
Munich Personal RePEc Archive

Cold play: Learning across bimatrix

games

Lensberg, Terje and Schenk-Hoppé, Klaus R.

Department of Finance, NHH–Norwegian School of Economics,

Department of Economics, University of Manchester

10 March 2020

Online at https://mpra.ub.uni-muenchen.de/99095/

MPRA Paper No. 99095, posted 18 Mar 2020 07:55 UTC

Cold play: Learning across bimatrix games

Terje Lensberga and Klaus Reiner Schenk-Hoppéa,b

March 10, 2020

Abstract

We study one-shot play in the set of all bimatrix games by a large population of

agents. The agents never see the same game twice, but they can learn ‘across games’

by developing solution concepts that tell them how to play new games. Each agent’s

individual solution concept is represented by a computer program, and natural selection

is applied to derive stochastically stable solution concepts. Our aim is to develop a

theory predicting how experienced agents would play in one-shot games.

Keywords: One-shot games, solution concepts, genetic programming, evolutionary stability.

JEL classification: C63, C73, C90.

aDepartment of Finance, NHH–Norwegian School of Economics, Bergen, Norway.
bDepartment of Economics, School of Social Sciences, University of Manchester, United Kingdom.
E-mail: terje.lensberg@nhh.no; klaus.schenk-hoppe@manchester.ac.uk.

1

By three methods we may learn wisdom: First, by reflection, which is noblest; second, by

imitation, which is easiest; and third by experience, which is the bitterest. — Confucius.

1 Introduction

One-shot games put players in unfamiliar situations. Playing well in such situations is a

difficult task. Games with multiple Nash equilibria raise the question of which one, if any,

of those equilibria will be played, and there is ample evidence that equilibrium solution

concepts fail to predict actual behavior in many games. However, by playing many one-shot

games, an agent can learn ‘across games’ to form, and to gradually improve, a theory of

games. A theory that can be used to solve all games in a given class is a solution concept.

This is a map from games to strategy profiles which determines the agent’s action in any

player position of any game and her conjecture about all other players’ actions in that game.

In this paper, we consider the set of all bimatrix games, i.e., two-person simultaneous-

move games where each player has a finite number of pure strategies. There is a large

population of agents who learn to use individual solution concepts to play games, and our

aim is to find a collection of individual solution concepts that forms a stochastically stable

equilibrium (SSE) when applied to one-shot bimatrix games.

To obtain an SSE, we represent the individual solution concepts by computer programs

and use a genetic programming algorithm (Koza 1992)1 to evolve these programs until the

population mean behavior remains constant. In our context the algorithm works as follows:

Begin with a large population of randomly generated programs whose inputs represent in-

formation about bimatrix games, and whose outputs can be interpreted as a decision of how

to play a game. Let the programs play lots of random games against random opponents

and measure their individual performance in those games. Replace some low performing

programs with copies of high performing ones; cross and mutate some of the copies and let

1A technique for ‘programming computers by means of natural selection’, see also the series of handbooks
edited by Koza (1992-2003).

2

the programs play another random set of games. By continuing in this manner across thou-

sands of iterations, the programs become increasingly better at one-shot play until possibly,

the process converges to an SSE. Taking the mean across all individual solution concepts

for each game, one obtains an aggregate solution concept (ASC) which represents the joint

distribution of actions and conjectures for each position in every game.

By injecting a flow of randomly generated programs into the population, the genetic

programming algorithm creates a noisy environment. On the one hand, this noise raises the

bar for making good decisions as the programs have to cope with a population of opponents,

some of which will display unexpected or irrational behavior. On the other hand, it is

this noise that will ensure that any equilibrium will indeed be stochastically stable, i.e., be

robust against innovations in the sense that any deviations by a small number of agents from

their current solution concepts would make those agents worse off relative to the remaining

population. In other words, an SSE could survive as a real world phenomenon.

Our paper belongs to the literature on learning across games. Following Selten, Abbink,

Buchta & Sadrieh (2003), we consider a population of (artificial) agents who use behavior

rules as in Stahl (1996) to decide upon some course of action in unfamiliar situations as

described by Gilboa & Schmeidler (1995).

Gilboa & Schmeidler (1995) provide a theoretical basis for learning across games. In

their ‘Case-based decision theory’, the agents do not know all states of the world, but they

can make decisions by drawing upon their experience with past cases. This situation is

what our model is meant to represent. Gilboa, Schmeidler & Wakker (2002) suggest a set

of axioms for rational behavior in such situations and show that it can be represented by

a similarity-weighted utility function. LiCalzi (1995), Jehiel (2005) and Steiner & Stewart

(2008) model learning across games by agents who use exogenous similarity measures, and in

Samuelson (2001) and Mengel (2012) the agents learn to partition games into endogeneous

analogy classes. An empirical test of Mengel’s (2012) partition model is provided by Grimm

& Mengel (2012).

3

Stahl (1996, 1999, 2000) introduced a rule–based approach to model learning by bound-

edly rational agents. The agents have behavior rules, which are maps from information sets

to sets of feasible actions, and the reinforcement principle defines a learning dynamic on the

space of behavior rules. In our paper, we use a different learning dynamic, but our solution

concepts represent the same idea as Stahl’s behavior rules. Stahl’s rule based learning model

covers a number of special cases, including fictitious play (Brown 1951), replicator dynamics

(Taylor & Jonker 1978), belief updating (Mookherjee & Sopher 1994) and reinforcement

learning (Roth & Erev 1995). Models of these types have been used by LiCalzi (1995), Ger-

mano (2007) and Mengel (2012) to represent learning in theoretical analogy-based models,

and by Gale, Binmore & Samuelson (1995), Cooper & Kagel (2003, 2008) and Haruvy &

Stahl (2012) to study transfer of learning across games. The latter three papers find that

human subjects learn to reason across dissimilar games, and with increasing sophistication

as they become more experienced.

Stahl’s rule based learning model builds on Nagel (1995) and Stahl & Wilson (1994),

who introduced level-k reasoning as a model of initial play. In experiments with initial play,

one finds that the subjects often deviate in systematic ways from equilibrium play, and that

level-k reasoning and other structural non-equilibrium models (Stahl 2001, Costa-Gomes,

Crawford & Broseta 2001) do a better job of predicting actual outcomes. A survey of this

literature is provided by Crawford, Costa-Gomes & Iriberri (2013), and a recent contribution

is Fudenberg & Liang (2019), who use neural networks to re-examine the empirical evidence.

Our paper is related to this literature by considering only one-shot games, but differs in one

important respect: In experiments with initial play, the subjects usually play a sequence

of one-shot games without intermediate feedback. The purpose is to suppress learning and

preserve an impression of initial play throughout the experiment. As a result, inexperienced

subjects remain so during the whole experiment. This contrasts with our paper, and with

Selten et al. (2003), where the agents receive systematic feedback to become experienced at

one-shot play over time.

4

Selten et al. (2003) is closely related to our paper. They provide a detailed account of

an experiment aimed at studying one-shot play in 3×3 games by means of Selten’s (1967)

strategy method. As part of an economics course, students were asked to write computer pro-

grams that would determine their choice of actions in randomly chosen 3×3 games. Several

contests were held during the teaching term. In each contest the programs played 500,000

random games, with the results of each contest being used by the students to further refine

their programs. They quickly introduced a distinction between games with and without pure

Nash equilibria. In the former, they ended up coordinating on equilibria with maximal joint

payoff. In the latter, their behavior was a more diverse mix of best-reply cascades, as in

level-k reasoning.

Also closely related to our paper is a small literature on learning across games by artificial

agents. Sgroi & Zizzo (2009) train neural networks (NNs) to play Nash in 3×3 games with

one pure equilibrium. They find that the NNs behave as if they try to identify pure Nash

equilibria by means of level-k reasoning. When the NNs are applied to unfamiliar games,

this ‘shortcut’ yields a prediction accuracy which is comparable to that of human subjects.

Spiliopoulos (2015) considers a population of NNs who learn to play ex post best reply against

the field in seven strategically different classes of 2×2 games. He finds strong evidence of

cross–game learning, e.g., training on games with more incentives to cooperate yields more

cooperation in unfamilar games. Spiliopoulos (2011) uses a population of NNs to play general

3×3 games. He finds that the NNs develop similarity measures which they use to classify

games by their strategic properties, consistent with the case-based decision theory of Gilboa

& Schmeidler (1995). The same phenomenon occurred in Selten et al.’s (2003) experiment,

as mentioned above, and we show that it also occurs in our model.2

Many authors have used genetic algorithms to model learning in repeated games and

markets. A pioneering contribution to this literature is Arifovic’s (1994) analysis of the

cobweb market model. Marks (2002) provides a survey, and more recent applications include

2See Section 3.3 where the structural properties of solution concepts are analyzed.

5

coordination games (Chen, Duffy & Yeh 2005), Traveler’s dilemma games (Pace 2009), and

financial market microstructure models (Lensberg, Schenk-Hoppé & Ladley 2015).

Genetic algorithms impose very little structure on the agents’ decision rules. This makes

them well suited to model learning in populations of heterogeneous agents. Agents are mod-

eled by specifying their information, their feasible actions and a measure of their individual

performance. Competition drives behavior, which is commonly found to agree well with that

of human subjects, see e.g, Arifovic (1995, 1996) and Chen et al. (2005).

To our knowledge, our paper is the first to use a genetic algorithm to study learning

across games. We show here that a population of agents can learn across one-shot games

to solve all finite two-person games. To obtain this result, we impose some structure on

the agents’ solution concepts to make their task a manageable one. The key element is a

separability condition which will allow the agents’ programs to process games with different

dimensions in the same way. We will also take some steps to enforce a certain degree of

rationality. For instance, we will require invariance with regards to the ordering of strategies

and invariance with respect to positive affine transformations of payoffs. In addition, to

test the robustness of our main result, we will investigate the behavioral consequences of

requiring that the agents use rationalizable3 solution concepts.

Our main result is a new solution concept for one-shot bimatrix games. We examine its

logic and performance in detail, and we compare its solutions to many well-known games

with the theoretical and empirical evidence. For example, our ASC selects the ‘right’ so-

lution to Traveler’s dilemma games, predicts that the responder will get 40% of the pie in

ultimatum games and selects the risk dominant Nash equilibrium in 2×2 games with strict

Nash equilibria.

The remainder of the paper is organized as follows: Section 2 describes the model, Section

3 presents the results, and Section 4 concludes.

3Bernheim (1984) and Pearce (1984).

6

2 Model

In this section, we introduce a general class of solution concepts and a genetic programming

(GP) algorithm to model their evolution. The algorithm uses a large population of agents,

each one equipped with a solution concept that she uses to solve games. Agents will be

randomly assigned to play random bimatrix games in some random position, Row (1) or

Col (2), against random opponents. By doing 100 independent runs with the GP algorithm,

we obtain a detailed data set that can be analyzed to reveal the structure of the evolved

solution concepts.

2.1 Solution concepts

Let Γ denote the set of all bimatrix games. The members of Γ are pairs G = (S, π), where

S = S1 × S2 is a finite set of pure strategy profiles and π : S → R
2 is a payoff function such

that π(s) = (π1(s), π2(s)) are the von Neumann-Morgenstern utilities obtained by the two

players when profile s ∈ S is played. From now on, the word ‘game’ will be used to designate

the members of Γ.

For any game G, let Σ(G) denote the associated set of strategy profiles. A solution

concept is a map F from games to strategy profiles, such that F (G) ⊂ Σ(G) for all G ∈ Γ.

F (G) can contain one or more elements, any one of which is a solution to G. Solution

concepts allow to solve a game from the perspectives of both players (Row and Col). Let

G = (S, π) be any game and define its transpose G⊤ as G⊤ = (S ′, π′), where S ′
1 = S2;

S ′
2 = S1, and (π′

1(t, s), π
′
2(t, s)) = (π2(s, t), π1(s, t)) for all (s, t) ∈ S. Then:

1. each (s, t) ∈ F (G) is a solution to G from Row’s point of view. s is Row’s action and

t is her conjecture about Col’s action; and

2. each (t′, s′) ∈ F (G⊤) is a solution to G from Col’s point of view. t′ is Col’s action and

s′ is his conjecture about Row’s action.

7

One has consistency of actions and conjectures if the solution concept solves any game G

at (s, t) if and only if it solves its transpose at (t, s). Nash equilibrium is a solution concept

which satisfies this property. In one-shot games one would not expect such consistency to

come about because the agents never get a chance to react to false conjectures.

Solution concepts are applied as follows.

Playing games. Let a and b be two agents, equipped with solution concepts F a and

F b, respectively. Let G be a game and suppose a and b are assigned as player 1 and 2,

respectively. The game G is played as follows: Agent a makes a uniform random draw of

(s, t) from F a(G) and plays s. Agent b makes a uniform random draw of (t′, s′) from F b(G⊤)

and plays t′. a receives payoff π1(s, t
′) and b receives payoff π2(s, t

′).

Aggregate solution concepts. Consider a population A of agents, each of whom is

equipped with an individual solution concept F a. For any finite set X, let |X| denote the

number of elements in X. For any game G, define

pa1(s, t, G) :=
1

|F a(G)|
if (s, t) ∈ F a(G) and 0 otherwise (1)

pa2(s, t, G) := pa1(t, s, G
⊤) =

1

|F a(G⊤)|
if (t, s) ∈ F a(G⊤) and 0 otherwise. (2)

pa1(s, t, G) is the probability by which agent a solves G at (s, t) as player 1 (Row) and

pa2(s, t, G) is the probability by which he solves the transposed game G⊤ at (t, s) as player 2

(Col). By taking the mean of the probability distributions {(pa1, p
a
2)}a∈A across all agents we

obtain

Pi(s, t, G) =
1

|A|

∑

a∈A

pai (s, t, G) (3)

for each position i ∈ {1, 2}. P1(s, t, G) is the percentage of Row players who solve G at (s, t),

and P2(s, t, G) is the percentage of Col players who solve the transposed game G⊤ at (t, s).

Let P (s, t, G) = (P1(s, t, G), P2(s, t, G)). The bimatrix P (·, ·, G) is the aggregate solution to

8

game G for population A, and the function P (·) is the aggregate solution concept.

Given an aggregate solution concept P and a game G, one obtains mixed actions and

conjectures for the row and column players as the marginal distributions of P , as shown in

Table 1.

Table 1: Mixed actions (σ) and conjectures (φ) in a game G
σ1(s,G) :=

∑

t P1(s, t, G) Percentage of Row players who do s
φ1(t, G) :=

∑

s P1(s, t, G) Percentage of Row players who conjecture that Col will do t
σ2(t, G) :=

∑

s P2(s, t, G) Percentage of Col players who do t
φ2(s,G) :=

∑

t P2(s, t, G) Percentage of Col players who conjecture that Row will do s

Mixed Nash equilibria. In our model, the agents solve games by choosing a pair of

action and conjecture, using uniform randomizations to select one outcome in games with

multiple solutions. There is no mechanism to align the actions or conjectures of indifferent

agents to sustain mixed Nash equilibria, which may seem to rig the model in disfavor of such

equilibria. However, mixing will also occur at the population level because different agents

will typically use (slightly) different solution concepts, and this will enable the population to

play mixed Nash equilibria without external intervention. In Section 3.1, we shall see that

the agents come very close to playing plausible mixed Nash equilibria in many games.

Numerical representations of solution concepts. A solution concept is (numeri-

cally) representable if there is a family of functions V (·, G) : Σ(G) → R, such that for each

game G, F (G) = argmax
s∈Σ(G)V (s, G).

We consider a class of representable solution concepts that includes Nash equilibrium as

a special case. For any game G = (S, π), and any strategy profile s = (s, t) ∈ S, define pairs

of vectors δ(s) = (δ1(s), δ2(s)) as

δ1(s) := (π1(s, t)− π1(s
′, t))s′∈S1\s (4)

δ2(s) := (π2(s, t)− π2(s, t
′))t′∈S2\t. (5)

The vectors (4) and (5) contain the deviation losses that players 1 and 2 would incur by

9

unilateral deviations from s and t to each one of their alternative strategies. Next, let

f : R2 → R and g : ∪n∈NR
n → R be two functions, where, by definition, g takes a variable

number of arguments, and define

V (s, G) := f(g(δ1(s)), g(δ2(s))). (6)

Several key concepts in game theory can be represented in this fashion:

Nash equilibrium. A numerical representation V N for the (pure strategy) Nash equilib-

rium concept FN can be obtained by setting f(x, y) = min(x, y) and g(δi(s)) = min(0, δi(s)).

This yields

V N(s, G) := min{min(0, δ1(s)),min(0, δ2(s))}. (7)

Vectors of non-negative deviation losses represent best replies, and a strategy profile s is a

Nash equilibrium in pure strategies if V N(·, G) attains its maximal value of 0 at s.

Risk dominance. Another special case of (6) is the risk dominance concept of Harsanyi

& Selten (1988) for 2×2 games. This is a refinement of the Nash equilibrium concept for that

class of games, where the vectors of deviation losses δi(s) are singletons, and where a risk

dominant equilibrium is one that maximizes the product of the two players’ deviation losses.

To represent this solution concept by (6), let g be the identity function on R; f(x, y) = x · y

if (x, y) ≥ 0, and f(x, y) = −1 (or any other negative number) otherwise. Then

V RD(s, G) :=

δ1(s) · δ2(s) if δ(s) ≥ 0

−1 otherwise.

(8)

Given a game G = (S, π), a strategy profile s is a risk dominant solution if V RD(·, G) attains

its maximum on Σ(G) at s with V RD(s, G) ≥ 0. Otherwise G has no pure strategy Nash

equilibrium and consequently no risk dominant solution.

Interpretation. Any solution concept that is representable by some version of V in

10

(6) has three features that are worth noting. First, it can be used to solve games of any

finite dimension because the function g can take any number of arguments. Second, V (·) =

f(g(·), g(·)) is separable with respect to the two vectors of deviation losses (the arguments

to g). This suggests to think of g as a measure of the extent to which a strategy for one

player is a good reply to that of the other, and of f as a device that aggregates two good

replies into a good solution. Third, by relaxing the Nash equilibrium concept in this way,

one can construct solution concepts which potentially use more information about games.

In particular, it allows to talk about strategies being almost best replies, and to consider if

one solution to a game might be better than another because the former provides weaker

incentives to deviate than the latter.

The Nash equilibrium concept has some additional properties that do not follow from

(6). The following properties will be imposed on (6) as well.

Scale invariance. We will require all solution concepts F to be invariant with respect

to positive affine transformation of payoffs, because payoffs are assumed to be Neumann-

Morgenstern utilities. Adding a constant term to some player’s payoffs has no effect on F

because the functions g in (6) only depend on payoff differences, but the functions f and g

must be jointly chosen to eliminate any scale effect as well.

Symmetric good replies. A solution concept has symmetric good replies if it is invari-

ant with respect to the ordering of any player’s strategies. The Nash equilibrium concept

satisfies this property because gN is symmetric. We will impose this requirement because it

prevents the agents from conditioning their actions on some irrelevant aspects of the game.

Iterative good replies. The Nash good reply function, gN(·) = min(·), is separable

with respect to any subset of arguments. We will impose separability on all functions g in

(6). Any such g can then be computed by an iterative algorithm. It is illustrated in Table

2 where x is a vector of deviation losses and γ is an iteration function to compute g(x). z

is a real vector of scratch memory for the algorithm, whose first element (z1) is taken to be

its return value. Sometimes a scalar z will suffice, in which case it will be denoted z.

11

Table 2: Algorithm to compute the function g for a player i at strategy combination s in
a game G by means of an iteration function γ. x = (x1, ..., xK) is a vector of length K
containing the deviation losses in δi(s) for G at s ∈ Σ(G) and d(k) is a dummy variable
which is 1 if k = 1 and 0 otherwise. z is a real vector of scratch memory for the algorithm,
whose first element (z1) is taken to be its return value.

Pseudo-code Comment
z = 0 Initialize memory
For k = 1 to K Loop over deviation losses

z← γ(xk, z, d(k), K) Update memory
End For End of loop
g(x) = z1 Return value

For example, defining the iteration function as γ(xk, z, d(k), K) := min(xk, z) one obtains

g(x) = min(0,x) = min(0, δi(s)). This is the good reply function used to obtain the Nash

equilibrium concept in (7). To compute general good reply functions, the two additional

arguments to γ may be needed. K is the number of deviation losses in δi(s); one less than

the number of pure strategies available to player i. For instance the value of K can be used

by solution concepts that rely on some kind of average. d(k) is a dummy variable to indicate

whether the current iteration k is the first one. This information will allow γ to re-initialize

one or more of the memory slots z at the beginning of the first iteration for solution concepts

that need some initial value other than 0.

Solution concepts that satisfy iterative good replies have two important benefits: First,

they allow to represent games of different dimensions within the same structure and (low-

dimensional) domain, parametrized by the game dimensions. Second, this fact, in conjunc-

tion with symmetric good replies, will ensure that the solution concepts behave in a similar

way across game dimensions. The latter is a desirable property of any solution concept, and

without the former our evolutionary approach to solving games would simply not work.

A solution concept F is called admissible if and only if it is representable by (6) and

satisfies scale invariance, symmetric good replies and iterative good replies. For any such F

the associated pair of functions (f, γ) will be said to represent F .

12

2.2 Implementation of solution concepts

Let F be an admissible solution concept, let (f, γ) be a numerical representation for F , and

let g be the good reply function generated by γ by means of the algorithm in Table 2. To

solve games, the functions f and γ, which are specific to each agent, must be implemented

as computer programs. Because computing time is going to be an issue, we implement f and

γ in machine code,4 following Nordin (1997). Each program consists of at most 32 machine

instructions for the x86-64 processor. The processor has 16 floating point registers, and we

use four of those as scratch memory for the programs. For the iteration program γ, the

contents of the memory slots (denoted z in Table 2) are preserved across iterations.

Program instructions specify one or more operators and one or more operands. Operators

consist of +, -, /, ×, maximum, minimum, change sign, absolute value, variable manipula-

tions copy, program-flow instructions, if, goto, and relational operators <, >, ≤, ≥, =, 6=.

This set of operators allows for conditional arithmetic operations and assignments, as well as

conditional jumps.5 Operands consist of the relevant input variables, the four memory slots,

and randomly chosen constants. When a program executes, the memory slots are initialized

to 0 and the instructions are performed in order. The output from a program is taken to be

the value of the first memory slot after the program has executed.6

We next describe how scale invariance and symmetric good replies can be imposed on

F by means of a ‘nudge’. The basic idea is to scramble any information about games that

could lead to a violation of the property in question, thereby stimulating development of

functional forms that are insensitive to the scrambled information. To explain this idea in

detail, we consider a game G = (S, π), and a player position i ∈ {1, 2}.

4The machine code representation is used for fast execution of programs. In addition, we use a byte code
representation to simplify program generation and manipulation; a small compiler to translate byte code to
binary machine code, and a byte code disassembler to produce program representations that can be read by
humans and analyzed by computer algebra applications.

5All jumps are forward jumps to avoid infinite loops.
6The agents’ programs will sometimes produce ±∞ or NaN (not a number). The function g will be

restricted to return only real numbers to ensure that the arguments to f are real, while f will be allowed to
return ±∞ as well. To this end, any NaN or ±∞ from g and any NaN from f will be replaced by a random
draw from a normal distribution with large standard deviation.

13

First, we impose symmetric good replies by randomly shuffling the deviation losses in

δj(s) before computing g(δj(s)) for each player j ∈ {1, 2} and each strategy profile s. This

scrambles the ordering of strategies and removes any possibilities for the agents to coordinate,

or otherwise condition, their actions on the ordering of strategies.

Second, to impose scale invariance, we introduce a distinction between the payoffs that

will be used as arguments to the solution concept F and the payoffs that will be used to

measure its performance. To measure performance, we use the original payoffs πi, whereas

the arguments to F are obtained by multiplying both players’ payoffs by two separate real

random numbers from the interval [0.01, 100]. This scrambles the agents’ information about

the stakes of the game, which provides them with an incentive to develop scale invariant

solution concepts.7

2.3 Games

Agents develop solution concepts by playing lots of random games. To generate the di-

mensions and payoffs of those games, a probability distribution on the space of games is

needed.

Game payoffs are generated by independent draws from a normal distribution with mean

0 and standard deviation 10. Each payoff is rounded to the nearest integer to produce some

games with weak best replies, weakly dominated strategies, and connected components of

Nash equilibria. Games with these features are the subject matter of the large literature on

equilibrium refinements, and it will be of interest to see if the agents can learn to play such

games.

To generate game dimensions, we need a probability distribution with finite support to

ensure that the computing time to solve a random game is bounded, and it should select

larger games with lower probability in order to save computing time. Moreover, because we

shall compare results with alternative experiments where the agents are not allowed to play

7As noted earlier, F is already immune against the constant term in such transformations because it only
depends on the players’ deviation losses. So there is no need to also add a random number.

14

strictly dominated strategies, we want the game dimensions to be identically distributed

across those experiments.

Table 3: Auxiliary probability distribution to select a number n of strategies for one player.

n 2 3 4 5 6 7 8 9 10
p(n) 0.222 0.243 0.152 0.117 0.088 0.065 0.050 0.039 0.024

To meet those ends, we consider games where the number of strategies per player is

a number between 2 and 10, inclusive. To produce a game G, we first generate a pair of

dimensions (n′
1, n

′
2) by means of two independent draws from the probability distribution p in

Table 3, and then randomly generate payoffs for a game G1 with those dimensions. Second,

we iteratively eliminate all strictly dominated strategies from G1 to obtain a game G2 of

dimension (n1, n2) ≤ (n′
1, n

′
2). If ni < 2 for any i ∈ {1, 2}, we discard G1 and G2 and repeat

the first two steps until both players in G2 have at least two undominated strategies. Third,

set G = G2 if we want a game without strictly dominated strategies, otherwise, randomly

generate a new game G3 with the same dimensions (n1, n2) as G
2, and set G = G3.

The resulting probability distribution on game dimensions selects e.g., 2× 2 games with

probability 0.21, 4×5 games with probability 0.05 and 10×10 games with probability 0.003.

2.4 Evolution

We apply a genetic programming algorithm (Koza 1992) to model the evolution of solution

concepts. The algorithm starts by creating 1,000 random games and 2,000 agents, each

equipped with a random pair of programs (fa, γa). These programs are then applied to solve

each game for each agent from the point of view of each player, as described in Section 2.1.

The genetic programming algorithm is run for 100,000 iterations, each of which consists

of the following three stages:

1. Performance measurement: Each agent a plays each game in a random position (1 or

2) against a random opponent b 6= a in the opposite position. The payoffs for player a

15

are summed up across all games to obtain a measure of a’s performance.8

2. Tournament selection: Using these performance measures, the algorithm arranges 50

tournaments, each involving four randomly selected agents. In each tournament, the

algorithm replaces the programs of the two losers by recombining the programs of the

two winners. Equipped with new programs, both losers then solve all 1,000 games.

3. Game replacement: 10 games are randomly selected and replaced with another 10

randomly generated games. The 10 new games are solved by all 2,000 agents.

By replacing only 10 out of the 1,000 games in stage 3 of each iteration, most games

will be played several times by most agents across subsequent iterations. By keeping records

of each agent’s solutions to each game, it can be solved once and then played repeatedly

without having to execute the agent’s programs. This allows to complete a run with the

genetic programming algorithm in a couple of days, as compared to months if one were to

replace all games in every iteration.

With all this repeated play, the reader may wonder what became of our story of one-shot

games, in which the agents are supposed to never play the same game twice. Fortunately,

it is still intact, because the agents have no memory of previously played games, except

for whatever is contained in their programs. From the agents’ perspective, the situation

looks like a one-shot game, provided the set of games exhibits enough variation over time to

prevent overfitting (knowing the solutions to specific games) and induce learning (knowing

how to play games). To that end, it will suffice to replace 10 out of 1,000 games in each

iteration.

Tournament selection uses the standard genetic operators copy, crossover and mutation to

produce programs that perform increasingly better over time. We implement this mechanism

as follows:

8The performance of a’s opponents is computed separately but in the same way, i.e., by randomly selecting
an opponent and a position for each game, and accumulating payoffs across all games.

16

1. Tournament: Randomly select four agents from the player population, and rank them

by decreasing performance to get an ordered set {a1, a2, a3, a4} of agents.

2. Copy: Replace the programs of agents 3 and 4 with copies of the programs of agents

1 and 2. Denote the copied programs by (f 3, γ3) and (f 4, γ4).

3. Crossover: With probability χ1, cross f
3 with f 4 by swapping randomly selected sub-

lists of instructions among them, and cross γ3 with γ4 in the same way.

4. Mutation: Each of the four new programs undergoes a mutation with probability χ2: A

single instruction in the program is randomly selected, and replaced with a randomly

generated instruction.

The crossover and mutation rates, χ1 and χ2, are initially set to 0.5 and 0.8. Between

iteration 40,000 and 80,000 both rates decay to 0.01 and stay there until the last iteration.

To begin with, this produces a noisy environment with lots of experimentation, and then a

period with increasing imitation as the system cools down to possibly settle in a stable state.

By collecting data from the last 20,000 iterations, we will examine whether the distribution

of solution concepts has then reached a stochastically stable equilibrium in the sense of Young

(1994).

3 Results

In this section, we present results for the aggregate solution concept (ASC) obtained from

the model described in Section 2. We begin by recapitulating a few key details regarding

the construction and interpretation of the ASC.

Recall that an agent’s behavior in a specific game is determined by her individual solution

concept. This is a map from games to strategy profiles which assigns a pair of action and

conjecture to each game, conditional on the agent’s player position (Row or Col) in the

game. An individual solution concept is represented as a pair of programs (f, γ), defined

17

in Section 2.1, where γ is an iteration function to compute a good reply, and f is a good

solution function.

To obtain the ASC, we do 100 independent runs with the model. Each run is carried out

as described in Section 2.4 with a population of 2,000 agents. At the end of each run, we

save the pair of programs (fa, γa) for each agent a. The ASC consists of this collection of

200,000 program pairs. To find the aggregate solution to a given game, we solve it by means

of each program pair of the ASC and take the mean of those solutions.

As explained in Section 2.1, the aggregate solution to a given game is a pair P = (P1, P2)

of probability distributions on the set of strategy profiles for that game, one probability

distribution for each of the two players. For a given player i and strategy profile (s, t),

Pi(s, t) is the probability that a randomly chosen agent will solve the game at (s, t) when

called upon to play it as player i. A Row player does action s, conjecturing that Col will

do t, and a Col player does action t, conjecturing that Row will do s. For each probability

distribution Pi one derives the mixed actions and conjectures for player i as the marginal

distributions of Pi.

It should be noted that actions constitute hard information in the sense of determining

the agents’ payoffs. Conjectures have no such material basis in one-shot games as there is no

way in which the agents can verify their conjectures. But conjectures may still be meaningful

as an aid to understanding the agents’ decision processes.

Section 3.1 illustrates the behavior of the ASC in some familiar games. Section 3.2 tests

convergence and analyzes the performance of the ASC against agents who play best reply, i.e.,

hypothetical, omniscient agents who know the distribution of strategies in the population for

each game. We also look at the performance of the ASC against Nash players in games with

one pure Nash equilibrium. Section 3.3 looks into the structure of individual and aggregate

solution concepts by investigating the functional form of the good reply iteration function

γ and the good solution function f . The aim is to understand the logic that drives the

aggregate behavior. In Section 3.4 we carry out two robustness checks. In the first one, we

18

test whether the agents’ good reply iteration functions are sensitive to initial conditions, and

in the second one, we investigate the consequences of imposing rationalizability upon the

agents’ solution concepts.

3.1 Behavior in selected games

When assessing the results of this section, it is important to bear in mind that the agents

have no prior experience with any of the games to be considered here. Anything the agents

do has been learned by experience with other games, and so the situation is literally one-shot

play by experienced agents.

3.1.1 Classical games

Battle of the sexes. In this game, Row and Col would like to attend a Ballet or a Football

match. Row prefers Ballet, Col prefers Football, but in any case, they would like to be

together. Panel (a) of Table 4 contains the payoff matrix, with the two pure strategy Nash

equilibria indicated in boldface. There is a third (mixed) equilibrium, where both agents

play their preferred action with 60% probability.

Table 4: Battle of the sexes. Numbers in italics are probabilities (%).

(a) Payoffs, actions and conjectures
(s, t) B F

σ 41 59 Col
B 59 3, 2 0, 0 41

F 41 0, 0 2, 3 59

Row 59 41 φ

(b) Solution, actions and conjectures
(s, t) B F

σ 41 59 Col
B 59 59 ,41 0 , 0 41

F 41 0 , 0 41 ,59 59

Row 59 41 φ

Panel (b) of Table 4 shows the aggregate solution P = (P1, P2) and its marginal distribu-

tions σ = (σ1, σ2) and φ = (φ1, φ2). The marginals (σ1, σ2) are the aggregate mixed actions

of the Row and Col players, and the marginals (φ1, φ2) are their aggregate conjectures about

the opponent’s actions. The mixed actions and conjectures are also shown along with the

payoff matrix in Panel (a).

19

Panel (b) shows that 59% of both players solve the game at their preferred Nash equi-

librium, which is (B,B) for Row and (F, F) for Col, while 41% solve it at the one preferred

by the other player. There are several things to note about this solution. First, it yields

the mixed actions 0.59B +0.41F for Row, and 0.41B +0.59F for Col, which almost exactly

match the mixed Nash equilibrium of the game. Second, since the players solve the game at

(B,B) and (F, F) with different probabilities, their solutions cannot result from individual

uniform randomizations between equally good solutions. To obtain the solution in Panel (b),

there must be some mixing at the population level. Third, the agents’ conjectures are wrong:

The Row players do B and F with probabilities 59 and 41% while the Col players believe

they do it with the opposite probabilities. However, these inconsistencies could persist in

repeated play because the mixed actions are almost a Nash equilibrium.

Rock, Paper, Scissors. This zero-sum game, depicted in Table 5, has a unique (mixed)

Nash equilibrium in which both players play each of their three actions with probability 1/3.

The ASC yields the same actions, and (correct) conjectures.

Table 5: Rock, Paper, Scissors. Numbers in italics are probabilities (%).

(a) Payoffs, actions and conjectures
(s, t) R P S

σ 33 33 33 Col
R 34 0, 0 -1, 1 1, -1 33

P 33 1, -1 0, 0 -1, 1 33

S 33 -1, 1 1, -1 0, 0 33

Row 33 33 33 φ

(b) Solution, actions and conjectures
(s, t) R P S

σ 33 33 33 Col
R 34 19 ,19 1 ,13 13 , 1 33

P 33 13 , 1 19 ,19 1 ,13 33

S 33 1 ,13 13 , 1 19 ,19 33

Row 33 33 33 φ

Consider next the details of the solution shown in Panel (b). Given the payoff structure

of this game, it seems fair to say that 3 × 19 = 57% of both players believe in a draw;

3× 13 = 39% expect to win, and 3× 1 = 3% expect to lose. On the other hand, the agents’

tendency to solve the game at the diagonal suggests that they may rather be looking for

some kind of equitable compromise. With that interpretation in mind, the agents appear to

be 57% egalitarian, 39% selfish, and 3% altruistic.

Prisoners’ dilemma. We next consider a game where the agents’ self-interest prevails.

20

In ‘Prisoners’ dilemma’, Table 6, the players get a sentence depending on whether they deny

(d) or confess (C) a crime. Deny is strictly dominated9, (C,C) is the only Nash equilibrium,

and this solution is also selected by 100% of the agents, so (C,C) is the ASC outcome.

Table 6: Prisoners’ dilemma. Numbers in italics are probabilities (%).

(a) Payoffs, actions and conjectures
(s, t) d C

σ 0 100 Col
d 0 -1, -1 -3, 0 0

C 100 0, -3 -2, -2 100

Row 0 100 φ

(b) Solution, actions and conjectures
(s, t) d C

σ 0 100 Col
d 0 0 ,0 0 , 0 0

C 100 0 ,0 100 ,100 100

Row 0 100 φ

In games where (almost) all agents agree on one strategy profile, the solution bimatrix

in Panel (b) is not informative and will not be shown from now on.

3.1.2 Refinements

We continue with some games from the refinement literature, which analyzes strategic stabil-

ity of Nash equilibria with respect to criteria such as subgame perfectness, weak dominance,

and backward and forward induction. The question is whether, or to what extent, the ASC

reflects such considerations.

Table 7: Market entry game. Numbers in italics are probabilities (%).

(s, t) F A
σ 0 100 Col

O 3 2, 2 2, 2 0

E 97 0, 0 3, 1 100

Row 3 97 φ

Market entry game. In this game, which is shown in Table 7, Col is an incumbent

monopolist. Row can stay out of the market (O) or enter (E), in which case Col can choose

to fight (F) or acquiesce (A). The game has two Nash equilibria in pure strategies, indicated

9We use lower case letters to designate actions that do not survive iterated elimination of strictly domi-
nated actions.

21

by bold type. Backward induction supports (E,A), and so does the ASC, which plays this

pair of strategies with 97% probability.

The next two games are taken from Kohlberg & Mertens (1986).

Kohlberg and Mertens I. The game in Table 8 has two pure Nash equilibria, (T,R)

and (M,L), and a unique strategically stable set, which is the convex hull of (T,R) and

(T, 1
2
L+ 1

2
R). Backward induction selects (T,R) with payoffs (2, 0), but (M,L) is supported

by the following (informal) forward induction argument: If Row fails to play T , then Col

should understand that Row aims to get 3 by threatening to play M if Col fails to play L.

This yields (M,L), which is the solution selected by the ASC.

Table 8: Kohlberg & Mertens (1986, p. 1029). Numbers in italics are probabilities (%).

(s, t) L R
σ 99 1 Col

T 4 2, 0 2, 0 0

M 95 3, 1 0, 0 99

B 0 3, 1 1, 2 1

Row 95 5 φ

I 1, 2
B

0, 0

M

I

R

3, 1

L

II

2, 0

T

Kohlberg and Mertens II. The game in Table 9 has one Nash equilibrium in pure

strategies (T,R) with payoffs (2, 2), and a mixed equilibrium (M, 1
2
LL+ 1

2
LR) with superior

payoffs (3, 3), which is selected by the ASC. By replacing the subgame with its value (0)

and applying iterated dominance, one finds that the mixed equilibrium is also the unique

strategically stable set of this game.

Table 9: Kohlberg & Mertens (1986, p. 1016). Numbers in italics are probabilities (%).

(s, t) LL LR R
σ 50 50 0 Col

T 0 2, 2 2, 2 2, 2 0

M 100 3, 3 3, 3 0, 0 100

BT 0 4, -4 -4, 4 1, 1 0

BB 0 -4, 4 4, -4 1, 1 0

Row 50 50 0 φ

I

1, 1 4,−4

−4, 4
B

−4, 4R

4,−4L

T

IB

0, 0R

3, 3
L

M

I

2, 2

T

II

II

22

3.1.3 Equilibrium selection

We next apply the aggregate solution concept to some games in which refinement consid-

erations somehow fail to identify the ‘right’ outcome with respect to intuition or empirical

evidence.

Stag hunt. This game, which is due to Carlson & van Damme (1993), represents the

following story: Two hunters can cooperate (C) to catch a stag, or hunt alone (A) to obtain

a catch of smaller game amounting to a fraction x ∈ (0, 1) of what each of them would get

by cooperating.

Table 10: Stag hunt game. Numbers in italics are probabilities (%).

(a) x < 1
2

(s, t) C A
σ 100 0 Col

C 100 1, 1 0, x 100

A 0 x, 0 x,x 0

Row 100 0 φ

(b) x > 1
2

(s, t) C A
σ 0 100 Col

C 0 1, 1 0, x 0

A 100 x, 0 x,x 100

Row 0 100 φ

The game is illustrated in Table 10. It has two strict Nash equilibria: (C,C) and (A,A).

When x < 1
2
, the Risk Dominant equilibrium (Harsanyi & Selten 1988) is (C,C), and when

x > 1
2
, it is (A,A). Table 10 shows that the ASC always selects the risk dominant equilibrium

in the Stag hunt game. When x = 1
2
(not shown in the table), 50% of the agent population

solve the game at (C,C) and 50% solve it at (A,A).

Ultimatum game. Few games have been subject to more empirical analysis than the

Ultimatum game of Güth, Schmittberger & Schwarze (1982). In this game, Row and Col

get n dollars to share if they can agree how to do it. Row (the proposer) suggests a division

by offering an integer amount of x dollars to Col (the responder). Col accepts or rejects.

If he accepts, they divide according to Row’s suggestion, if Col rejects the offer, both get

zero. Any division of the money is the outcome of some Nash equilibrium, but only one is

subgame perfect: Row offers zero dollars and Col accepts any offer.

A small version of this game (with 5 dollars to share) is shown in Table 11. Action Ok

23

Table 11: Ultimatum game. Numbers in italics are probabilities (%).

(s, t) A0 A1 A2 A3 A4 A5

σ 0 0 100 0 0 0 Col
O0 0 5, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0

O1 0 4, 1 4, 1 0, 0 0, 0 0, 0 0, 0 0

O2 100 3, 2 3, 2 3, 2 0, 0 0, 0 0, 0 100

O3 0 2, 3 2, 3 2, 3 2, 3 0, 0 0, 0 0

O4 0 1, 4 1, 4 1, 4 1, 4 1, 4 0, 0 0

O5 0 0, 5 0, 5 0, 5 0, 5 0, 5 0, 5 0

Row 0 0 100 0 0 0 φ

for Row stands for ‘Offer k dollars’, and action Ak for Col stands for ‘Accept any offer of k

or more dollars’. In the ASC, Row offers 2 dollars, and Col accepts all offers of 2 or more. If

the total amount is doubled to 10 from 5 dollars, the ASC offers and demands double to 4

from 2. These results agree well with the experimental evidence, where mean offers amount

to some 40% of the stake, and where the responder rejects offers of some 30% or less, see,

e.g., Güth & Tietz (1990).

3.1.4 Non-equilibrium behavior

The ultimatum game challenges the idea of backward induction – a basic rationality postulate

in game theory. We next consider some games where intuition or experiment suggest that

the players will not even play a Nash equilibrium.

The Centipede game by Rosenthal (1981) describes a situation in which two players

alternate to decide when to take (T) an increasing pot of money. By continuing (C) for one

more round, a player gains if the other player also continues, but loses if the other player

then decides to take. A version of this game is shown in Table 12. For each player, Cn

denotes the strategy of n C’s and then a T if n < 3.

The game has a unique (subgame perfect) Nash equilibrium, in which both players take

at the first opportunity. In experiments with human subjects, the game often continues for

several moves, but very seldom to the end (McKelvey & Palfrey 1992). Under the ASC, 77%

24

Table 12: Centipede game. Numbers in italics are probabilities (%).

T T T T T T

CCCCCCI I III II II

1, 1 0, 3 2, 2 1, 4 3, 3 2, 5

4, 4

(a) Payoffs, actions and conjectures
(s, t) C0 C1 C2 C3

σ 8 4 67 21 Col
C0 22 1, 1 1, 1 1, 1 1, 1 9

C1 1 0, 3 2, 2 2, 2 2, 2 3

C2 0 0, 3 1, 4 3, 3 3, 3 2

C3 77 0, 3 1, 4 2, 5 4, 4 86

Row 20 1 19 60 φ

(b) Solution, actions and conjectures
(s, t) C0 C1 C2 C3

σ 8 4 67 21 Col
C0 22 20 ,6 1 ,1 1 , 1 1 , 1 9

C1 1 0 ,2 0 ,0 1 , 1 0 , 0 3

C2 0 0 ,0 0 ,2 0 , 0 0 , 0 2

C3 77 0 ,0 0 ,1 17 ,65 60 ,20 86

Row 20 1 19 60 φ

of the Row players continue as long as they can, and 86% of the Col players conjecture they

will do so. However, Row’s willingness to continue seems to be based on the false conjecture

that 60% of the Col players will also continue until the end, whereas only 21% of them

actually plan to do so. The mixed actions for this game imply that 22% of the player pairs

end the game at the first opportunity with payoffs (1, 1); 0.77 × 0.67 = 52% end it at the

next to last node with payoffs (2, 5); and 0.77× 0.21 = 16% go all the way to the end with

payoffs (4, 4).

Traveler’s dilemma. In this game, due to Basu (1994), two travelers have lost their

luggage and the airline offers compensation for their loss. They can claim any integer amount

in the interval [c, c] = [2, 100]. In any case, the airline will pay both travelers the minimum

of the two claims, with the following (slight) modification: If player i claims more than

player j, then i pays a penalty of R = 2 dollars, and j is rewarded by the same amount.

As noted by Basu (1994), intuitively both players should make a high claim and pay little

attention to the small penalty/reward. However, the game has a unique Nash equilibrium

where both players claim the minimal 2 dollars. In fact, this is the only action pair which

survives iterated elimination of strictly dominated strategies.

25

Capra, Goeree, Gomez & Holt (1999) conduct an experiment with human subjects and

find that their behavior is sensitive to the penalty/reward parameter R, with players making

large claims for small R and vice versa. The ASC turns out to have the same property. To

illustrate, we consider a small version of the Traveler’s dilemma game, where (c, c) = (4, 11)

instead of (2, 100). The game is shown in Table 13, where Cn and cn stand for ‘Claim n

dollars’.

Table 13: Traveler’s dilemma game with c = 4, c = 11 and penalty/reward parameter R = 2.
Numbers in italics are probabilities (%).

(s, t) C4 c5 c6 c7 c8 c9 c10 c11
σ 50 0 0 0 0 0 0 50 Col

C4 50 4, 4 6, 2 6, 2 6, 2 6, 2 6, 2 6, 2 6, 2 50

c5 0 2, 6 5, 5 7, 3 7, 3 7, 3 7, 3 7, 3 7, 3 0

c6 0 2, 6 3, 7 6, 6 8, 4 8, 4 8, 4 8, 4 8, 4 0

c7 0 2, 6 3, 7 4, 8 7, 7 9, 5 9, 5 9, 5 9, 5 0

c8 0 2, 6 3, 7 4, 8 5, 9 8, 8 10, 6 10, 6 10, 6 0

c9 0 2, 6 3, 7 4, 8 5, 9 6, 10 9, 9 11, 7 11, 7 0

c10 0 2, 6 3, 7 4, 8 5, 9 6, 10 7, 11 10, 10 12, 8 0

c11 50 2, 6 3, 7 4, 8 5, 9 6, 10 7, 11 8, 12 11, 11 50

Row 50 0 0 0 0 0 0 50 φ

When R = R∗ ≡ 2, the agents make the minimal and maximal claims with equal prob-

ability, as shown in Table 13. When R > R∗, all agents claim the minimal 4, and when

R < R∗ all agents claim the maximal 11. The critical value R∗, relative to the length of the

feasible claim interval is R∗/(c− c) = 2/(11− 4) = 0.29, which is in line with the empirical

findings of Capra et al. (1999).

Social norms. There is a large literature on the role of social norms in economic

transactions and relationships. In experiments with human subjects on bargaining, public

goods, and labor relations, the hypothesis of purely self-interested behavior is often rejected

in favor of explanations based on fairness, reciprocity or altruism. We have applied our

solution concept to some of the games studied in this literature and found that in many

cases, the ASC agrees with the empirical results in the sense of predicting more cooperation

than what would be achieved through rational play by self-interested agents.

26

To illustrate, consider the gift exchange experiment of Van der Heijden, Nelissen, Potters

& Verbon (1998). Two players live for two periods. A player who consumes c1 in period 1

and c2 in period 2 obtains utility c1 · c2. In period 1, player 1 is rich and player 2 is poor.

In period 2 their situations are reversed. A rich player has income 9 and a poor player has

income 1, but the players can smooth consumption by exchanging gifts: Player 1 gives an

integer amount 0 ≤ s ≤ 7 to player 2 in period 1 and player 2 gives 0 ≤ t ≤ 7 to player 1 in

period 2. This yields utilities

u1(s, t) = (9− s) · (1 + t) (9)

u2(s, t) = (9− t) · (1 + s) (10)

for players 1 and 2, respectively. The simultaneous move version of this game is shown in

Table 14, where tk stands for ‘Transfer k dollars to the other player’. Giving zero (T0) strictly

dominates any other action for both players, but the ASC predicts that both players will

give one dollar (t1) to the other player. This agrees with the average gifts of 0.99 and 1.03

observed empirically by Van der Heijden et al. (1998).

Table 14: Gift exchange game. Numbers in italics are probabilities (%).

(s, t) T0 t1 t2 t3 t4 t5 t6 t7
σ 0 100 0 0 0 0 0 0 Col

T0 0 9, 9 18, 8 27, 7 36, 6 45, 5 54, 4 63, 3 72, 2 0

t1 100 8, 18 16, 16 24, 14 32, 12 40, 10 48, 8 56, 6 64, 4 100

t2 0 7, 27 14, 24 21, 21 28, 18 35, 15 42, 12 49, 9 56, 6 0

t3 0 6, 36 12, 32 18, 28 24, 24 30, 20 36, 16 42, 12 48, 8 0

t4 0 5, 45 10, 40 15, 35 20, 30 25, 25 30, 20 35, 15 40, 10 0

t5 0 4, 54 8, 48 12, 42 16, 36 20, 30 24, 24 28, 18 32, 12 0

t6 0 3, 63 6, 56 9, 49 12, 42 15, 35 18, 28 21, 21 24, 14 0

t7 0 2, 72 4, 64 6, 56 8, 48 10, 40 12, 32 14, 24 16, 16 0

Row 0 100 0 0 0 0 0 0 φ

To understand why the agents sometimes act as if motivated by social norms, recall that

27

our solution concepts solve games G = (S, π) at strategy profiles s ∈ S which maximize

f(g(δ1(s)), g(δ2(s))),

where δ1(s) and δ2(s) are vectors of deviation losses for players 1 and 2. The function

f(g(·), g(·)) resembles a social welfare function for the two players, except that its arguments

are deviation losses instead of payoffs. But in many games, including the Gift exchange game

in Table 14 and the Rock, Paper, Scissors game in Table 5, payoffs and deviation losses are

positively correlated, so when the ASC solves such games by balancing the players’ incentives

to deviate, it looks as if it tries to make a fair compromise in terms of payoffs.

3.2 Performance and stability

We have seen that the aggregate solution concept (ASC) sometimes solves games at strategies

that do not constitute a Nash equilibrium. In this section we examine how often non-Nash

play occurs, how costly it is relative to always playing best reply (if one could) and what

non-Nash behavior means in terms of evolutionary stability. We also test whether the 100

model runs have converged to stochastically stable equilibria.

Table 15 contains descriptive statistics for a set of variables that measure the performance

and stability of the ASC. The performance variables in Panel 1 are computed for each of the

100 model runs from five equally spaced samples taken from the last 2,000 (out of 100,000)

iterations. Consensus is the percentage of agents who play the modal strategy for a given

game and position. With a value close to 100%, it shows that there is very little intra-run

heterogeneity among the agents. playBestReply is the percentage of agents whose actions

are a best reply to the ASC; meanPayoff is the mean payoff of the ASC against the ASC,

and gainBR is the percentage net gain in mean payoff from playing best reply, rather than

ASC, against the ASC. Consensus, playBestReply and meanPayoff are computed separately

for each game and each position and then averaged across all games and positions. gainBR

28

Table 15: Descriptive statistics. The number of observations is 100 for each variable, one
observation for each of the 100 independent runs of the GP-algorithm.

Variable Mean Std.dev Min Max
Panel 1: All games

Consensus 98.8% 0.2% 98.3% 99.8%
playBestReply 83.8% 0.4% 82.5% 84.8%
meanPayoff 8.90 0.09 8.62 9.15
gainBR 8.0% 0.3% 7.4% 8.9%

Panel 2: Games with one pure Nash equilibrium
gain2BR -7.8% 0.6% -9.4% -6.1%
pASC ASC (a) 9.09 0.06 8.96 9.24
pNash ASC (b) 7.76 0.07 7.58 7.91
pNash Nash (c) 8.69 0.06 8.57 8.86
pASC Nash (d) 7.51 0.07 7.34 7.67
pDiff (a-b) - (c-d) 0.16 0.03 0.09 0.23
playNash 83.8% 0.4% 83.0% 84.6%

is computed at an aggregate level because game payoffs are normally distributed with a zero

mean.

The variables in Panel 2 of Table 15 are intended to provide some information about the

evolutionary stability of the ASC. Data are obtained by restarting each saved population to

solve 10,000 random games with exactly one Nash equilibrium in pure strategies. gain2BR

is the percentage net gain to player i from deviating to a best reply (if not currently playing

a best reply) when that is followed by subsequent best reply by player j; pASC ASC is the

mean payoff across all games and positions from playing the ASC against itself (identical to

meanPayoff in Panel 1 except for considering only games with one pure Nash equilibrium);

pNash ASC is the mean payoff from playing the Nash equilibrium actions against the ASC;

pNash Nash is the mean payoff from playing the Nash equilibrium against itself; pASC Nash

is the mean payoff from playing the ASC against the Nash equilibrium; pDiff is the net gain

from playing the ASC (rather than Nash) against ASC, minus the net gain from playing

Nash (rather than ASC) against Nash, and playNash is the joint probability of Row and Col

playing the pure Nash equilibrium.

29

The findings in Table 15 can be interpreted as follows. The ASC appears to be well

protected against invasion by agents who play Nash because by switching from ASC to Nash

they would lose on average 1.33 = 9.09 − 7.76 (pASC ASC - pNash ASC in Panel 2). The

agents play best reply to the ASC 83.8% of the time, which yields an average payoff of 8.90

(meanPayoff in Panel 1). An agent could increase her average payoff by 8% if she could

play best reply in every game (gainBR), but if every deviation to best reply would trigger

another best reply from the opponent, the 8% gain would turn into a 7.8% loss (gain2BR).

Finally, pDiff shows that ASC agents outperform Nash agents in an ASC world by a larger

margin than Nash agents outperform ASC agents in a Nash world. In other words, ASC is

more robust against invasion by Nash agents than vice versa.

We next perform a simple test to check if the 100 model runs have converged to stochas-

tically stable equilibria. This is done by testing for trends in the four variables in Panel

1 of Table 15 towards the end of the model runs. To that end, we use data sampled at

every 500th iteration from the last 20,000 iterations of each model run, when mutation and

crossover probabilities have reached their common minimum of 1%. We skip the middle part

of the data set and test for differences in means between the two intervals 80,000–85,000

and 95,000–100,000 of iterations. The boundary points of each interval are included, which

yields 2 × 11 observations for each run and 2,200 observations in total for each variable

in Table 16. The results are consistent with the hypothesis that the 100 model runs have

reached stochastically stable equilibria after 80,000 iterations.

Table 16: Convergence tests. Tests of differences in means for the variables Consensus,
playBestReply, meanPayoff and gainBR across two intervals of model iterations. The number
observations is 2,200 for each variable.

Iterations Consensus playBestReply meanPayoff gainBR

80,000 – 85,000 98.8% 83.8% 8.91 8.0%
95,000 – 100,000 98.8% 83.8% 8.90 8.0%
p-value (0.634) (0.883) (0.118) (0.796)

30

3.3 Structural properties of solution concepts

Recall that the individual solution concept for an agent a is represented by a pair of computer

programs (fa, γa), where fa is a good solution function and γa is an iterator which is used

to compute the agent’s good reply function ga. In this section, we aim to uncover structural

properties of these programs to shed light on the results presented above. In addition, we will

analyze the aggregate solution concept, which is derived from the collection of all individual

programs.

The programs of a typical agent is provided in (11) and (12):10

γa(x, z) = z + 0.006 + 4x. (11)

fa(x1, x2) =

x1 · x2, if (x1, x2) > 0

x2, if x1 > 0 and x2 ≤ 0

−∞, if x1 < 0

undefined, if x1 = 0.

(12)

The good reply score equates to11

ga(x) =
K
∑

k=1

(0.006 + 4xk). (13)

Note that ga is additive and almost proportional to the sum of deviation losses. Thanks

to the constant 0.006 in (11), ga(x) is positive if
∑K

k=1 xk ≥ 0 and negative almost always

if
∑K

k=1 xk < 0. In turn, the function fa(ga(·), ga(·)) extends continuously from positive to

zero sums of deviation losses and almost never returns undefined values.12

10The programs have been simplified and the constants are truncated. To simplify a program, first evaluate
it on one million data points. Second, for each instruction in the program, tentatively replace it by a NOP
(no operation), then re-evaluate the program on each data point. Accept the NOP if the change had no
effect on the output, otherwise keep the original instruction. Third, continue in this manner until no further
instructions can be replaced by NOPs without affecting output.

11Given a K-vector x of deviation losses, initialize z to 0, iterate z ← γ(xk, z) for k = 1, . . . ,K, and finally
set ga(x) = z to obtain (13).

12To see this, recall that each xk is a random integer ck, scaled by some random real α ∈ [0.01, 100],

hence
∑

K

k=1
xk = α

∑

K

k=1
ck ∈ (−∞,−0.01] ∪ {0} ∪ [0.01,∞). Consequently, ga(x) 6= 0 almost surely, and

31

To solve a game, one selects a strategy profile which maximizes fa(ga(·), ga(·)). Since

ga(x) > 0 if
∑K

k=1 xk ≥ 0, then, for each conjecture t about player 2, there is an action

s for player 1 (e.g., a best reply to t) which yields a positive ga-score to player 1 at (s, t).

This implies that fa(ga(·), ga(·)) is maximized at case 1 or 2 of (12). Case 1: Games with

strategy profiles that yield two positive ga-scores (e.g., pure Nash equilibria) are solved at

some strategy profile (not necessarily a Nash equilibrium) which maximizes their product.

Case 2: All other games are solved at some strategy profile that maximizes the (non-positive)

ga-score to player 2 among those that yield positive ga-scores to player 1. In other words,

the action is a good reply to the conjecture, which is a least bad reply to any such action.

The ASC, which consists of the pairs of programs of 200,000 agents, is a more complex

object than an individual agent’s solution concept. To study the ASC, we proceed in two

steps. First, we describe the behavior of the ASC in 2×2 games. Second, we show that this

behavior generalizes in a natural way to larger games because the additive structure of the

good reply function in (13) is shared by almost all agents.

3.3.1 2×2 games

Let Γ2 denote the set of 2×2 games. Consider an agent a and the composite function

va : R2 → R, defined as

va(x) := fa(ga(x1), g
a(x2)), (14)

where x = (x1, x2) = δ(s) is a pair of deviation losses corresponding to some strategy profile

s for some G ∈ Γ2. The function va in (14) is a numerical representation of agent a’s solution

concept restricted to Γ2. To play a game G = (S, π) ∈ Γ2, a maximizer s = (s, t) of va(δ(·))

on S is choosen. The agent does s as player 1 and conjectures that the opponent will do t

as player 2.

ga(x) ≥ 0.006K > 0 whenever
∑

K

k=1
xk ≥ 0. But ga may fail to preserve the sign of

∑

K

k=1
xk when

∑

K

k=1
xk

is negative and close to 0. The maximal negative value of
∑

K

k=1
xk is -0.01. Then ga(x) = 0.006K − 0.040,

which is negative if and only if K < 6.67. So ga(x) preserves the sign of
∑

K

k=1
xk for K ≤ 6, but may fail

to do so for K ≥ 7. However, such failures occur less than twice per million random games, which explains
why this ‘bug’ escapes removal by the genetic programming algorithm.

32

We approximate the ASC on Γ2 by deriving a numerical representation v. It is constructed

as follows: Let D0 be a finite two-dimensional grid of pairs of deviation losses. For each agent

a, rank all the points inD0 according to v
a, and break ties by randomly ordering the members

of each tied set of points. Define v : D0 → [0, 1] as the Borda count of all the 200,000 rankings

obtained in this way, normalized to yield rank scores in [0, 1]. Let D denote the convex hull

of D0 and extend v to D by interpolation. For each G = (S, π) ∈ Γ2 such that δ(S) ⊂ D, let

F 2(G) := argmax
s∈Sv(δ(s)). Then F 2 is a representative solution concept, approximating

the ASC for 2×2 games.

A contour plot of v is provided in Figure 1 for D0 = {−10,−9.5, . . . , 10}2. The four

subsets {Dk}
4
k=1 of D are defined as

D1 = {x ∈ D | (x1, x2) > 0}, D3 = {x ∈ D | x1 ≥ 0, x2 < 0} ∪ {x ∈ D | x1 = 0, x2 ≥ 0},

D2 = {x ∈ D | x1 > 0, x2 = 0}, D4 = {x ∈ D | x1 < 0}. (15)

They constitute a partition of D such that

v(x) > v(y) > v(z) > v(w) for any (x, y, z, w) ∈ D1 ×D2 ×D3 ×D4. (16)

i.e., the elements of ∪4k=1Dk are coarse equivalence classes for v. The straight black lines in

Figure 1 represent borders between those equivalence classes, and the gray curves represent

indifference with respect to v. Plotting of indifference curves is suppressed along the zero

bins of D0 because v is discontinuous at such points. But the data show that v increases in

x1 for x2 = 0, whereas for x1 = 0, v increases as x2 → 0.

Any 2×2 game G = (S, π) is solved with the representative solution concept F 2 by using

the contour lines in Figure 1 to rank the strategy profiles s ∈ G by their deviation losses

δ(s).

For many games, this ranking can be obtained directly from the partition {Dk}
4
k=1. Let

us say that a game G ∈ Γ2 is solved in E if δ(F 2(G)) ⊂ E for a subset E of D. Since F 2

33

Figure 1: Contour plot of the numerical representation v for the solution concept F 2 on the
set D = [−10, 10]2 of pairs of deviation losses. The subsets {Dk}

4
k=1 constitute a partition

of D such that v(x) > v(y) > v(z) > v(w) for any (x, y, z, w) ∈ D1×D2×D3×D4. Straight
black lines represent boundaries between those partition elements, and gray curves represent
indifference with respect to v.

-10

-5

 0

 5

 10

-10 -5 0 5 10

x2

x1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

D1

D2

D3

D4

solves games by maximizing v(δ(·)), the definition of {Dk}
4
k=1 and the relation (16) imply

the following: First, games with strict Nash equilibria are solved in D1. Second, any other

game with one or more weak Nash equilibria is solved in D2 if player 1 has a strict best

reply in any such equilibrium. Otherwise the game is solved in D3. Finally, since any game

can be solved in D \D4 by choosing a best reply for player 1 to any conjecture about player

2, it follows that no game is solved in D4 and that all games without pure Nash equilibria

are solved in D3. This implies that the solution concept F 2 is rational in the sense that its

action is always a best reply to its conjecture.

When determining the ASC for each run separately, one finds some degree of heterogene-

ity. This heterogeneity is not captured by the representative solution concept F 2 which is

calculated using all solution concepts from all runs. To assess this variation, we consider the

standard deviation of the rank scores v(x) for each point x in the grid D0 across runs.
13 On

13This measure excludes any variation among the agents in each run. However, as shown in Table 15,
there is very little intra-run heterogeneity among the agents.

34

average, across all points in the grid, the standard deviation amounts to 0.07. However, on

D0∩D1 it is only 0.0004. Hence the ordering of strategy profiles on D0∩D1 is essentially the

same across runs. A clue to the nature of this common ordering is provided by the example

good reply function fa(x) in (12), which evaluates to x1 · x2 for x > 0. Indeed, v(x1, x2) has

a rank correlation of 0.9999 with the product x1 · x2 across the set of points x ∈ D0 ∩D1.

These results show that the representative solution concept F 2 and (in light of the above

robustness findings) the ASC, agree with the Harsanyi-Selten risk dominance concept (8) for

2×2 games with one or more strict Nash equilibria.

3.3.2 General games

We next extend F 2, the representative solution concept for 2×2 games, to the set of all

bimatrix games by showing that the ASC has a good reply function with the following

structure:

g(x) =
K
∑

k=1

(α + βxk), (17)

where β 6= 0. Negative β’s may occur because the signed effect of the arguments to g is

determined by the composite function f(g(·), g(·)).

A good reply function g is said to be additive if (17) holds. To test if the g-function

of the ASC is additive, we proceed as follows: For each agent a, generate a data set with

100 observations (ya, x1, x2), where (x1, x2) is a vector of two random deviation losses and

ya = ga(x1, x2). Then estimate the linear model

ya = α + β1x1 + β2x2 + β12x1x2, (18)

and conclude that agent a has an additive good reply function if β1 = β2, β12 = 0, and the

R2 of the regression exceeds 0.99. For each run, compute the mean R2 and the median values

of the parameter estimates across all agents.14 This yields a data set of 100 observations

14We use medians to aggregate the parameter estimates, because they can potentially vary widely across
agents. But most agents have R2’s close to 1, so we use means to obtain conservative averages of R2.

35

which is described in Table 17.

Table 17: Test of additive good reply functions by means of (18). The number of observations
is 100, one observation for each run with the model. P-values (from left to right) refer to
Wilcoxon tests against the null hypotheses that α = 0; β1 = β2; and β12 = 0.

Parameter α β1 β2 β12 R2

Min −0.047 1 1 0 0.999
Max 0.015 15 15 8.2e−05 1
Median 0 5 5 0 1
Mean 0.000 5.760 5.760 8.4e−07 1.000
P-value 0.394 0.995 0.371

The table shows that β1 is not significantly different from β2; that β12 does not differ

significantly from zero; and that R2 > 0.99 for all runs. We can therefore conclude that ad-

ditive good replies is a characteristic feature of the aggregate solution concept. Furthermore,

since α does not differ significantly from 0, we can use the function g, which takes a variable

number of arguments, to process those arguments by first summing them up and then ap-

plying the one-dimensional component of g to that sum. This means that Figure 1 can be

used to solve all games by ranking the pairs of sums of deviation losses that correspond to

each strategy profile of the game.

3.4 Robustness checks

The ASC is tested for robustness with respect to two changes to the model specification.

First we consider the algorithm which computes good replies and ask if initialization by zero

values could have introduced a bias towards additive good replies. Second we analyze to

what extent individual solution concepts are affected by the presence of strictly dominated

strategies. This yields the four experiments shown in Table 18. The case D0 is the one

considered so far.

36

Table 18: Robustness checks

Strictly dominated strategies
Initial memory
Zero Random

Allowed D0 DR
Not allowed N0 NR

3.4.1 Memory initialization

The algorithm in Table 2, computing good reply scores for strategy profiles, initializes its

memory slots z to zero. On exit from the algorithm, the first memory slot z1 contains

its return value, which is taken to be the good reply score for the given strategy profile.

In this setting, additive good reply function can be obtained as a single instruction which

simply adds the next deviation loss to z1. To gauge the extent to which the existence of

this ‘shortcut’ may have influenced the results, we re-run the model with the memory slots

initialized to random values. This experiment, called DR in Table 18, turns out to sometimes

produce a new type of agent with multiplicative good reply functions of the following form:

g(x) =

∏K

k=1(α + βxk), if x ≥ 0

ξ(x) < min
x
′≥0

∏K

k=1(α + βx′
k), otherwise.

(19)

The first case assigns high scores to vectors of deviation losses x that correspond to best

replies, and the second case assigns low scores (ξ(x)) to all other x. This suggests that

solution concepts with multiplicative good replies are geared towards solving games at pure

Nash equilibria whenever they exist.

37

The functions γa and fa for a typical agent a of this type are listed in (20)–(21).

γa(xk, z, k) =

3.7 · 1013 · (1.7 · 10−4 + xk) ·max(0, 1), if k = 1

3.7 · 1013 · (1.7 · 10−4 + xk) ·max(0, z), if k > 1.

(20)

fa(x1, x2) =

x1 · x2, if (x1, x2) > 0

x1, if x1 > 0 and x2 ≤ 0

0, if x1 ≤ 0.

(21)

At the first iteration (k = 1) of γa, it deals with the initial random z by replacing it with 1.

After K iterations, one obtains the good reply function ga in (22), which has the structure

(19).

ga(x) =

∏K

k=1(6.3 · 10
9 + 3.7 · 1013xk) ≥ (6.3 · 109)K , if x ≥ 0

0, if xk < 0 for some k < K

∏K

k=1(6.3 · 10
9 + 3.7 · 1013xk) < 0, if x−K ≥ 0 and xK < 0.

(22)

Pure Nash equilibria are represented by Case 1 of (21). Again we see that the good solu-

tion function scores such strategy profiles by the product of the good reply scores. Parallel

to (11) of Section 3.3, the small constant in (20) guarantees that the function fa(ga(·), ga(·))

extends continuously from strict to weak best replies because (1.7 · 10−4 + xk) is positive for

xk ≥ 0 and negative for all other deviation payoffs. This is shown below along with a proof

of (22).15

The large constant factor in (20) is typical for multiplicative good reply functions. Larger

15We show that (22) holds. The first case follows directly from (20). Consider next the second and third
cases of (22). Recall from footnote 12 that abs(xk) ≤ 10−2 if xk 6= 0. Consequently, the term (1.7 ·10−4+xk)
in (20) is positive if xk ≥ 0 and negative otherwise, and γa(xk, . . .) ≤ 0 if xk < 0. If xk < 0 for k < K, the
term max(0, z) in (20) ensures that γa(xk′ , . . .) = 0 for all k′ > k, hence ga(x) = 0, which proves case 2 of
(22). But if xk ≥ 0 for k < K and xK < 0 then γa(xk, . . .) > 0 for all k < K and ga(x) = γa(xK , . . .) < 0,
which proves case 3 of (22). Thus the random order in which deviation losses are presented to γa can lead
to a negative or a zero score if one or more deviation losses are strictly negative. But the agent still behaves
in a consistent manner because the good solution function fa in (21) does not distinguish between zero and
negative arguments.

38

constants cause more games to be solved at pure Nash equilibria, by producing larger g–

scores which increase the likelihood that fa reaches a maximum at case 1 of (21).16 As an

upshot, games without pure Nash equilibria are solved somewhat arbitrarily: The g–score to

player 1 is maximized without regard for that of player 2 (case 2 of (21)). By comparison,

the additive solution concept in (12)–(13) of Section 3.3 solves games without pure Nash

equilibria by maximizing the g–score to player 2 on the set of strategy profiles that yield a

positive g–score for player 1.

We do 100 runs with experiment DR and use the same procedure as in Section 3.3.2 to

test for additive and multiplicative good replies: For each agent a, we generate a data set

with 100 observations (ya, x1, x2), where (x1, x2) is a vector of two random deviation losses

and ya = ga(x1, x2). Unlike in Section 3.3.2, we restrict the deviation losses to be positive

and bounded away from 0 because we cannot exclude the possibility that some good reply

functions have discontinuities close to zero values of the arguments, cf. (19) and (22). We

then estimate the linear model (18) for each agent and aggregate the parameter estimates

by runs.

A summary of the results is contained in Table 19, where P (β12) is the P-value asso-

ciated with the multiplicative term β12 in (18). We sort the sample by P (β12), split it at

P (β12) = 0.1, and examine the estimated parameters to find that the 48 runs in Panel A

(with parameters α = 0, β1 = β2, β12 = 0 and R2 > 0.99) have additive good reply functions,

while the 52 runs in Panel B (with β12 6= 0) are consistent with the multiplicative good reply

structure in (19).

Table 19 confirms our conjecture that multiplicative good replies are closely associated

with Nash equilibrium play. Variable playNash is the frequency of Nash equilibrium play

in games with one Nash equilibrium, as explained in Section 3.2. On average, agents with

multiplicative good replies play the Nash equilibrium 99% of the time, against 83.7% for the

agents with additive good replies. By looking at individual runs, we find that 46 of the 52

16To see this, let (x1, x2) and (x′

1
, x′

2
) satisfy the conditions of case 1 and 2 of (21), respectively. Then

λx1 · λx2 > λx′

1
, for sufficiently large λ.

39

Table 19: Test of good reply functions by means of (18) for experiment DR. The number of
observations is 100, one observation for each run with the model. Parameters α, β1, β2, β12

and R2 are defined as in Table 17. P (β12) is the median P-value by run associated with β12,
and playNash is the frequency of Nash equilibrium play in games with one Nash equilibrium.
P-values (from left to right) refer to Wilcoxon tests against the null hypotheses that α = 0;
β1 = β2, and β12 = 0.

Panel A: P (β12) > 0.1, 48 runs, none with playNash ≥ 0.99.
Parameter α β1 β2 β12 R2 P (β12) playNash

Min −0.013 −6 −6 −6.4e−09 0.997 0.606 0.828
Max 1.000 18 18 3.4e−08 1.000 1.000 0.846
Median 0 2 2 0 1.000 1.000 0.838
Mean 0.043 3.667 3.667 8.8e−10 0.999 0.927 0.837
P-value 0.363 1.000 0.236

Panel B: P (β12) ≤ 0.1, 52 runs, 46 with playNash ≥ 0.99.
Parameter α β1 β2 β12 R2 P (β12) playNash

Min −2.1e+27 −1.7e+26 1.1e−01 −7.9e−03 0.161 0.000 0.838
Max 4.1e+31 5.3e+30 3.7e+30 4.5e+29 0.929 0.051 1.000
Median 2.8e+17 8.3e+19 4.9e+21 2.7e+20 0.659 0.000 0.997
Mean 1.0e+30 1.6e+29 1.5e+29 1.5e+28 0.593 0.001 0.990
P-value 0.000 0.449 0.000

runs in Panel B have playNash ≥ 0.99 and that all 48 runs in Panel A have playNash < 0.85.

The remaining 6 runs seem to represent a mix of agents with additive and multiplicative and

good reply functions.

In what follows, we will disregard those 6 runs and reserve the term multiplicative for

agents and model runs with playNash ≥ 0.99. Analogously, an additive agent is one whose

good reply function yields β1 = β2, β12 = 0 and R2 > 0.99 when fitted to (18), and an additive

model run is one for which the median β’s and the mean R2 satisfy these conditions.

In the remainder of this subsection, we compare the 48 additive runs of Table 19, Panel

A with the 46 multiplicative runs from Panel B. The 48 additive runs constitute an additive

ASC, and the 46 multiplicative runs form a multiplicative ASC.

Applying the multiplicative ASC to the games in Section 3.1, we find less cooperation

and lower aggregate payoffs as compared to the additive one: The ‘refinement’ games in

Tables 8 and 9 are both solved at the inferior equilibrium (T,R), and in the Centipede game

40

the agents take the money at the first opportunity. In ultimatum games with 5 or 10 dollars

to share, the players offer and demand one dollar, and with 50 or 100 dollars to share, offers

and demands amount to only 8% of the total.

We next compare the additive and the multiplicative ASC across a large number of games

with a varying number of pure Nash equilibria. We create six sets of 1,000 games with the

number of pure Nash equilibria ranging from 0 to 5 and solve each one of those 6,000 games

with the two ASC’s. The results are presented in Figure 2.

Figure 2: Behavior of the additive and the multiplicative aggregate solution concepts from
experiment DR in games with a varying number of pure Nash equilibria. The number of
observations is 94.

0 1 2 3 4 5

●

●
●

●

●

80

85

90

95

100

N
a
s
h
 e

q
u
ili

b
ri

u
m

 p
la

y
 (

%
)

Number of Nash equilibria

●

Multiplicative good replies

Additive good replies

95% confidence intervals

0 1 2 3 4 5

●

●

●

●

●

●

0

2

4

6

8

10

12

14

16

18

P
a
y
o

ff

Number of Nash equilibria

●

Multiplicative good replies

Additive good replies

95% confidence intervals

The left panel of Figure 2 shows the frequency of Nash equilibrium play.17 In games with

one pure Nash equilibrium, the multiplicative agents play that strategy profile in 99.7% of

those games. As the number of pure Nash equilibria increases, the frequency of Nash play

declines, but remains above 95%. The additive agents are not equipped to identify Nash

equilibria. Instead they look for strategy profiles with positive sums of deviation losses,

which become more prevalent as the number of pure Nash equilibria increases. In games

with one pure Nash equilibrium, these agents play Nash only 84% of the time, but this

frequency is increasing in the number of equilibria. For games with 5 pure Nash equilibria

there is no significant difference between the two ASC’s with respect to the frequency of

17If agents would independently randomize between the n row and n column strategies that support n
pure Nash equilibria, the generic probability of playing some Nash equilibrium is 1/n.

41

Nash equilibrium play.

The right panel of Figure 2 plots payoffs against the number of pure Nash equilibria for the

two ASC’s. Payoffs increase as the number of Nash equilibria increases, with additive agents

doing better throughout. The difference is small for games with one pure Nash equilibrium,

but widens as the number of equilibria increases. The multiplicative agents fare particularly

badly in games with no pure Nash equilibrium, obtaining less than half the payoff of the

additive agents.

3.4.2 Rationalizability

We have seen in Section 3.1 that the additive solution concept sometimes produces solutions

that are not subgame perfect, or not Nash, or include strictly dominated strategies. While

strictly dominated solutions agree with intuition or experiments for some games, it raises

the issue to what extent the solution concept is robust with respect to addition of dominated

strategies.18 To illustrate the issue, we consider the game in Table 20.

Table 20: A game with strictly dominated strategies. Numbers in italics are probabilities
(%).

(s, t) A b c
σ 0 100 0 Col

A 0 1, 1 11, 0 -1, -2 0

b 100 0, 11 10, 10 -2, 0 100

c 0 -2, -1 0, -2 -3, -3 0

Row 0 100 0 φ

The game is symmetric and has one Nash equilibrium in pure strategies at (A,A), with

payoffs (1, 1). The additive ASC solves the game at (b, b), which yields payoffs (10, 10).

Human players might also be able to solve the game at (b, b) because it yields high, identical

payoffs and only weak incentives to deviate to A. But this is not quite how the ASC arrives at

its solution: When the good solution function takes sums of deviation losses as inputs, (b, b)

18Kohlberg & Mertens (1986) dismiss the idea of robustness with respect to addition of strictly dominated
strategies in relation to strategic stability, but in our case, there are additional considerations to be made.

42

is selected because it has a high g-score of 9 because (10−11)+(10−0) = −1+10 = 9. The

smaller negative term −1 is associated with the weak incentives to deviate. But the larger

positive term 10 is due to the presence of the dominated action c. Although the ASC seems

to have found the ‘right’ solution to this game, it may have done so for the wrong reason. If

the dominated action c is eliminated from the game, we obtain a Prisoner’s dilemma game

which is solved at (A,A) by the ASC, cf. Section 3.1.

It is easy to construct this type of examples by adding strictly dominated strategies to

an existing game. An obvious remedy would be to iteratively eliminate strictly dominated

strategies (IESDS) before presenting the game to the ASC for solution. The modified ASC

would then solve the game in Table 20 at (A,A) and any other game at some rationalizable

pair of strategies. However, the ASC may no longer be stochastically stable if IESDS is

imposed on it ex post. We will therefore impose IESDS ex ante and see if, and how, this

affects the aggregate solution concept.

To that end, we carry two additional experiments, N0 and NR, each one consisting of 100

runs with the model. N0 and NR are identical to D0 and DR, respectively, except that the

agents are not allowed to play strictly dominated strategies, see Table 18. This restriction

is imposed by iteratively removing all strictly dominated strategies from any game before

applying some solution concept.

Experiment NR (IESDS and random initial memory) yields 81 additive runs and one

multiplicative one out of 100 runs in total. Further, 100 runs of experiment N0 (IESDS

and zero initial memory) yields 93 additive runs and no multiplicative ones. Thus IESDS

strengthens the additive solution concept by removing some potentially irrelevant informa-

tion which the additive solution concept is unable to detect. Apparently, this effect is strong

enough, or the competition from multiplicative Nash players is weak enough, for the additive

solution concept to prevail when IESDS is imposed.

43

4 Conclusion

The paper uses a genetic programming algorithm to study evolution of play in one-shot

bimatrix games. The model has 2,000 artificial agents who gain experience with one-shot play

across 100,000 periods. In each period, each agent plays 1,000 random bimatrix games with

2-10 strategies per player in random positions (row or column) against random opponents.

To play games, each agent uses an individual solution concept, which can be thought of

as a soft, non-equilibrium generalization of the Nash equilibrium concept. The individual

solution concepts admit a numerical representation in terms of two functions: The first one

assigns a good reply score to each strategy profile based on a player’s deviation losses, and

the second one aggregates both players’ good reply scores to obtain a measure of the degree

to which a strategy profile constitutes a good solution. By taking the mean of all individual

solution concepts for each game we obtain an aggregate solution concept (ASC).

We do 100 runs with the model and show that the ASC converges to a stochastically

stable equilibrium. The individual solution concepts turn out to have a common structure

with simple additive good reply functions and complex good solution functions. The good

solution functions produce coarse orderings of their domains based on the signs of the good

reply scores, and a continuous numerical ranking on each equivalence class of that ordering.

In particular, for positive pairs of good reply scores, the good solution score is the product

of those pairs. This yields risk dominance for 2×2 games and an extension of that solution

concept to games with higher dimensions.

Applying this ASC to a number of well-known games, we find that it agrees well with

intuition and empirical evidence. Examples include the Ultimatum game, the Traveler’s

dilemma, the Centipede game and a collection of games from the refinement literature. It

also behaves as if the agents were motivated by social norms in some games that were

designed to test such concepts as fairness, trust and reciprocity. In our model, such results

are due to positive correlation between payoffs and deviation losses, and a solution concept

which resembles a social welfare function by solving many games at strategy profiles which

44

maximize the product of the players’ sums of deviation losses.

We test the robustness of the main result by varying some aspects of the model specifi-

cation. One such model variant produces an approximate 50–50 distribution of two different

solution concepts. One half has the additive good reply functions of the base case, and the

other half has a new type of multiplicative good reply functions. The latter play Nash equi-

libria more often than the former. In games with one pure Nash equilibrium the frequency

of Nash play is almost 100% for the multiplicative solution concept, as compared to 84%

for the additive one. However, on games without pure Nash equilibria, the multiplicative

solution concept does not perform well, and in all other model variants, the multiplicative

solution concept is virtually absent.

Our approach to modeling one-shot play can be extended in several directions. (1) We

have imposed fairly tight restrictions on the solution concepts in order to stay close to Nash,

and some of those restrictions can be relaxed. For example, we assumed that payoffs are

von Neumann–Morgenstern utilities and imposed Invariance with respect to positive affine

payoff transformation to reflect that assumption. Dropping it would be a first step towards

building a model with monetary payoffs, and one way to proceed from there would be to

evolve utility functions along with the good reply and good solution functions. (2) Our agents

are boundedly rational due to computational constraints on program length (32 instructions)

and scratch memory (4 memory slots). These parameters can be varied to study behavioral

effects of variations in bounded rationality. (3) By representing games in terms of of vectors

of deviation losses, our model forces the agents to focus on strategic stability, i.e., variations

in player i’s payoffs for a given action by player j, with no focus on risk, i.e., variations in

i’s payoffs for a given action by player i. In experiments with human subjects, such risk

considerations seem to play a role, and it would be of interest to see if our artificial agents

would make the same considerations if they were provided with the relevant information.

45

References

Arifovic, J. (1994). Genetic algorithm learning and the cobweb model, Journal of Economic

Dynamics and Control 18(1): 3–28.

Arifovic, J. (1995). Genetic algorithms and inflationary economies, Journal of Monetary

Economics 36(1): 219–243.

Arifovic, J. (1996). The behavior of the exchange rate in the genetic algorithm and experi-

mental economies, Journal of Political Economy 104(3): 510–541.

Basu, K. (1994). The Traveler’s dilemma: Paradoxes of rationality in game theory, American

Economic Review: Papers and Proceedings 84(2): 391–395.

Bernheim, B. D. (1984). Rationalizable strategic behavior, Econometrica 52(4): 1007–1028.

Brown, G. W. (1951). Iterative solution of games by fictitious play, Activity Analysis of

Production and Allocation 13(1): 374–376.

Capra, C. M., Goeree, J. K., Gomez, R. & Holt, C. A. (1999). Anomalous behavior in a

traveler’s dilemma?, American Economic Review 89(3): 678–690.

Carlson, H. & van Damme, E. (1993). Equilibrium selection in stag hunt games, in K. Bin-

more, A. Kirman & P. Tani (eds), Frontiers of Game Theory, Addison-Wesley, Reading,

MA, pp. 237–254.

Chen, S.-H., Duffy, J. & Yeh, C.-H. (2005). Equilibrium selection via adaptation: Using

genetic programming to model learning in a coordination game, Advances in Dynamic

Games, Springer, pp. 571–598.

Cooper, D. J. & Kagel, J. H. (2003). Lessons learned: Generalizing learning across games,

American Economic Review 93(2): 202–207.

46

Cooper, D. J. & Kagel, J. H. (2008). Learning and transfer in signaling games, Economic

Theory 34(3): 415–439.

Costa-Gomes, M., Crawford, V. P. & Broseta, B. (2001). Cognition and behavior in normal-

form games: An experimental study, Econometrica 69(5): 1193–1235.

Crawford, V. P., Costa-Gomes, M. A. & Iriberri, N. (2013). Structural models of nonequi-

librium strategic thinking: Theory, evidence, and applications, Journal of Economic

Literature 51(1): 5–62.

Fudenberg, D. & Liang, A. (2019). Predicting and Understanding Initial Play, American

Economic Review 109(12): 4112–4141.

Gale, J., Binmore, K. G. & Samuelson, L. (1995). Learning to be imperfect: The ultimatum

game, Games and Economic Behavior 8(1): 56–90.

Germano, F. (2007). Stochastic evolution of rules for playing finite normal form games,

Theory and Decision 62(4): 311–333.

Gilboa, I. & Schmeidler, D. (1995). Case-based decision theory, Quarterly Journal of Eco-

nomics 110: 605–639.

Gilboa, I., Schmeidler, D. & Wakker, P. P. (2002). Utility in case-based decision theory,

Journal of Economic Theory 105(2): 483–502.

Grimm, V. & Mengel, F. (2012). An experiment on learning in a multiple games environment,

Journal of Economic Theory 147(6): 2220–2259.

Güth, W. R., Schmittberger, R. & Schwarze, B. (1982). An experimental analysis of ulti-

matum bargaining, Journal of Economic Behaviour & Organization 3(4): 367–388.

Güth, W. R. & Tietz, R. (1990). Ultimatum bargaining behavior: A survey and comparison

of experimental results, Journal of Economic Psychology 11(3): 417–449.

47

Harsanyi, J. & Selten, R. (1988). A General Theory of Equilibrium Selection in Games, MIT

Press.

Haruvy, E. & Stahl, D. O. (2012). Between-game rule learning in dissimilar symmetric

normal-form games, Games and Economic Behavior 74(1): 208–221.

Jehiel, P. (2005). Analogy-based expectation equilibrium, Journal of Economic Theory

123(2): 81–104.

Kohlberg, E. & Mertens, J.-F. (1986). On the strategic stability of equilibria, Econometrica

54(5): 1003–1037.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of

Natural Selection, MIT Press.

Koza, J. R. (ed.) (1992-2003). Genetic Programming Series, Kluwer Academic Publishers.

Lensberg, T., Schenk-Hoppé, K. R. & Ladley, D. (2015). Costs and benefits of financial

regulation: Short-selling bans and transaction taxes, Journal of Banking & Finance

51: 103–118.

LiCalzi, M. (1995). Fictitious play by cases, Games and Economic Behavior 11(1): 64–89.

Marks, R. E. (2002). Playing games with genetic algorithms, in S. H. Chen (ed.), Evolution-

ary Computation in Economics and Finance. Studies in Fuzziness and Soft Computing,

Vol. 100, Physica, Heidelberg, pp. 31–44.

McKelvey, R. D. & Palfrey, T. R. (1992). An experimental study of the centipede game,

Econometrica 60(4): 803–836.

Mengel, F. (2012). Learning across games, Games and Economic Behavior 74(2): 601–619.

Mookherjee, D. & Sopher, B. (1994). Learning behavior in an experimental matching pennies

game, Games and Economic Behavior 7(1): 62–91.

48

Nagel, R. (1995). Unraveling in guessing games: An experimental study, American Economic

Review 85(5): 1313–1326.

Nordin, P. (1997). Evolutionary Program Induction of Binary Machine Code and its Appli-

cations, Krehl Verlag, Münster.

Pace, M. (2009). How a genetic algorithm learns to play traveler’s dilemma by choosing dom-

inated strategies to achieve greater payoffs, 2009 IEEE Symposium on Computational

Intelligence and Games, IEEE, pp. 194–200.

Pearce, D. G. (1984). Rationalizable strategic behavior and the problem of perfection,

Econometrica 52(4): 1029–1050.

Rosenthal, R. W. (1981). Games of perfect information, predatory pricing and the chain-store

paradox, Journal of Economic Theory 25(1): 92–100.

Roth, A. E. & Erev, I. (1995). Learning in extensive-form games: Experimental data and sim-

ple dynamic models in the intermediate term, Games and Economic Behavior 8(1): 164–

212.

Samuelson, L. (2001). Analogies, adaptation, and anomalies, Journal of Economic Theory

97(2): 320–366.

Selten, R. (1967). Die Strategiemethode zur Erforschung des eingeschränkt rationalen Ver-

haltens im Rahmen eines Oligopolexperiments, in H. Sauermann (ed.), Beiträge zur

experimentellen Wirtschaftsforschung, Mohr, Tübingen, pp. 136–168.

Selten, R., Abbink, K., Buchta, J. & Sadrieh, A. (2003). How to play (3×3)-games. A

strategy method experiment, Games and Economic Behavior 45(1): 19–37.

Sgroi, D. & Zizzo, D. J. (2009). Learning to play 3×3 games: Neural networks as bounded-

rational players, Journal of Economic Behavior & Organization 69(1): 27–38.

49

Spiliopoulos, L. (2011). Neural networks as a unifying learning model for random normal

form games, Adaptive Behavior 19(6): 383–408.

Spiliopoulos, L. (2015). Transfer of conflict and cooperation from experienced games to new

games: A connectionist model of learning, Frontiers in Neuroscience 9(102): 1–18.

Stahl, D. O. (1996). Boundedly rational rule learning in a guessing game, Games and

Economic Behavior 16(2): 303–330.

Stahl, D. O. (1999). Evidence based rules and learning in symmetric normal-form games,

International Journal of Game Theory 28(1): 111–130.

Stahl, D. O. (2000). Rule learning in symmetric normal-form games: Theory and evidence,

Games and Economic Behavior 32(1): 105–138.

Stahl, D. O. (2001). Population rule learning in symmetric normal-form games: Theory and

evidence, Journal of Economic Behavior & Organization 45(1): 19–35.

Stahl, D. O. & Wilson, P. W. (1994). Experimental evidence on players’ models of other

players, Journal of Economic Behavior & Organization 25(3): 309–327.

Steiner, J. & Stewart, C. (2008). Contagion through learning, Theoretical Economics

3(4): 431–458.

Taylor, P. D. & Jonker, L. B. (1978). Evolutionary stable strategies and game dynamics,

Mathematical biosciences 40(1-2): 145–156.

Van der Heijden, E. C., Nelissen, J. H., Potters, J. J. & Verbon, H. A. (1998). The poverty

game and the pension game: The role of reciprocity, Journal of Economic Psychology

19(1): 5–41.

Young, H. P. (1994). The evolution of conventions, Econometrica 61(1): 57–84.

50

