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ABSTRACT 

A standard assumption is that the random effects of Generalized Linear Mixed Effects 

Models (GLMMs) follow the normal distribution. However, this assumption has been found 

to be quite unrealistic and sometimes too restrictive as revealed in many real-life situations. A 

common case of departures from normality includes the presence of outliers leading to 

heavy-tailed distributed random effects. This work, therefore, aims to develop a robust 

GLMM framework by replacing the normality assumption on the random effects by the 

distributions belonging to the Normal-Independent (NI) class. The resulting models are called 

the Normal-Independent GLMM (NI-GLMM). The four special cases of the NI class 

considered in these models’ formulations include the normal, Student-t, Slash and 

contaminated normal distributions. A full Bayesian technique was adopted for estimation and 

inference. A real-life data set on cotton bolls was used to demonstrate the performance of the 

proposed NI-GLMM methodology. 

Keywords: Generalized Linear Mixed Effects Models, Normal-Independent class, Normal density, Student-t, 

Slash density, Bayesian Method. 

 

1.0 INTRODUCTION 

A widely used technique for modelling clustered non-normally distributed data such as 

binary, count, skewed or other data is the generalized linear mixed-effects model (GLMM) 

framework (Schall, 1991; Zeger and Karim, 1991; Breslow and Clayton, 1993), which 

accommodates correlated observations through the incorporation of random effects. The 

Generalized linear mixed-effects models (GLMMs) generalize other models such as the 
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Linear Mixed-Effects Models (LMMs) and even the Linear Models (LMs) for modelling 

clustered (e.g. longitudinal) data which are common in clinical trials and epidemiological 

studies of cancer and in some other diseases. 

Generally, the normality of the random effects is a common assumption in GLMMs but it 

may, sometimes, be unrealistic and too restrictive, obscuring important features of between-

subjects variation. The presence of outliers also may cause the distribution of the random 

effects to be heavy-tailed and, thus, prevent the random effects to be adequately represented 

using the normality assumption. However, ignoring the departure from normality may cause 

biases or misleading results (Agresti et al., 2004; Ghosh et al., 2007; Verbeke and Lesaffre, 

1996).  

Neuhaus et al. (1992) through simulation showed that when there is misspecification of the 

distribution of random effects in a random-intercept logistic model, the Maximum Likihood 

Estimates (MLEs) of the model parameters for the fixed effects are inconsistent, but the 

magnitude of the bias is not large. However, estimates of the variance of the random effects 

exhibit large biases.  

Heagerty and Kurland (2001) used the Kullback-Leible � Information Criterion to evaluate 

the consistency of MLEs of model parameters on conditional and marginal mean models. The 

authors showed that for conditionally specified models, misspecification of the random 

effects distribution may lead to seriously biased estimators for a cluster-level (between-

subject) parameter and the intercept term when the variance of the random effects distribution 

is large.  

Agresti et al. (2004) showed that the MLEs for fixed effect and variance component of the 

random effects distribution appear inconsistent when the true random effects distribution is a 

two-points mixture with a large variance in a simple one-way random-effects model.  

Litiere et al. (2008), found that MLEs of between-subject parameters for the mean structure 

may be affected by misspecification of the random effects’ distribution when the variance of 

the true random-effects distribution is large and estimates of the variance component are 

severely affected by misspecification in most situations.  

Also, Litiere et al. (2007) studied the impact of the misspecification of the random effects 

distribution on the type I and type II error rates related to the Wald test for the mean structure 

parameters. They found that misspecification of the random effects distribution and the 
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variance component of random effects can severely affect the power of the analysis and the 

type I error rate related to the tests for the intercept parameter. 

To deal with the problem of wrongly specified random-effects distribution in LMM and 

Nonlinear Mixed Effects Models (NLMM), some proposals that have been provided involve 

replacing the assumption of normality by a class of elliptical distributions that cover both the 

light-and heavy-tailed distributions such as the Student- t, logistic and exponential power 

family or a class of Skew-elliptical distributions that include the multivariate skew-normal 

(SN) and skew-t (ST) distributions (Lin and Lee, 2007).  

In Osiewalski and Steel (1993) and Osiewalski (1999), consideration was given to Bayesian 

approach to nonlinear models with elliptical distributions for the error term. Rosa et al. 

(2003) suggested the use of the normal-independent (NI) distributions (Liu, 1996) for LME 

models and adopted a Bayesian framework to obtain estimates. Savalli et al. (2006) and 

Osorio et al. (2007) studied LMMs using elliptical distributions while Lachos et al. (2011) 

studied LMMs using NI distributions.  

Furthermore, robust modelling of Non-Linear Mixed-Effects Models (NLMEs) utilizing the 

normal-independent distributions can be found in Lachos et al. (2013) and Meza et al. (2012) 

while Chen and Luo (2016) proposed a Bayesian multilevel item response theory model 

using the normal-independent distributions. 

In the case of GLMMs for clustered data, Chen et al. (2002) relaxed the normality 

assumption and required only that the distribution of random effects belong to a class of 

‘smooth’ densities and approximate the density by the semi-nonparametric (SNP) approach 

of Gallant and Nychka (1987). In the study, a Monte Carlo EM algorithm using a rejection 

sampling scheme was used to estimate the fixed parameters of the linear predictor, variance 

components and the SNP density. However, many of the advantages of the parametric 

techniques do not easily carry over to the nonparametric setting (Samuels et al., 2012). Also, 

the method is only practically feasible for low dimensional random effects, and selecting the 

degree of the SNP polynomial is not a straight forward task. 

Another issue with GLMMs and NLMMs is that the maximum likelihood estimates are 

obtained by integrating out the random effects which results to an integral without a closed-

form and a non-linear maximization problem. If the random effects are low dimensional, 

then fitting via numerical integration using the Laplace approximations and adaptive 
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quadrature can work well. However, the Laplace approximations can sometimes perform 

poorly such as in binary regression while adaptive quadrature may require a high 

computational burden to achieve high accuracy of the solutions and may not converge at all 

for complicated models (Zuur et al., 2009). An alternative is to put priors on the parameters 

and use Markov Chain Monte Carlo (MCMC) sampling. 

In this work, a class of generalized linear mixed-effects model where the assumption of 

normality is replaced by the class of NI distributions (Liu, 1996) that include the light- and 

heavy-tailed distributions is proposed. The NI distributions are an attractive class of 

symmetric heavy-tailed distributions that includes the normal distribution, the generalized 

Student-t, the Student-t, the Slash and the contaminated normal distributions as special cases. 

It is hoped that these distributions will provide an appealing robust alternative to the routine 

use of normal distributions in generalized mixed-effects models by allowing the random 

effects to have heavy tails and thus catering for random effects which are outliers.  

Furthermore, we equally propose a full Bayesian estimation approach for estimating the 

parameters of the models. Although the NLMMs and LMMs with the NI distributions have 

appeared in the literature, to the best of our knowledge till now, there are no studies on 

Bayesian inference for GLMMs within the NI class. It is hoped that this approach eliminates 

the problems regarding departure from normality since the distributions in the NI class offer 

flexibility in shapes; easy implementations and applications under the Bayesian setting. The 

proposed NI-GLMMs modelling framework here is also tractable in the sense that they can 

preserve pleasant properties of other common distributions such that the parameters can be 

directly linked to some aspects of known probability density functions. 

The rest of the paper is organized as follows; in section 2, a review of GLMMs, NI 

distributions and the Bayesian methodology are presented. The NI-GLMM framework, 

likelihood estimation are introduced in section 3. In section 4, we demonstrated the NI-

GLMM methodology on a real-life dataset. Concluding remarks are given in Section 5. 

2.0 REVIEW OF BACKGROUND TO METHODOLOGY 

2.1 The Generalized Linear Mixed Effects Models  

Clustered data are commonly encountered in practice. Examples of clustered data include 

split-plot designs in which the observations pertaining to the same block form a cluster and 

repeated measures data in which several observations are made sequentially on the same 
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individual (cluster). Observations in the same cluster usually cannot be considered 

independent and mixed-effects models allow random effects that account for the cluster 

dependence and between-cluster variation (Pinheiro and Bates, 2000; Adeniyi et al., 2018). In 

these models, the response is assumed to be a function of fixed (population) effects, non-

observable cluster-specific random effects, and possibly an error term. Observations within 

the same cluster share common random effects and are therefore statistically dependent 

(Pinheiro and Bates, 2000). 

In a mixed-effects model, the parameters can be divided into two classes: fixed effects which 

are associated with the average effect of predictors on the response, and variance-covariance 

components that are associated with the covariance structure of the random effects and of the 

error term (Pinheiro and Bates, 2000; Adeniyi et al., 2018). The random effects are not 

considered as parameters but are commonly referred to as the Best Linear Unbiased 

Estimates of Predictors (BLUP) (Pinheiro and Bates, 2000).  

A mixed-effects model in which both the fixed and the random effects contribute linearly to 

the response function is called the Linear Mixed-Effects Model (LMM) (Pinheiro, 1995). 

However, an LMM is not suitable for modelling a binary response, an ordinal response with 

few levels or a response that represents a count (Cameron and Trivedi, 1998). For these, we 

use the GLMMs. 

In a generalized linear mixed model (GLMM) the conditional distribution of the response can 

be other distributions than the normal distribution. Common cases are the Bernoulli 

distribution for binary response data and the Poisson distribution for count response data. 

Because the expected value of each response may be restricted to an interval, (e.g. (0, ∞) for 

the Poisson or (0, 1) for the Bernoulli), the response is expressed usually as a non-linear 

function, ���, called the inverse link function, of the linear predictor,  

                                                             � =  ��� +  ���.                                                                    (1) 

So, 

                                                   ���( �)=  ���( ��� +  ���).                                                       (2) 

Let �� denote the vector of responses from subject (cluster) �, that is, �� = ����,���,… �����. 

The marginal density of �� in the population is expressed as the following integral of the 

conditional likelihood ℓ(·) 

                                                      ℎ(��)=  � ℓ (��|��)�(��)���
��

                                                      (3) 
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where 

ℓ (��|��)= ������|��,���,����

��

���

 

and �(��)  represents the distribution of the random effects ��, often assumed to be a 

multivariate normal density (Laird and Ware, 1982; Pinheiro and Bates, 2000). The marginal 

log-likelihood from the sample of � clusters is then obtained as 

                                                       �(�,�|�) = ����[ℎ(��)]

�

���

.                                                      (4) 

Maximizing this log-likelihood yields maximum likelihood estimates for � and random 

effects covariance matrix �.  

Parameter estimation in GLMMs typically involves Maximum Likelihood (ML) or variants 

of ML  techniques. Notwithstanding, the integrals in (4) above do not have closed-form 

expressions for non-normal GLMMs, hence, approximations to the integrals are used. 

Additionally, the solutions are usually iterative ones that can be relatively numerically 

intensive (McCulloch and Searle, 2001; Fahrmeir and Tutz, 2001).  

2.2  The Normal-Independent (NI) Distributions 

Following Lachos et al. (2013), a member of the NI family of distribution (Lange and 

Sinsheimer, 1993; Liu, 1996; Rosa et al., 2003) is defined as the distribution of the �-variate 

random vector 

                                                                  � =  � + ���� �⁄ ,                                                               (5) 

where � is a vector of location parameters, � and � are independent such that  � is a normal 

random vector with mean vector 0, variance-covariance matrix � and � is a mixing 

nonnegative random variable with probability density function (pdf) ℎ(�|�) and cumulative 

distribution function (CDF) �(�|�), where the scalar or parameter vector � can be 

interpreted as a tail parameter which can be adjusted to absorb heavy tails.  

It can be easily observed that given �, � has a multivariate normal distribution with mean 

vector � and variance-covariance matrix ����. This implies that the NI distributions are scale 

mixtures of the normal distribution, where the distribution of � is the mixing distribution. 

Therefore, the pdf of  � is given by  

��(�|�,�,�)= ∫ ��(�;�,�
���)��(� | �)

�

�
,  
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where ��(.;�,�) stands for the pdf of the �–variate normal distribution with mean vector � 

and variance-covariate matrix �. We use the notation ���(�,�,�) when � has distribution in 

the NI class. The three special cases we are considering within the NI class are the scale 

mixtures of multivariate normal distributions which include the multivariate Generalized 

Student-�, multivariate Slash, and multivariate contaminated normal distributions. 

2.2.1 The multivariate generalized Student–t distribution: 

The multivariate generalized Student–t distribution denoted by ���( �,�,��,��), 

where � is the degrees of freedom, is obtained from the mixture model (5) when � has 

the �����(�� 2⁄ ,�� 2⁄ ) distribution, with �� > 0,�= 1,2. The pdf of � takes the 

following form: 

            ��(�|�,�,�) =
 � � 

� + ��
2  �

� � 
��
2 � �

�
� 
 ��

�
�
� |�|�

�
� �1 +

�

��
�
�
����
�

 ,� ∈ ℝ�,                          (6) 

where �(∙) is the standard gamma function. Here, � = (��,��). Special cases of the 

generalized Student-t distribution are the Student-� distribution when �� =  �� = � 

and the Cauchy distribution, when �� =  �� =  1. Also, when ��,�� → ∞, the normal 

distribution is obtained as the limiting case of (6). 

2.2.2 The multivariate Slash distribution: 

The multivariate Slash distribution denoted by ���( �,�,�) arises when the 

distribution of � in (5) is Beta(ν, 1), with u ∈ (0, 1) and ν > 0. Its pdf is given by  

                    ��(�| µ,�,�) =  � � ���� ��(�; �,�
���)��

�

�

,       � ∈ ��                         (7) 

The slash distribution reduces to the normal distribution when ν → ∞. 

2.2.3 The multivariate contaminated normal distribution:  

The multivariate contaminated normal distribution is defined by ���(�,�,�,�) 

where �,� ∈ (0,1). In this case, �  in (5) is a discrete random variable taking one of 

the two states in {�,1} with probability function given by 

   ℎ(�|�) =  ��{�}(�)+ (1 −  �)�{�}(�), 

where � = (�,�) and �{�}(.) is the indicator function of the set {�}. The associated 

density is given by 

��( �| �,�,�) =  ���( �;�,�
���) +  (1 −  �)��(�;�,�).                            (8) 
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Parameter � can be viewed as the fraction of the data which are outliers while γ may 

be seen as a scale factor. As � → 1, the contaminated normal distribution reduces to 

the normal distribution. 

2.3  Bayesian Approach to Estimation and Inference 

Let � be the parameter of interest with prior distribution �(�) and let the realizations of the 

observed sample � depend on �, the probability distribution of � given � is �(�|�). By the 

Bayes theorem, posterior probability distribution of � given the observed data � is 

                                                   �(�|�)=  
�(�|�)× �(�)

∫ �(�|�)× �(�) ��
�

                                                     (9) 

The fundamental principle is that the posterior probability distribution of � given observed 

data � is only a function of the likelihood function and the prior distribution. However, in 

Bayesian estimation, closed-form or analytical expressions of (9) are often not available since 

the integrations involved are often of high dimensions and intractable except in few special 

cases.  

Approximations such as the Laplace approximation are sometimes adopted to evaluate the 

integrals. Modern approaches include the Markov Chain Monte Carlo (MCMC) (Hastings, 

1970; Geman and Geman, 1984; Gelman and Rubin 1992; Gelman et al. 2004; Brooks, 1998; 

Casella and George 1992; Gilks et al., 1996) and the Integrated Nested Laplace 

Approximation (INLA; Li et al., 2012; Rue et al., 2009). The MCMC is now widely used 

because of its flexibility in the implementation and availability of high computing power. The 

Gibbs sampling (Geman and Geman, 1984), and the Metropolis-Hastings algorithm 

(Hastings, 1970) are common MCMC methods used to obtain Bayesian estimates as well as 

inference. 

Inference and model selection under the Bayesian approach is usually done using credible 

intervals (Spiegelhalter et al., 2004) and the Deviance Information Criterion (DIC; 

Spiegelhalter, 2002). The credible intervals using MCMC are obtained by taking the sample 

quantiles. For example, the upper and lower bound for a 95% credible interval is the 97.5th 

and 2.5th sample quantiles respectively. 
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3.0  THE NI-GLMM AND BAYESIAN ESTIMATION TECHNIQUE 

3.1  Model Formulation 

Let ���  denote the ��� response for the ��� cluster, � =  1,...,� and � =  1,...,��. For each �, 

conditional on random effects ��(� × 1), the distribution of ��� , � =  1,...,�� is assumed to 

belong to the exponential family of distributions denoted by ��� ������,��� with density 

                            ��������; �,�� =  ���  �
������ − ������

�(�)
 +  �����,���                               (10) 

where ��� =  �(���|��)= ��(���) is the mean of ���; � is a dispersion parameter whose value 

may be known; �(·; ·) and �(.) are arbitrary functions. The linear predictor (for GLMM) 

 ��� =  ���
�� +  ���

� �� = �����
� � depends on fixed effects �(� × 1), the random effects �� , 

and known vectors of covariates ���(� × 1) and ��� (� × 1) for the fixed and random effects, 

respectively. Also, �� follows a continuous distribution with known density function. For 

example, in modelling clustered count data using the log link, the relationship between the 

mean of ��� , �(���|��) and the set of covariates is given as log����� = ���
�� +  ���

� ��. 

Examples of distributions that can be expressed in terms of (10) include the binomial, 

Poisson, Normal, Gamma and the COM-Poisson (Adeniyi et al., 2019; Conway & Maxwell, 

1962; Shmueli et al., 2005) distributions. 

Here, rather than make the usual assumption that �� is standard multivariate normal, �� is 

instead assumed to have a density in the NI class of densities described in Section 2.2 to 

account for possible departure from normality and allow the distribution of the random 

effects to be heavy-tailed. Therefore, �� follows the ���( �,�,�), ���(�,�,�,�) or the 

���( �,�,��,��) in the proposed NI-GLMM. 

Thus, a Normal-Independent generalized linear mixed-effects model (NI-GLMM) can be 

expressed as: 

�����|�,��� = ���� ���
�� +  ���

� ��� 

�� ���.~  ���(�,�,�),   � = 1,… ,�. 

The model is, therefore, written hierarchically as follows;   

                                                    ���|��~ �����(���,���) �                                                            (11) 

                                               ��|�� = �� ~ ��(�,��
���),                                                                 (12) 
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                                               ��~ �(��|�), � =  1,...,�.                                                         (13) 

where, ��� = �������,��� = ������� = ���� ���
�� +  ���

� ���, that is, ������ = ���
�� +  ���

� ��; 

���  is a dispersion parameter whose value may be known. 

For example, if ��� ,� =  1,...,� and � =  1,...,��, is assumed to follow a Poisson 

distribution with the log link function and it is assumed that ��~���( �,�,�), the hierarchical 

representation of the model is 

                    ���|��~ ���� ����� ���
�� +  ���

� ����                                                                          (14) 

               ��|�� = �� ���.~  ��(0,��
���)                                                                                              (15) 

                    ��~ ����(�,1), � =  1,...,�.                                                                               (16) 

3.2  The Likelihood and Estimation 

3.2.1   The Likelihood 

The assumption that a cluster’s responses are independent given the random effects (and 

therefore can be multiplied to yield the conditional probability of the response vector) is 

known as the conditional independence assumption. Hence, a response variable �� having 

cluster � with �� units per cluster has the following conditional probability density function. 

                                                       � (��|��)= �������| ����

��

���

                                                       (17) 

Let � be a vector of the distinct parameters of the random effects covariance matrix. 

So, 

� (��|��)= �����  �
������ − ������

�(�)
 +  �����,����

��

���

 

The joint distribution of �� and �� is 

� (��,��)= � (��|��)× �(��|�) 

The marginal density of �� in the population is expressed as 

� (��)= �� (��,��)���
��

= �� (��|��)�(��|�)���
��

 

So, 

                  � (��)= ������  �
������ − ������

�(�)
 +  �����,����

��

���

�(��|�)���
��

                     (18) 
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Let � be the set of all parameters to be estimated. For a NI-GLMM � = {�,�,�,�,�}. The 

marginal likelihood from the sample of � clusters is 

�(�;�)= ��(��)

�

���

 

Thus, 

�(�;�)= ��������  �
������ − ������

�(�)
 +  �����,����

��

���

�(��|�)���
��

�

�

���

 

The marginal log-likelihood from the sample of N subjects is 

ℓ(�;�)= log[�(�;�)] = log ���(��)

�

���

� 

Hence, 

ℓ(�;�)= log ���������  �
������ − ������

�(�)
 +  �����,����

��

���

�(��|�)���
��

�

�

���

� 

          ℓ(�;�)= �log �������  �
������ − ������

�(�)
 +  �����,����

��

���

�(��|�)���
��

�

�

���

          (19) 

Here, �(��|�) is a density of one of the ���( �,��,�), ���(�,��,�,�) or ���( �,��,��,��) 

distributions. The notation �� indicates that � is parameterized by �. Maximizing this log-

likelihood yields ML estimates for �, �, �, �, and random effects covariance parameters 

vector �. However, the integrals are intractable, therefore, there is a need to approximate the 

integral. In this work, a full Bayesian approach is adopted. 

3.2.2. The Bayesian Framework 

Let � = {��,� = 1,2,3,… ,�} be the observed data; � be the set of all parameters to be 

estimated and �(�) be the joint distribution of the parameters, the joint posterior distribution 

for the parameters is 

�(�|�)=  
∏ [�(��|�) ]
�
��� �(�)

∫ ∏ [�(��|�) ]
�
��� �(�)��

�

. 

where �(��|�) is the probability distribution of the data given �. For a NI-GLMM, � =

{�,�,�,�} and �(�)= �(�)�(�)�(�)�(�). It should be noted that �(�;�)=

∏ [�(��|�) ]
�
��� . Therefore,  
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�(�|�)∝  �(�;�)�(�)

= ��������  �
������ − ������

�(�)
 +  �����,����

��

���

�(��|�)���
��

�

�

���

�(�).  (20) 

The joint posterior distribution of the parameters for a NI-GMM is 

�(�|�)

=  

�(�)� �� � ����  �
������ − ������

�(�)
 +  � ����,����

��

�= 1

� ��(��;0,��
����)ℎ(��|�)��

�

�
���

��

�

�

�= 1

��(�)� �� � ����  �
������ − ������

�(�)
 +  � ����,����

��

�= 1

� ��(��;0,��
����)ℎ(��|�)��

�

�
���

��

�

�

�= 1

��

�

 

The full conditional posterior distributions for a NI-GMM are given as follows 

                                �(�|��,�,�,�,�)∝ �����(���|�,��) �

��

���

�

�

���

�(�),                                  (21) 

                                  �(��|�,�,�,�,�)∝ �[�(��|��,�) ]

�

���

�(��),                                         (22) 

                    �(�|�,��,�,�,�)∝ ������(���|�,��) �

��

���

��(��|��,�)�

�

���

,                           (23) 

                                  �(�|�,��,�,�,�)∝ �[�(��|��,�) ]

�

���

�(�).                                            (24) 

The expressions in (21 – 24) can further be written as 

                  �(�|�,��,�,�,�,�)∝ ������(���|�,��) �

��

���

���(��|0,��
����)�

�

���

,               (25) 

                 �(��|�,��,�,�,�,�)∝ ����(���|�,��) �

��

���

���(��|0,��
����)ℎ(��|�),             (26) 

                                        �(�|�,��,�,�,�)∝ ��[ℎ(��|�)]

�

���

� �(�)                                           (27) 

                                �(�|�,��,�,�,�)∝ �����(���|�,��,�) �

��

���

�

�

���

�(�),                            (28) 

The forms of �(��|∙) and �(�|∙) depends on the specific NI distribution adopted and also on 

the prior for �. 



 

13 
 

The prior distributions for the parameters are specified as follows. 

i. � ∼  �(��,Λ), 

ii. ��  ∼  ��(Ω,�), 

iii. � ∼  �(�,�), 

iv. � ∼  ���(��),�(� >  2) for the student-t distribution. 

v. � ∼  �����(�,�), where � and � are small positive values such that � ≪ � for the 

slash distribution, 

vi. � ∼  ����(��,��) and �~����(��,��) for the contaminated normal distribution, 

where the mutually independent Normal (�), Inverse Gamma (��), Exponential (���) and 

Inverse Wishart (��) prior distributions are chosen to facilitate computations (Davidian and 

Giltinan, 1995). Truncating the exponential distribution in the interval (2,∞) ensures finite 

variance. The super-parameter matrix � and Ω can be assumed to be diagonal for convenient 

implementation. The form of the prior for the dispersion parameter depends on the particular 

distribution assumed for the response. For example, � = 1 when the response follows the 

Poisson distribution and � ∼ ��(��,��) when the response follows the Normal distribution. 

Lemma 1: Poisson GLMM with Slash distributed random effects 

Suppose random variable ���  indexes the count responses from an empirical real life scenario. 

Traditionally, ���  is assumed to follow the Poisson distribution and its corresponding GLMM 

with Slash distributed random effects is given by the expressions (14-16) in section 3.1. The 

corresponding posterior distribution is given as 

�(�|�)∝ �����
�
��

��������

���!
�

��

���

�(��|��,�)�(��)���
��

�

�

���

�(�),                               (29) 

where ��� = ���� ���
�� +  ���

� ���, �(��|��,�) and �(��) are the density functions of 

��(0,��
����) and ����(�,1) distributions respectively. 

3.2.3 Estimation: Computing the Posterior 

In general, the integrals in (21-24) are usually of high dimension and do not have any closed 

form. Therefore, there are no analytical expressions for the posterior distributions. Analytic 

approximations to the integral may not be sufficiently accurate. Therefore, it is prohibitive to 

directly calculate the posterior distribution of � based on the observed data. As an alternative, 
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MCMC procedures can be used to draw samples based on the posterior distributions given by 

(21-24) using the Gibbs sampling along with the Metropolis-Hastings (M-H) algorithm. 

Now the Gibbs sampler method can be used to generate samples from the posterior 

distribution �(�|�) for a NI-GMM using the following algorithm.  

Starting with initial values ��(�),��
(�)
,�(�),�(�),�(�)�, at k-th iteration 

i. Sample �(�) from ���|��
(���)

,�(���),�(���),�∗
(���)

,�(���),��; 

ii. Sample ��
(�)

 from ����|�
(���),�(���),�(���),��∗

(���)
,�(���),��; 

iii. Sample �(�) from ���|�(���),��
(���)

,�(���),�∗
(���)

,�(���),��; 

iv. Sample �(�) from ���|�(���),��
(���)

,�(���),�∗
(���)

,�(���),��; 

v. Sample �(�) from ���|�(���),��
(���)

,�(���),�(���),��, 

for  k = 1, 2, 3,… 

After a suitable burn-in period (taken to be 40,000), a sample of (�,�,�,�,�) is obtained 

from the posterior distribution �(�|�). Repeating this process many times, we can obtain 

many independent samples from the target posterior distribution. Then, we approximate the 

posterior means and variances by their corresponding sample means and sample variances 

based on the simulated samples, which are the approximate Bayesian estimates of the means 

and variance-covariances. The credible intervals for inference purposes are obtained by 

taking the sample quantiles. For example, the upper and lower bound for a 95% credible 

interval is the 97.5th and 2.5th sample quantiles respectively. 

4.0 APPLICATION TO COTTON DATA 

The data used in this section come from a greenhouse experiment conducted by da Silva et al 

(2012) to determine the effect of artificial defoliation on cotton plants at different growth 

stages. In the experiment, five defoliation levels (0, 25, 50, 75 and 100%) were considered 

and the observed number of bolls produced by the plants at five growth stages (vegetative, 

flower-bud, blossom, boll and boll-open) was observed. The experimental unit was a pot with 

two plants. The number of cotton bolls was recorded at each culture cycle. Zeviani et al. 

(2014) used the gamma-count distribution to analyse the data, although the correlation among 

plants in the same pot was not accounted for.  
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In this study, we demonstrated the performances of the selected three members of the NI-

GLMMs family (T-GLMM, SL-GLMM, and the CN-GLMM) formulated to model the 

number of bolls as a function of defoliation and growth stage while considering pot as a 

clustering variable.  We compared the performances of these three models with the classical 

N-GLMM where the random effects are assumed to be normally distributed.  

Here, our goal is to examine the effect of defoliation on the number of bolls produced as well 

as how the number of bolls produced varies across different growth stages. Hence, we 

propose to fit the following model: 

log����� = �� + �� + ������� + ����boll��� + ����boll − open��� + ����flowerbud���

+ ����vegetative���,                                                                                   (30) 

where ��� is the expected number of cotton bolls produced by the ��� (� = 1,2) plant in pot �; 

��, � ∈ (1,… ,125) is the random effect associated with pot �; �(∙) is the indicator function; �� 

is the fixed effect intercept and ��’s, � ∈ {1,… ,5} are the fixed effects associated with the 

level of artificial defoliation (��� ∈ {x: 0 ≤ x ≤ 100}) and growth stages. It should be noted 

that the blossom stage growth is the reference category and � = 125 while �� = 2 for � ∈

(1,… ,125). The following vague priors were set: 

 

��~ �(0,1000), � = 0,… ,5; ��
��~��0.1,0.01 �, � ∼  ���(3)�(� >  2) for the student-t 

distribution (T-GLMM), � ∼  �����(0.1,0.01), for the slash distribution (SL-GLMM), 

� ∼  ����(1,1) and �~����(1,1) for the contaminated normal distribution (CN-GLMM). 

Considering the above prior distributions, we set up two parallel independent runs of the 

Gibbs sampler chain with size 80,000 for each parameter, using the first 40,000 iterations as 

the burn-ins to eliminate the effect of the initial values and to avoid correlation problems, a 

thinning rate of 10 is considered, yielding a total sample of size 4,000. 

The convergence of the MCMC chains was monitored using the trace plots and Gelman-

Rubin �� diagnostics (Gelman and Rubin, 1992). The �� values as given in Table 1 and trace 

plots presented by Figures 2 – 5 indicate that the MCMC runs attained convergence. Also, we 

confirmed that the MCMC runs for the random effects ��, � = 1,… ,125, also converged, 

though, for the sake of space, the trace plots for the random effects are not presented. 
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For the assessment of the fitted model, the values of the Expected Predictive Deviance (EPD; 

Chen and Huang, 2016; Huang et al., 2011) and the Residual Mean Squares (RMS; Chen and 

Huang, 2016; Huang et al., 2011) as obtained from each model are used to evaluate the 

predictive performance while the DIC (Spiegelhalter, 2002) is used to evaluate the goodness-

of-fit. EPD is calculated by ��� = � �∑����� − �����
�
�, where the predictive value ���� is a 

replicate of the observed ���� and the expectation is taken over the posterior distribution of 

the model parameters � (Gelman et al., 2003). The RMS for each MCMC chain is given by 

∑��������������
�

����
, where ���� is the total number of observations which is ∑�� = 250 in this 

case. Note that the reported results including RMS and EPD are based on the two MCMC 

chains. 

Figure 1 represents plots of the number of cotton bolls recorded for each combination of the 

defoliation level and growth stage. The Bayes estimates of the fixed effects ����,� = 0,… ,5�, 

the random effects variance ��
� with 95% Credible Interval (C.I.) given in brackets as well as 

model performance measures including the DIC, EPD and RMS values based on the four 

models under consideration are as given in Table 1. The estimates of the random effect 

parameter are given in the Appendix.  

The Bayes estimates (posterior means), Standard Deviation (SD) and C.I. for the parameters 

are identical across the four models. The C.I. indicates that all the fixed effects parameters 

except �� are statistically significant at 5% level of significance since their corresponding 

Credible Intervals do not include the value zero. We also observe that defoliation has a 

significant negative effect ���� = −0.004� on the number of bolls that agree with the plot in 

Figure 1.  

The Bayes estimates of � for T-GLMM, SL-GLMM and CN-GLMM are 7.532, 3.373 and 

0.402 respectively while the estimate for � is 0.674. These values indicate that the random 

effects may be slightly heavy-tailed. The results also indicate that CN-GLMM produced the 

least RMS. 
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Table 1: Posterior means, posterior standard deviations (SD), and 95% credible intervals for the fixed effects, 
random effects variance, shape parameters and goodness of fit measures from the application of four NI-

GLMMs to the Cotton- bolls data 

Criterion N-GLMM* T-GLMM SL-GLMM CN-GLMM 

EPD 5.200 5.211 5.201 5.206 
RMS 1.300 1.293 1.292 1.288 
DIC 898.10 901.1 900.1 899.1 

Parameter   

�� 

��� 1.318 1.316 1.316 1.319 

SD 0.091 0.091 0.090 0.093 
C.I (1.133, 1.490) (1.130, 1.490) (1.129, 1.485) (1.135, 1.504) 

��  1.001 1.008 1.002 1.002 

�� 

��� -0.004 -0.004 -0.004 -0.004 

SD 0.001 0.001 0.001 0.001 

C.I (-0.006, -0.002) (-0.005, -0.002) (-0.005, -0.002) (-0.005, -0.002) 

��  1.002 1.004 1.001 1.002 

�� 

��� 0.062 0.062 0.060 0.060 

SD 0.111 0.114 0.112 0.115 

C.I (-0.154, 0.281) (-0.161, 0.285) (-0.164, 0.280) (-0.163, 0.285) 

 1.001 1.009 1.001 1.001 

�� 

��� 0.380 0.379 0.377 0.376 

SD 0.104 0.106 0.105 0.109 

C.I (0.180, 0.587) (0.176, 0.588) (0.170, 0.582) (0.158, 0.588) 

��  1.001 1.006 1.001 1.001 

�� 

��� 0.303 0.303 0.301 0.299 

SD 0.106 0.109 0.105 0.109 

C.I (0.098, 0.514) (0.089, 0.518) (0.097, 0.510) (0.084, 0.511) 

 1.001 1.008 1.001 1.001 

�� 

��� 0.284 0.282 0.281 0.278 

SD 0.106 0.108 0.107 0.111 

C.I (0.077, 0.494) (0.077, 0.495) (0.073, 0.495) (0.065, 0.491) 

��  1.001 1.005 1.001 1.001 

��
� 

���
� 0.006 0.010 0.005 0.006 

SD 0.003 0.05 0.003 0.003 

C.I (0.002, 0.015) (0.003, 0.022) (0.002, 0.013) (0.002, 0.014) 

��  1.001 1.004 1.001 1.001 

� 

�̂ - 7.532 3.373 0.402 

SD - 3.950 0.984 0.285 

C.I - (2.656, 17.661) (1.789, 5.609) (0.012, 0.953) 

��  - 1.001 1.001 1.002 

� 

�� - - - 0.674 
SD - - - 0.233 
C.I - - - (0.161, 0.988) 

��  - - - 1.001 
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Figure 1: Number of cotton bolls against artificial defoliation level for each growth stage. 

  

Figure 2: Trace and posterior density plots for MCMC samples of ��, �� ��, ��, ��, �� and  
��
� under the N-GLMM. 
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Figure 3: Trace and posterior density plots for MCMC samples of ��, ��, ��, ��, ��, ��, ��
� and � under the T-

GLMM. 

 

  

Figure 4: Trace and posterior density plots for MCMC samples of ��, ��, ��, �� ��, ��, ��
� and � under the SL-

GLMM.  
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Figure 5: Trace and posterior density plots for MCMC samples of ��, ��, ��, �� ��, ��, ��
�,  

� and � under the CN-GLMM. 

 

5.0 CONCLUDING REMARKS 

In this work, we discuss a Bayesian implementation of some robust generalized linear mixed-

effects models using MCMC technique. The common assumption of normally distributed 

random effects terms is relaxed. Instead, the distribution of the random effects is allowed to 

belong to a class of flexible distributions known as the normal-independent (NI) distributions. 

The Student-t, the slash, and the contaminated normal distributions are the three particular 

cases considered in this study. These distributions which have thick tails are particularly 

robust to the presence of outliers. It is worthy of note that these three distributions generalizes 

the commonly used normal distribution.  

A full Bayesian estimation technique using MCMC is adopted yielding a robust and flexible 

GLMM framework for modelling clustered data with non-normal responses. We call the 

proposed models and associated estimation procedure the NI-GLMM framework. Although 
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the resulting posterior density functions are quite difficult to handle, we have shown that the 

estimation and inference can be carried out using MCMC methods. Also, we observed that 

the implementation of the technique is facilitated by the availability of stochastic 

representations of the distributions in the NI family. 

Results obtained by application of the methodology to count data in an agricultural study on 

cotton plants provided a clear illustration of the implementation, flexibility and applicability 

of the proposed modelling framework. As can be observed from the results in Table 1 

(including the one in the appendix) and Figures 1 to 5, the proposed NI-GLMM framework 

with better results is a useful alternative to the traditional GLMM where the normal 

distribution is usually assumed for the distribution of the random effects in the models.   

It is quite instructive to remark that the appreciable performances of the proposed modelling 

framework in this study notwithstanding, this proposal is not the solution to all the modelling 

problems in the GLMMs. For instance, fitting he GLMMs with the use of the skew-elliptical 

distributions (Fernandez and Steel, 1998; Sahu et al., 2003; Azzalini et al., 1996; Azzalini et 

al., 1999) is already under consideration in our next study. We have equally conjectured the 

frequentist estimation and inference technique for the NI-GLMM presented here for a 

balanced comparison of the frequentist approach with the Bayesian method adopted in the 

current work.  

Moreover, evaluation of the performance of the NI-GLMMs via extensive simulation studies 

has been carried out by the authors and will appear in the literature soon. Further applications 

of the NI-GLMM with binary response data or count data using flexible count distributions 

such as the COM-Poisson distribution (Adeniyi et al., 2019; Conway & Maxwell, 1962; 

Shmueli et al., 2005) shall be presented in our subsequent works as well. 

The codes for the implementation of the modelling procedure proposed in this work in R (R 

Core Team, 2019) and WinBUGS (Lunn et al., 2000) are available from the authors upon 

request. 
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Appendix: The estimates of the Random Effect parameter (�) for the Cotton Bolls Data 

Pot (�) N-GLMM T-GLMM SL-GLMM CN-GLMM 

1 -0.0017 0.0010 0.0019 0.0005 

2 -0.0058 -0.0053 -0.0063 -0.0060 

3 -0.0123 -0.0148 -0.0159 -0.0138 

4 -0.0109 -0.0125 -0.0143 -0.0134 

5 0.0008 0.0012 0.0001 -0.0011 

6 0.0093 0.0132 0.0131 0.0122 

7 -0.0006 0.0013 0.0001 0.0008 

8 0.0044 0.0070 0.0064 0.0063 

9 0.0051 0.0072 0.0056 0.0066 

10 0.0055 0.0072 0.0075 0.0071 

11 -0.0017 -0.0023 -0.0023 -0.0026 

12 -0.0009 -0.0014 -0.0024 -0.0008 

13 0.0101 0.0122 0.0118 0.0114 

14 -0.0023 -0.0035 -0.0015 -0.0021 

15 0.0049 0.0042 0.0047 0.0048 

16 0.0077 0.0091 0.0096 0.0101 

17 -0.0034 -0.0035 -0.0061 -0.0041 

18 -0.0029 -0.0034 -0.0043 -0.0046 

19 0.0015 0.0019 0.0029 0.0037 

20 0.0092 0.0107 0.0089 0.0093 

21 0.0076 0.0079 0.0083 0.0068 

22 -0.0039 -0.0085 -0.0077 -0.0052 

23 -0.0070 -0.0065 -0.0064 -0.0057 

24 -0.0128 -0.0133 -0.0118 -0.0130 

25 -0.0045 -0.0061 -0.0060 -0.0069 

26 -0.0183 -0.0204 -0.0227 -0.0212 

27 -0.0120 -0.0147 -0.0149 -0.0158 

28 -0.0127 -0.0157 -0.0156 -0.0143 

29 -0.0072 -0.0093 -0.0102 -0.0063 

30 -0.0006 0.0002 -0.0011 -0.0013 

31 -0.0012 -0.0029 -0.0018 -0.0019 

32 0.0156 0.0201 0.0192 0.0181 

33 -0.0117 -0.0160 -0.0164 -0.0146 

34 0.0039 0.0046 0.0050 0.0060 

35 -0.0011 -0.0024 -0.0024 -0.0020 

36 -0.0027 -0.0022 -0.0031 -0.0028 

37 0.0019 0.0026 0.0042 0.0049 

38 0.0026 0.0032 0.0034 0.0054 

39 0.0086 0.0124 0.0113 0.0111 

40 -0.0028 -0.0026 -0.0045 -0.0035 

41 0.0183 0.0247 0.0248 0.0210 
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42 0.0134 0.0158 0.0172 0.0166 

43 -0.0055 -0.0069 -0.0051 -0.0049 

44 0.0009 0.0025 0.0019 -0.0001 

45 0.0025 0.0007 0.0025 -0.0003 

46 0.0009 -0.0003 0.0006 -0.0008 

47 -0.0002 -0.0017 -0.0007 -0.0010 

48 -0.0014 -0.0001 0.0015 0.0002 

49 0.0000 -0.0009 0.0011 -0.0007 

50 0.0059 0.0070 0.0064 0.0055 

51 0.0135 0.0175 0.0199 0.0158 

52 0.0090 0.0100 0.0108 0.0099 

53 0.0037 0.0027 0.0027 0.0016 

54 0.0249 0.0321 0.0352 0.0297 

55 0.0020 0.0027 0.0026 0.0033 

56 0.0007 0.0013 0.0024 0.0021 

57 -0.0116 -0.0133 -0.0134 -0.0105 

58 -0.0101 -0.0138 -0.0150 -0.0129 

59 0.0027 0.0016 0.0000 0.0001 

60 -0.0103 -0.0140 -0.0152 -0.0123 

61 -0.0008 -0.0003 -0.0003 -0.0025 

62 -0.0074 -0.0095 -0.0107 -0.0091 

63 0.0072 0.0060 0.0036 0.0039 

64 -0.0128 -0.0154 -0.0161 -0.0154 

65 0.0056 0.0057 0.0052 0.0047 

66 0.0130 0.0177 0.0167 0.0162 

67 -0.0034 -0.0060 -0.0052 -0.0060 

68 0.0075 0.0087 0.0103 0.0104 

69 0.0010 0.0031 0.0032 0.0025 

70 -0.0100 -0.0124 -0.0117 -0.0109 

71 -0.0011 -0.0015 -0.0014 -0.0018 

72 -0.0008 -0.0007 -0.0021 -0.0018 

73 -0.0063 -0.0101 -0.0094 -0.0070 

74 -0.0044 -0.0080 -0.0097 -0.0079 

75 -0.0024 -0.0015 -0.0026 -0.0020 

76 0.0010 -0.0006 -0.0005 0.0005 

77 0.0124 0.0143 0.0147 0.0143 

78 -0.0068 -0.0066 -0.0067 -0.0077 

79 -0.0008 -0.0007 -0.0001 0.0000 

80 0.0121 0.0137 0.0154 0.0137 

81 0.0090 0.0127 0.0130 0.0111 

82 -0.0060 -0.0101 -0.0090 -0.0088 

83 -0.0079 -0.0109 -0.0106 -0.0093 

84 0.0046 0.0050 0.0056 0.0047 

85 -0.0088 -0.0093 -0.0094 -0.0085 
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86 0.0133 0.0179 0.0166 0.0149 

87 0.0007 0.0026 0.0036 0.0020 

88 0.0254 0.0335 0.0327 0.0289 

89 0.0089 0.0102 0.0092 0.0084 

90 0.0153 0.0184 0.0183 0.0152 

91 -0.0008 -0.0010 -0.0008 0.0017 

92 -0.0013 -0.0013 0.0003 0.0003 

93 -0.0007 -0.0022 -0.0023 -0.0001 

94 0.0000 -0.0021 0.0007 -0.0009 

95 0.0040 0.0063 0.0082 0.0072 

96 -0.0149 -0.0186 -0.0201 -0.0164 

97 -0.0140 -0.0205 -0.0203 -0.0155 

98 -0.0211 -0.0287 -0.0298 -0.0247 

99 -0.0098 -0.0124 -0.0120 -0.0104 

100 -0.0143 -0.0203 -0.0181 -0.0179 

101 0.0001 -0.0018 -0.0011 -0.0006 

102 -0.0234 -0.0279 -0.0286 -0.0230 

103 -0.0098 -0.0135 -0.0148 -0.0124 

104 0.0075 0.0078 0.0089 0.0070 

105 -0.0003 0.0013 0.0000 -0.0004 

106 -0.0052 -0.0081 -0.0063 -0.0086 

107 0.0164 0.0187 0.0236 0.0200 

108 -0.0121 -0.0147 -0.0138 -0.0135 

109 -0.0009 0.0013 0.0002 -0.0007 

110 -0.0011 -0.0021 -0.0012 0.0007 

111 -0.0001 0.0013 -0.0007 -0.0017 

112 -0.0130 -0.0148 -0.0154 -0.0145 

113 -0.0123 -0.0147 -0.0154 -0.0137 

114 0.0012 -0.0025 0.0003 0.0006 

115 -0.0009 -0.0015 -0.0020 -0.0004 

116 -0.0005 -0.0034 -0.0023 -0.0026 

117 -0.0008 -0.0007 -0.0022 -0.0023 

118 0.0097 0.0102 0.0119 0.0108 

119 -0.0002 -0.0028 -0.0020 -0.0018 

120 0.0110 0.0125 0.0125 0.0107 

121 0.0072 0.0100 0.0108 0.0089 

122 0.0018 0.0029 0.0028 0.0027 

123 0.0147 0.0166 0.0180 0.0152 

124 0.0011 0.0028 0.0038 0.0014 

125 0.0151 0.0190 0.0168 0.0184 
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