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Abstract

Robert Barsky and Jeffrey Miron (1989) revealed the seasonal cycle of the U.S.

economy from 1948 to 1985 was characterized by a “bubble-like” expansion in the

second and fourth quarters, a “crash-like” contraction in the first quarter, and a mild

contraction in the third quarter. We replicate, in part, their seasonal cycle analysis

from 1946 to 2001. Our results are largely in line with theirs. Nonetheless, we find

the seasonal cycle is not stable and can evolve across time. In particular, the Great

Moderation affected both the business cycle and the seasonal cycle.

Robert Barsky and Jeffrey Miron also found real aggregates, like the output, move

together in the seasonal cycle across broadly defined sectors, similar to a phenomenon

observed under the conventional business cycle. They posed a challenge question

concerning why “the seasonal and the conventional business cycles are so similar.” To

answer their question, we focus on a number of aggregate variables with a recursive

application of the HP filter and find that aggregates, such as the GDP, consumption,

the S&P 500 Index, and so forth, have a “bubble-like” expansion and a “crash-like”

contraction in their cyclical trends in business cycle frequencies. Although preference

shifts and production synergy are the two major forces that drive the seasonal cycle,

we find the time-varying stochastic discount factor is the main cause of the business

cycle and plays a more important role in macroeconomic fluctuations in business cycle

frequencies than other factors.
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1 Introduction

Robert Barsky and Jeffrey Miron (1989) provide a comprehensive analysis of seasonal

cycles for numerous aggregate variables for the U.S. economy from 1948 to 1985 and

discover that seasonal cycles have dominated short-term fluctuations of real economic

activities. Furthermore, they find that the seasonal cycle of the U.S. economy can be

characterized by a “bubble-like” expansion in the second and fourth quarters, a “crash-

like” contraction in the first quarter, and a mild contraction in the third quarter. An

intriguing result of theirs is that real aggregate variables, like the output, in the seasonal

cycle move together across broadly defined sectors, similar to a phenomenon observed

under the conventional business cycle. In their conclusion, they state, “The similarity

of the seasonal cycle and the business cycle presents a challenge because, to paraphrase

Lucas (1977, p. 10), ‘it suggests the possibility of a unified explanation’ of both business

cycles and seasonal cycles. By trying to understand precisely why the seasonal and the

conventional business cycles are so similar, we may be able to shed considerable light on

all aggregate fluctuations” (Robert Barsky and Jeffrey Miron 1989, p. 529).

Their findings and remark raise a question as to whether the seasonal cycle and the

business cycle have been driven by the same forces. If so, then one must explain why

the two cycles with different frequencies and periodic characterizations are found with the

same set of stylized facts in macroeconomic fluctuations. If not, then one must explain

why the seasonal cycle has been formed with a higher and fixed frequency of one cycle per

year while the business cycle has been formed with a lower and recurrent frequency. This

paper provides empirical evidence to resolve this difficulty with a recursive application of

the HP filter (Robert Hodrick and Edward Prescott 1997).

We agree with Robert Barsky and Jeffrey Miron that preference shifts and production

synergy are the two major forces behind the formation of the seasonal cycle. However,

these two forces are unlikely to be the causes for the business cycle. Our evidence has

been summarized in Figure 1, using the real GDP series. Figure 1a shows the seasonal

dummies estimated using their seasonal dummy model for the U.S. economy from 1946 to

2001.1 The seasonal cycle has a fixed frequency of one cycle per year, consistent with the

fact that preference shifts and production synergy at the seasonal frequency are probably

1The data are from BEA. Only seasonally adjusted data are available after 2001 because of a budget

cut.
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associated with a shift in seasons in a calender year. These dummies represent quarterly

average deviations in output from the trend. The seasonal variations from 1946 to 2001,

after removal of the trend and the cyclical component, are shown in Figure 1d. The cyclical

trend shown in Figure 1b in business cycle frequencies is less regular than that shown in

Figure 1d but the patterns of bubble-like expansions and crash-like contractions are quite

similar.
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Figure 1a. GDP Seasonal Dummies, 1947q1-2001q4 
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Figure 1b. Cyclical Trend in Real GDP, 1947q1-2013q4  
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Figure 1c. GDP Standard Browian Motion, H=0.5004, 1947q1-2013q4 
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Figure 1d.  GDP Seasonal Deviation from Trend, 1946-2001 

In comparison with the cyclical trend in Figure 1b and the fractional Brownian motion

(fBm) in Figure 1c of the cyclical component, the seasonal dummies represent a larger

deviation from the trend than from the cyclical component. Such a conclusion is in line
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with the findings of Robert Barsky and Jeffrey Miron about the dominance of the seasonal

cycle in short-term macroeconomic fluctuations. Our study of the seasonal cycle of other

aggregate variables appears in detail in Section 2. In particular, we present an analysis

of the seasonal pattern of various labor indicators, most of which were absent in Robert

Barsky and Jeffrey Miron but are very important lately to the monetary policy of the

Federal Reserve. We also find that the seasonal cycle is not stable and can evolve and

change with time. For example, the Great Moderation2 starting around 1985 affected both

the business cycle and the seasonal cycle.

We focus on the cyclical components of many real aggregates. We show that the cyclical

trends of many real aggregates have a bubble-like expansion and a crash-like contraction

in business cycle frequencies as well, a phenomenon similar to what has been observed in

the seasonal cycle in Figure 1d. We start with the cyclical component of the real GDP,

using the seasonally adjusted data from 1947 to 2013. We use the HP filter to remove

the trend in the GDP and then use it again numerous times to decompose the cyclical

component into two parts. One part constitutes the cyclical trend, Tc, shown in Figure 1b,

and the other part constitutes a fractional Brownian motion (fBm), shown in Figure 1c,

which has the Hurst parameter H ≈ 0.5,3 estimated by the first order quadratic variations

(Jacques Istas and Gabriel Lang 1997; Jean-Francois Coeurjolly 2001, 2008). The three

time series in Figures 1a, 1b, and 1c have a mean of zero and represent deviations from

the secular trend of the GDP.

Figures 1b and 1c both show that adversary shocks, fBm, and the endogenous weakness

in the cyclical trend, Tc, are the two major causes of a recession. The fBm part dipped into

2The Great Moderation, identified by Olivier Blanchard and John Simon (2001) (also see James Stock

and Mark Watson 2002 and references therein for detail), has affected not only the seasonal cycle, but also

the fBm of the GDP. The cyclical trend of the GDP is also affected but to a smaller degree. Alternatively,

one can also use the less volatile fBm of the GDP to explain the Great Moderation. See Table 6 in Section

3.3.1. for additional evidence.
3Equivalently, Figure 1c is the noise component of the GDP that can be modeled with a fractional

ARIMA(p, d, q) process with d = 0 (Ton Dieker 2004). The real GDP and other aggregates, since WWII,

after removal of the secular or stochastic trend by the HP filter, follow an I(d) process with 1

2
> d > 0.

We choose the equivalent fBm (H = 0.5) instead of a familiar ARIMA(p, d, q) process (d = 0) because

it is easier to estimate the single Hurst parameter H. An underlying assumption is that the zero-mean

cyclical component {Xt} as a stochastic process can be modeled by dXt

Xt

= σdBH

t , using the path-wise

stochastic integral, where BH

t is a fBm process with BH

0 = 0, 0 < H < 1. The model becomes the classical

Black-Scholes model when H = 0.5 and mean µ = 0.
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the negative zone for each NBER recession (shown in shaded areas), indicating adversary

shocks occurred in the economy for each recession. However, an adversary shock is not a

sufficient condition for a recession. Adversary shocks were also observed during expansion

periods. More importantly, Figure 1b shows that, before each recession, the cyclical trend

started to lose its upward momentum and turned to a downward trend.

A unique feature of Figure 1b is that the cyclical trend of each expansion was quite

different from the others. Indeed, no two cyclical trends were the same for two adjacent

expansions. Such a difference arises likely from the difference in economic structures,

which were changed by a recession. For example, substantial differences exist before and

after the Great Recession in the housing and mortgage industries.

The two figures also show how a recession ends. A recession ends when the cyclical

trend makes a turn from a downward momentum into an upward momentum, with positive

shocks in fBm.4 Moreover, once the economy is in an upward trend, it persists for a lengthy

period, despite various adversary shocks. Nonetheless, because economic structures evolve

across time, the economic persistence differs for different economic structures. These

features together explain why the business cycle recurs in a lower frequency.

The cyclical trend in Figure 1b should be understood as a process of forming a bubble-

like expansion and a crash-like contraction in business cycle frequencies because the long-

term secular trend can be seen as the “equilibrium” of the economy, which is at mean

zero in Figure 1b. Such a process is similar to the excess volatility revealed by Robert

Shiller (1981) in the equity market, with the equilibrium indicated by the present value

of distributed dividends of a discounted model with constant discount rate. We provide a

study of the S&P 500 Index in Subsection 3.3. The S&P 500 has a cyclical trend similar to

Figure 1b of the GDP. Moreover, these bubble-like expansions and crash-like contractions

are commonly observed in the cyclical trends of many other aggregates. We may conclude

from them that macroeconomic fluctuations in the business cycle frequencies are, in fact,

the excess volatility of real economic activities. The force of the formation of such a process

shown in Figure 1b is likely because of the mean reverting around the secular trend. The

time-varying expected returns have been proved to be a major force behind the excess

volatility in equity (see, e.g., John Cochrane 2006). Thus, we also conduct a study of

4The only exception is the 2001 recession. We suspect the actual recession might have lasted longer

than what was declared by the NBER.
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the cyclical trend in consumption in Subsection 3.4 and the stochastic discount factor

in Subsection 3.5. Through these studies, we have empirical evidence to show that the

intertemporal marginal rate of substitution or the stochastic discount factor has a time-

varying cyclical trend, with a pattern of bubbles and crashes around its conditional mean,

largely in relation to NBER recessions. We conclude from the patterns that the time-

varying stochastic discount factor is a major force causing macroeconomic fluctuations in

the business cycle frequencies, in line with the literature addressing excess volatility in the

equity market.

We are left to explain why the seasonal cycle and the business cycle share the same set

of stylized facts for macroeconomic fluctuations. The GDP is an aggregate variable. That

is, an upward trend, like a bubble-like expansion in the cyclical trend of the GDP, must

indicate that most sectors move in the same upward direction. Even though the downward

spikes of the cyclical trend in Figure 1b and the dips in the output in the component fBm

were uneven in the amplitudes across recessions, they had patterns similar to an output

drop in the first quarter of the seasonal cycle. The upward spikes of the cyclical trend

in Figure 1b is somewhat more complicated because the fBm part can be negative or

positive. This representation is, in fact, consistent with real economic activities where

economic growth during an expansion can lose momentum occasionally. Nevertheless, the

output across most sectors should also follow the cyclical trend described in Figure 1b and

the fBm in Figure 1c; otherwise it would be impossible for the GDP to display these same

patterns. These bubble-like spikes in the cyclical trend recur in lower frequencies than

in the seasonal cycle, but they are very similar to the bubble-like spikes in the second or

fourth quarter of the seasonal cycle, shown in Figures 1b and 1d.

To understand better the force that shapes the cyclical trend in Figure 1b, we further

decompose it into three forces. We find that the first difference of the cyclical trend has a

three-part decomposition:

(1−B)Tc = Component a + Component b + Component c

with Component c as the dominant force for (1 − B)Tc, where B is a backshift operator

with Bkxi = xi−k. The three-part decomposition of (1−B)Tc has been given in Figure 2.

This exercise indicates the cyclical trend Tc has been shaped by a major force c, to-

gether with two other minor forces, a and b. Interestingly, Component b leads Component

6
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Cochrane 1988), using a restriction-free ARMA(p, q), are most well known.5 A third

popular approach involves using the HP filter to decompose an aggregate time series into

a smooth trend and a cyclical component. Pierre Perron and Tatsuma Wada (2009)

provide a study of the three approaches and show that the HP filter can provide a trend

of the real GDP more smoothly than the other two.

The application of this HP filter in this paper differs in two major ways from those in

the literature. First, we find that the cyclical component of an aggregate such as the GDP

obtained from the HP filter is often not close to a “random walk.” Instead, it is quite

similar to a factional Brownian motion that has a long-range memory and persistence

or momentum trend, similar to that observed in Clive Granger (1980), Charles Nelson

and Charles Plosser 1982, Mark Watson 1986, John Campbell and N. Gregory Mankiw

1987, Francis Diebold and Glenn Rudebusch (1989), and Andrew Lo (1991), among others.

However, the long-range dependence that we address in this paper is in a business cycle

frequency, higher than the frequency of a secular trend.

In our estimation, many cyclical components (of the post war series) revealed after us-

ing the HP filter have a Hurst parameter H greater than 1
2 . For example, the cyclical com-

ponent of the GDP has H = 0.7965 after removal of the secular trend. That is, the cyclical

component of the HP filter itself contains a cyclical trend, displaying “intermediate-range”

dependence behavior. To separate this trend from the “noise” component at very high

frequencies, we apply the HP filter recursively to the cyclical components numerous times

so that the “noise” part eventually becomes an fBm with H close to 1
2 (H = 0.5004 for

the fBm in Figure 1c). Such an approach is largely motivated by John Cochrane (1988,

1991, 1994) and Robert King and Mark Watson (1994). John Cochrane (1988, 1991)

demonstrates that a time series with a unit root or a stationary series displaying near unit

root behavior contains a “small” random walk component. Robert King and Mark Wat-

son (1994) decompose the post-war unemployment and inflation series into three parts—a

secular trend (using a fixed low-pass filter), a business cycle trend (using a fixed band-pass

filter), and an irregular component (residuals after the two filters)—and establish a rela-

tionship between the two cyclical trends of unemployment and inflation in support of the

5See James Stock and Mark Watson (1988) for additional literature. Mark Watson (1986) shows that

the two approaches provide substantially different trends and cycles while James Morley, Charles Nelson,

and Eric Zivot (2003) reveal the essence causing these differences and provide a means of unifying the two

approaches. Also see Pierre Perron and Tatsuma Wada (2009) for a comparison study.
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Phillips curve. John Cochrane (1994) uses the less volatile consumption as the trend and

the residual as the transitory component of GNP, using the VAR identification approach,

and finds the residual accounts for most variations in the GNP. He also establishes a similar

relationship between stock prices and dividends. Here, we use the HP filter recursively to

remove this “noise,” “irregular,” or transitory part from a number of aggregate variables.

The noise part is identified as the standard Brownian motion, which is known to be an

approximation of a random walk of i.i.d. random variables (with proper rescaling), under

the Donsker’s theorem (Tommi Sottinen 2001).

Second, our study is motivated by the remark of Robert Barsky and Jeffrey Miron. To

understand how different forces operate in recessions and expansions, we use the spline

approach to fit this cyclical trend of the cyclical component and decompose its first differ-

ence into three parts, as demonstrated in Figure 2. It appears that such a decomposition

is very fruitful. Many indicators thought to be lagging in the previous literature become

leading indicators. Thus, the approach extracts undisclosed information from these indi-

cators, possibly motivating many future studies of their implications for the seasonal cycle

and the business cycle.

The rest of this paper is organized as follows; Section 2 includes a detailed study of

the seasonal cycle, motivated by Robert Barsky and Jeffrey Miron. Section 3 addresses

the business cycle and focuses on the cyclical trends of various aggregate variables. In

particular, Section 3.5 documents the evidence that the stochastic discount factor also

has a pattern forming bubbles and crashes. Section 4 concludes the paper. The appendix

provides technical details of the approach used in the paper.

2 Seasonal Cycles

In this section we replicate, in part, a study of the seasonal cycle in Robert Barsky and

Jeffrey Miron (1989) using their seasonal dummies approach for the U.S. economy, with

the not seasonally adjusted data from 1946 to 2001. We follow Robert Barsky and Jeffrey

Miron in using the HP filter to remove the secular trend. Thus, the seasonal dummies we

obtain represent average deviations from the trends of the studied variables.

Our study focuses on the seasonal cycle of a number of real aggregate variables, such

as the GDP, consumption, investment, and so on. Our study differs from that of Robert
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Barsky and Jeffrey Miron largely in that we find changes in the seasonal cycle over time,

partly because we have a larger sample size. Various former studies have tested a shift

of the seasonal cycle (Fabio Canova and Eric Ghysels 1994). The factors that cause such

a shift are not precisely known, but it appears the shift may be somehow related to the

average growth rates in the GDP and the volatility of the GDP. This possibility should

be investigated further because of its implication for the social welfare of economic policy

that aims at reducing seasonal or business cycle variations.

Let yk, k = 1, 2, · · · , N , be a time series. The HP filter uses the spline approach to

decompose the series into a smoothed (secular) trend {τk} and a cyclical component {ck},

that is, y = τ + c, by solving the following minimization problem

(HP ) min{τk}
k=N

k=1
{

N
∑

k=1

(yk − τk)
2 + λ

N−1
∑

k=2

[(τk+1 − τk)− (τk − τk−1)]
2},

where λ is a parameter that depends on whether the time series is quarterly or monthly

data. For a quarterly data series, λ is set at 1600 while it is set at 129600 for the monthly

data (Morten Ravn and Harald Uhlig 2001). For an aggregate variable investigated in this

paper, {yk} is the logarithm of the original series. The only exception is the unemployment

rate and labor productivity, where {yk} equals the original series.

2.1 Seasonal Fluctuations

The standard deviation of the deterministic seasonal component of output is estimated

at 4.35 percent deviation from the trend, which accounts for about 84.9 percent of the

deterministic fluctuations in output, as shown in Table 1. Similar magnitudes are shown

for gross investment, government spending, exports, and imports. As for consumption

spending, the standard deviation of the seasonal component is estimated at 6.15 percent

deviation from the trend and accounts for 90.8 percent of the deterministic fluctuations

in consumption. Similar magnitude is found for fixed investment where the standard

deviation of the deterministic seasonal component accounts for 8.37 percent deviation

from trend and for 84.6 percent of the deterministic fluctuations in fixed investment.

In line with Robert Barsky and Jeffrey Miron, the fluctuations of the deterministic

component of the seasonal dummies is at its highest for consumption spending on durable

goods and residential investment spending. As shown in the table, the standard devi-

ation of the seasonal dummies reaches 13.75 percent of deviations from the trend and

10



Table 1. Summary Statistics for Seasonal Dummies, 1946q1-2001q4

Standard Deviation Standard Error

Variables of Dummies of the Regression R-squared

Gross Domestic Product 0.0435 0.0184 0.849

Consumption 0.0615 0.0196 0.908

a. Durables 0.1375 0.0527 0.872

b. Services 0.0073 0.0090 0.400

Gross Investment 0.0308 0.0828 0.125

Fixed Investment 0.0837 0.0357 0.846

a. Nonresidential 0.0562 0.0390 0.676

Structures 0.0847 0.0385 0.830

b. Residential 0.1791 0.0603 0.899

Government 0.0400 0.0379 0.528

a. Federal 0.0419 0.0701 0.264

a. State and Local 0.0468 0.2004 0.846

Exports 0.0440 0.0557 0.387

Imports 0.0302 0.0490 0.278

Note-Average deviation from trend. Data source: Quarterly data from BEA.

accounts for 87.2 percent of the deterministic fluctuations in consumption spending on

durable goods. Similarly, the standard deviation of the seasonal component of residential

investment accounts for 17.91 percent of deviations from trend and accounts for almost

90 percent of its deterministic fluctuations. Furthermore, in line with Robert Barsky and

Jeffrey Miron, the deterministic component of the seasonal dummies for the consumption

spending on services is the smallest of all macroeconomic variables. For instance, the stan-

dard deviation of seasonal dummies for deviation from the trend in consumption spending

on services accounts for only 0.73 percent and explains about 40 percent of all variations.
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Table 2. Summary Statistics for Seasonal Dummies, Various Periods

Periods⇒ 1946q1-1959q4 1960q1-1978q4 1979q1-2001q4

Standard Standard Standard Standard Standard Standard

Deviation Error of the Deviation Error of the Deviation Error of the

Variables ⇓ of Dummies Regression R-squared of Dummies Regression R-squared of Dummies Regression R-squared

Gross Domestic

Product 0.0566 0.0225 0.866 0.0481 0.0103 0.958 0.0341 0.0077 0.953

Consumption 0.0855 0.0185 0.957 0.0618 0.0112 0.970 0.0475 0.0083 0.972

a. Durables 0.1509 0.0752 0.806 0.1522 0.4187 0.933 0.1188 0.0343 0.926

b . Services 0.0075 0.0089 0.422 0.0098 0.0090 0.554 0.0080 0.0063 0.624

Gross Investment 0.0922 0.1118 0.421 0.0159 0.0621 0.065 0.0343 0.0435 0.395

Fixed Investment 0.1040 0.0495 0.820 0.0836 0.0278 0.905 0.0730 0.0233 0.911

a. Nonresidential 0.0820 0.0530 0.713 0.0511 0.0325 0.722 0.0468 0.0242 0.796

Structures 0.0862 0.0446 0.793 0.0909 0.0348 0.879 0.0794 0.0367 0.830

b. Residential 0.1682 0.0683 0.863 0.1910 0.0627 0.907 0.1772 0.0486 0.933

Government 0.0461 0.0532 0.433 0.0372 0.0246 0.707 0.0498 0.0194 0.873

a. Federal 0.0543 0.0801 0.324 0.0351 0.0443 0.398 0.0780 0.0455 0.754

b. State and Local 0.0673 0.0171 0.942 0.0478 0.0192 0.867 0.0340 0.0085 0.943

Exports 0.0610 0.0787 0.392 0.0592 0.0551 0.548 0.0218 0.0254 0.434

Imports 0.0171 0.0586 0.083 0.0443 0.0516 0.438 0.0323 0.0335 0.492

Note-Average deviation from trend. Data source: Quarterly data from BEA.
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Table 2 expands the analysis of Table 1 by dividing the period from 1946:1-2001:4

into three periods such that period I covers 1946:1-1959:4, period II covers 1960:1-1978:4,

and period III covers 1979:1-2001:4. For the three periods, the standard deviation of the

deterministic seasonal component is the largest for consumption spending on durable goods

and fixed residential investment and is at the smallest for the consumption spending on

services. The standard deviation of the seasonal component for the government spending

is always less than 5 percent in the three periods and account for about 71 percent and

87 percent of the total fluctuations in government spending in the second and the third

periods, respectively, but only 43 percent in the first period.

Labor market is a focal point of the Federal Reserve. It is of a great interest to

investigate the seasonal patterns of various labor-related indicators. As shown in Table

3 the standard deviation of the deterministic seasonal component of the unemployment

rate is 7.15 percent of the deviation from trend, which accounts for about 65 percent of

the total deviations. The deterministic seasonal component of the hiring rate accounts for

the same percentage of total deviation, however its standard deviation is larger of about

21 percent of the deviations from trend. The deterministic seasonal component accounts

for the largest fluctuations in separation rate of about 91 percent of total fluctuations

with a standard deviation of about 16 percent deviations from trend, which is about three

quarters of 21 percent standard deviation of the hiring rate. Thus, substantial differences

exist between the seasonal components of the hiring rate and the separation rate. Our

study indicates that the hiring rate, similar to the unemployment rate, has been affected

more than the separation rate by the cyclical fluctuations.

As is obvious from the table, the deviations from trend of the weekly initial jobless

claims and the weekly continued jobless claims contain a larger stochastic component

than the other measures of the labor market discussed above. For instance, the standard

deviation of the deterministic seasonal component of the initial jobless claims is about

0.04 percent for the deviation from trend and it only explains 9.4 percent of the total

fluctuations. Also, the standard deviation of the deterministic seasonal component of the

continued jobless claims is about 2.1 percent and explains only about 15.5 percent of the

total fluctuations in this variable.
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Table 3. Summary Statistics for Seasonal Dummies

Variable Standard Deviation Standard Error

of Dummies of the Regression R-squared

1948:01-2014:03

Unemployment Rate 0.0715 0.0521 0.649

Unemployment Level 0.0047 0.0035 0.639

2000:12-2014:01

Hire Rate 0.2056 0.1459 0.650

Separation Rate 0.1558 0.0467 0.912

1967:w1-2014:w52

Initial Jobless Claims 0.0378 0.1167 0.094

Continued Jobless Claims 0.0212 0.0490 0.155

Note-Average deviation from trend. Data source: Unemployment rate and level are NSA

monthly data from BLS. Hire and separation rates are NSA monthly data from BLS. Initial

and continued jobless data are NSA weekly data from the U.S. Department of Labor.

2.2 Seasonal Patterns

A more detailed investigation of the deterministic seasonal fluctuations is shown in

Table 4, where each macroeconomic variable is regressed on the seasonal dummies. Using

ordinary least squares (OLS), each macroeconomic variable is regressed on a set of quar-

terly seasonal dummies for the period from 1946:1 to 2001:4 and the three sub-periods.

As shown in the table, output for the whole period of 1946:1 to 2001:4 is well below

the trend in the first quarter and above the trend for the other three quarters, with a

smaller magnitude in the third quarter.6 A closer look at the pattern of output during

the three different periods shows that, not only the deviations from trend are similar to

the ones found for the whole period, but also the peaks of the deviations from the trend

are getting smaller as time goes on. For instance, the magnitude of the trough in the first

quarter was 9.4 percent, 7.4 percent, and 5.9 percent for the first, second, and third

6This result is different from the results of Robert Barsky and Jeffrey Miron for their shorter period

1948-1985, where output is shown to be, on average, well below the trend for the first quarter, slightly

below the trend in the second and third quarters, and well above the trend for the last quarter.
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Table 4. Seasonal Variations of Seasonal Dummy Model, Various Periods

Periods⇒ 46-01 46-59 60-78 79-01

Variables⇓ Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Gross Domestic

Product -0.072 0.031 0.005 0.036 -0.094 0.025 0.015 0.056 -0.074 0.044 -0.011 0.041 -0.059 0.024 0.013 0.020

Consumption -0.097 0.041 -0.006 0.063 -0.133 0.049 -0.008 0.095 -0.097 0.048 -0.010 0.059 -0.077 0.030 -0.002 0.047

a. Durables -0.207 0.127 -0.037 0.122 -0.226 0.130 -0.033 0.147 -0.217 0.148 -0.066 0.137 -0.187 0.108 -0.016 0.093

b. Services 0.011 -0.010 -0.0004 -0.001 0.012 -0.0004 -0.001 -0.008 0.015 -0.012 -0.002 -0.002 0.006 -0.014 0.001 0.005

Gross

Investment 0.0001 -0.014 0.048 -0.035 0.050 -0.096 0.131 -0.070 -0.025 0.014 0.00004 0.015 -0.008 0.013 0.038 -0.055

Fixed

Investment -0.113 0.122 0.008 -0.013 -0.152 0.138 0.029 0.005 -0.106 0.127 0.003 -0.021 -0.097 0.107 -0.001 -0.017

a. Non-

residential -0.070 0.075 -0.032 0.030 -0.115 0.102 -0.023 0.052 -0.052 0.073 -0.043 0.025 -0.061 0.061 -0.029 0.022

Structures -0.131 0.093 0.052 -0.014 -0.136 0.082 0.065 -0.004 -0.141 0.102 0.049 -0.009 -0.119 0.091 0.046 -0.024

b. Residential -0.223 0.242 0.091 -0.106 -0.225 0.209 0.116 -0.071 -0.084 0.030 0.016 0.016 -0.211 0.247 0.074 -0.120

Government -0.059 0.040 0.031 -0.017 -0.084 0.030 0.017 0.016 -0.041 0.059 0.001 -0.120 -0.060 0.031 0.064 -0.034

a. Federal -0.069 0.029 0.037 -0.003 -0.090 0.004 -0.007 0.062 -0.028 0.058 -0.027 -0.005 -0.091 0.020 0.117 -0.041

a. State and

Local -0.053 0.057 0.035 -0.038 -0.072 0.080 0.054 -0.059 -0.055 0.062 0.030 -0.036 -0.039 0.040 0.027 -0.027

Exports -0.018 0.043 -0.063 0.039 -0.014 0.060 -0.091 0.053 -0.031 0.066 -0.080 0.047 -0.011 0.015 -0.032 0.024

Imports -0.014 0.059 -0.091 0.054 0.008 0.024 -0.006 -0.022 -0.023 0.069 0.003 -0.051 -0.045 0.045 0.007 -0.011

Note-Seasonal variations from the mean. Data source: Quarterly data from BEA
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period, respectively. In addition, the magnitude of the peaks for the fourth quarter are

getting smaller as time goes on, as they reach 5.6 percent, 4.1 percent, and 2.0 percent for

the first, second, and the third periods, respectively.7

The components of output are generally procyclical with the exception of the consump-

tion expenditure on services. The deviations from the trend in consumption expenditure

on durable goods are, on average, below the trend in the first and third quarters but above

the trend in the second and fourth quarters. This indicates that durable goods generally

move with the trend deviations in output with the exception of the third quarter. In ad-

dition and in line with Robert Barsky and Jeffrey Miron, for all periods, the magnitudes

of these deviations are larger than that of output.

The trend deviations in residential investment are, on average, below the trend in the

first quarter, above the trend in the second and third quarters, and again below the trend

in the fourth quarter. The trend deviations for investment in structures are similar and

support Robert Barsky and Jeffrey Miron. Similarly, with few exceptions, trend deviations

in government spending and its two components, federal and state and local spending, on

average, are below the trend for the first and fourth quarters but above the trend for the

second and third quarters.

The deviations in export alternate between above and below the trend. For instance,

it is below the trend for the first and third quarters but above the trend in the second and

fourth quarters for the whole period from 1946-2011. As for imports, the trend deviations

for the whole period are very similar to those of exports, where, on average, the deviations

for the first and third quarters are below the trend but above the trend for the second and

fourth quarters. Seasonal patterns of export change lilttle with time, but those of import

do change with time.

Generally, the tendencies of output and its components are similar to the results of

Robert Barsky and Jeffrey Miron. More specifically, the decline in output from the fourth

to the first quarter is similar to the findings of Robert Barsky and Jeffrey Miron, which

is also reflected in almost all the components of output. In addition, our results confirm

the fourth quarter increase in consumption of durable goods and the first quarter peak in

7This result is different from the results of Robert Barsky and Jeffrey Miron for their shorter period

1948-1985, where output is shown to be, on average, well below the trend for the first quarter, slightly

below the trend in the second and third quarter, and well above the trend for the last quarter.
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services spending rather than a first quarter decline. Further, we find a strong growth in

fixed investment in the second quarter followed by a slight increase in the third quarter and

slight decrease in the fourth quarter, that is, besides the increase in structures investment

in the second and third quarters. Finally, the peaks in federal and state and local spending

in the second and third quarters are all in agreement with the results of Robert Barsky and

Jeffrey Miron. These results seem to confirm that the trend deviations in macroeconomic

variables are correlated with the season and the weather: shopping season in the fourth

quarter results in an increase in spending, bad weather in the first quarter and the end of

the shopping season results in a drop in spending, and good weather in the second and

third quarters results in an increase in residential and structures spending. Changes in

season and weather appear to be two major forces driving preference shifts and production

synergy, a finding that supports Robert Barsky and Jeffrey Miron. A detailed discussion of

the two forces can be found further in Jeffrey Miron (1996). For a study of other developed

countries, see Joseph Beaulieu, Jeffrey MacKie-Mason and Jeffrey Miron (1992).

3 Business Cycles

We have presented our studies of the real GDP in Figures 1b, 1c, and 2. The methodol-

ogy of the study is addressed in the appendix. Here, we will document our studies of other

aggregate variables, such as the weekly continued claims for unemployment insurance, the

unemployment rate, labor productivity, the S&P 500 Index, and personal consumption ex-

penditures. We document the evidence that the patterns of the GDP shown in Figures 1b,

1c, and 2 are widely observed among these variables, especially in relation to recessions.

That is, we show that business cycle bubbles and crashes occur in these aggregate vari-

ables. These bubbles and crashes are less regular than the seasonal bubbles and crashes

and take a longer time to form. Despite the differences, these business cycle bubbles and

crashes are all similar. Moreover, they are similar to those observed in the seasonal cycle.

3.1 Weekly Continued Claims

The weekly initial and continued claims for unemployment insurance have lately re-

ceived more than usual attention among financial analysts and investors, partly because

the Federal Reserve watches these numbers closely, among other indicators, to determine
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the strength of the U.S. labor market. In addition, its monetary policy is, in part, based

on the performance of these indicators. Quite surprisingly though, study or use of these

two weekly indicators for the business cycle among economists is quite rare. Margaret

McConnell (1998) is an exception. She studied the weekly initial claims and showed the

indicator provides useful information during a recession but fails to do so during an ex-

pansion. A jump in the initial claims during an expansion may not indicate the onset of a

recession. This fact limits the use of this indicator to forecast a recession even though it

sends out a correct signal after a recession has occurred. This present study is motivated

by her work as we investigate whether the weekly continued claims as an indicator are

useful in forecasting a recession. More importantly, by studying this indicator, we can

determine whether the indicator has a similar pattern in the cyclical trend of the GDP as

observed in Figure 1b.

First, we apply the HP filter to the logarithm time series of the NSA weekly continued

claim numbers and its seasonal factor8 from 1967:01:7 to 2014:03:15 to remove the secular

trend, with λ set at 33177600 (Morten Ravn and Harald Uhlig 2001). Second, we obtain the

cyclical time series, denoted {Jk}, by subtracting the cyclical component of the seasonal

factor from the cyclical component of the weekly continued claim numbers. Third, we

apply the HP filter again to {Jk} to get the stochastic trend, denoted {JSTk}, and the

cyclical component, denoted {Jk − JSTk}, which is decomposed further into a cyclical

trend {JCTk} and its fBm component {JCk}, which has the Hurst parameter H = 0.4969,

estimated using Patrick Flandrin’s (1992) method by computing the slope of the log-log

plot of the variance versus the level.

Figure 3 documents these exercises. Figure 3a presents the cyclical trend series {JCTk}

and Figure 3b presents the stochastic trend {JSTk}, with the fBm given in Figure 3c.

These figures represent the cyclical deviation from the secular trend, after adjustment for

the seasonal factor. The time series JST is a leading indicator, and it starts to turn

upward before a recession begins. However, both JCT and JST are lagging indicators

for predicting the end of a recession. Without JST , JCT may provide a false signal, a

8The seasonal factor (SF) is determined by the beginning of the year and fixed for the whole year. It

is typically modified in March. See William Cleveland and Stuart Scott (2007) for a detailed analysis of

how the seasonal factor is determined. The cyclical deviation of the weekly continued claims is adjusted

with the SF in this paper.
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case similar to that documented by Margaret McConnell (1998) for the initial claims.9

With the help of JST , JCT can provide a better timed signal of a recession. The fBm

component is a reliable indicator for forecasting the end of a recession.
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Figure 3a. Cyclical Trend JCT, 1967-2013 
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Figure 3b. Stochastic Trend JST, 1967-2013 
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Figure 3c. fBm Component, H=0.4969, 1967-2013 

These figures reveal some important causes for a recession. They should shed consid-

erable light on how recessions begin and end. First, if a recession is caused only by shocks,

then one should not be able to observe the turn in JCT and JST before a recession begins.

9The analysis for this indicator is available upon request.
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Because these two indicators lead a recession, far before a recession begins, the economy

starts to lose its momentum, as shown in Figure 1b. This loss in momentum makes the

economy fragile to external shocks. Second, during a recession, the fBm component can

spike much higher. Many firms lay off workers in massive numbers during a recession.

However, once such layoffs taper off, as fBm indicates, a recession ends. The turn in fBm

is sharp and reliable. This may indicate why a recession is typically shorter than an ex-

pansion, and there is asymmetry in the business cycle, similar to that found in a number of

papers on Friedman’s plucking model (Milton Friedman 1993; Francisco Nadal De Simone

and Sean Clarke 2007; Tingguo Zheng, Yujuan Teng, and Tao Song 2010). However, our

results show that it is far from conclusive that the plucking caused by a transitory shock,

as stated in these papers, is indeed the only cause of a recession.

As observed above, JST and JCT lag to predict the end of a recession. Such an

issue can be overcome by extracting more signals from them after decomposing them into

different components:

(1−B)JST = JST ′s Components a +b+ c

(1−B)JCT = JCT ’s Components a +b+ c

The results are shown in Figures 4 and 5. Because Component c in both cases is domi-

nant, we have (1−B)JST ≃ JST ’s Component c and (1−B)JCT ≃ JCT ’s Component c,

(Components c are not reported in the two figures.) The dominance of Component c does

not mean that Components a and b are not important. In fact, they provide very impor-

tant information about business cycles, especially with respect to recessions.

Figures 4 and 5 also show that the cyclical patterns revealed here should come from

the data, not from the HP filter, which is often criticized as generating spurious cycles.

No randomly generated data can produce such a nice pattern in Figures 4 and 5 under

the HP filter.10

10Simulation results are out of the scope and not reported here.
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Figure 5.  (1-B) JCT and its Components a, b, c, 1967-2013 
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As shown in Figures 4 and 5, Component b is a leading indicator in predicting the

beginning of a recession. Note that Component a operates against Component c. Thus,

both Components c and a become leading indicators in predicting the end of recessions.

(1−B)JST and (1−B)JCT are leading indicators as well. They reach their local peaks

before the end of recessions. Two “false” signals around 1987 and 1996 with respect to
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the NBER recessions occur using (1 − B)JST and (1 − B)JCT .11 Such an issue can be

eliminated by using JST .

We can conclude from Figures 3, 4 and 5 that excess volatility exists in the cyclical

trend of the continued claims numbers.

3.2 Unemployment Rate and Labor Productivity

The unemployment rate and labor productivity are the two most important measures

for the labor market. Numerous articles have been written on these indicators. The

following summarizes our understanding of the unemployment rate as leading economists

describe it:

The unemployment rate is a trendless indicator that moves in the opposite

direction from most other cyclical indicators. [...] The NBER business-cycle

chronology considers economic activity, which grows along an upward trend.

As a result, the unemployment rate often rises before the peak of economic

activity, when activity is still rising but below its normal trend rate of increase.

Thus, the unemployment rate is often a leading indicator of the business-cycle

peak. [...] On the other hand, the unemployment rate often continues to rise

after activity has reached its trough. In this respect, the unemployment rate

is a lagging indicator. (http://nber.org/cycles/recessions_faq.html)

Nonetheless, controversies abound concerning these two indicators. For example, to

answer the question as to why the Phillips curve and the Beveridge curve models have

both lost their forecasting capability recently, Alan Krueger, Judd Cramer, and David

Cho (2014) declared that the existing unemployment rate is an insufficient indicator and

does not reflect well the current strength or weakness of the labor market. A solution

suggested by these authors is to replace the existing one with the unemployment rate for

workers unemployed for less than 26 weeks. Such an alternative would fail to account for

a great number of unemployed workers, those unemployed for durations longer than 26

weeks. The authors claimed that these workers are on the margins and become irrelevant

11There was some truth behind the two “false” signals if one recalled the two minicrashes in equity market

in these years. Many still question the two crashes because they were not supported by the fundamentals, an

understanding our figures contradict. Fundamentals did show substantial weakness during the minicrashes.
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for increasing wages. A question left unanswered is the cause of the sharply increasing

long-term unemployment rate, especially from the Great Recession.

Labor productivity is procyclical: it is higher during booms and lower during slumps

(Susanto Basu and John Fernald 2001). However, Ellen McGrattan and Edward Prescott

(2012) provide a new puzzle: Measured in level, labor productivity is procyclical and

positively correlated with the GDP by 54% for the period from 1960 to 1985; since then,

it has become much less procyclical, and its correlation with the GDP has dramatically

dropped to only 5% (see Figure 1 in Ellen McGrattan and Edward Prescott 2012).

Motivated by these studies and Robert Barsky and Jeffrey Miron (1989), we investigate

how these two indicators perform in relation to the business cycle and whether similar

business cycle bubble and crash spikes conform with those observed in the GDP and the

continued claim numbers. Labor productivity in our paper is measured by percentage

change from previous of the output per hour for business sectors, downloaded from BLS.

We use the rate of labor productivity rather than the level because we want to compare

it with the unemployment rate.

Our procedure is as follows. First, we apply the HP filter, as in Ellen McGrattan and

Edward Prescott (2012), to obtain the stochastic trends12 of the two indicators (without

taking the logarithm). These stochastic trends represent the trends over long-term hori-

zons. Figure 6 shows the stochastic trend UST for the unemployment rate, and Figure 7a

shows the stochastic trend for labor productivity. Second, we apply the HP filter to the

cyclical part of labor productivity recursively13 and decompose labor productivity into a

cyclical trend component (Figure 7b) and an AR(1) process (Figure 7c and Table 5).

Our decompositions are given as follows:

Unemployment rate = UST in Figure 6 + CU in Figure 8

Labor productivity = Figure 7a + Figures 7b +AR(1) in Figure 7c

12The two indicators have no secular trends.
13The exact number is 100 times. However, one can choose other numbers near 100 without changing

the essence of what we intend to obtain from the cyclical trend.
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Figure 6. Stochastic Trend in Unemployment Rates (%) 
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Figure 7a. Stochastic Trend in Labor Productivity (%)  
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Figure 7b. Cyclical Trend in Labor Productivity (%) 
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Figure 7c. AR(1) Process in Labor Productivity (%) 

The stochastic trend of the unemployment rate in Figure 6 is closely related to the

stochastic trend of labor productivity in Figure 7a. The stochastic trend of labor pro-

ductivity has three major segments: the first is from the post-war period to 1979, with

a gradual declining trend starting around 1963; the second is from 1979 to 2001, with a

gradual upward trend; and the third begins in 2001, with a declining trend at a faster
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Table 5. AR(1) process of labor productivity

Conditional Probability Distribution: Gaussian Standard t

Parameter Value Error Statistic

Constant -1.9089e-05 0.19045 -0.0001

AR(1) -0.263626 0.056552 -4.6617

Variance 8.74395 0.687041 12.727

declining pace than the decline in the 1970s. The end of the third declining trend has

not been shown, but it will probably end at next recession. A good sign is that the long

term unemployment trend starts to show a down turn, which is often accompanied with

an upward trend in long-term labor productivity.

The stochastic trend of the unemployment rate also has three major periods: the first

is from the post-war period to 1982, with a gradual uptrend, increasing from the lowest

point, 4 percent, in 1952 and 1967 to more than 8 percent in 1982. In addition, in this

period long-term labor productivity shows a declining trend. The second is from 1982 to

1999, with a downward trend. The long-term unemployment rate declined from more than

8 percent to about 4.5 percent. This period had surging long-term labor productivity. The

unemployment rate surged from the low of 4.5 percent in 1999 to more than 8 percent

again in 2011. This period also had a sharp decline in long-term labor productivity.

The reason long-term labor productivity affects the long-term unemployment rate may be

quite obvious: Higher labor productivity increases the demand for labor. What is not so

clear is the relationship between the declining trend in the long-term unemployment rate

and the volatility in the cyclical trend and the AR(1) process of labor productivity. The

two periods of 1961-1968 and 1982-1999 both have a downward trend in the long-term

unemployment rates. Figures 7b and 7c show the cyclical trends and the AR(1) processes

of labor productivity for both periods have lower volatilities than other periods have.

The Great Moderation, starting around 1985 (Olivier Blanchard and John Simon 2001;

James Stock and Mark Watson 2002), affected the seasonal cycle and the business cycle.

James Stock and Mark Watson (2002) provided many causes for the Great Moderation.

The lower volatility identified above indicates the Great Moderation should have something

to do with the declining trend in the long-term unemployment rate and the uptrend in

long-term labor productivity.
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Joseph Beaulieu, Jeffrey MacKie-Mason, and Jeffrey Miron (1992) found an economy

with a large seasonal cycle also has a large business cycle. In our study of the seasonal

cycle in Section 2, we divided the U.S. economy into three subperiods. We can now see

from Figure 1 to 7 the same phenomenon as observed by Joseph Beaulieu, Jeffrey MacKie-

Mason, and Jeffrey Miron. A subperiod that has a large seasonal cycle also has a large

business cycle (see Table 6 below). Moreover, such a phenomenon is related to the fact that

long-term labor productivity is in a declining trend and the long-term unemployment rate

is in an upward trend. This phenomenon may explain why the Great Recession happened

in 2008, when the long-term unemployment rate was near its peak. At another point

in the 1980s, that recession was the worst since the Great Depression. In another words,

these two worst recessions since World War II occurred when long-term labor productivity

was near its lowest point and the long-term unemployment rate was near its peak. This

phenomenon might be explained as follows: First, when long-term labor productivity is

near the lowest point, there must exist more workers who have lost their skills. Second,

when long-term labor productivity is in a declining trend, it should be harder for firms

to raise labor productivity during a recession because it is going against the trend. Thus,

firms may need to lay off more workers at such points to raise labor productivity.

Considering all eleven recessions, long-term labor productivity (Figure 7b) declined in

only one, in 1954, when long-term labor productivity was in a downtrend. For the other

recessions, long-term labor productivity either remained flat or moved higher, indicating

a recession is helpful for raising long-term labor productivity. The recessionary effect on

labor productivity can be seen in the cyclical trend shown in Figure 7b as well. During

recessions, cyclical labor productivity is higher.

Whether the level of labor productivity (output per hour) is procyclical depends on

whether the AR(1) process and the cyclical trend stay in the positive zone during expan-

sions and in the negative zone during recessions. As shown in Figure 7c, labor productivity

in the AR(1) component declined rather sharply into negative zones during recession pe-

riods. Interestingly enough, by the end of each recession, a surge in labor productivity

to the positive occurs even during the AR(1) process. One key observation here is that,

before a recession, there is a substantial decline, often into the negative zone, in the cycli-

cal trend of labor productivity. These observations support our claim that recessions are

likely caused by firms’ demands to overcome declining cyclical labor productivity. Iron-
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ically, such a practice will cause a decline in labor productivity in the AR(1) part first.

Thus, asserting the level of labor productivity is procyclical is not very precise considering

the evolution of labor productivity during recessions and expansions.

Our analysis appears to be consistent with the idea of creative destruction initiated by

Joseph Schumpeter (1942) and further developed by Philippe Aghion and Peter Howitt

(1992). However, creative destruction can go well beyond innovations in technology and

formation of human capital. For example, it can extend to other important aspects of the

economy, such as firm-customer relationships (Erik Canton and Harald Uhlig 1999).

Table 8 in Subsection 3.3.1 shows that labor productivity is negatively related to the

GDP and consumption in the cyclical trend by two unexpected large numbers, -0.556

and -0.387, respectively, for the period from 1950 to 2013, and the correlations remain

steady for the period from 1950 to 1985. The negative relationships are even higher for

the period from 1986 to 2013. The negative relation arises because labor productivity

increases in the cyclical trend during recession periods and starts to fall after a recession

(Figure 7b). This feature shows that a recession is a period in which firms use layoffs of

less productive workers to battle falling productivity. Massive layoffs across broad sectors

send the economy into a recession. The sharp increases in the continued claim numbers

during recessions appear to support such a theory. Thus, the force behind a recession is

very different from the seasonal cycle, in which labor productivity in the seasonal cycle

has been found procyclical by Robert Barsky and Jeffrey Miron (1989) and Jeffrey Miron

(1996).

We find that the relationship between labor productivity (measured in percent change)

and the GDP or consumption does not change substantially for the two different periods

of 1950-1985 and 1986-2013, in contrast to what has been documented in Ellen McGrattan

and Edward Prescott (2012). The lower volatility in the AR(1) of labor productivity for

the period 1986-2013 is likely affected by the Great Moderation.

As with the GDP, we can decompose the first differencing (1−B)UST of the stochastic

trend UST for the unemployment rate into three components:

(1−B)UST = UST’s Components a+ b+ c.

The result is shown in Figure 8a, together with the cyclical unemployment rate (CU) in

Figure 8b, which is obtained by removing UST from the original unemployment rate time

series. From Figure 8a, we can see that Component b is a leading indicator in predicting
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the beginning of a recession while Component a is a reliable leading indicator in predicting

the end of a recession. The cyclical component (CU) of Figure 8b is also a reliable indicator

of recessions. These observations provide some new understanding of the unemployment

rate.
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Figure 8a. Component C of (1-B)UST, 1948-2013 
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Figure 8b. Cyclical Component CU(%) 
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3.3 S&P 500 Index

The efficient market hypothesis claims that the equity market follows the fundamentals

of the economy. It may deviate from the fundamentals occasionally but not for a very

long period. That is, the equity market must be closely affected by the business cycle.

In particular, the expected returns should be lower during an economic boom and higher

during an economic slump. Thus, the equity market should move higher during booms

and lower during slumps. On the other hand, the excess volatility discovered by Robert

Shiller (1981) shows that the equity market, using the real S&P 500 Index as a proxy, may

often form a bubble (or crash), with prices that are well above (or below) a level supported

by the fundamentals in real terms. The formation of a bubble or crash in Shiller (1981)

takes a longer time than a typical business cycle duration. Robert Shiller (1981) uses the

present value of distributed dividends as the level supported by the fundamentals adjusted

by the inflation. Even though Robert Shiller (1981) does not provide a precise time when a

bubble or crash is formed in an equity market, a juncture of the efficient market hypothesis

and his excess volatility indicates that a bubble should be formed more often during an

economic boom and a crash should be formed more often during an economic slump.14

In this section, we provide a study of the S&P 500 Index quarterly close prices adjusted

with dividends from 1950Q1 to 2014Q2. The data were downloaded from Yahoo. We use

the same methodology as was used to analyze the GDP data. Figure 9 shows the cyclical

trend SPT and the fBm of the S&P 500 Index in such an exercise. Figure 9a shows the

efficient market hypothesis, in fact, holds very well in the sense that those price spikes

near recessions of the cyclical trend of the S&P 500 are very much like those in the GDP

shown in Figure 1b.

The bubbles and crashes shown in Figure 9a arise from the deviations from the secular

trend while Robert Shiller (1981) identifies a bubble or crash as deviations from the fun-

damentals computed by a discounted model with a constant discount rate. Our bubbles

and crashes appear to be much smaller in amplitude and occur more often than those

14This explanation does not mean that the equity market will not form a bubble or crash at other

times. For example, Black Monday, October 19, 1987, and a minicrash that occurred on Friday, October

13, 1989, were both mysterious. These two minicrashes occurred when the economy was in an NBER

expansion. Nonetheless, the weakness in the GDP during these two periods, which Figure 1 shows, may

have contributed to these two minicrashes.
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identified by Shiller. That is, a major bubble or crash (in annual data) in Shiller consists

of a sequence of bubbles or crashes (in quarterly or monthly data) identified in this paper.
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Figure 9a. S&P 500 Cyclical Trend SPT, 1950q2-2014q2 
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Figure 9b. S&P 500 fBm, H=0.5058 

3.3.1 Key Statistics

We provide some key statistics in tables in this section. Two types of excess volatility

occur in the cyclical trend and the fBm of the S&P 500. The first is based on Figure 9a in

which the cyclical trend of the Index deviates from its secular trend to form bubbles and

crashes. These bubbles and crashes are similar to those observed in real aggregates, such

as the GDP, the unemployment rate, and so on. The standard deviations of the cyclical

trend of the S&P 500 reached about 16 percent for the period of 1950q1-2001q4 while the

standard deviations of the fBm were about 10 percent. The standard deviations of the

cyclical trend and the fBm of the Index were the highest in the period from 1960q1 to
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1978q4. The Great Moderation seems to affect excess volatility of the S&P 500.

The second is the difference in the standard deviations of the S&p 500 from those of

the GDP, consumption, and other aggregates. The cyclical trend of the S&P 500 appears

to have cycles with much larger amplitudes, as shown in Tables 6 and 7. For instance, the

standard deviation of the cyclical trend of the GDP over the period 1947:q1 to 2001:q4

reached only 3% while that of the S&P 500 reached about 16 percent over roughly the

same period. Furthermore, the period from 1960:q1 to 1978:q4 had the largest gap between

the standard deviations of these two variables and accounted for 20.3 percent with the

S&P 500 superseding the GDP. The first type of excess volatility is closely related to the

original finding in Robert Shiller (1981) while the second is more related to the equity

premium puzzle in Rajnish Mehra and Edward Prescott (1985).

Table 8 shows the correlation between various aggregate variables in the periods 1950-

2013, 1950-1985, and 1986-2013. This table reveals that the fBm component of the S&P

500 is positively related to those in the GDP and consumption, but the magnitudes of

correlation are very small.15 That is, the HP filter extracted much information from the

original data in terms of the cyclical trends. The cyclical trend of the S&P 500 is positively

related to the cyclical trends in the GDP and consumption by about 50 percent and the

correlation becomes higher for the period of 1986-2013. Thus, volatility in the noise part

of the equity market does not follow that in the fundamentals of the economy, especially

during the period 1950-1985. That is, different forces drive the noise parts of the equity

market and the real economy. We conclude that the data in Tables 7 and 8 support

Shiller’s excess volatility (also see Table 9) in both the short and the long terms.

The low correlation at about 20 percent between the equity market and the macroe-

conomic aggregates, such as the GDP and consumption, has been called the correlation

puzzle (John Cochrane and Lars Peter Hansen 1992; John Campbell and John Cochrane

1999, 2000) and can be seen in part as a factor that contributes to the equity premium

puzzle (Rajnish Mehra and Edward Prescott 1985). Our result reveals that such a low

level of correlation is caused by the noise parts of the fBms. The correlation between the

cyclical trends of these variables can reach a reasonable level of 50-75%. Of interest is

that the equity market appears to be more correlated with the aggregates since the start

(around 1985) of the Great Moderation.

15The only exception is the period 1950-1985 for which there is a negative correlation of -0.01.
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Table 6. Standard Deviations, annualized(%)

1946q1-2001q4 46q1-59q4 60q1-78q4 79q1-01q4

Seasonal Dummies

of GDP 8.70 11.32 9.62 6.82

1947q1-2001q4 47q1-59q4 60q1-78q4 79q1-01q4

GDP Cyclical Trend 3.00 3.50 3.01 2.66

fBm 1.20 1.79 1.09 0.84

Growth Rate Average∗ 3.44 3.58 3.91 2.97

(2.01) (2.71) (1.97) (1.53)

Personal Cyclical Trend 2.25 1.97 2.51 2.19

Expenditure fBm 1.04 1.66 0.82 0.72

Total Goods Cyclical Trend 3.55 3.16 3.95 3.42

fBm 1.73 2.54 1.47 1.35

Durabale Goods Cyclical Trend 8.39 10.12 8.44 7.31

fBm 4.84 7.53 3.84 3.58

Services Cyclical Trend 1.34 1.35 1.18 1.46

fBm 0.63 0.92 0.48 0.56

1947q2-2001q4 47q2-59q4 60q1-78q4 79q1-01q4

Labor Cyclical Trend 2.04 2.14 2.24 1.60

Productivity(%) AR(1) 6.47 7.64 7.35 4.87

1950q1-2001q4 50q1-59q4 60q1-78q4 79q1-01q4

S&P500 Cyclical Trend 15.69 16.68 23.31 15.16

fBm 9.63 6.31 13.90 9.81
∗Annualized average and standard deviations in parentheses. Consumption is studied in

the next section.
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Table 7. Excess Volatility: Ratios of Standard Deviations.

1950q1-2001q4 50q1-59q4 60q1-78q4 79q1-01q4

GDP Cyclical Trend 5.23 4.77 7.74 5.70

fBm 8.03 3.53 12.75 11.68

Personal Cyclical Trend 6.96 8.45 9.28 6.91

Expenditure fBm 9.26 3.80 17.00 13.50

Seasonal Dummies Cyclical Trend 1.80 1.47 2.42 2.22

of GDP(∗) fBm 1.11 0.56 1.44 1.44

Note-Derived from Table 6 by dividing the standard deviations of the cyclical trend and

fBm of the S&P 500 by the standard deviations of other aggregates.

(∗) We divide the standard deviations of the cyclical trend and fBm of the S&P 500 by

the standard deviations of the seasonal dummies. As indicated in Table 6, the two periods

1950q1-2001q4 and 50q1-59q4 in Table 7 are not quite the same as the GDP in Table 6.

We expect no major differentials are caused by the inconsistency.
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Table 8. Correlation between aggregate variables

Correlation

between fBms 1950q1-2013q4 1950q1-1985q4 1986q1-2013q4

GDP Prod. Con. S&P500 GDP Prod. Con. S&P500 GDP Prod. Con. S&P500

GDP 1 1 1

Productivity 0.31 1 0.31 1 0.32 1

Consumption 0.62 0.16 1 0.64 0.16 1 0.45 0.14 1

S&P500 0.03 0.11 0.08 1 -0.01 0.09 0.01 1 0.14 0.15 0.04 1

Correlation between

Cyclical Trends 1950q1-2013q4 1950q1-1985q4 1986q1-2013q4

GDP 1 1 1

Productivity -0.56 1 -0.55 1 -0.58 1

Consumption 0.83 -0.39 1 0.79 -0.27 1 0.94 -0.66 1

S&P500 0.47 -0.12 0.54 1 0.33 -0.01 0.49 1 0.75 -0.29 0.67 1

Note-Prod. denotes labor productivity. Con. denotes personal consumption expenditures.
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Table 9 shows the regression relationship of the cyclical trend of the S&P 500 Index and

that of the GDP or the services. The two regressions show that one percentage deviation

in the cyclical trend from the secular trend in the GDP (services) results in about three

(six and a half) percentage deviation in the cyclical trend from its secular trend in the

S&P 500.

Table 9. Regression of Figure 9a on Figure 1b (GDP) or Figure 10(C), 1950q1-2013q4.

GDP SE t statistics p value R2
adj

Constant -0.0017 0.0048 -0.3492 0.7272 0.2209

Coefficient 2.9257 0.3418 8.5607 0.0000

Services

Constant -0.0007 0.0048 -0.1545 0.8773 0.2412

Coefficient 6.4883 0.7163 9.0582 0.0000

Table 10. Variances and Covariances, annualized, 1950q1-2013q4

fBm

Labor

GDP Productivity Services S&P 500

GDP 1.18

Labor Productivity(%) 2.02 35.56

Services 0.16 0.48 0.29

S&P 500 0.37 6.2 0.30 98.74

Cyclical Trend

GDP 8.02

Labor Productivity(%) -3.09 35.57

Services 3.27 -1.19 1.78

S&P 500 23.45 -4.24 11.53 306.39

Covariance matrices of the fbm and the cyclical trends of the S&P 500 and others

are shown in Table 10. For example, in a well-diversified portfolio whose only risk comes

from the macroeconomic risk described by the cyclical trend of the GDP or services, the

coefficients in two regressions above are the betas of the S&P 500 in its cyclical trend with
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respect to the two well-diversified portfolios, respectively. Thus, Tables 9 and 10 provide

additional evidence to support the excess volatility of Robert Shiller (1981). The equity

market in its cyclical trend is far more volatile than its underlying fundamentals. The low

covariance of 0.37 between the fBms of the GDP and the S&P 500 should be evaluated in

light of the fact that prices in the equity market change by seconds while prices in the real

economy may not change for weeks or even months. Nonetheless, the covariance between

the two cyclical trends can reach a level of 23.45, indicating the real economy and the

equity market do move together in lower frequencies.

3.4 Consumption

Personal consumption expenditures (C) include expenditures on nondurable goods,

durable goods, and services. We address the personal consumption expenditures, total

expenditures on goods, total expenditures on durable goods, and total expenditures on

services. The data in our study are quantity indexes for the real personal consumption

expenditures, seasonally adjusted (index numbers, 2009=100) from BEA. In the estimation

of the Hurst parameters H for the four series, we find only the service expenditures have

an H higher than 1
2 ; the cyclical trends of the four series as shown in Figure 10 are based

on the service series to obtain the Hurst parameter H close to 1
2 . Thus, the fBm parts of

personal consumption expenditures, total goods, and durable goods in Figure 11 will have

H smaller than 1
2 , indicating they are short memory-dependent processes, not a standard

Brownian motion such as the fBm of the service expenditures.

The cyclical trends in Figure 10 are similar to the pattern in Figure 1b, the cyclical

trend in the GDP, not surprising, personal consumption expenditures in the U.S. economy

are about 2
3 of the GDP. The correlation between the GDP and consumption in cyclical

trends in Table 8 reaches more than 94 percent for the period 1986-2013. According to

Table 6, consumption and services are less volatile than the GDP, but durable goods and

total goods are, in general, more volatile than the GDP.
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Figure 10. Cyclical Trends of C, Gd, Dgd and S, 1947q1-2014q2 

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

C
y

cl
ic

a
l 

T
re

n
d

 o
f 

G
o

o
d

s 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

C
y

cl
ic

a
l 

T
re

n
d

 o
f 

D
u

ra
b

le
  

G
o

o
d

s 

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

C
y

cl
ic

a
l 

T
re

n
d

 o
f 

S
e

rv
ic

e
s 

38



 

 

 

 

-0.02

-0.01

0

0.01

0.02

0.03

0.04

fB
m

 o
f 

C
 

Figure 11. fBm Parts of C, Gd, Dgd, S, 1947q1-2014q2 
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The relationship between the volatility in the cyclical component and the growth rate

of the GDP is rather complicated (Table 6). Even though higher volatility in the GDP

does not imply a higher growth rate, it appears from Table 6 that a low volatility in the

GDP does not imply a high growth rate either. Thus, a policy that aims at reduction in

macroeconomic fluctuations does not always result in an increase in the social welfare. A
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higher volatile economy can mean more workers who are less productive and less skilled

become unemployed at a faster pace. This results in better chances for productive and

skillful workers to enter the labor force during the next recovery and expansion phase.

When the economy has a lack of volatility for a lengthy period, the process of replacing

less productive workers is slower, possibly hurting future labor productivity and economic

growth. Seasonal variations accomplish this replacement process in a higher and more

regular frequency. Business cycle variations accomplish the process on a slower and less

regular basis. Because Table 6 and Figure 1 indicate the seasonal cycle and the business

cycle may be related through certain channels (see Irma Hindrayanto, Jan Jacobs, and De-

nis Osborn 2014), a policy that greatly reduces seasonal variations may not always improve

social welfare in the long run (Jeffrey Miron 1996). This does not mean that monetary

policy to help stabilize the economy during a depressed time is bad. In addition, seasonal

and business cycle variations are not always bad. The cyclical trends of consumption in

Figure 10 appear to reveal more fluctuations, but the fBm components in Figure 11 are

still weak, indicating the effect of the Great Moderation may persist to the near future.

3.5 Stochastic Discount Factor

In this section, we demonstrate a vital link between macroeconomic fluctuations and

the intertemporal marginal rate of substitution (MRS) and document the empirical ev-

idence that the time-varying stochastic discount factor is likely to be the major force

causing macroeconomic fluctuations in the business cycle frequencies.

For a utility function of the constant relative risk aversion (CRRA) class

U(c) =
c1−α

1− α
, 0 < α < ∞,

the logarithmic stochastic discount factor ln(mt+1) satisfies

ln(mt+1) = lnβ − αln(
ct+1

ct
),

where β is the time discount rate and ct is consumption per capita, as in Rajnish Mehra

and Edward Prescott (1985). Let ct+1

ct
be the stochastic trend valued at t + 1 of the

consumption growth ct+1

ct
. Using a Taylor expansion at ct+1

ct
, we obtain

ln(mt+1) ≈ lnβ − αln
ct+1

ct
− α

1
ct+1

ct

(
ct+1

ct
−

ct+1

ct
) + α

1

( ct+1

ct
)2

( ct+1

ct
− ct+1

ct
)2

2
.
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Let ln(m̄t+1) = lnβ−αln
ct+1

ct
, which may be seen as the stochastic trend of the logarithmic

stochastic discount factor ln(mt+1) in the long-term, and

zt+1 = −
1

ct+1

ct

(
ct+1

ct
−

ct+1

ct
) +

1

( ct+1

ct
)2

( ct+1

ct
− ct+1

ct
)2

2
.

Then
1

α
(ln(mt+1)− ln(m̄t+1)) ≈ zt+1.

We may apply the HP filter to obtain the stochastic trend ct+1

ct
of consumption growth

and apply the filter recursively to zt+1 to obtain the cyclical trend of the deviations

1
α
(ln(mt+1) − ln(m̄t+1)). Because mt+1 is a random variable that has incorporated all

types of behaviors, expectations, public and private information, and so on, for tradable

and non-tradable assets, it is difficult to know precisely how it behaves. Under the basic

consumption-based asset pricing model, the exercise above provides an important variable,

zt+1, that can be used to find the cyclical trend of ln(mt+1). It makes it possible to

know how the stochastic discount factor affects macroeconomic fluctuations, even without

knowing the detail of the two parameters α and β.

The question is how many times the HP filter should be used recursively to obtain

the cyclical trend of deviations 1
α
(ln(mt+1)− ln(m̄t+1)). We know that the consumption

growth ct+1

ct
is close to i.i.d..16 Thus, we cannot use the Hurst parameter H = 1

2 directly,

as in the case of the GDP. However, in the recursive application of the HP filter to obtain

the cyclical trend of the GDP, as in Figure 1b, we recorded 189 of recursive applications

of the HP filter during the procedure. This number has been used to obtain the cyclical

trend of deviations 1
α
(ln(mt+1)− ln(m̄t+1)).

Our empirical results are shown in Figure 12. Figure 12a is the cyclical trend of the

GDP growth rate for comparison purpose. Figures 12b and 12c are the cyclical trends of

zt+1 based on aggregate consumption and services,17 respectively. The cyclical trend of

the logarithmic stochastic discount factor ln(m) is α-multiple of that in Figure 12b (based

on consumption) or 12c (based on services). We can conclude from Figure 12 that the

cyclical trend of the GDP growth has been driven by the cyclical trend of the logarithmic

16See Ravi Bansal and Amir Yaron (2004) and references therein for a different view. In particular, Bansal

and Yason provide a theoretical model under which the consumption growth rate is decomposed into a

small persistent and predictable component and a “noise” component that reflects economic uncertainty

or consumption volatility. Our work here may be considered an empirical counterpart to such an idea.
17We may assume that quarterly population growth rate is near zero.
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stochastic discount factor, which is clearly a time-varying process with bubbles and crashes

around its conditional mean, especially around the NBER recessions.
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Figure 12a. Cyclical Trend of GDP Growth, 1947q2-2013q4 
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Figure 12b. Cyclical Trend of 1/a-Logarithmic Stochastic Discount Factor  
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Figure 12c. Cyclical Trend of 1/a-Logarithmic Stochastic Discount Factor 

In our analysis above, there is no preference shift. Thus, we conclude that preference

shift is unlikely to be a major factor causing macroeconomic fluctuations, as in the seasonal

cycle. This conclusion does not mean that preference shift is not important for the business

cycle and that preferences always stay the same. What we have documented is that the

stochastic discount factor likely plays a more important role in macroeconomic fluctuations

in business cycle frequencies than do other factors.
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Table 11a. Correlation between excess return, GDP

growth, and 1
α
−logarithmic stochastic discount factors z, quarterly data 1947q2 to 2013q4

Stochastic Discount Cyclical Trend Cyclical Noise

Factor z based on C Gd Dgd S C Gd Dgd S

Excess Return Re -0.214 -0.219 -0.188 -0.197 -0.031 -0.029 -0.021 -0.030

Secular Trend Re -0.112 -0.110 -0.073 -0.119 -0.001 -0.001 -0.000 -0.001

Cyclical Trend Re -0.459 -0.469 -0.414 -0.418 -0.028 -0.030 -0.022 -0.019

Noise fBm Re -0.021 -0.023 -0.020 -0.016 -0.024 -0.021 0.036 -0.028

GDP Growth Rate -0.531 -0.503 -0.456 -0.517 -0.345 -0.350 -0.361 -0.142

Note. Excess return equals Fama-French benchmark rate of return minus one month

T-bill.

Table 11 shows a comparison analysis of the relationship between the excess return

and GDP growth with the logarithmic stochastic discount factor ln(m). Table 11a is the

correlation matrix and Table 11b shows the (conditional) mean and standard deviations.

The excess return18 quarterly data are the Fama-French benchmark portfolio rate of return

minus the one month treasury T-bill rate downloaded from Ken French data library at

Dartmouth. The results in Table 11a show the cyclical trend of the logarithmic stochastic

discount factor ln(m) based on consumption or services can explain more than 50% of the

fluctuations in the GDP growth and the noise part of the logarithmic stochastic discount

factor based on the consumption (services) can explain an additional 35% (14%) of the

fluctuations in the GDP growth.

In contrast, the cyclical trend of the logarithmic stochastic discount factor based on

consumption and services can explain about 21 percent and 20percent, respectively, of the

fluctuations in the excess return. On the other hand, the cyclical trend of the logarithmic

stochastic discount factor based on consumption (services) can explain about twice that

number, with more than 45% (41%) of the fluctuations in the cyclical trend of the excess

return. The logarithmic stochastic discount factor, either in its cyclical trend or in its

noise part, based on consumption or services, can explain the noise (fBm) part of the

excess return by no more than 3%. Thus, 13.58% standard deviation of the excess return

18It took 202 recursive applications of the HP filter to obtain the fBm with H close to 0.5 for the S&P

500 Index. This number is used to obtain the cyclical trend and noise part of the excess return under the

HP filter.
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in its noise (fBm) part, of 16.41% in total, is left largely unexplained by the logarithmic

stochastic discount factor ln(m) under the consumption-based asset pricing model (Table

11b). This result may explain the low correlation (around 11 percent, as shown in Table

11a) between the secular trend of the excess return and the cyclical trends of the stochastic

discount factors.

Table 11b. Annualized mean and standard deviation (STD) of cyclical trend, cyclical

noise, excess return, and GDP growth rate, quarterly data 1947q2 to 2013q4

mean STD mean STD

Cyclical Re 0.04 6.33 Cyclical Re 0.05 13.58

Trend C 0.00 0.73 Noise C 0.00 1.26

Gd 0.00 1.18 Gd 0.00 2.21

Dgd 0.00 2.73 Dgd 0.00 6.16

S 0.00 0.41 S 0.00 0.69

Excess Return Re 7.99 16.41 Secular Trend Re 7.92 2.90

GDP Growth Rate 3.23 1.94

Furthermore, Table 11 provides evidence for why the consumption-based asset pricing

model

0 = Et[R
e
t+1β(

ct+1

ct
)−α]

fails empirically in the long run: The stochastic discount factor based on consumption or

services has volatility (with a small α; Table 11b) and correlation with the excess return

(Table 11a) that are too low. Because the cyclical trend and the noise component of the

excess returns both have means close to zero, the positive excess returns for those who

conduct a buy-and-hold strategy solely driven by the long-term or secular trend, which

awards those investors who can tolerate the macroeconomic risk and the risk associated

with the noise part. Such an investor has been awarded with quarterly excess returns for

holding equity from 1926q3 to 2014q2, at an annualized rate of 8.56% and standard devi-

ation of 3.22% (not included in Table 11b). An investor using the buy-and-hold strategy

for the period 1947q2-2013q4 has been awarded with excess return at mean of 7.92% and

standard deviation of 2.90% (Table 11b). To earn those returns, investors often must have

an unbinding budget constraint because they must hold cash or be capable of borrowing
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beyond the Fama-French benchmark portfolio to prepare for smoothing their consump-

tion. Otherwise, investors must sell assets in the portfolio to smooth their consumption

during economic slumps like the Great Depression and recessions, and then they can no

longer use their buy-and-hold strategy. Thus, the above Euler equation may not apply to

those investors aiming at a long-term return with the passive buy-and-hold strategy.

4 Conclusions

Using the HP filter recursively to extract the cyclical component of real aggregates,

we find the cyclical trends of many real aggregates have a bubble-like expansion and a

crash-like contraction in the business cycle frequencies as well, a phenomenon similar to

that observed in the seasonal cycle, which itself is not stable and evolves across time.

In line with Robert Barsky and Jeffrey Miron (1989), we find preference shifts and

production synergy appear to be two major forces for the seasonal cycle. On the other

hand, we find the time-varying stochastic discount factor is the main cause of the business

cycle and plays a more important role in macroeconomic fluctuations in the business cycle

frequencies than other factors. These macroeconomic fluctuations are, in fact, the excess

volatility of real economic activities. The force of the formation of such a process is likely

because of the mean-reverting process around the secular trend.

By analyzing the relationship between the cyclical trend in consumption and the

stochastic discount factor, we show the intertemporal marginal rate of substitution or

the stochastic discount factor has a time-varying cyclical trend, with a pattern of bubbles

and crashes around its conditional mean, largely occurring near NBER recessions. We

conclude from the pattern that the time-varying stochastic discount factor should be a

major force causing macroeconomic fluctuations in business cycle frequencies, in line with

the excess volatility literature on the equity market.

By studying the relationship between the equity market and the GDP, we show that

the equity market in its cyclical trend is far more volatile than its underlying fundamentals

are. Furthermore, the low covariance between the fractional Brownian motion of the GDP

and the S&P 500 should be evaluated in light of the fact that prices in equity market

change by seconds while prices in the real economy may not change for weeks or even

months. Nonetheless, the relatively high covariance between the two variables in their
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cyclical trends indicates the real economy and the equity market move together at lower

frequencies. Our study provides a reply to Morgan Housel (2014).

As a policy implication of this study, reducing macroeconomic fluctuations does not

always cause an increase in the social welfare in the long run. A more volatile economy im-

plies a faster replacement of less productive workers with more productive ones. Seasonal

variations accomplish this replacement process at a higher and more regular frequency

than does the business cycle. Accordingly, seasonal and business cycle variations are not

always bad for the economy in the long run. An interesting issue not explored in this

paper is the precise balance between seasonal and business cycle variations and long-term

economic growth.

46



References

[1] Philippe Aghion, Peter Howitt (1992). A model of growth through creative destruction.

Econometrica, 60 (2), 323-351.

[2] Ravi Bansal, Amir Yaron (2004). Risks for the long run: A potential resolution of asset

pricing puzzles. Journal of Finance, 59(4), 1481−1509.

[3] Robert B. Barsky, Jeffrey A. Miron (1989). The seasonal cycle and the business cycle. Journal

of Political Economy, 97, 503−534.

[4] Susanto Basu, John Fernald (2001). Why is productivity procyclical? Why do we care? in

New Developments in Productivity Analysis edited by Charles R. Hulten, Edward R. Dean

and Michael J. Harper, Unversity of Chicago Press.

[5] Joseph J. Beaulieu, Jeffrey K. MacKie-Mason, and Jeffrey A. Miron (1992). Why do countries

and industries with large seasonal cycles also have large business cycles? Quarterly Journal

of Economics, 107, 621−656.

[6] Stephen Beveridge, Charles R. Nelson (1981). A new approach to decomposition of eco-

nomic time series into permanent and transitory components with particular attention to

measurement of the business cycle. Journal of Monetary Economics, 7, 151−74.

[7] Olivier Blanchard, John Simon (2001). The long and large decline in U.S. output volatility.

Brookings Papers on Economic Activity, 1, 135−64.

[8] John Y. Campbell, John H. Cochrane (2000). Explaining the poor performance of

consumption-based asset pricing models. Journal of Finance, 55(6), 2863−2878.

[9] John Y. Campbell, N. Gregory Mankiw (1987). Are output fluctuations transitory? Quar-

terly Journal of Economics, 102, 857−880.

[10] Fabio Canova (1998). Detrending and business cycle facts. Journal of Monetary Economics,

41, 475−512.

[11] Fabio Canova, Eric Ghysels (1994). Changes in seasonal patterns: are they cyclical? Journal

of Economic Dynamics and Control, 18, 1143−1171.

[12] Erik Canton, Harald Uhlig (1999). Growth and the cycle: Creative destruction versus en-

trenchment. Journal of Economics (Zeitschrift für Nationalökonomie), 69(3), 239-266.

[13] Peter K. Clark (1987). The cycle component of the U.S. economic activity. Quarterly Journal

of Economics, 102, 797−814.

47



[14] William P. Cleveland, and Stuart Scott (2007). Seasonal adjustment of weekly time series

with application to unemployment insurance claims and steel production. Journal of Official

Statistics, 23, 209−221.

[15] John H. Cochrane (1988). How big is the random walk in GNP? Journal of Political Econ-

omy, 96, 893−920.

[16] John H. Cochrane (1991). A critique of the application of unit root tests. Journal of Eco-

nomic Dynamics and Control, 15, 275−284.

[17] John H. Cochrane (1994). Permanent and transitory components of GNP and stock prices.

Quarterly Journal of Economics, 109, 241−265.

[18] John H. Cochrane (2006). Financial markets and the real economy. Working paper, Graduate

School of Business University of Chicago.

[19] John H. Cochrane, Lars Peter Hansen (1992). Asset pricing lessons for macroeconomics,

in NBER Macroeconomics Annual, vol.7, edited by Olivier Blanchard and Stanley Fischer.

MIT Press, Cambridge, MA, pp.115-182.

[20] Jean-Francois Coeurjolly (2001). Estimating the parameters of a fractional Brownian mo-

tion by discrete variations of its sample paths[J]. Statistical Inference for Stochastic Pro-

cesses, 4(2), 199−227.

[21] Francis X. Diebold, Glenn D. Rudebusch (1989). Long memory and persistence in aggregate

output. Journal of Monetary Economics, 24, 189−209.

[22] Ton Dieker (2004). Simulation of fractional Brownian motion. Thesis. Department of Math-

ematical Sciences, University of Twente, Netherlands.

[23] Patrick Flandrin (1992). Wavelet analysis and synthesis of fractional Brownian motion. IEEE

Trans. on Inf. Th., 38, 910−917.

[24] Milton Friedman (1993). The “plucking model” of business fluctuations revisited. Economic

Inquiry, 31, 171−177.

[25] Curtis F. Gerald, Patrick O. Wheatley (1994). Applied numerical analysis, Addison-Wesley,

Boston, MA.

[26] Clive W. J. Granger (1980). Long memory relationships and the aggregation of dynamic

models. Journal of Econometrics, 14, 277−238.

[27] Andrew C. Harvey (1985). Trends and cycles in macroeconomic time series. Journal of

Business and Economic Statistics, 3, 216−227.

48



[28] Irma Hindrayanto, Jan P.A.M. Jacobs, Denis R. Osborn (2014). On trend cycle seasonal

interactions. DNB working paper 417.

[29] Robert Hodrick; Edward C. Prescott (1997). Postwar U.S. business cycles: An empirical

investigation. Journal of Money, Credit, and Banking, 29 (1), 1−16.

[30] Morgan Housel (2014). “Growing Economy Doesn’t Guarantee Stock Gains−Most Economic

Indicators Have Little Value in Predicting the Markets Future Course.” The Wall Street

Journal, November 7.

[31] Jacques Istas, Gabriel Lang (1997). Quadratic variations and estimation of the local Hölder
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5 Appendix (for referees and web version, not for publica-

tion)

In this appendix, we introduce the methodology used to study a number of aggregate

variables in this paper. We first introduce a popular estimation method for Hurst pa-

rameter H of a fBm. Then, we introduce how we get the cyclical trend by recursively

using the HP filter. Finally, we introduce the cubic spline interpolation and explain why

we can use the approach to decompose a cyclical trend into three components. Such a

decomposition is useful because a cyclical trend that appears to be lagging can become a

leading indicator, as shown numerous times in the present paper.

5.1 Estimation of Hurst Parameter H

Let [0, T ] be a time interval for some T ∈ (0,∞). An aggregate variable {Yt}t∈[0,T ] of

an economy is a stochastic process on a probability space (Σ,A, P ) such that the following

decomposition holds,

Yt = τt + ct

where {τt} is the smooth trend and {ct} is the cyclical component. One common way to

model {ct} is to use a fractional ARIMA(p, d, q) process. For a long-range dependence

process, it is equivalent and easier to model the process with a fBm for H = 1
2 + d (Ton

Dieker 2004). Thus, {ct} can be expressed19 by ct = σBH
t , where {BH

t } is a factional

Brownian motion (fBm) with Hurst parameter 0 < H < 1, a continuous Gaussian process

{BH
t }t∈(0,∞) that has expectation zero and whose covariance satisfies

Cov(BH
t , BH

s ) =
1

2
(|t|2H + |s|2H − |t− s|2H), t, s ∈ R.

For H = 1
2 , {B

H
t } is a standard Brownian motion. A fBm has a positive (negative)

correlation of two non-overlapping increments if H > 1
2 (H < 1

2). For H > 1
2 (12 > H), a

19The path-wise solution to dXt

Xt

= σdBH

t is given by ln(Xt) − ln(X0) = σBH

t , where BH

0 = 0 (Tommi

Sottinen 2001). The generalized solution is given by ln(Xt)− ln(X0) = −σ
2

2
t2H + σBH

t . For the S&P500

index, as revealed in the paper, it is possible to do arbitrage using the cyclical trend. An explicit strategy

of doing arbitrage is given by Tommi Sottinen (2001). But the generalized solution is arbitrage-free and

complete, indicating the path-wise solution may be a better choice for modeling {ct} when it is a long-range

dependence process. Post-war aggregates are found to have long-range dependence characterizations in

their cyclical components.
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fBm is a long-range dependence (short-term dependence) process. A fBm has stationary

increments and is H−self-similar: For all a > 0, {BH
at} and {aHBH

t } have the same

distribution.

There are many ways to estimate Hurst parameter H. We introduce a popular dis-

crete variations method to estimate H. Our introduction follows Jean-Francois Coeurjolly

(2001) closely. We start with the standard fBm {BH
t }t∈[0,1], with BH

0 = 0. Let {BH(k)}

be a sample of size N at k ∈ {0, 1
N
, · · · , N−1

N
}. A filter a, of length l + 1 and order p ≥ 1,

is an l + 1-dimensional vector with real components aj , j = 0, 1, · · · , l, such that

l
∑

j=0

jraj = 0

l
∑

j=0

jpaj 6= 0, for all 0 ≤ r < p.

To any such filter a, define a discrete time series V a(j), j = 0, · · · , 1− 1
N
, by

V a(j) =

l
∑

q=0

aqB
H(j −

q

N
), j = 0, 1, · · · , 1−

1

N

where BH(i), i = 0, 1, · · · , 1− 1
N

is a sample path of BH at i = 0, 1, · · · , 1− 1
N

in discrete

time.

Let πa
H denote the covariance function of the series {V a}. Then, for i ∈ Z

πa
H(i) = E(V a(

i

N
)V a(

j + i

N
)) = −

1

2

l
∑

q,r=0

aqar|q − r + i|2H .

By the stationarity, for the second moment under a discrete variations method, we have

E(Sa
N ) =

1

N2H
πa
H(0)E2

where

Sa
N =

1

N − l

N−1
∑

j=l

(V a(
j

N
))2

and E2 = 2Γ(52)Γ(
1
2).

Let gaN (t) = 1
N2tπ

a
H(0)E2. Consider the estimator

Ĥa
N = g−1(Sa

N ).

Then Ĥa
N → H a.s. as N → ∞ for any filter a with p ≥ 1 (Proposition 2, Jean-Francois

Coeurjolly 2001).

52



Because ct is not a pure fBm, a scale coefficient σ matters. We need to define the data

vector by D(j) = σBH( j
N
) for j = 0, 1, · · · , N − 1. Define a new filter am by amj = ai for

j = im and amj = 0, otherwise. The second moment is given by

SH
N (am) =

1

N −ml

N−1
∑

j=l

|V am(
j

N
)|2

where V am = am ∗ D. Considering that ESH
N (am) = m2H

E(SH
N (a)), the logarithm of

E(SH
N (am)) is linear in H. Then we can run a regression to obtain H (Jean-Francois

Coeurjolly 2001).

During the process to decompose the cyclical component ct into a cyclical trend and a

fBm with H = 0.5, we have to estimate H many times. We choose to model ct as a fBm

process because it is easier to estimate H than d.

5.2 Recursive Applications of HP filter

In general, the cyclical component {ct} is a long-memory stochastic process with Hurst

parameter H > 1
2 for post-war aggregates, such as the GDP and the S&P 500 Index (i.e.,

the cyclical component is an I(d) process with d > 0). We provide a simple application

of the HP filter to decompose {ct} into a cyclical trend {ηt} and a fBm with the Hurst

parameter H ≃ 1
2 . The procedure is to apply the HP filter recursively to the cyclical part

for a number of rounds, k, so that the cyclical part at k has Hurst parameter H ≃ 1
2

with some small error bound close to zero. That is, we can run the HP filter against ct

to get c = τ(1) + c(1), c(1) = τ(2) + c(2), · · · , c(k − 1) = τ(k) + c(k), with some finite k

(Figure 13). The procedure stops with c(k) which has the Hurst parameter closest to 1
2 .

At each step, we need to estimate Hurst parameter H, as given above. Then, we define the

cyclical trend η of c by η = c− c(k) =
∑k

q=1 τ(q). Note that if this procedure is operated

as k → ∞, then η = c.

This recursive procedure extracts the low frequency signal of each cyclical component.

The stochastic trend is the sum of all these low frequency signals that have contributed to

the long-range dependence of the process c. Figures 14a and 14b show how this procedure

has changed the periodogram of the cyclical component of the quarterly S&P 500 after

four rounds. The cyclical trend η obtained by the recursive procedure cannot be found by

choosing a single λ for the HP filter no matter what λ > 0 is set at.
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5.3 Three-part Decomposition

Let [xi, yi] be a table of observations for i = 0, 1, · · · , N , with xi =
i
N

and h = 1
N
. We

want to find a curve y = f(x) to fit these points in discrete time, which has been normalized

to [0, 1]. The cubic spline interpolation is a piecewise continuous curve, passing through

these points (Curtis Gerald and Patrick Wheatley 1994; Sky McKinley and Megan Levine

1998). The polynomial segments are denoted by S(x):

Si(x) = ai(x−xi)
3+bi(x−xi)

2+ci(x−xi)+di, for x ∈ [xi, xi+1] and i = 1, 2 · · · , N − 1.

These coefficients a to d satisfy

ai =
Mi+1 −Mi

6h
(5.1)

bi = =
Mi

2
(5.2)

ci =
yi+1 − yi

h
− h

(2Mi +Mi+1)

6
(5.3)

di = yi (5.4)

where Mi satisfies the following
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Our major observation is that the cubic spline interpolation fits our cyclical trend η

very well, with errors about 10−14. Thus, we have

yi+1 = aih
3 + bih

2 + cih+ yi, i = 1, 2, · · · , N − 1.

Therefore, with the help of this spline interpolation, we get three-part decomposition of

(1−B)y:

(1−B)y = Component a + Component b + Component c.
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This result should not be a surprise because the HP filter itself follows a spline approach.

What is surprising is that, across all cyclical trends investigated in this paper, we find

Component c dominates the other two components. Moreover, Component b is a leading

indicator, and Component a operates against Component c. Even though y may be

lagging, (1 − B)y is a leading indicator because Component c is. Notice that this three-

part decomposition is not reported in the present paper for some indicators.
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