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ABSTRACT

Bootstrap procedures based on instrumental variable (IV) estimates or t-statistics are generally invalid

when the instruments are weak. The bootstrap may even fail when applied to identification-robust test

statistics. For subvector inference based on the Anderson-Rubin (AR) statistic, Wang and Doko Tchatoka

(2018) show that the residual bootstrap is inconsistent under weak IVs. In particular, the residual bootstrap

depends on certain estimator of structural parameters to generate bootstrap pseudo-data, while the estimator

is inconsistent under weak IVs. It is thus tempting to consider nonparametric bootstrap. In this note,

under the assumptions of conditional homoskedasticity and one nuisance structural parameter, we investigate

the bootstrap consistency for the subvector AR statistic based on the nonparametric i.i.d. bootstap and its

recentered version proposed by Hall and Horowitz (1996). We find that both procedures are inconsistent

under weak IVs: although able to mimic the weak-identification situation in the data, both procedures result

in approximation errors, which leads to the discrepancy between the bootstrap world and the original sample.

In particular, both bootstrap tests can be very conservative under weak IVs.
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1. Introduction

Inference in the linear IV model with possibly weak instruments has received considerable atten-

tion. Recently, Young (2019) studies 1359 IV regressions in 31 papers published by the American

Economic Association and finds that the IVs are often weak, and inference methods based-on nor-

mal approximations can be unreliable. Young (2019) advocates for the usage of bootstrap methods.

As pointed out by Andrews, Stock and Sun (2019, Sec.6), bootstrap procedures based on IV

estimates or t-statistics are generally invalid when the instruments are weak. By contrast, appro-

priate bootstrap procedures based on identification-robust statistics may remain valid. For testing

joint hypothesis in the homoskedastic case, Moreira, Porter and Suarez (2009) show the validity

of residual bootstrap for score and Anderson-Rubin (AR) tests. However, for subvector inference

based on the AR statistic, Wang and Doko Tchatoka (2018) show the inconsistency of the residual

bootstrap. In particular, it depends on certain point estimator that is inconsistent under weak IVs.

It is thus tempting to consider nonparametric bootstrap, which is also the most widely used

bootstrap method by empirical researchers. Under the assumptions of conditional homoskedas-

ticity and one nuisance structural parameter, we investigate the bootstrap consistency for the sub-

vector AR statistic based on the nonparametric i.i.d. bootstap (pairs bootstrap) and its recentered

version proposed by Hall and Horowitz (1996). We show that both procedures are inconsistent

under weak IVs: although able to mimic the weak-identification situation, both procedures result

in approximation errors, leading to the discrepancy between the bootstrap and original sample.

Asymptotic results show that both bootstrap tests can be very conservative under weak IVs, while

the pairs bootstrap test can be very conservative even under strong IVs.

2. Setting and Preliminary Result

We consider the linear IV model

y = Xβ +Wγ + ε, (2.1)

(X : W ) = Z(Πx : Πw)+(Vx : Vw), (2.2)

where y ∈ R
n is dependent variable, X ∈ R

n and W ∈ R
n are endogenous explanatory variables,

Z ∈R
n×L are instrumental variables, and [ε : Vx : Vw]∈R

n×R
n×R

n are unobserved disturbances.

β ∈R, γ ∈R, Πx ∈R
L and Πw ∈R

L are unknown parameters. We assume that L is fixed and L≥ 2.

We are interested in testing the subvector null hypothesis

H0 : β = β 0 versus H1 : β 6= β 0, (2.3)
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where γ is a nuisance structural parameter in this context.

To introduce the test statistics, consider the problem of testing the joint hypothesis H∗
0 : β =

β 0, γ = γ0, and define the AR test statistic as:

ARn(β 0,γ0) =
(y−Xβ 0 −Wγ0)

′
PZ (y−Xβ 0 −Wγ0)

Lσ̂ εε(β 0,γ0)
, (2.4)

where σ̂ εε(β 0,γ0) =
1

n−L
(y−Xβ 0 −Wγ0)

′
MZ (y−Xβ 0 −Wγ0), PZ = Z(Z′Z)−1Z′ and MZ = In−

PZ . Then, the subvector AR statistic can be defined as:

ARn(β 0, γ̃) = min
γ∈R

ARn(β 0,γ), (2.5)

where γ̃ = argminγ∈RARn(β 0,γ). It is well known that the solution of the minimization problem

in (2.5) is given by the null-constrained LIML estimator of γ , i.e.,

γ̃ =

[

W ′

(

PZ −
κ̃

n−L
MZ

)

W

]−1

W ′

(

PZ −
κ̃

n−L
MZ

)

ỹ(β 0), (2.6)

where ỹ(β 0) = y−Xβ 0, κ̃ is the smallest root of the characteristic polynomial

∣

∣

∣
κΩ̂W − (ỹ(β 0) : W )′PZ (ỹ(β 0) : W )

∣

∣

∣
= 0, (2.7)

and Ω̂W = 1
n−L

(ỹ(β 0) : W )′MZ (ỹ(β 0) : W ). We make the following assumptions.

Assumption 2.1
{

(ε i,Vxi,Vwi,Z
′
i)
′
: 1 ≤ i ≤ n

}

are i.i.d. across i with distribution F.

Assumption 2.2 (i) EF [Ui] = 0 and EF [ZiU
′
i ] = 0 where Ui = (ε i,Vxi,Vwi)

′; and (ii) EF [‖Ti‖
2+ζ ]≤

K < ∞ for some K ≥ 0, ζ > 0 and for all Ti ∈ {Ziε i,ZiVw,i,Vw,iε i,ε i,Vw,i,Zi}; EF [ZiZ
′
i ] := QZZ,

EF [UiU
′
i ] := ΣUU , EF

[

vec(ZiU
′
i )(vec(ZiU

′
i ))

′]= ΣUU ⊗QZZ , and for A ∈ {QZZ, ΣUU}, λ min(A)≥

ς for some ς > 0. EF [·] denotes the expectation under F, ⊗ the Kronecker product, and λ min(·)

the smallest eigenvalue of a matrix.

Assumption 2.3 When the sample size n converges to infinity, we have:

n1/2Q
1/2
ZZ Πn,wσ

−1/2
vwvw → hww ∈ R

L with ||hww||< ∞.

When Assumptions 2.1 - 2.2 hold, by Lyapunov-type CLTs we have

n−1/2vec
(

Z′[ε : Vw]
) d
→ vec

(

ψZε , ψZVw

)

∼ N (0, Σ ⊗QZZ) , with Σ =

[

σ εε σ vwε

σ vwε σ vwvw

]

.
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Then define ψVw
=Q

−1/2
ZZ ψZVw

σ
−1/2
vwvw , ψε =Q

−1/2
ZZ ψZεσ

−1/2
εε , where vec(ψε ,ψVw

)∼N(0, Σh⊗IL),

with Σh =

(

1 hwε

hwε 1

)

and hwε = σ
−1/2
vwvw σ vwεσ

−1/2
εε . Also define

∆h = (Ψ ′
hΨh −κh)

−1(Ψ ′
hψε −κhhwε), Sh = ψε −Ψh∆h, (2.8)

where Ψh = hww + ψVw
, and κh is the smallest root of

∣

∣(ψε : Ψh)
′ (ψε : Ψh)−κhΣh

∣

∣ = 0. The

following theorem gives the null limiting distribution of ARn(β 0, γ̃) under weak IVs, which is

nonstandard and characterized by h = (hww,hwε). Note that ‖h
ww
‖2 characterizes the identification

strength for the nuisance parameter γ , and hwε characterizes the degree of endogeneity.

Theorem 2.4 (Theorem 3.2 of Wang and Doko Tchatoka (2018)) Suppose that Assumptions 2.1–

2.3 are satisfied. If further H0 holds, then we have:

ARn(β 0, γ̃) →d ξ h =
1

L

∥

∥

∥

(

1−2hwε∆h +∆ 2
h

)−1/2
Sh

∥

∥

∥

2

,

where ∆h and Sh are defined in (2.8).

3. Bootstrapping the Subvector Anderson-Rubin Test

In this section, we study nonparametric bootstrap procedures for the subvector AR test. The mo-

tivation is that to implement residual bootstrap, one has to use the null-restricted LIML estimator

γ̃ to generated the bootstrap disturbances for the structural equation (2.1); e.g., see Section 4.1

of Wang and Doko Tchatoka (2018). However, γ̃ cannot consistently estimate γ under weak IVs,

resulting in discrepancy between the bootstrap and original data.

We write P∗ to denote the probability measure induced by a bootstrap procedure conditional

on the data, and write E∗ and Var∗ to denote the expected value and variance with respect to

P∗. Following Gonçalves and White (2004), for any bootstrap statistic T ∗ we write T ∗ →P∗
0 in

probability if for any δ > 0, ε > 0, limn→∞P[P∗(|T ∗| > δ ) > ε] = 0, i.e., P∗(|T ∗| > δ ) = oP(1).

We write T ∗ →d∗
T in probability if, conditional on the sample, T ∗ weakly converges to T under

P∗, for all samples contained in a set with probability converging to one.

The nonparametric i.i.d. bootstrap procedure (pairs bootstrap) is implemented by sampling
(

y∗1,X
∗
1 ,W

∗
1 ,Z

∗′
1

)

, ...,
(

y∗n,X
∗
n ,W

∗
n ,Z

∗′
n

)

randomly with replacement from the sample. Then, the

bootstrap statistic can be defined as:

AR∗
n,p(β 0, γ̃

∗) =
(y∗−X∗β 0 −W ∗γ̃∗)′PZ∗ (y∗−X∗β 0 −W ∗γ̃∗)

Lσ̂∗
εε(β 0, γ̃

∗)
, (3.1)
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where γ̃∗ and σ̂∗
εε(β 0, γ̃

∗) are the analogues of γ̃ and σ̂ εε(β 0, γ̃) computed using bootstrap samples.

To understand the bootstrap failure under weak IVs, we note that

n−1/2Z∗′(y∗−X∗β 0 −W ∗γ̃∗) = n−1/2Z∗′ε∗+n−1/2Z∗′W ∗(γ − γ̃∗) (3.2)

where ε∗ = y∗ − X∗β 0 −W ∗γ . Furthermore, n−1/2Z∗′ε∗ = n−1/2
(

Z∗′ε∗−Z′ε
)

+ n−1/2Z′ε ,

n−1/2Z∗′W ∗ =
(

n−1Z∗′Z∗
)

n1/2Πn,w + n−1/2
(

Z∗′V ∗
w −Z′Vw

)

+ n−1/2Z′Vw, and a bootstrap CLT

can be applied to n−1/2
(

Z∗′ε∗−Z′ε
)

and n−1/2
(

Z∗′V ∗
w −Z′Vw

)

. Therefore, the following (con-

ditional) convergence in distribution holds:

vec
(

(n−1Z∗′Z∗)−1/2n−1/2Z∗′ε∗σ
∗−1/2
εε , (n−1Z∗′Z∗)−1/2n−1/2Z∗′W ∗σ

∗−1/2
vwvw

)

→d∗
vec
(

ψε +ψB
ε ,Ψh +ψB

Vw

)

in probability, (3.3)

where vec
(

ψB
ε ,ψ

B
Vw

)

∼ N(0,Σh ⊗ IL), Ψh = hww +ψVw
, σ∗

εε = E∗
(

ε∗2
i

)

and σ∗
vwvw

= E∗
(

V ∗2
wi

)

.

ψB
ε and ψB

Vw
are the bootstrap counterparts of ψε and ψVw

, and correctly replicates the random-

ness in the original data. However, the nonparametric bootstrap is inconsistent under weak IVs.

In particular, the original identification strength for γ is characterized by ‖hww‖
2, while condi-

tional on the data, the corresponding identification strength in the bootstrap world is characterized

by ‖Ψh‖
2 = ‖hww +ψVw

‖2 . Therefore, although able to mimic the weak-identification situation

(‖Ψh‖
2 is finite with probability approaching one when ‖hww‖

2 is finite), the bootstrap generates

approximation errors ψε and ψVw
, whose values will depend on the specific realization of the

sample. Theorem 3.1 presents the null limiting distribution of AR∗
n,p(β 0, γ̃

∗) under weak IVs.

Theorem 3.1 Suppose that Assumptions 2.1–2.3 are satisfied. If further H0 holds, then we have:

AR∗
n,p(β 0, γ̃

∗) →d∗
ξ B

h,p =
1

L

∥

∥

∥

∥

(

1−2hwε∆ B
h +(∆ B

h )
2
)
−1/2

SB
h,p

∥

∥

∥

∥

2

,

in probability, where ∆ B
h =

{

(

Ψh +ψB
vw

)′ (
Ψh +ψB

vw

)

−κB
h

}−1{
(

Ψh +ψB
vw

)′ (
ψε +ψB

ε

)

−κB
h hwε

}

,

κB
h is the smallest root of

∣

∣

∣
κhΣh −

(

ψε +ψB
ε : Ψh +ψB

vw

)′ (
ψε +ψB

ε : Ψh +ψB
vw

)

∣

∣

∣
= 0, and

SB
h,p = (ψε +ψB

ε )− (Ψh +ψB
vw
)∆ B

h .

Now we consider the nonparametric bootstrap procedure proposed by Hall and Horowitz

(1996), which recenters the moment conditions in the bootstrap world. This procedure leads to

AR∗
n,r(β 0, γ̃

∗) =
(ε̃∗(β 0, γ̃

∗)′Z∗− ε̃(β 0, γ̃)
′Z)(Z∗′Z∗)−1(Z∗′ ε̃∗(β 0, γ̃

∗)−Z′ε̃(β 0, γ̃))

Lσ̂∗
εε(β 0, γ̃

∗)
, (3.4)
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where ε̃∗(β 0, γ̃
∗) = y∗−X∗β 0 −W ∗γ̃∗, and ε̃(β 0, γ̃) = y−Xβ 0 −W γ̃ . We note that

n−1/2
(

Z∗′ ε̃∗(β 0, γ̃
∗)−Z′ε̃(β 0, γ̃)

)

= n−1/2
(

Z∗′ε∗−Z′ε
)

+n−1/2Z∗′W ∗(γ − γ̃∗)+n−1/2
(

Z′ε −Z′ε̃(β 0, γ̃)
)

, (3.5)

and the last term does not vanish under weak identification. This is very different from the strong-

identification case in which the recentering bootstrap is shown by Hall and Horowitz (1996) to

achieve asymptotic refinement for various tests. Theorem 3.2 characterizes the null limiting distri-

bution of AR∗
n,r(β 0, γ̃

∗) under weak IVs and shows that the recentering bootstrap is inconsistent.

Theorem 3.2 Suppose that Assumptions 2.1–2.3 are satisfied. If further H0 holds, then we have:

AR∗
n,r(β 0, γ̃

∗) →d∗
ξ B

h,r =
1

L

∥

∥

∥

∥

(

1−2hwε∆ B
h +(∆ B

h )
2
)
−1/2

SB
h,r

∥

∥

∥

∥

2

,

in probability, where ∆ B
h is defined in Theorem 3.1, and SB

h,r = (Ψh∆h +ψB
ε )− (Ψh +ψB

vw
)∆ B

h .

To better understand the bootstrap statistics, we apply Theorems 2.4, 3.1, and 3.2, and plot

the 95% quantiles of ξ h, ξ B
h,p and ξ B

h,r in Figure 1 with ‖h
ww
‖2 ∈ {0,10, . . . ,60}, L ∈ {2,5,10},

and hwε ∈ {0.1,0.9} (by 100,000 simulation replications). The corresponding χ2
L−1 critical values

(divided by L) are also plotted. The quantiles of ξ B
h,p turn out to be always higher than those of ξ h,

suggesting that the pairs bootstrap tests can be very conservative no matter the IVs are strong or

weak. Indeed, we note that under H0, ARn(β 0, γ̃) is equivalent to a version of the J statistic, while

Giurcanu and Presnell (2018, Theorem 2 9(e)) show that in the standard strong-identification case,

instead of having a central chi-squared limiting distribution, the pairs bootstrap analogue of the J

statistic has a non-central chi-squared limiting distribution. This bootstrap is therefore inconsistent

even under strong IVs. By contrast, the quantiles of ξ B
h,r converge to those of χ2

L−1/L when ||hww||
2

become large. This is in line with Hall and Horowitz (1996), which shows the consistency of the

recentering bootstrap for J tests under strong identification. However, we note that due to the

inclusion of γ̃ in (3.4) when recentering the bootstrap moment conditions, the quantiles of ξ B
h,r can

be much higher than those of ξ h under weak IVs (as γ̃ becomes inconsistent), suggesting that the

recentering bootstrap tests can be very conservative in this case.

Now we study the asymptotic size of the two bootstrap tests. Following Guggenberger, Kleiber-

gen, Mavroeidis and Chen (2012) and Guggenberger, Kleibergen and Mavroeidis (2019), we first

define the parameter space under the null hypothesis in (2.3):

Θ =

{

θ = (γ,Πx,Πw,F) : γ ∈ R, Πx ∈ R
L, Πw ∈ R

L and F such that Assumptions 2.1–2.2 hold

}

.

(3.6)
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Figure 1. 95% quantiles of ξ h, ξ B
h,p and ξ B

h,r
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Note: The results are based on 100,000 simulation replications.

Then the asymptotic size of the bootstrap tests is defined as:

AsySz
[

ĉn, j(1−α)
]

:= limsup
n→∞

sup
θ ∈Θ

Pθ

[

ARn(β 0, γ̃ j)> ĉn, j(1−α)
]

, (3.7)

where Pθ denotes probability of an event when the null data generating process is pinned down

by θ ∈ Θ , and ĉn, j(1−α) denotes the (1−α)-th quantile of the distribution of AR∗
n, j(β 0, γ̃

∗) for

j ∈ {p,r}. The next theorem gives an explicit formula of the asymptotic size.

Theorem 3.3 For j ∈ {p,r}, AsySz[ĉn, j(1−α)] equals sup
h∈H

P[ξ h > c̃h, j(1−α)], where c̃h, j(1−

α) is the (1−α)-th quantile of ξ B
h, j and H is defined in (A.5).

Table 1 reports the asymptotic sizes of the bootstrap tests for α = 0.05 and L ∈ {2, ...,11},

which are based on Theorem 3.3 and 100,000 simulation replications. The asymptotic sizes of

the pairs bootstrap tests ("Pairs boot.") are much smaller than 0.05. By contrast, the recentering

bootstrap tests ("HH boot.") achieves correct asymptotic size (up to simulation error), since it does

consistently estimate the distribution of interest under strong identification so that its asymptotic

null rejection probability equals 0.05 in this case. However, according to Figure 1, the recentering

bootstrap can be very conservative under weak identification. In sum, we could not recommend

either bootstrap method as there exist methods that both have correct asymptotic size and are less

conservative such as the conditional subvector AR test proposed by Guggenberger et al. (2019).
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Table 1. AsySz
[

ĉn, j(1−α)
]

for nominal size α = 0.05.

L Pairs Boot. HH Boot. L Pairs Boot. HH Boot.

2 0.0097 0.051 7 0.00061 0.049

3 0.0045 0.052 8 0.00048 0.050

4 0.0026 0.051 9 0.00030 0.049

5 0.0016 0.050 10 0.00021 0.049

6 0.0010 0.051 11 0.00017 0.050

Note: The results are based on 100,000 simulation replications.

4. Monte Carlo Simulation

We examine the finite sample performance of bootstrap tests by a small-scale Monte Carlo experi-

ment. The disturbances are i.i.d. normal with mean zero, unit variance, and hwε ∈ {0.1,0.5,0.9} .

Zi’s are distributed i.i.d. N(0, IL) with L∈ {2,10}. The IV strength is set at ||hww||
2 ∈ {0,4,16,64}.

The experiment is executed with n = 200, 5,000 Monte Carlo replications, and 299 replications of

bootstrap samples. The nominal level is 5%, and Table 2 compares the pairs bootstrap, the recen-

tering bootstrap, and the residual bootstrap in Moreira et al. (2009) and Wang and Doko Tchatoka

(2018) ("Resid. Boot."). The pairs bootstrap does not reject, while the rejection frequencies of the

recentering bootstrap increase when ||hww||
2 or hwε increases. However, the recentering bootstrap

is also very conservative under weak IVs. These findings are in line with the asymptotic results.

The residual bootstrap has the best performance, although it is also conservative when ||hww||
2 is

small (as it is also inconsistent for the subvector AR test under weak IVs).

Table 2. Null rejection frequencies (%) for H0 : β = β 0 at α = 5%

L = 2 L = 10

hwε ||hww||
2 Pairs Boot. HH Boot. Resid. Boot. Pairs Boot. HH Boot. Resid. Boot.

0.1 0 0 0 0.66 0 0 0.28

0.1 4 0 0.04 2.70 0 0 1.16

0.1 16 0 0.94 4.82 0 0 3.26

0.1 64 0 4.20 4.84 0 0.9 4.92

0.5 0 0 0 0.86 0 0 0.26

0.5 4 0 0.08 3.28 0 0 1.36

0.5 16 0 1.06 4.70 0 0 4.22

0.5 64 0 4.08 4.68 0 1.48 4.74

0.9 0 0 0 0.72 0 0 0.38

0.9 4 0 0.16 4.44 0 0 3.48

0.9 16 0 2.06 4.68 0 0.1 4.68

0.9 64 0 4.26 4.94 0 1.86 4.70
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5. Conclusions

We show the inconsistency of two nonparametric bootstraps under weak IVs for the subvector AR

test. Both methods can be very conservative under weak IVs and the pairs bootstrap can be very

conservative even under strong IVs. We note that in the homoskedastic case, Guggenberger et al.

(2012) provides appropriate chi-squared critical value, and Guggenberger et al. (2019) proposes

a data-dependent critical value to further improve power. Kleibergen (2019) provides a subvector

conditional likelihood ratio test. Wang and Doko Tchatoka (2018) proposes a Bonferroni-based

size-correction method. For heteroskedastic data, Andrews (2017) proposes a two-step Bonferroni

method that applies to nonlinear models.
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A. Appendix

The Appendix contains the proofs of the theoretical results in the paper.

PROOF OF THEOREM 3.1

First, we note that the following decompositions hold:

(

Z∗′Z∗
)−1/2

Z∗′W ∗σ
∗−1/2
vwvw

=
(

n−1Z∗′Z∗
)1/2

n1/2Πwσ
∗−1/2
vwvw +

(

n−1Z∗′Z∗
)−1/2

n−1/2
(

Z∗′V ∗
w −Z′Vw

)

σ
∗−1/2
vwvw

+
(

n−1Z∗′Z∗
)−1/2

n−1/2Z′Vwσ
∗−1/2
vwvw ;

(

Z∗′Z∗
)−1/2

Z∗′ε∗σ
∗−1/2
εε

=
(

n−1Z∗′Z∗
)−1/2

n−1/2
(

Z∗′ε∗−Z′ε
)

σ
∗−1/2
εε +

(

n−1Z∗′Z∗
)−1/2

n−1/2Z′εσ
∗−1/2
εε .

Note that E∗
[

n−1Z∗′Z∗
]

= n−1Z′Z and n−1Z∗′Z∗− n−1Z′Z →P∗
0 in probability, by the Law

of Large Numbers. Moreover, n−1Z′Z
p
→ QZZ which is positive definite, therefore we obtain

(

n−1Z∗′Z∗
)−1

→P∗
Q−1

ZZ in probability. Then, by using the similar arguments as in the proof

of Theorem 4.3 in Wang and Doko Tchatoka (2018), we obtain conditional convergence in distri-

bution under weak IVs:

W ∗′PZ∗W ∗σ∗−1
vwvw

→d∗ (

Ψh +ψB
vw

)′ (
Ψh +ψB

vw

)

, (A.1)

in probability, where Ψh = hww +ψvw
. Similarly, we have

W ∗′PZ∗ε∗(σ∗
εεσ∗

vwvw
)−1/2 →d∗ (

Ψh +ψB
vw

)′ (
ψε +ψB

ε

)

, (A.2)

in probability.

Second, note that κ̃∗ is the smallest root of

∣

∣

∣
κΩ̂ ∗

w − (ỹ∗(β 0) : W ∗)′PZ∗ (ỹ∗(β 0) : W ∗)
∣

∣

∣
= 0,

where Ω̂ ∗
w = 1

n−L
(ỹ∗(β 0) : W ∗)′MZ∗ (ỹ∗(β 0) : W ∗). And this is equivalent to

∣

∣κΣ̂∗− (ε∗ : Z∗Πw +V ∗
w)

′
PZ∗ (ε∗ : Z∗Πw +V ∗

w)
∣

∣= 0, (A.3)

where Σ̂∗ = 1
n−L

(ε∗ : W ∗)′MZ∗(ε∗ : W ∗). Then, by combining eqs (A.1)-(A.3), we obtain:

γ̃∗− γ →d∗
σ

1/2
εε σ

−1/2
vwvw

{

(

Ψh +ψB
vw

)′ (
Ψh +ψB

vw

)

−κB
h

}−1{
(

Ψh +ψB
vw

)′ (
ψε +ψB

ε

)

−κB
h hwε

}

= σ
1/2
εε σ

−1/2
vwvw ∆ B

h in probability,
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where κB
h is the smallest root of

∣

∣

∣
κhΣh −

(

ψε +ψB
ε : Ψh +ψB

vw

)′ (
ψε +ψB

ε : Ψh +ψB
vw

)

∣

∣

∣
= 0.

For the denominator of the subvector AR statistic, we have the following decomposition:

1

n−L
(ỹ∗(β 0)−W ∗γ̃∗)′MZ∗ (ỹ∗(β 0)−W ∗γ̃∗)

= (n−L)−1ε∗
′
ε∗−2(n−L)−1ε∗

′
MZ∗W ∗(γ̃∗− γ)+(n−L)−1W ∗′MZ∗W ∗(γ̃∗− γ)2.

Then, by using similar arguments as those for γ̃∗, we have

1

n−L
(ỹ∗(β 0)−W ∗γ̃∗)′MZ∗ (ỹ∗(β 0)−W ∗γ̃∗)→d∗

σ εε

(

1−2hwε∆ B
h +(∆ B

h )
2
)

, (A.4)

in probability. For the numerator of the subvector AR statistic, we note that

(

Z∗′Z∗
)−1/2

Z∗′ (ỹ∗(β 0)−W ∗γ̃∗)

= σ
∗1/2
εε

{

(n−1Z∗′Z∗)−1/2n−1/2Z∗′ε∗σ
∗−1/2
εε

+

[

(

n−1Z∗′Z∗
)−1/2

n−1/2Z∗′W ∗σ
∗−1/2
vwvw

]

σ
∗−1/2
εε σ

∗1/2
vwvw (γ − γ̃∗)

}

.

Given the previous results, it is clear that

(

Z∗′Z∗
)−1/2

Z∗′ (ỹ∗(β 0)−W ∗γ̃∗)→d∗
σ

1/2
εε

{

(ψε +ψB
ε )− (Ψh +ψB

vw
)∆ B

h

}

,

in probability. The desired result follows.

PROOF OF THEOREM 3.2

For the recentering bootstrap, we note that

(

Z∗′Z∗
)−1/2(

Z∗′ ε̃∗(β 0, γ̃
∗)−Z′ε̃(β 0, γ̃)

)

= σ
∗1/2
εε

{

(n−1Z∗′Z∗)−1/2n−1/2
[

(Z∗′ε∗−Z′ε)+(Z′ε −Z′ε̃(β 0, γ̃))
]

σ
∗−1/2
εε

+

[

(

n−1Z∗′Z∗
)−1/2

n−1/2Z∗′W ∗σ
∗−1/2
vwvw

]

σ
∗−1/2
εε σ

∗1/2
vwvw (γ − γ̃∗)

}

.

In addition, n−1/2 (Z′ε −Z′ε̃(β 0, γ̃)) = n−1/2Z′W (γ̃ − γ). Then, it is clear that

(

Z∗′Z∗
)−1/2(

Z∗′ ε̃∗(β 0, γ̃
∗)−Z′ε̃(β 0, γ̃)

)

→d∗
σ

1/2
εε

{

(Ψh∆h +ψB
ε )− (Ψh +ψB

vw
)∆ B

h

}

,

in probability. The desired result follows.
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Define the localization parameter space:

H =

{

h = (hww,hwε) : ∃{θ n = (γn,Πn,x,Πn,w,Fn) ∈Θ : n ≥ 1} such that

n1/2Q
1/2
n,ZZΠn,wσ

−1/2
n,vwvw → hww ∈ [−∞,+∞]L and σ

−1/2
n,vwvwσn,vwεσ

−1/2
n,εε → hwε ∈ [−1,1]

}

,

where Qn,ZZ = EFn

(

ZiZ
′
i

)

,σn,vwε = EFn
(Vw,iε i) ,σn,vwvw

= EFn

(

V 2
w,i

)

, and σn,εε = EFn

(

ε2
i

)

.

(A.5)

PROOF OF THEOREM 3.3

We follow Andrews and Guggenberger (2010) [e.g., the proof of Theorem 1] and note that

there exists a “worst case sequence” θ n = (γn,Πx,n,Πw,n,Fn) ∈Θ such that:

AsySz[ĉn, j(1−α)]

= limsup
n→∞

sup
θ ∈Θ

Pθ [ARn(β 0, γ̃)> ĉn, j(1−α)]

= limsup
n→∞

Pθ n
[ARn(β 0, γ̃)> ĉn, j(1−α)]

= lim
n→∞

Pθ mn
[ARmn

(β 0, γ̃)> ĉmn, j(1−α)], (A.6)

where the first equality in (A.6) holds by the definition of asymptotic size and the second equality

holds by the choice of the sequence {θ n : n ≥ 1}. And {mn : n ≥ 1} is a subsequence of {n : n ≥

1}; such a subsequence always exists. Furthermore, there exists a subsequence {ωn : n ≥ 1} of

{mn : n ≥ 1} such that:

lim
n→∞

Pθ mn
[ARmn

(β 0, γ̃)> ĉmn, j(1−α)]

= lim
n→∞

Pθ ωn,h
[ARωn

(β 0, γ̃)> ĉωn, j(1−α)] (A.7)

for some h∈H. But, for any h∈H, any subsequence {ωn : n≥ 1} of {n : n≥ 1}, and any sequence

{θ ωn,h : n ≥ 1}, we have
(

ARωn
(β 0, γ̃), ĉωn, j(1−α)

) d
→
(

ξ h, c̃h, j(1−α)
)

jointly. It follows that

AsySz[ĉn, j(1−α)] = sup
h∈H

P[ξ h > c̃h, j(1−α)].
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