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DOUBLY STRONG EQUILIBRIUM

VINCENZO SCALZO

Abstract. We present a new concept for (generalized) strategic form games,
called doubly strong equilibrium, and give an existence result when the players
have non-ordered and discontinuous preferences. Since a doubly strong equilib-
rium is a strong equilibrium in the sense of Aumann, we get the existence of strong
equilibria in discontinuous games. The result has been obtained by using the quasi-
Ky Fan minimax inequality. Applications to exchange economies are given. We
prove the existence of doubly strong allocations, which maximize consumers’ pref-
erences on the set of feasible allocations. The doubly strong allocations belong to
the core of the economy. When consumers’ preferences are selfish, we have that
the doubly strong allocations are fair in the sense of Schmeidler and Yaari. So, we
get the existence of fair allocations in the setting of non-ordered and discontinuous
preferences.

Keywords. Generalized games.Discontinuous and non-ordered preferences. Dou-
bly strong equilibrium. Quasi-Ky Fan minimax inequality. Exchange economies.
Core allocations. Fair allocations.

1. Introduction

Consider a strategic form game where the players have non-necessarily complete

and transitive preference relations defined on the set of strategy profiles (non-ordered

preferences). If cooperation among the players is assumed, the strategy profiles

that are not refused by any coalition of players get a particular interest. In this

framework, Aumann (1959, 1961) introduced the strong equilibrium and the alpha-

core. A strong equilibrium is a strategy profile x∗ for which no coalition S of players

has a joint deviation xS such that the strategy profile (xS, x
∗
−S) is preferred to x∗

for all members of S. A strategy profile x belongs to the alpha-core if it is not true

that there exists a coalition S and xS such that, for every reaction z−S of the other

players, each member of S prefers (xS, z−S) to x. General results on the existence

of strong equilibria have been proved for games where, among other properties,

players’ preferences are represented by continuous and concave utility functions: see

Ichiishi (1981), Nessah and Tian (2014) and references therein. With respect to these

results, the conditions which guarantee the non-emptiness of the alpha-core are less

restrictive: see Scarf (1971) and Uyanik (2015) for games with payoff functions and

Border (1984) and Kajii (1992) for non-ordered preferences.

Concerning the existence of strong equilibria, the mentioned papers do not apply to
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many situations of interest in economics, where the players have either discontinuous

payoff functions or non-ordered preferences.1

A strong equilibrium of a game is not necessarily the best situation that the

players can obtain: a strategy profile which is the maximal element of every player’s

preference is better. We call doubly strong equilibrium such a strategy profile. A

doubly strong equilibrium is a strong equilibrium, but there are strong equilibria

which are not doubly strong (an example is shown in a following section).

Our aim is to investigate the existence of doubly strong equilibria in generalized

games where, denoted by X the set of strategy profiles, the feasible strategies are

given by means of a mapping K : X ⇒ X.2 If Pi(x) ⊆ X is the subset of strat-

egy profiles that player i strictly prefers to x, we say that an element x∗ ∈ X is

a doubly strong equilibrium if x∗ ∈ K(x∗) and Pi(x
∗) ∩ K(x∗) = ∅ for each player

i. In order to identify sufficient conditions which guarantee the existence of dou-

bly strong equilibria, we follow a recent paper on the existence of Nash equilibria

in games with discontinuous and non-ordered preferences.3 In particular, given a

generalized game G with non-ordered preferences, we define a real-valued function

ΘG such that the doubly strong equilibria of G coincide with the solutions to the so-

called quasi-Ky Fan minimax inequality : (q-KF) find x∗ ∈ X such that x∗ ∈ K(x∗)

and ΘG(x, x
∗) ≤ 0 for all x ∈ K(x∗). We identify new sufficient conditions for the

existence of solutions to (q-KF). So, we give properties on G that allow the function

ΘG and mapping K to satisfy these conditions.

The properties that we introduce are the generalized deviation property and the uni-

form quasi-concavity. The first one requires that, if a strategy profile z is not a dou-

bly strong equilibrium, there exists an upper semicontinuous mapping ξz defined on

an open neighborhoodOz of z such that, for every z′ ∈ Oz\{doubly strong equilibria},

one has ξz(z
′) ⊆ K(z′) and, for every x′ ∈ ξz(z

′), at least one player ranks x′ to be

better than z′. This property is a generalization of the single deviation property

introduced by Nessah and Tian (2008) and Reny (2009) in order to investigate the

existence of Nash equilibria in discontinuous games.4 Let us remark that the single

1We refer to the economic examples which have been the source of inspiration for the literature
on discontinuous games: afterwards the early papers by Dasgupta and Maskin (1986), Baye et
al. (1993), Simon and Zame (1990), Reny (1999), among the others, see Bagh and Jofre (2006),
Carmona (2009), Bagh (2010), Mc Lennan et al. (2011), Reny (2011, 2016), Barelli and Meneghel
(2013), Prokopovych (2013, 2016), Scalzo (2013, 2019a,b), Carmona and Podczeck (2014, 2016,
2018), He and Yannelis (2015, 2016), Nassah and Tian (2016).

2For instance, suppose a standard situation in games where the setKi(x−i) of available strategies
of player i depends on the choices x−i of the other players. So, if N denotes the set of players,
K(x) =

∏
i∈N

Ki(x−i) is the set of feasible strategy profiles when x ∈ X is given.
3Scalzo (2019a).
4See also Nessah and Tian (2016) and Reny (2016).
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deviation property is not enough to guarantee the existence of Nash equilibria in

games which satisfy the standard quasi-concavity properties: see Reny (2009) and

Scalzo (2019a). However, Nessah and Tian (2016) identified a new quasi-concavity

property which characterizes the existence of Nash equilibria in games satisfying

the single deviation property; see also Scalzo 2019a, where this new property has

been called transfer uniform quasi-concavity. The uniform quasi-concavity here in-

troduced strengthens the transfer uniform quasi-concavity. A generalized game is

uniformly quasi-concave if, given a finite subset A of strategy profiles, for each strict

convex combinations z of all elements of A, all players are uniform in identifying

x ∈ A so that no one ranks x to be better than z. This property implies the following

one, which is a standard condition in games and exchange economies: x does not

belong to the convex hull of Pi(x), for each i and for each x. Let us note that the uni-

form quasi-concavity and the generalized deviation property hold in discontinuous

games.

When K(x) = X for all x ∈ X, as a corollary of our result, we obtain the

existence of strong equilibria in the setting of games with discontinuous and non-

ordered preferences. We show that the result of the present paper is different from

a recent one, where necessary and sufficient conditions for the existence of strong

equilibria have been given (see Scalzo 2019c).

We apply our result to exchange economies with a finite number of consumers and

non-ordered preferences. Economies where the consumers’ preferences are interde-

pendent (for example, economies with externalities) or selfish are considered. In the

setting of discontinuous preference relations, we obtain the existence of feasible al-

locations x∗ such that there are no consumers which strictly prefer other allocations

to x∗. Such an element x∗ is called doubly strong allocation. In particular, given an

economy E , we define a generalized game G so that the set of doubly strong alloca-

tions of E coincides with the set of doubly strong equilibria of G. So, we introduce

the generalized deviation property and the uniform quasi-concavity on E .

Doubly strong allocations belong to the core of the economy. More precisely, if the

preferences of consumers are interdependent, a doubly strong allocation x∗ have the

following property: (αY ) it is not possible that a coalition S of consumers can re-

distribute their initial endowments in a way xS such that all members of S strictly

prefer (xS, z−S) to x∗, for every redistribution z−S of the endowments of the oth-

ers consumers. Property (αY ) has been introduced by Yannelis (1991), and the set

of feasible allocations which satisfy (αY ) is Yannelis’ alpha-core. We obtain the

non-emptiness of Yannelis’ alpha-core in economies with a finite number n ≥ 2 of

consumers and preferences with non necessarily open lower sections (the result given
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by Yannelis 1991 holds in economies with 2 consumers and preferences with open

lower sections). When the preferences of consumers are selfish, the doubly strong

allocations belongs to the standard core of the economy; so, we obtain the non-

emptiness of the core in discontinuous preferences case. It is interesting to note that

the doubly strong allocations are fair, that is: they are Pareto optimal and envy-

free (see Foley 1967, Schmeidler and Yaari 1971). So, our result allows to obtain

the existence of fair allocations in economies where the commodities can be infinite-

dimensional and the consumers’ preferences can be non-ordered and discontinuous,

differently from the previous literature (see Varian 1974, Svensson 1983, Thomson

2007).

The paper is organized as follows. Section 2 introduces the quasi-Ky Fan minimax

inequality and gives new sufficient conditions for the existence of solutions. The

doubly strong equilibrium is presented in Section 3, while Section 4 is devoted to

the existence of doubly strong equilibria in generalized games with discontinuous

and non-ordered preferences. The applications to exchange economies are given in

Section 5. Section 6 concludes the paper.

2. A mathematical tool: the quasi-Ky Fan minimax inequality

In this Section, we assume that X is a non-empty and convex subset of a metriz-

able subset of a locally convex Hausdorff topological vector space. Let Θ be a

real-valued function defined on X×X and let K be a mapping (set-valued function)

from X to X. The problem:

(q-KF)





find x∗ ∈ X such that

x∗ ∈ K(x∗) and

Θ(x, x∗) ≤ 0 ∀ x ∈ K(x∗) .

is the so-called quasi-Ky Fan minimax inequality. Element x∗ is a solution to the

inequality. We aim to provide very general conditions which guarantee the existence

of solutions. First, we need to recall some definitions and to give a preliminary

result.

Definition 1. (Scalzo 2013) The function Θ is said to be generalized 0-quasi-transfer

continuous if Θ(x, z) > 0 implies that there exists an open neighborhood Oz of z

and a well-behaved mapping ξ : Oz ⇒ X such that Θ(x′, z′) > 0 for all z′ ∈ Oz and

all x′ ∈ ξ(z′).5

5A well-behaved mapping is an upper semicontinuous set-valued function with non-empty, convex
and compact values.
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Definition 2. (Zhou and Chen 1988) The function Θ is said to be 0-diagonally

quasi-concave if, for every {x1, ..., xk} ⊂ X and for every z ∈ sco{x1, ..., xk}, there

exists x ∈ {x1, ..., xk} such that Θ(x, z) ≤ 0.6

Remark 1. When K(x) = X for all x ∈ X, the problem above is the classical Ky

Fan minimax inequality (Ky Fan 1972). The properties recalled in Definitions 1 and

2 allow the existence of solutions: see Scalzo (2013, Proposition 2).

Definition 3. (Scalzo 2015) A mapping F : W ⇒ X is said to be generalized transfer

open lower sections if F (z) 6= ∅ implies that there exists an open neighborhood Oz of

z and a well-behaved mapping ξz : Oz ⇒ X such that ξz(z
′) ⊆ F (z′) for all z′ ∈ Oz.

We need the following result (see the Appendix for the proof and comments).

Theorem 1. Let F : W ⇒ D be a generalized transfer open lower sections mapping

with non-empty and convex values. Assume that W is a paracompact subset of a

Hausdorff space and D is a convex and compact subset of a locally convex Hausdorff

topological vector space. Then, F admits a well-behaved selection, that is a well-

behaved mapping ξ defined on W such that ξ(z) ⊆ F (z) for all z ∈ W .7

Now, we can prove the existence of solutions to the inequality (q-KF) under general

assumptions.

Theorem 2. Assume that X is compact and:

i) Θ is 0-diagonally quasi-concave;

ii) K : X ⇒ X is well-behaved;

iii) the mapping F : X ⇒ X defined by F (z) = {x ∈ K(z) : Θ(x, z) > 0} for

each z ∈ X is generalized transfer open lower sections.

Then, the solution set to the inequality (q-KF) is non-empty and compact.

Proof. Define W = {z ∈ X : F (z) 6= ∅} and let z ∈ W . From assumption iii), for

some open neighborhood Oz of z and a well-behaved mapping ξz : Oz ⇒ X, we

get ∅ 6= ξz(z
′) ⊆ F (z′) for all z′ ∈ Oz. So, the open neighborhood Oz is included

in W , which proves that W is an open subset of a metrizable space. Then W is

paracompact (see Michael 1953). Now, consider the mapping T defined by T (z) =

coF (z) for each z ∈ W ; in the light of iii), one has that T is generalized transfer

6Given a finite subset A of a vector space, we denote by scoA the subset of strict convex
combinations of all elements of A.

7We recall that a set W is paracompact if every open covering C of W admits an open and locally
finite refinement U , that is: for each U ∈ U there is O ∈ C such that U ⊆ O, and for each z ∈ W

there is an open neighborhood of z which intersects only finitely many elements of U (see Michael
1953).
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open lower sections. So, Theorem 1 applies on T and we obtain the existence of a

well-behaved mapping ξ : W ⇒ X such that ξ(z) ⊆ T (z) for all z ∈ W . Define the

set-valued function Q : X ⇒ X as below:

Q(z) =

{
ξ(z) if z ∈ W

K(z) otherwise .

From assumption ii), we get thatQ is well-behaved and, in the light of Kakutani-Fan-

Glicksberg fixed point theorem, there exists at least one fixed point x∗ of Q. If x∗ ∈

W , we have x∗ ∈ T (x∗) = coF (x∗). So, x∗ ∈ sco{x1, ..., xk}, where {x1, ..., xk} ⊆

K(x∗) and Θ(xh, x∗) > 0 for h = 1, ..., k. But assumption i) implies that Θ(x, x∗) ≤ 0

for at least one x ∈ {x1, ..., xk}, and we get a contradiction. Hence, x∗ /∈ W , which

proves that x∗ is a solution to the inequality (q-KF). Finally, from iii) it follows that

the solution set to (q-KF) is a closed subset of the compact space X. This concludes

the proof. �

Remark 2. When K(z) = X for all z ∈ X, the mapping F is generalized transfer

open lower sections if and only if Θ is generalized 0-quasi-transfer continuous. So,

Theorem 2 includes Scalzo (2013, Proposition 2) as a special case. Moreover, in this

case, Θ is 0-diagonally quasi-concave if and only if z /∈ coF (z) for all z ∈ X.

Remark 3. Zhou and Chen (1988) and Tian and Zhou (1991) obtained the existence

of solutions to the inequality (q-KF) assuming that Θ(x, ·) is a lower semicontinuous

function. Castellani et al. (2018), in finite dimensional spaces, supposed that the

mapping F is lower semicontinuous on the set of fixed points of K. The following

example presents an inequality where the assumptions of Theorem 2 are satisfied,

but the conditions of the mentioned papers fail.

Example 1. Let Θ be the function defined on [0, 1]× [0, 1] as below:

Θ(x, z) =





0 if (x, z) ∈ [0, 1[×[0, 1/2[

1 if (x, z) ∈ {1} × [0, 1/2[

0 if (x, z) ∈ [0, 2/3[×{1/2}

1 if (x, z) ∈ [2/3, 1]× {1/2}

0 if (x, z) ∈ [0, 1]×]1/2, 1]

and K(z) = [0, 1] for all z ∈ [0, 1]. The mapping F defined by iii) of Theorem 2 is

the following one:

F (z) =





{1} if z ∈ [0, 1/2[

[2/3, 1] if z = 1/2

∅ otherwise .
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F is generalized transfer open lower sections and z /∈ coF (z) for each z ∈ [0, 1],

which means that Θ is 0-diagonally quasi-concave (see Remark 2). So, all the as-

sumptions of Theorem 2 are met. On the other hand, it is clear that F is not lower

semicontinuous on the set of fixed points of K (which coincides with [0, 1]): more

precisely, F is not lower semicontinuous at z = 1/2. Moreover, Θ(2/3, ·) is not lower

semicontinuous at z = 1/2. Hence, the results from Zhou and Chen (1988), Tian

and Zhou (1991) and Castellani et al. (2018) do not apply.

3. Doubly strong equilibrium in generalized games

Let N be a finite set of players and, for each i ∈ N , assume that Xi is a

(non-empty) convex and compact subset of a metrizable subset of a locally con-

vex Hausdorff topological vector space. For every i ∈ N , let Pi be a mapping from

X =
∏

j∈N Xj to X; Pi(x) is the set of strategy profiles that player i strictly prefers

to x. For each x ∈ X, we denote by K(x) the set of strategy profiles which become

feasible to the players when x is chosen; let K be the mapping x ∈ X −→ K(x).

We call generalized game with non-ordered preferences (in short generalized game)

the list G = 〈Xi, K, Pi〉i∈N . When K(x) = X for all x ∈ X, G is a game with non-

ordered preferences (in short game). Assume that the players cooperate in order to

reach agreements on the strategy profiles. Every non-empty subset of N is called

coalition; given a coalition S, a strategy profile x is also denoted by x = (xS, x−S),

where xS ∈ XS =
∏

i∈S Xi and x−S ∈ X−S =
∏

j /∈S Xj.

Let us consider games. Because of the cooperation, the strategy profiles which

cannot be refused (blocked) by any coalition get a particular interest. Aumann

(1959) and (1961) proposed, respectively, the strong equilibrium and the alpha-core:

- a strategy profile x∗ is said to be a strong equilibrium if there are no coalitions

S and xS ∈ XS such that (xS, x
∗
−S) ∈ Pi(x

∗) for all i ∈ S;

- a strategy profile x∗ belongs to the alpha-core if there are no coalitions S

and xS ∈ XS such that (xS, z−S) ∈ Pi(x
∗) for all i ∈ S and all z−S ∈ X−S.

The early literature on the existence of strong equilibria and non-emptiness of the

alpha-core concerns games with continuous preferences; more precisely, preferences

endowed with continuous utility functions in Ichiishi (1981) - also in Nessah and

Tian (2014) - and open graph preferences in Kajii (1992). About the strong equi-

librium, we note that the previous results have been given only for normal form

games.8 However, discontinuities in games arise in several remarkable economic sit-

uations such as the oligopolies of Bertrand (1883) and Hotelling (1929). Moreover,

8We recall that in a normal form game the mappings Pi are given by means of the payoff
functions ui, and Pi(z) = {x ∈ X : ui(x) > ui(z)}.
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there are oligopolies where the players have discontinuous utility functions and the

set of strong equilibria, as well as the alpha-core, is non-empty: among the others,

see Baye, Tian and Zhou (Example 1, 1993) and Uyanik (Example 1, 2015). The

paper by Uyanik (2015) introduces sufficient conditions for the non-emptiness of the

alpha-core in the setting of discontinuous normal form games with finite dimensional

Euclidean spaces of strategies. More recently, in infinite dimensional spaces, neces-

sary and sufficient conditions for the existence of strong equilibria have been given

for games where discontinuous and non-ordered preferences are allowed: see Scalzo

(2019c).

The definitions of strong equilibrium and alpha-core do not require that Pi(x
∗) = ∅

for all i ∈ N ; in other words, a game can have strong equilibria, as well as alpha-

core elements, even if none of these strategy profiles is a maximal elements of all

players’ preferences.9 For instance, consider the 2-player normal form game where

X1 = X2 = [−1, 1], u1(x1, x2) = 3x1 − x2
2 +4x2 and u2(x1, x2) = −x2

1 + x1 − 2x2 (see

Nessah and Tian 2014, Example 4.1); note that u1 and u2 are continuous functions.

The strategy profile (1,−1) is a strong equilibrium but P1(1,−1) 6= ∅. On the other

hand, it is clear that if Pi(x
∗) = ∅ for all i ∈ N , then x∗ is a strong equilibrium.

So, it would be interesting to find reasonable conditions which guarantee the exis-

tence of a strategy profile satisfying all the players, in the sense that it is a maximal

element on the set of feasible strategies for everyone. Note that such elements exist

even in discontinuous oligopolies, such as that presented by Baye, Tian and Zhou

(1993, Example 1) (see the following Example 4).

Our aim is to identify a class of generalized games, with possibly discontinuous and

non-ordered preferences, where such kind of elements exist. First, we formalize these

elements in the following definition.

Definition 4. Let G = 〈Xi, K, Pi〉i∈N be a generalized games. A strategy profile x∗

is said to be a doubly strong equilibrium of G if x∗ ∈ K(x∗) and Pi(x
∗) ∩K(x∗) = ∅

for each i ∈ N . SG denotes the set of doubly strong equilibria of G.

4. Existence of doubly strong equilibria

Given a generalized game G = 〈Xi, K, Pi〉i∈N , for every i ∈ N , let Xi be a convex

and compact subset of a metrizable subset of a locally convex Hausdorff topological

vector space. We set P̂i(x, z) = 1 if x ∈ Pi(z) and P̂i(x, z) = 0 otherwise and define

9Given an asymmetric preference relation ≻ (strict preference) on X, define the mapping P :
X ⇒ X by P (z) = {x ∈ X : x ≻ z}. We recall that x∗ ∈ X is said to be a maximal element of ≻
if P (x∗) = ∅.
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the real-valued function ΘG as below:

(1) ΘG(x, z) =
∑

i∈N

P̂i(x, z) for all (x, z) ∈ X ×X .

It is easy to see that a strategy profile x∗ is a doubly strong equilibrium of G if

and only if x∗ is a solution to the inequality (q-KF) corresponding to the function

ΘG defined by (1) and the mapping K. So, in order to obtain the existence of

doubly strong equilibria, we identify conditions on G which allow the function ΘG

and the mapping K to satisfy the assumptions of Theorem 2. We give the following

definitions.

Definition 5. We say that G is uniformly quasi-concave if, for each {x1, ..., xk} ⊂ X

and each z ∈ sco{x1, ..., xk}, there exists x ∈ {x1, ..., xk} such that x /∈ Pi(z) for all

i ∈ N .

The uniform quasi-concavity holds in discontinuous generalized games, as the fol-

lowing example shows.

Example 2. Consider the normal form game G where Xi = [0, 1], with i = 1, 2,

ui(xi, x−i) = 1 if xi > x−i, ui(xi, x−i) = 0 if xi < x−i, ui(xi, x−i) = 1 if xi = x−i > 0

and ui(0, 0) = 0. We have Pi(x) = {z ∈ X : zi ≥ z−i}\{(0, 0)} if xi < x−i, Pi(x) = ∅

if xi ≥ x−i > 0 and Pi(0, 0) = {z ∈ X : zi ≥ z−i > 0}. The mapping K is constant-

valued and K(x) = [0, 1]× [0, 1]. Note that SG = {x ∈ X : x1 = x2 > 0}.

This situation can interpreted as two individuals that make bids in order to obtain

a facility, which is allocated to both of them, if the bids coincide and are non-zero,

or to the individual whose bid is greater.10

We prove that G is uniformly quasi-concave. We proceed by contradiction: assume

that, for some z ∈ sco{x1, ..., xk} and for each xh ∈ {x1, ..., xk}, there is a player ih

for whom xh ∈ Pih(z). This implies that: a) z ∈ sco
⋃

i=1,2 Pi(z). But, if zi > z−i,

we have sco
⋃

j=1,2 Pj(z) = {z′ ∈ X : z′−i ≥ z′i}\{(0, 0)}. If zi = z−i > 0, we have

sco
⋃

j=1,2 Pj(z) = ∅, and sco
⋃

j=1,2 Pj(0, 0) = sco
⋃

j=1,2{z
′ ∈ X : z′j ≥ z′−j > 0}.

In all cases we get z /∈ sco
⋃

i=1,2 Pi(z), which contradicts a). This proves that G is

uniformly quasi-concave.

Another case of preference relations satisfying the uniform quasi-concavity property

is given below.

Example 3. Consider two individuals that choose alternatives in R
2
+ through the

preference relations given below:

P1(x) =
{
z ∈ R

2
+ : min{z1, z2} > min{x1, x2}

}
and P2(x) = x+R

2
++ for all x ∈ R

2
+ .11

10A generalization of this game has been investigated by Reny (1999, Example 5.2).
11
R

2
++ denotes the interior of R2

+.
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These preferences are well known in the literature: in particular, P1 defines the

asymmetric part of Leontief’s order. One has that P2(x) ⊂ P1(x) and P1(x) is

convex for each x ∈ R
2
+. Using the arguments of Example 2, we obtain that P1 and

P2 satisfy the uniform quasi-concavity property.

It is easy to check the proposition below.

Proposition 1. A generalized game G is uniformly quasi-concave if and only if the

function ΘG defined by (1) is 0-diagonally quasi-concave.

The following definition introduces the other property we need for the doubly strong

equilibrium existence result.

Definition 6. We say that G satisfies the generalized deviation property if z /∈ SG

implies that there exists an open neighborhood Oz of z and a well-behaved mapping

ξz : Oz ⇒ X such that: i) ξz(z
′) ⊆ K(z′) for each z′ ∈ Oz\SG; ii) for each

z′ ∈ Oz\SG and for each x′ ∈ ξz(z
′), there is a player i for whom x′ ∈ Pi(z

′).

The game presented in Example 2 (as well as any game obtained with the preferences

given in Example 3) satisfies the generalized deviation property. Indeed, given an

open neighborhood Oz of z /∈ SG, it is sufficient to set ξz(z
′) = {(1, 1)} for all

z′ ∈ Oz (when z = (0, 0), the player who profitably deviates depends on z′) An

other situation satisfying the generalized deviation property is the following one

(see Baye, Tian and Zhou 1993, Example 1).

Example 4. Two individuals sell the same good in a market and set prices in [0, T ].

The profit functions are the following ones, where i ∈ {1, 2}: ui(xi, x−i) = xi if

xi ≤ x−i and ui(xi, x−i) = xi − c otherwise, where c ∈]0, T [ - we assume K(x) =

[0, T ]×[0, T ] for all x ∈ [0, T ]×[0, T ] and Pi(x) = {z ∈ [0, T ]×[0, T ] : ui(z) > ui(x)}.

In this situation, the individual that fixes the higher price has to pay a tax (namely

c) in order to remain in the market. We have SG = {(1, 1)}. Let z 6= (1, 1). If

z1 > z2, we fix ε > 0 such that z′1 > z′2 for all z
′ ∈ Oz =]z1− ε, z1+ ε[×]z2− ε, z2+ ε[

and z1 − ε > z2 + ε. Set ξz(z
′) = (z1 − ε, z1 − ε) for each z′ ∈ Oz, we obtain

ξz(z
′) ∈ P2(z

′). Similarly if z1 < z2: in this case, player 1 deviates. If z1 = z2, one

can set ξz(z
′) = (1, 1). Finally, we see that the generalized deviation property holds

true.12

The generalized deviation property is implied by a classical property on mappings.

In fact, we have:

12Obviously, one can define ξz(z
′) = (1, 1) also in the case zi > z−i. Nevertheless, the function

ξz(z
′) = (zi − ε, zi − ε) allows to show the local character of the generalized deviation property.
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Proposition 2. Let G be a generalized game where x ∈ K(x) for all x ∈ X. Then, G

satisfies the generalized deviation property whether Pi and K are open lower sections,

for each i ∈ N .13

Proof. Let z /∈ SG. Since z ∈ K(z), for at least one player i and a strategy profile

x, we have z ∈ K−1(x) ∩ P−1
i (x). So, there is an open neighborhood Oz of z such

that x ∈ K(z′) ∩ Pi(z
′) for all z′ ∈ Oz. Finally, it is sufficient to set ξz(z

′) = x and

the thesis follows. �

The property by Definition 6 is given in the spirit of the single deviation property

introduced by Nessah and Tian (2008) and Reny (2009) for what concerns the exis-

tence of Nash equilibria.14 The single deviation property requires that, if a strategy

profile z is not a Nash equilibrium, there exists a strategy profile x′ such that, for

each z′ which belongs to a suitable open neighborhood of z, at least one player can

use his strategy in x′ in order to get a profitable unilateral deviation with respect to

z′. So, the deviating player depends on z′. Let us remark that, even if this property

seems to be very natural, it is not a sufficient conditions for the existence of Nash

equilibria in games which satisfy the usual quasi-concavity like properties: see Reny

(2016, Counterexample 6.1) and Scalzo (2019a, Example 3). However, there exist

conditions which allow the existence of Nash equilibria in games satisfying the single

deviation property. In particular, when the single deviation property holds true, the

existence of Nash equilibria is characterized by means of a new quasi-concavity like

property: see Nessah and Tian (2016, Theorem 6) and Scalzo (2019a, Theorem).15

Now, we can state the existence of doubly strong equilibria in generalized games

with discontinuous and non-ordered preferences.

Theorem 3. Let G be a generalized game where K is a well-behaved mapping.

Assume that G is uniformly quasi-concave and satisfies the generalized deviation

property. Then, the set of doubly strong equilibria of G is non-empty.

Proof. By contradiction, assume SG = ∅. Consider the function ΘG given in (1) and

the mapping F : X ⇒ X defined by F (z) = {x ∈ K(z) : ΘG(x, z) > 0} for all z ∈ X.

Let F (z) 6= ∅. Since G satisfies the generalized deviation property and z /∈ SG, there

exists an open neighborhood Oz of z and a well-behaved mapping ξz : Oz ⇒ X such

that: ξz(z
′) ⊆ K(z′) for all z′ ∈ Oz; ΘG(x

′, z′) > 0 for all x′ ∈ ξz(z
′) and all z′ ∈ Oz.

So, ξz(z
′) ⊆ F (z′) for every z′ ∈ Oz, that is: the mapping F is generalized transfer

13This means that K−1(z) and P−1

i
(z) are open sets for all z ∈ X.

14See also Nessah and Tian (2016) and Reny (2016).
15Scalzo (2019a) considers a condition more general than the single deviation property. See also

this paper for a comparison between the single deviation property and other sufficient conditions
for the existence of Nash equilibria in discontinuous games.
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open lower sections. Moreover, from Proposition 1, we have that ΘG is 0-diagonally

quasi-concave. Finally, Theorem 2 applies and we obtain the existence of solutions

to the inequality (q-KF) corresponding to ΘG and K. But such solutions are doubly

strong equilibria of G, and we get a contradiction. �

Remark 4. A recent paper introduces necessary and sufficient conditions for the

existence of strong equilibria - in the sense of Aumann (1959) - in games (not gen-

eralized games), where the players have non necessarily continuous and non-ordered

preferences (see Scalzo 2019c). In particular, given a game G = 〈Xi, Pi〉i∈N , the

following conditions have been provided:

- SE-deviation property : for each z /∈ {strong equilibria of G} there exists an

open neighborhoodOz of z and x′ ∈ X such that: for all z′ ∈ Oz\{strong equilibria of G}

there is ∅ 6= S ⊆ N so that (x′
S, z

′
−S) ∈

⋂
i∈S Pi(z

′);

- SE-transfer uniform quasi-concavity : for each {x1, ..., xk} ⊂ X there is

{z1, ..., zk} ⊂ X (zh is associated with xh, h = 1, ..., k) such that z ∈

sco{zh1 , ..., zhl} implies that there exists x ∈ {xh1 , ..., xhl} so that: for each

∅ 6= S ⊆ N , at least one player i ∈ S gets (xS, z−S) /∈ Pi(z).

Then, it has been proved that if a game G satisfies the SE-deviation property, the

set of strong equilibria of G is non-empty if and only if G is SE-transfer uniformly

quasi-concave (Scalzo 2019c, Theorem 2).

In the case where K(x) = X for each x ∈ X, Theorem 3 and the result recalled

above are not comparable. In particular, the following Example 5 shows a game

which satisfies the assumptions of Scalzo (2019c, Theorem 2), but Theorem 3 does

not apply. On the other hand, Example 6 proves that Theorem 3 cannot be deduced

from Scalzo (2019c, Theorem 2).

Example 5. Let G be the 2-person game where X1 = X2 = [−1, 1] and the payoff

functions are given by u1(x1, x2) = 3x1 − x2
2 + 4x2 and u2(x1, x2) = −x2

1 + x1 − 2x2

(see Nessah and Tian 2014, Example 4.1). Set Pi(x) = {z ∈ X : ui(z) > ui(x)} for

each x ∈ X and i = 1, 2. Since the functions u1 and u2 are continuous, the SE -

deviation property holds true. Moreover, (1,−1) is a strong equilibrium; so, G is

SE -transfer uniformly quasi-concave. The game satisfies the assumptions of Scalzo

(2019c, Theorem 2). On the other hand, we get: P1(1, 1) = ∅ and P1(x) 6= ∅ for

each x 6= (1, 1); P2(1/2,−1) = ∅ and P2(x) 6= ∅ for each x 6= (1/2,−1). So, there

is no x∗ ∈ X such that Pi(x
∗) = ∅ for i = 1, 2. Finally, we deduce that Theorem 3

does not apply on G.

Example 6. Consider a 2-person game G with X1 = X2 = [0, 1]. For i = 1, 2, the

mapping Pi is defined by Pi(x) = {x−i} × [0, 1] if xi > x−i and Pi(x) = ∅ otherwise
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(see Basile and Scalzo 2019, Example 4.2). The set of doubly strong equilibria is

SG = {x ∈ X : x1 = x2}. Let us prove that G satisfies the generalized deviation

property. Suppose that z /∈ SG. For some player i, one has zi > z−i; so, let Oz be

an open neighborhood of z such that z′i > z′−i for all z
′ ∈ Oz. Define the mapping ξz

by ξz(z
′) = {z′−i}× [0, 1] for each z′ ∈ Oz. We obtain x′ ∈ Pi(z

′) for every x′ ∈ ξz(z
′)

and every z′ ∈ Oz; so, the generalized deviation property is satisfied. Note that the

strategy profile x′ ∈ ξz(z
′) which belongs to Pi(z

′) depends on z′, and there is no

way to find any strategy profile x′′ for which x′′ ∈ Pi(z
′) for every z′ ∈ Oz. So, the

game does not satisfy the SE -deviation property, that is: Scalzo (2019c, Theorem

2) does not apply on G. Now, if xi > x−i, one has
⋃2

j=1 Pj(x) = {x−i} × [0, 1] and

x /∈ co
⋃2

j=1 Pj(x). So, using the argument given in Example 2, one gets that G is

uniformly quasi-concave. Finally, the assumptions of Theorem 3 hold on G.

Remark 5. Recently, Basile and Scalzo (2019) have given new results on the non-

emptiness of the Aumann’s alpha-core in the setting of games with non-ordered

preferences. The authors have introduced the sets of assumptions recalled below,

where G = 〈Xi, Pi〉i∈N is a game and C denotes the alpha-core of G:

I) G satisfies the coalitional deviation property if, for each z /∈ C, there exists

an open neighborhood Oz of z and x′ ∈ X such that, for every z′ ∈ Oz\C,

some coalition S gets {x′
S} ×X−S ⊆ Pi(z

′) for each i ∈ S;

G is coalitional transfer quasi-concave if, for each {x1, ..., xk} ⊂ X there ex-

ists {z1, ..., zk} ⊂ X, where xh 7→ zh, such that, for every z ∈ sco{zh1 , ..., zhl},

with {zh1 , ..., zhl} ⊆ {z1, ..., zk}, one can find x ∈ {xh1 , ..., xhl} so that

no coalitions can block z by using x, that is: for all coalition S, there is

w−S ∈ X−S and i ∈ S such that (xS, w−S) /∈ Pi(z).

II) G satisfies the generalized coalitional deviation property if, for each z /∈ C,

there exists an open neighborhood Oz of z and a well-behaved mapping

ξz : Oz ⇒ X such that, for each z′ ∈ Oz\C and for each x′ ∈ ξz(z
′), there

exists a coalition S for which {x′
S} ×X−S ⊆ Pi(z

′) for every i ∈ S;

G is coalitional quasi-concave if, for each {x1, ..., xk} ⊂ X and for each

z ∈ sco{x1, ..., xk}, there exists x ∈ {x1, ..., xk} so that no coalitions can

block z by using x.

The sets of assumptions I) and II) guarantee the non-emptiness of the alpha-core:

see, respectively, Theorem 4.1 and Theorem 4.2 of the mentioned paper. In par-

ticular, in the setting of games which satisfy the coalitional deviation property, the

non-emptiness of the alpha-core is characterized by means of the coalitional transfer
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quasi-concavity.

The generalized deviation property and the uniform quasi-concavity introduced in

the present paper are given in the same spirt of the assumptions of the set II). Since

the set of doubly strong equilibria is included in the alpha-core, Theorem 3 and

Theorem 4.2 by Basile and Scalzo (2019) can be compared only in the case where

every alpha-core element is a doubly strong equilibrium. So, let us consider games

where the alpha-core coincides with set of doubly strong equilibria. It is easy to see

that the generalized coalitional deviation property implies the generalized deviation

property, while the converse does not hold. Similarly, it is clear that the uniform

quasi-concavity implies the coalitional quasi-concavity, but the viceversa is not true.

Therefore, even if Theorem 3 is concerning the existence of a concept of equilib-

rium included in the alpha-core, the assumptions of Theorem 3 are not included in

the set II). Finally, Example 6 shows that the generalized deviation property is not

connected with the coalitional deviation property.

Remarks 4 and 5 have pointed out the differences between Theorem 3 and recent

results on the existence of strong equilibria and non-emptiness of the alpha-core. We

highlight that the differences between these results are not only on the sets of as-

sumptions. Theorem 3 deals with the existence of the new concept of doubly strong

equilibrium, which is a refinement of both the strong equilibrium and the alpha-core.

Moreover, the existence of doubly strong equilibria has been obtained for generalized

games. So, Theorem 3 allows to study situations where the strategies that are feasi-

ble to the players are subject to constraints. Finally, as the following Section shows,

the existence of doubly strong equilibria finds applications in exchange economies.

5. Applications to exchange economies

In this Section, we apply the doubly strong equilibrium existence result to ex-

change economies with discontinuous and non necessarily ordered preferences. First,

we consider the case where consumers’ preferences are interdependent, that is: the

preferences are defined on the set of allocations (this situation occurs, for exam-

ple, in economies with externalities). We obtain the existence of feasible allocations

x∗, called doubly strong allocations, such that there are no consumers that strictly

prefer other feasible allocations to x∗ (these allocations belong to the core of the

economy). Then, we deal with consumers that have selfish preferences. We obtain

that the doubly strong allocations satisfy a fairness rule.

5.1. Exchange economies with interdependent preferences. Consider an ex-

change economy E with a finite number of consumers (N denotes the set of con-

sumers) and let Y be the space of bundle of goods, that we assume to be included
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in a metrizable subset of a locally convex Hausdorff topological vector space. For

each i ∈ N , Xi ⊆ Y is the consumption set of consumer i and ei ∈ Xi is the ini-

tial endowment of i; we assume that every consumption set is convex and compact.

The elements of X =
∏

j∈N Xj are called allocations. An allocation x is said to be

feasible if
∑

i∈N xi =
∑

i∈N ei; the set of feasible allocations of E is denoted by FE .

We assume that the preferences of consumers are interdependent and not necessar-

ily ordered. So, for each i ∈ N , we have a mapping Pi : X ⇒ X where, for all

x ∈ X, Pi(x) is the set of allocations that consumer i strictly prefers to x. We set

E = 〈Xi, Pi, ei〉i∈N .

Let us focus on a cooperative equilibrium concept, where the consumers cooperate

in order to identify the feasible allocations that cannot be refused by any coalition.

In this setting, Yannelis (1991) introduced a concept of alpha-core. More precisely,

Yannelis considered the feasible allocations x̄ for which it is not true that there

exists a coalition S and xS ∈
∏

i∈S Xi such that: i)
∑

i∈S xi =
∑

i∈S ei; ii) (xS, z−S) ∈⋂
i∈S Pi(x̄) for all z−S with

∑
j /∈S zj =

∑
j /∈S ej. If i) and ii) hold true, we say that the

coalition S Y-blocks the allocation x̄. So, the Yannelis’ alpha-core of the economy

is the set of feasible allocations that are not Y -blocked.

The concept proposed by Yannelis seems to be very natural for an exchange

economy. Of course, the best situation for the economy is the existence of feasible

allocations x∗ such that Pi(x
∗)∩FE = ∅ for all consumer i; let us call such elements

doubly strong allocations. The set of doubly strong allocations of the economy E

is denoted by SE . Obviously, every doubly strong allocation belongs to Yannelis’

alpha-core. So, the following questions arise: Are there reasonable conditions which

guarantee the existence of doubly strong allocations? What about these conditions,

if any, and the sufficient conditions for the existence of alpha-core allocations in the

sense of Yannelis (1991)?

For exchange economies with 2 consumers, Yannelis (1991) obtained the exis-

tence of alpha-core allocations providing that the following assumptions are satis-

fied (i = 1, 2): a) Pi is open lower sections; b) x /∈ coPi(x) for all x ∈ X. Using

counterexamples, Holly (1994) proved that Yannelis’ result cannot be extended to

economies with more than 2 consumers. This would seem to show that an affirmative

answer to the first of the questions above must involve conditions more restrictive

than a) and b). But the existence of doubly strong allocations in economies with

more than 2 consumers can be obtained under conditions which do not imply both

a) and b). More precisely, we relax condition a) and strengthen condition b); we

show that our strengthening of b) is not connected with a) (see Remark 6). So,

we obtain the existence of doubly strong allocations, and therefore of alpha-core
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allocations in the sense of Yannelis (1991), for exchange economies with a finite

number n ≥ 2 of consumers and discontinuous and non-ordered preferences: see the

following Theorem 4. First, we give some definitions.

Definition 7. We say that the economy E satisfies the generalized deviation property

if, for each allocation z /∈ SE , there exists an open neighborhood Oz of z and a well-

behaved mapping ζz : Oz ⇒ X such that: i) ζz(z
′) ∩ FE 6= ∅ for all z′ ∈ Oz\SE ;

ii) for each z′ ∈ Oz\SE and each x′ ∈ ζz(z
′), there exists a consumer i for whom

x′ ∈ Pi(z
′).

Using the arguments of the proof of Proposition 2, one can prove:

Proposition 3. Given E = 〈Xi, Pi, ei〉i∈N , if Pi is open lower sections for all i ∈ N ,

then E satisfies the generalized deviation property.

We define the uniform quasi-concavity for an exchange economy E = 〈Xi, Pi, ei〉i∈N
as given in Definition 5 for generalized games. We have:

Proposition 4. If an exchange economy is uniformly quasi-concave, then condition

b) holds true.

Proof. By contradiction, suppose that z ∈ coPi(z) for at least one z ∈ X and i ∈ N .

So, z ∈ sco{x1, ..., xk} where {x1, ..., xk} ⊆ Pi(z). Since the economy is uniformly

quasi-concave, for at least one x ∈ {x1, ..., xk}, we have x /∈ Pj(z) for all j ∈ N , and

we get a contradiction. �

The existence of doubly strong allocations is obtained below.

Theorem 4. Assume that an exchange economy satisfies the generalized deviation

property and is uniformly quasi-concave. Then, the set of doubly strong allocations

is non-empty.

Proof. Let E = 〈Xi, Pi, ei〉i∈N be an economy satisfying the generalized deviation

property and the uniform quasi-concavity. Consider the generalized game G =

〈Xi, K, Pi〉i∈N where K(x) = FE for every x ∈ X. It is clear that SE = SG.

Suppose that z /∈ SG. Since E satisfies the generalized deviation property, for some

well-behaved mapping ζz : Oz ⇒ X, we have that: ζz(z
′)∩FE 6= ∅ for all z′ ∈ Oz\SG;

for each z′ ∈ Oz\SE and each x′ ∈ ζz(z
′), there exists i ∈ N such that x′ ∈ Pi(z

′).

Now, define ξz(z
′) = ζz(z

′) ∩ FE for every z′ ∈ Oz. One has that G satisfies the

generalized deviation property. Moreover, G is obviously uniform quasi-concave.

So, the assumptions of Theorem 3 hold, and we obtain that SG = SE 6= ∅. �
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As a corollary of Theorem 4, we obtain a non-emptiness result for Yannelis’ alpha-

core in economies with more than 2 consumers. The following example shows a

3-consumer and one commodity exchange economy satisfying the assumptions of

Theorem 4; in particular, the preference relations are given by means of discontinu-

ous utility functions and the mappings Pi are not open lower sections.

Example 7. Let E be the exchange economy where the set of consumers is N =

{1, 2, 3}, Xi = [0, 1] for each i ∈ N and the preference relations are represented by

the utility functions v1, v2 and v3 defined as follows: vi(x) = ui(x1, x2) for i = 1, 2

and x ∈ X\{(0, 0, t) : t > 0}, where u1 and u2 are the functions given by Example 2;

v1(x) = v2(x) = 1 if x ∈ {(0, 0, t) : t > 0} and v1(0, 0, 0) = v2(0, 0, 0) = 0; v3(x) = 1

if x1 = x2 = x3 > 0 and v3(x) = 0 otherwise. For each i ∈ N and for each x ∈ X, let

Pi(x) = {z ∈ X : vi(z) > vi(x)}. The initial endowments are any positive numbers

e1, e2 and e3 such that
∑3

i=1 ei = 1.

Suppose that x /∈ {(0, 0, t) : t ≥ 0}: if x1 6= x2, we have Pi(x) = ∅ for some i ∈ {1, 2}

and
⋃

j 6=i Pj(x) = {z ∈ X : (z1, z2) 6= (0, 0) and zj ≥ zi with j 6= 3}, which implies

x /∈ co
⋃

h∈N Ph(x); if x1 = x2 > 0, we get x /∈ co
⋃

h∈N Ph(x) = {z ∈ X : z1 =

z2 = z3 > 0} when x3 6= x1 = x2 and
⋃

h∈N Ph(x) = ∅ otherwise. If x = (0, 0, t)

with t > 0, one has x /∈ co
⋃

h∈N Ph(x) = {z ∈ X : z1 = z2 = z3 > 0}, while

co
⋃

h∈N Ph((0, 0, 0)) = X\{(0, 0, 0)}. Now, using the arguments given in Example

2, one can see that E is uniformly quasi-concave.

There is only one doubly strong allocation of E , that is: x∗ = (1/3, 1/3, 1/3). Let z

be an allocation such that z 6= x∗ and let Oz be an open neighborhood of z. In order

to check whether the generalized deviation property holds true, for each z′ ∈ Oz,

one can set ζz(z
′) = (1/2, 1/2, 0) if z1 6= z2 and ζz(z

′) = x∗ otherwise. Finally, E

satisfies the assumptions of Theorem 4.

Remark 6. Note that the mappings Pi (i = 1, 2, 3) given in the example above are

not open lower sections; for instance, (0, 0, 0) ∈ P−1
3 (1, 1, 1) but (t, t, t) /∈ P−1

3 (1, 1, 1)

for all t > 0 (we have similar situations on P1 and P2). So, even if the uniform quasi-

concavity of an exchange economy is a condition more restrictive than b) x /∈ Pi(x)

for all x ∈ X and all i ∈ N , Example 7 shows that the family of exchange economies

satisfying the assumptions of Theorem 4 is not included in the family of economies

where the mappings Pi are open lower sections.

5.2. Exchange economies with selfish preferences. In this section, we consider

exchange economies E = 〈Xi, Pi, ei〉i∈N , where the setting is the same of the previous

subsection except for consumers’ preferences, that here are assumed to be selfish (and

non necessarily complete or transitive): Pi : Xi ⇒ Xi for every i ∈ N ; Pi(xi) is the
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set of bundles of goods that consumer i strictly prefers to xi. Accordingly to the

section above, we define a feasible allocation x∗ to be a doubly strong allocation if

there are no feasible allocations x and no consumers i such that xi ∈ Pi(x
∗
i ) (SE

denotes the set of doubly strong allocations of E). If we define P̃i(x) = Pi(xi)×X−{i}

for all x ∈ X and all i ∈ N , then the doubly strong allocations of E coincide with

the doubly strong allocations of Ẽ =
〈
Xi, P̃i, ei

〉
i∈N

. We say that E satisfies the

generalized deviation property, as well as that E is uniformly quasi-concave, if Ẽ is.

So, from Theorem 4, we have:

Theorem 5. Assume that E satisfies the generalized deviation property and is uni-

formly quasi-concave. Then, the set of doubly strong allocations of E is non-empty.

Remark 7. In the setting of economies with selfish preferences, Border (1984) and

Yannelis (1991) introduced the alpha-core as the set of allocations x̄ for which there

are no coalitions of consumers S and xS ∈ XS such that
∑

i∈S xi =
∑

i∈S ei and

xi ∈ Pi(x̄i) for each i ∈ S. Obviously, every doubly strong allocation belongs to

the alpha-core as recalled above. So, Theorem 5 implies the non-emptiness of the

alpha-core in economies where the generalized deviation property end uniform quasi-

concavity holds. We note that the assumptions of Theorem 5 are not more restrictive

than those given by the previous results. Indeed, Border (1984) and Yannelis (1991)

consider mappings Pi with open graph, which is a condition more restrictive than

the open lower sections property. Now, using the arguments of the examples given

in the previous subsection, one can easily find economies with non-open graph and

selfish preferences satisfying both the generalized deviation property and the uniform

quasi-concavity (see also the following Example 8).

A issue of interest in exchange economies is the existence of allocations that are

fair (see Schmeidler and Yaari 1971), in the sense that they are Pareto optimal16

and envy-free. We recall that an allocation x is said to be envy-free if xj /∈ Pi(xi) for

all {i, j} ⊆ N (see Foley 1967). Theorem 5 implies the existence of fair allocations

in exchange economies with discontinuous and non-ordered preference relations. In

fact, we have the following result.17

Proposition 5. Assume that the consumption sets of the consumers are identical.

Then, every doubly strong allocation is fair.

Proof. Let x∗ be a doubly strong allocation. From Remark 7, we know that x∗ is

Pareto optimal. Suppose that x∗ is not envy-free; so, there exists {i, j} ⊆ N such

16We mean that, given an allocation x, there are no allocations x′ such that x′

i
∈ Pi(xi) for all

i ∈ N (see, for example, Yannelis 1991).
17The author is grateful to Marialaura Pesce that have proved this property.
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that x∗
j ∈ Pi(x

∗
i ). Define the allocation x̄ by x̄−{i,j} = x∗

−{i,j}, x̄i = x∗
j and x̄j = x∗

i .

We have that x̄ ∈ FE and x̄i ∈ Pi(x
∗
i ). So, we get a contradiction. �

Remark 8. The previous literature on the existence of fair allocations considers

exchange economies with a finite number of commodities and consumers’ preferences

that are strongly monotonic and represented by continuous utility functions: see

Varian (1974), Svensson (1983), Thomson (2007) and references therein. Theorem

5 and Proposition 5 ensure the existence of fair allocations when the preferences

are neither necessarily ordered nor strongly monotonic. An example of economy

satisfying the assumptions of Theorem 5 but not those of the mentioned papers is

given below.18

Example 8. Consider the 2-consumer exchange economy E , where X1 = X2 =

[0, 1] × [0, 1] and the preferences are given by means of the functions u1 and u2

introduced in Example 2. Let e1 and e2 belonging to [0, 1] × [0, 1] such that e1 +

e2 = (1, 1). It is easy to see that the set of doubly strong allocations is SE =

{((t, t), (s, s)) : t, s ∈]0, 1] and t+ s = 1}. The generalized deviation property and

the uniform quasi-concavity are satisfies (so, Theorem 5 applies). For instance, given

(z1, z2) /∈ SE and z11 < z12 , one can set ζ(z1,z2)(z
′1, z′2) = {(1, 1)} × ([0, 1]× [0, 1]) for

all (z′1, z′2) which belongs to an open neighborhood of (z1, z2) where z′11 < z′12 . The

uniform quasi-concavity follows from the arguments given in Example 2. Moreover, it

is clear that u1 and u2 are neither continuous nor strongly monotonic. Nevertheless,

E has fair allocations.

6. Conclusions

In the setting of generalized games with non-ordered and discontinuous preferences

defined on the set of strategy profiles, we have proved the existence of a strategy

profile, called double strong equilibrium, which is a maximal element for the prefer-

ences of all players. The conditions which guarantee the existence of doubly strong

equilibria are the generalized deviation property and the uniform quasi-concavity.

Examples have been given in order to compare the properties and results with the

previous literature on strategic form games. In particular, it has been showed that

the generalized deviation property is a very general condition and it is implied by

the previous ones. The uniform quasi-concavity extends the standard convexity on

preference relations. More precisely, the uniform quasi-concavity requires that, if

a strategy profile z is a strict convex combinations of a finite number of strategy

18A utility function u defined on R
ℓ is strongly monotonic if x ≤ y and x 6= y implies u(x) > u(y)

(among the others, see Svensson 1983 and Aliprantis et al. 1989). The meaning of inequality x ≤ y

is the standard one: xt ≤ yt for all t ∈ {1, ..., ℓ}.
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profiles, all players are uniform in choosing the same x among the latter so that no

one ranks x to be better than z. The doubly strong equilibrium existence result

has been obtained by using the quasi-Ky Fan minimax inequality ; we have given

new sufficient conditions for the existence of solutions of the inequality. In the case

of games (where there is no mapping K), a doubly strong equilibrium is a strong

equilibrium in the sense of Aumann (1959), and therefore it is an alpha-core ele-

ment (Aumann 1961). So, our result has provided new sufficient conditions for the

existence of strong equilibria and non-emptiness of the alpha-core. Also in this case,

examples have showed that our result is not connected with the previous ones. Then,

we have applied our results to exchange economies where the consumers have inter-

dependent or selfish discontinuous and non-ordered preferences. We have obtained

the existence of doubly strong allocations. In the case of interdependent preferences

(for example, economies with externalities), the doubly strong allocations belongs

to the alpha-core in the sense of Yannelis (1991). So, we have obtained the non-

emptiness of the Yannelis’ alpha-core in discontinuous economies with more than

2-consumers (the previous result has guaranteed the existence of alpha-core allo-

cations in the case of 2 consumers). When consumers’ preferences are selfish, the

doubly strong allocations belongs to the core and are envy-free (Foley 1967). So,

we have obtained the existence of fair allocations (Schmeidler and Yaari 1971) in

exchange economies with discontinuous and non-ordered preferences (the previous

results have required economies with a finite number of commodities and preferences

represented by continuous utility functions).

Appendix

Proof of Theorem 1. We proceed as in the proof of Scalzo (2015, Theorem 1) and

define the mapping ξ : W ⇒ X by

ξ(z) =
∑

a∈I(z)

βa(z)ξa(z) ∀ z ∈ W ,

where: {βa : a ∈ A} is a partition of the unity subordinate to an open and locally

finite covering of W (see Michael 1953); I(z) = {a ∈ A : βa(z) > 0} (which is

finite); the mappings ξa are well-behaved and derived from the assumption on F to

be generalized transfer open lower sections. Given the proof of the mentioned result,

we only need to prove that ξ is a closed mapping under the new assumption on D.

Let (zt)t be a net converging to z in W and let (st)t be a net converging to s in D,

with st ∈ ξ(zt) for all t (we have I(z) ⊆ I(zt) for t sufficiently large). We get:

(2) st =
∑

a∈I(z)

βa(zt)s
a
t +

∑

b∈I(zt)\I(z)

βb(zt)s
b
t ,
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where, for each t, sat ∈ ξa(zt) for all a ∈ I(z) and sbt ∈ ξb(zt) for all b ∈ I(zt)\I(z).

Fixed bt ∈ I(zt)\I(z), for every t, one has

(3) 0 ≤ lim
t
βbt(zt) ≤ lim

t

∑

b∈I(zt)\I(z)

βb(zt) = 0 .

Since D is compact, Tychonoff’s Theorem guarantees that the net n = (sbt)(t,b∈I(zt))

admits a converging subnet (see, for example, Aliprantis and Border 1999). Let us

assume that n converges. From (3), we get

(4) lim
t
βbt(zt)s

bt
t = null vector .

So, in the light of (4) and (2), one has:

(5) s = lim
t

∑

a∈I(z)

βa(zt)s
a
t =

∑

a∈I(z)

βa(z)s
a ,

Finally, since ξa is closed for each a ∈ I(z), we have that sa ∈ ξa(z) for all a, that

is: s ∈ ξ(z) (upper semicontinuity and closeness are equivalent properties in our

setting). This concludes the proof.

Remark 9. A previous version of the result above was provided by Scalzo (2015,

Theorem 1), where the set D was assumed to be a convex and compact subset of a

Banach space. However, the improvement here presented can be proved by using the

same arguments of the proof of the previous result. Theorem 1 was also obtained

by He and Yannelis (2016) with a different proof. We point out that Corson and

Lindenstrauss (1966) proved the existence of one-to-one continuous selections from

a mapping through a strengthening of the property introduced in Definition 3: more

precisely, they assumed that ξz is a one-to-one continuous function.

Remark 10. It is clear that if a mapping admits a well-behaved selection, then it is

generalized transfer open lower sections. So, Theorem 1 identifies a general setting

where the mappings having well-behaved selections are characterized by means of

the generalized transfer open lower sections property.

Remark 11. Michael (1956) proved the existence of one-to-one continuous selec-

tions from lower semicontinuous mappings. It is interesting to point out that the

generalized transfer open lower sections property is not connected with the lower

semicontinuity. Indeed, the mapping F defined by F (x) = {0} if x ∈ [0, 1/2[,

F (1/2) = [0, 1] and F (x) = {1} if x ∈]1/2, 1] is clearly generalized transfer open

lower sections and not lower semicontinuous.
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