p-value R p-value SQ
RGARCH 17258 0.0022 0.0350 13221 0.0094 0.0140 14184 0.0500 0.0430 13164 0.0014 0.0002

TV-RGARCH*-S2  1.7065 1.3089 1.4011 0.1056 0.1022 1.2997 0.0092 0.0166
TV-RGARCH*-S 1.7047 1.3053 1.3963 0.1056 02172 1.2951
TV-RGARCH*-2 1.7052 1.3059 1.3963 0.1056 02172 1.2932

TV-RGARCH* 1.7049 1.3061 1.3981 0.1056 0.1304 1.2966
TV-RGARCH 1.7056 1.3057 1.3950 1.2941
ETV-RGARCH 1.7185 1.3074 1.3925 1.2967

0.0368 0.0592

Table 13: Average FZ loss function at the risk level o¢ = 0.01 and MCS p-values using
both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics. For each stock in
bold minimum loss, in ' box models € 90% MCS and in - models € 75% MCS.
The out-of-sample period for the stock market indices is 2008/06/01 — 2018/04/30, for
a total of 2492 for DAX 30, 2473 for FTSE 100, 2396 for Hang Seng and 2456 for
S&P 500.

DAX 30 FTSE 100 HSI S&P 500

Average pvalue R pvalueSQ  Average p-valueR  p-value SQ  Average p-valueR p-value SQ  Average p-value R p-value SQ

RGARCH -3.4690 0.0002 0.0818 -3.7516 0.0008 0.0106 -3.5748 0.1208 0.1566 -3.7224 0.0124 0.0264
TV-RGARCH-S2  -3.4834 -3.7732 -3.5872 -3.7327  0.0124 0.0220
TV-RGARCH*-S  -3.4868 -3.7766 -3.5891 -3.7387  0.0880 0.1518
TV-RGARCH®-2  -3.4858 -3.7761 -3.5880 -3.7386
TV-RGARCH* -3.4855 -3.7760 -3.5880 -3.7362  0.0124 0.0264
TV-RGARCH -3.4864 -3.7756 -3.5897 -3.7407
ETV-RGARCH -3.4918 -3.7751 -3.5934 -3.7475

Table 14: Average FZ loss function at the risk level o = 0.025 and MCS p-values using
both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics. For each stock in
bold minimum loss, in ' box models € 90% MCS and in - models € 75% MCS.
The out-of-sample period for the stock market indices is 2008/06/01 — 2018/04/30, for
a total of 2492 for DAX 30, 2473 for FTSE 100, 2396 for Hang Seng and 2456 for
S&P 500.

DAX 30 FTSE 100 HSI S&P 500
Average p-valieR  pvalue SQ  Average p-valueR  p-valueSQ  Average p-valueR  pvalue SQ  Average p-valueR  p-value SQ
RGARCH 3.6346 00128 0.0850 39302 0.0180 00232 37916 0.0254 0.0304 39322 0.0026 0.0016

TV-RGARCH'-S2  -3.6507 -3.9409 38077 01280 0.1488 3.9462 00098 00024
TV-RGARCH'-S  -3.6527 -3.9456 38108 [HOBMRNNNOBMONY 39512 00550 00624
TV-RGARCH'-2  -3.6521 -3.9452 38106 01280  0.1822 39526 | 02100 02172

TV-RGARCH* -3.6522 -3.9443 -3.8098 | 0.1280 0.1822 -3.9495  0.0098 0.0066
TV-RGARCH -3.6521 -3.9451 -3.8115 -3.9524 | 0.2100 0.2172
ETV-RGARCH -3.6515 -3.9460 -3.8143 -3.9581
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Empirical Appendix

Table 15: Summary statistics

DAX 30 FTSE 100 HSI S&P 500

r RV, r RV, r RV, r RV,
nobs 4096 4096 4063 4063 3951 3951 4014 4014
Min  -0.071 0.035 -0.070 0.026 -0.132 0.039 -0.082 0.017
Max  0.092 67.627 0.088 58520 0.095 40.069 0.074 57.833
QI -0.005 0396 -0.004 0.172 -0.005 0.222 -0.004 0.181
Median 0.001 0.749  0.000 0305 0.000 0.368  0.000 0.334
Q3 0.006 1.512 0.005 0.643 0.004 0.628 0.004 0.736
Mean 0.000 1525 0.000 0.677 -0.001 0.661 0.000 0.814
Stdev  0.012 2762 0.009 1.661 0010 1425 0.010 2.041
Skew 0.127 8303 0.096 16.169 -0.220 13.531 -0.204 11.571
Kurt 5216 123.868 8.403 430.361 15.997 275.734 9.306 214.716

Summary statistics of daily log-returns r; and daily Realized Volatilities RV; (T :
intra-daily returns 7, ; x 100) for the stock market indices DAX 30, FTSE 100, Hang Seng and
S&P500 for the full sample period 2002/01/01 — 2018/04/30. n.obs: number of observations for
each series; Min: Minimum; Max: Maximum; Q1: First Quartile; Q3: Third Quartile; Median;
Mean; Stdev: Standard deviation; Skew: Skewness; Kurt: Kurtosis.
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Figure 7: Histograms and superimposed non-parametric densities of 999 standardized
Bootstrap estimates of the parameters of the RGARCH model
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Figure 8: Histograms and superimposed non-parametric densities of 999 standardized
Bootstrap estimates of the parameters of the TV-RGARCH model
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Table 16: Summary of Bootstrap estimates for the RGARCH model

DAX 30 FTSE 100 HSI S&P 500
Coef Up SE  SEB  qo025 G075 Coef Up SE  SEB  qo025  qo97s Coef Up SE  SEB  qoo2s 40975 Coef Up SE  SEB  qoo2s 40975

® -0.171 -0.178 0.082 0.112 -0.393  0.029 -0.039  -0.046 0.089 0.110 -0.267 0.163 -0.096 -0.106 0.062 0.089 -0.296 0.050 -0.002 -0.014 0.109 0.123 -0.252 0.229
Y 0.362 0362 0.016 0.017 0.331 0.394 0.363 0.363 0.016 0.016 0330 0.392 0.226 0226 0.013 0.013 0.202 0.253 0479 0478 0.019 0018 0443 0514
B 0.614 0.614 0.015 0.013 0590 0.640 0.619 0.618 0.015 0.013 0.593 0.642 0.752  0.752  0.014 0.012 0.729 0.774 0.508 0.508 0.017 0.014 0481 0.536
Er -0.068 -0.064 0.213 0.284 -0.589 0.510 -0.401 -0401 0225 0278 -0921 0.169 -0.257 -0.239 0.243 0.356 -0.896 0.505 -0.629 -0.614 0.205 0.228 -1.031 -0.152
Pr 1.008 1.008 0.023 0.030 0.952 1.070 1.000 1.000  0.023 0.028 0.947 1.058 1.023 1.025 0.025 0.037 0.957 1.100 0.963 0965 0.021 0.023 0.922 1.013
g -0.135 -0.135 0.008 0.008 -0.152 -0.119 -0.087 -0.088 0.007 0.007 -0.101 -0.074 0.002  0.002 0.007 0.008 -0.013 0.017 -0.107 -0.107 0.008 0.008 -0.122 -0.092
g 0107 0.109 0.005 0.008 0.095 0.124 0.100 0.100  0.005 0.006 0.088 0.112 0.141 0.142  0.006 0.006 0.131 0.153 0.099 0.099 0.005 0.006 0.088 0.111

Gz%.k 0.219  0.219 0.005 0.006 0.207 0.231 0.181 0.180 0.004 0.006 0.170 0.192 0.212  0.211 0.005 0.007 0.199 0.225 0.234  0.234 0.005 0.006 0.222 0.246
\Y 8.696 8923 0.811 1347 6.797 12.012 11.565 11.944 0.520 2.084 8913 17.064 7.049 7.169 0342 0.731 5976 8.778 8.493 8704 0.258 1.200 6.840 11.553

Coef: estimated coefficient; up: mean of Bootstrap estimates; SE: asymptotic standard error ; SE.B: standard error of Bootstrap estimates; gg.o25: 2.5% Bootstrap
percentile; go.975: 97.5% Bootstrap percentile.
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Table 17: Summary of Bootstrap estimates for the TV-RGARCH model

DAX 30 FTSE 100 HSI S&P 500

Coef UB SE  SEB  qoos  qo97s Coef Up SE  SEB  qo0s  qov7s Coef Up SE  SEB  qo0s 40975 Coef Up SE  SEB  qoos 40975

0] -0.352 -0.351 0.096 0.137 -0.622 -0.086 -0.090 -0.093 0.100 0.117 -0.322  0.129 -0.262  -0.276  0.076 0.102 -0.489 -0.084 -0.157 -0.166 0.111 0.131 -0.426 0.068
Y 0471 0470 0.022 0.024 0424 0.519 0.442 0443  0.022 0.021 0403 0.486 0.304 0.302 0.018 0.019 0.267 0.338 0.546  0.544 0.021 0.022 0.502 0.586
" -0.134  -0.132  0.034 0.037 -0.205 -0.061 -0.113  -0.113  0.043 0.042 -0.193 -0.030 -0.126  -0.125 0.035 0.037 -0.197 -0.056 -0.214  -0.215 0.057 0.060 -0.334 -0.106
B 0474 0474 0.022 0.020 0435 0.516 0.523 0.521  0.021 0.018 0486 0.556 0.646 0.647 0.019 0.017 0.613 0.681 0.419 0419 0.020 0.019 0382 0455
Bi 0.166 0.165 0.034 0.037 0.092 0.238 0.148 0.149  0.044 0.043 0.065 0.228 0.159 0.157 0.036 0.038 0.084 0.233 0.250  0.251 0.058 0.060 0.140  0.370
R 0.008 0.004 0.210 0.295 -0.561 0.592 -0.385 -0.394 0.221 0.253 -0.876  0.121 -0.380 -0.348 0.251 0319 -0.980 0.329 -0.557 -0.555 0.188 0.226 -0.981 -0.082
PR 1.015 1.015 0.023 0.032 0.955 1.077 1.001 1.000 0.022 0.026 0.951 1.053 1.010 1.013 0.026 0.033 0.947 1.082 0.970 0970 0.019 0.023 0.928 1.017
g -0.133 -0.134 0.007 0.008 -0.148 -0.118 -0.089  -0.090 0.007 0.007 -0.104 -0.076 0.003  0.003 0.007 0.008 -0.013 0.018 -0.107 -0.108 0.008 0.008 -0.123 -0.092
e 0.108 0.109 0.005 0.007 0.097 0.123 0.098 0.098 0.005 0.006 0.087 0.110 0.140  0.140 0.006 0.006 0.129 0.150 0.099 0.099 0.005 0.006 0.088 0.111
O'MZR 0.213  0.212 0.005 0.006 0.202 0.223 0.177 0.176  0.004 0.005 0.166  0.187 0.208 0.208 0.005 0.007 0.195 0.221 0.231  0.231 0.005 0.006 0.219 0.242
&o -0.015 -0.014 0.208 0.285 -0.556 0.563 -0.289  -0.297 0.221 0.251 -0.775 0.195 -0.817 -0.785 0.249 0.298 -1.351 -0.150 -0.767 -0.766 0.182 0223 -1.165 -0.311
[0%) 0979 0979 0.022 0.030 0.922 1.040 0.984 0984 0.022 0.025 0.935 1.034 0936 0939 0.026 0.031 0.879 1.002 0.933 0933 0.018 0.022 0.893 0.978
70 -0.115 -0.115 0.010 0.012 -0.138 -0.092 -0.077  -0.077 0.008 0.009 -0.095 -0.059 0.006 0.006 0.009 0.010 -0.015 0.026 -0.080 -0.081 0.009 0.010 -0.100 -0.062
7o 0.137 0.140 0.007 0.011 0.119 0.161 0.114 0.115  0.006 0.008 0.101 0.130 0.153  0.153 0.007 0.007 0.140 0.166 0.110  0.110 0.006 0.008 0.096 0.126
Cuo 0.366 0.365 0.008 0.010 0.346 0.385 0.273 0.273  0.006 0.009 0.255 0.290 0.326 0.326 0.007 0.010 0.306 0.346 0.291 0.291 0.007 0.008 0.276  0.306
P 0911 0911 0.003 0.003 0905 0917 0.927 0.927 0.002 0.003 0.922 0.932 0932 0932 0.002 0.002 0927 0937 0.946 0946 0.002 0.002 0942 0.950
v 8.947 9.166 0.377 1478 7.119 12989 11.882 12.268 0.278 2206 9.055 17.743 6.998 7.277 0351 0.771 5987 9.053 8.819 9.027 0.362 1.153 7.175 11.751

Coef: estimated coefficient; tp: mean of Bootstrap estimates; SE: asymptotic standard error ; SE.B: standard

percentile; go.975: 97.5% Bootstrap percentile.

error of Bootstrap estimates; gg.o2s: 2.5% Bootstrap
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Table 18: In-sample estimation results for TV-RGARCH and ETV-RGARCH with time-varying variance of the measurement error ug ;.

DAX 30 FTSE 100 HSI S&P 500
TV-HRG TV-HRG* ETV-HRG ETV-HRG* TV-HRG TV-HRG* ETV-HRG ETV-HRG* TV-HRG TV-HRG* ETV-HRG ETV-HRG* TV-HRG TV-HRG* ETV-HRG ETV-HRG*
© -0.345 -0.345 -0.078 -0.090 -0.094 -0.093 0.149 0.155 -0.259 -0.257 0.271 0.272 -0.157 -0.157 1.083 1.083
(0.070) (0.095) (0.435) (0.342) (0.102) (0.093) (0.409) (0.386) (0.065) (0.066) (0.571) (0.687) (0.127) (0.105) (0.329) (0.311)
v 0.472 0.472 1.075 1.073 0.442 0.442 0.853 0.856 0.301 0.301 0.675 0.675 0.545 0.545 0.797 0.797
(0.020) (0.022) (0.113) (0.110) (0.022) (0.022) (0.119) (0.118) (0.018) (0.018) (0.095) (0.101) (0.022) (0.021) (0.128) (0.120)
7 -0.136 -0.136 -0.199 -0.199 0.113 -0.113 -0.201 -0.201 -0.119 -0.120 0.157 -0.158 -0.212 0211 -0.208 -0.207
(0.035) (0.035) (0.038) (0.037) (0.041) (0.042) (0.049) (0.049) (0.034) (0.034) (0.035) (0.035) (0.058) (0.058) (0.060) (0.059)
P - - 0.257 0.257 - - 0.237 0.238 - - 0.189 0.189 - - 0.220 0.219
(0.044) (0.043) (0.055) (0.056) (0.039) (0.039) (0.064) (0.063)
B 0.473 0.473 -0.074 -0.074 0.523 0.522 0.155 0.153 0.650 0.650 0.374 0.374 0.419 0.419 0.419 0.419
(0.022) (0.022) (0.142) (0.132) (0.021) (0.021) (0.142) (0.146) (0.019) (0.019) (0.142) (0.146) (0.020) (0.020) (0.130) (0.126)
B 0.168 0.169 0.231 0.231 0.149 0.149 0.238 0.239 0.152 0.152 0.191 0.191 0.248 0.247 0.245 0.244
(0.034) (0.035) (0.037) (0.037) (0.042) (0.043) (0.050) (0.050) (0.035) (0.035) (0.036) (0.037) (0.059) (0.059) (0.061) (0.060)
B - - -0.287 -0.287 - - 0273 0273 - - 0218 0.219 - - -0.245 -0.244
(0.045) (0.043) (0.056) (0.057) (0.041) (0.041) (0.065) (0.064)
& 0.000 -0.002 0.025 0.025 -0.389 -0.391 -0.281 -0.282 -0.381 -0.386 -0.392 -0.396 -0.558 -0.559 -0.628 -0.628
(0.134) (0.208) (0.240) (0.186) (0.229) (0.204) (0.253) (0.230) (0.197) (0.200) (0.260) (0.329) (0.221) (0.160) (0.214) (0.182)
or 1.014 1.014 1.017 1.017 1.001 1.001 1.011 1.011 1.010 1.009 1.008 1.008 0.970 0.970 0.963 0.963
(0.016) (0.022) (0.026) (0.020) (0.023) (0.021) (0.026) (0.023) (0.020) (0.021) (0.027) (0.034) (0.022) (0.015) (0.021) (0.018)
TR -0.133 0.133 -0.134 -0.134 -0.089 -0.089 -0.090 -0.089 0.004 0.004 0.004 0.004 -0.107 -0.107 -0.108 -0.108
(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.008) (0.008) (0.008) (0.008)
TR 0.108 0.108 0.107 0.107 0.098 0.098 0.097 0.097 0.140 0.140 0.141 0.141 0.099 0.099 0.099 0.099
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.006) (0.005) (0.005) (0.005) (0.005)
& -1.598 1572 -1.615 -1.581 -1.656 -1.706 -1.679 -1.716 -1.479 -1.538 -1.473 -1.541 -1.459 -1.463 -1.459 -1.467
(0.042) (0.027) (0.042) (0.026) (0.045) (0.026) (0.046) (0.026) (0.048) (0.026) (0.048) (0.026) (0.048) (0.024) (0.049) (0.024)
8 0.035 0.074 0.041 0.079 -0.058 -0.100 -0.043 -0.082 -0.067 0.114 -0.076 -0.127 -0.006 -0.017 -0.010 -0.022
(0.025) (0.044) (0.025) (0.044) (0.029) (0.050) (0.030) (0.050) (0.031) (0.048) (0.031) (0.048) (0.036) (0.050) (0.036) (0.051)
& -0.021 -0.022 0.005 0.005 -0.296 -0.297 -0.187 -0.188 0.813 -0.817 0.811 -0.815 -0.768 -0.769 -0.834 -0.834
(0.130) (0.205) (0.234) (0.182) (0.228) (0.204) (0.251) (0.229) (0.195) (0.198) (0.251) (0.315) (0.215) (0.152) (0.208) (0.176)
%0 0.978 0.978 0.980 0.980 0.984 0.984 0.994 0.99%4 0.937 0.936 0.936 0.936 0.933 0.933 0.926 0.926
(0.016) (0.022) (0.025) (0.020) (0.023) (0.021) (0.025) (0.023) (0.020) (0.020) (0.026) (0.032) (0.022) (0.014) (0.021) (0.018)
Tl -0.115 0.115 -0.115 0.115 -0.076 -0.076 -0.077 0.077 0.007 0.007 0.006 0.006 -0.080 -0.080 -0.081 -0.081
(0.010) (0.010) (0.010) (0.010) (0.008) (0.008) (0.008) (0.008) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
To 0.137 0.137 0.137 0.138 0.115 0.115 0.114 0.114 0.153 0.153 0.153 0.153 0.110 0.110 0.110 0.110
(0.006) (0.007) (0.007) (0.007) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.007) (0.006) (0.005) (0.006) (0.006)
62y 0.366 0.366 0.363 0.363 0.273 0.273 0.272 0.272 0.326 0.326 0.325 0.325 0.291 0.291 0.290 0.290
(0.008) (0.008) (0.008) (0.008) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.006) (0.006)
p 0911 0911 0911 0.911 0.927 0.927 0.927 0.927 0.932 0.932 0.932 0.932 0.946 0.946 0.946 0.946
(0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
v 8.935 8.936 9.146 9.140 11.886 11.889 12.130 12.145 7.139 7.139 7.295 7.296 8.808 8.811 8.850 8.850
(1.783) (0.814) (0.365) (0.285) (0.699) (0.279) (0.586) (0.442) (0.354) (0.385) (0.305) (0.501) (0.377) (1.920) (0.563) (0.702)
l, 13223361 13223359 13227.531  13227.518 14281794 14281.803 14284.034  14284.063 13528720 13528737 13532.400  13532.409 14257275 14257274 14258.011  14258.012
£(0) 10464.304 10464.722 10482.557  10482.767 12897.490 12897.626 12904.855  12905.156 11641340 11641.923 11652.579  11653.158 12816422 12816466 12828.086  12828.140

In-sample parameter estimates for the full sample period 2002/01/01 — 2018/04/30. Estimates refer to the TV-RGARCH (TV-RG) and ETV-RGARCH (ETV-RG)
models which are based on the time-varying variance of the measurement error: G,%R?, =exp{&y+ 6;V(Y;—1)}. The function V(-) corresponds to the identity function
for TV-(Heteroskedastic)RG and ETV-(Heteroskedastic)RG and the logarithm for TV-HRG* and ETV-HRG™. ¢,: partial log-likelihood. .Z(6): log-likelihood.
Standard errors are reported in parenthesis below coefficient estimates. In bold parameters not significant at 5% level.
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