
Munich Personal RePEc Archive

Values for level structures with

polynomial-time algorithms, relevant

coalition functions, and general

considerations

Besner, Manfred

HFT Stuttgart, University of Applied Sciences

30 March 2020

Online at https://mpra.ub.uni-muenchen.de/99355/

MPRA Paper No. 99355, posted 30 Mar 2020 11:18 UTC

Values for level structures with polynomial-time algo-
rithms, relevant coalition functions, and general con-
siderations

Manfred Besner∗

March 30, 2020

Abstract

Exponential runtimes of algorithms for TU-values like the Shapley value are one of the
biggest obstacles in the practical application of otherwise axiomatically convincing solu-
tion concepts of cooperative game theory. We discuss how the hierarchical structure of
a level structure improves the runtimes compared to an unstructured set of players. As
examples, we examine the Shapley levels value, the nested Shapley levels value, and, as a
new LS-value, the nested Owen levels value. Polynomial-time algorithms for these values
(under ordinary conditions) are provided. Furthermore, we introduce relevant coalition
functions where all coalitions which are not relevant for the payoff calculation have a
Harsanyi dividend of zero. By these coalition functions, our results shed new light on the
computation of values of the Harsanyi set and many values from extensions of this set.

Keywords Cooperative game · Polynomial-time algorithm · Level structure · (Nested)

Shapley/Owen (levels) value · Harsanyi dividends

1 Introduction

Since the introduction of the Shapley value (Shapley, 1953b), many cooperative game
theorists have accumulated an ever-growing pool of axiomatizations of values for cooper-
ative games with transferable utility (TU-values). These axiomatizations offer convincing
arguments for one or the other TU-value in a variety of situations and applications. But
what use is the most beautiful model if the complexity, even for small applications, is
so high that they cannot be computed in applicable time or if not all necessary data is
available or can be captured?
Within economics, the important concept of bounded rationality (Simon, 1972) means

that rationally acting individuals must take limited information and cognitive limitations
into account in their choices. The time required for decision-making and the limited
computing capacity must also be considered. In this respect, we refer, for example, to

*M. Besner
Department of Geomatics, Computer Science and Mathematics,
HFT Stuttgart, University of Applied Sciences, Schellingstr. 24
D-70174 Stuttgart, Germany
E-mail: manfred.besner@hft-stuttgart.de

2

Futia (1977), Rubinstein (1986), or Kalai and Stanford (1988). Bounded rationality,
therefore, requires that in deciding which value should we use for the payoff calculation
in practice, computational ease has always to be satisfied. From a complexity theory
perspective, computational ease for a TU value implies that the payoff can be calculated
efficiently (i.e. in polynomial-time with respect to the number of players).
Take, e.g., the Shapley value as a central single-valued solution concept. Usually, when

computing the Shapley value, the worths of all possible coalitions of players have to be
considered. In other words, if n is the number of players, we get an exponential runtime
in n, since we have 2n − 1 many different coalitions.1

However, several classes of coalition functions are known for which we can compute
payoffs in polynomial-time using the Shapley value. For example, formulas exist for
airport games (Littlechild and Owen, 1973) and for k-games (van Den Nouweland et al.,
1996), which coincide with weighted hypergraph games with hyperedges of size k (Deng
and Papadimitriou, 1993), which require only a selection of all coalitions for computation.
Since the number of these coalitions is polynomial in n, the payoff computations can be
done efficiently.
For the Shapley levels value (Winter, 1989), Winter introduced a hierarchical structure

of coalitions, called level structure, which is related to the tree data structure. A level
structure comprises a series of ordered partitions (the levels) of the player set, each higher
level being coarser than the previous one, i.e., each component of a higher level contains
at least one or more components of the previous level which together contain the same
players (see Figures 1, 2, and 3). Therefore, a level structure can also be seen as an
extension of a coalition structure (Aumann and Drèze, 1974; Owen, 1977) which has only
three levels if we count the partition containing all singletons and the partition containing
only the grand coalition as levels.
Meanwhile, some different values for level structures (LS-values) exist, like the six values

for level structures in Chantreuil (2001), the value for level structures in Gómez-Rúa
and Vidal-Puga (2011), the Banzhaf levels value in Alvarez-Mozos and Tejada (2011),
or the class of weighted Shapley hierarchy levels values (Besner, 2019b) which contain
also the Shapley levels value and the just mentioned LS-value from Gómez-Rúa and
Vidal-Puga. Sastre and Trannoy (2002) suggested an extension of their nested Shapley
value2 to level structures which we call nested Shapley levels value. We find a somewhat
different approach in Sánchez-Sánchez and Vargas-Valencia (2018), who proposed a value
for cooperative nested games which satisfy nested constraints on a level structure. This
value can be seen as an extension of the collective value in Kamijo (2013) for coalition
structures.
In this study, we take advantage of the tree-like structure of level structures to obtain

algorithms for LS-values which have a polynomial runtime. We investigate the Shapley
levels value, the nested Shapley levels value, and as a new LS-value, the nested Owen
levels value. Similar to the Shapley levels value, we can this value also interpret as an
extension of the Owen value (Owen, 1977) to LS-values. For ordinary level structures,

1That means that, aside from the huge amount of data we have to manage, we are already reaching our
limits here with a set of maybe 50 players. Purely theoretically, a 3.4 Ghz processor needs already about
92 hours for 250 calculation steps (elementary operations). Even a processor 1000 times faster could
only cope with a set of log2 1000 ≈ 10 players more at the same time.

2Kamijo (2009) called this value two-step Shapley value.

3

meaning that there are no redundant levels and the number of sub-components within a
component is bounded by a fixed degree, we get polynomial runtimes for algorithms for
the last two LS-values mentioned above. If we additionally require that each component
of a higher level contains at least two subcomponents in the lower ones, we also obtain a
polynomial-time algorithm for the Shapley levels value.
The decisive factor in getting polynomial runtimes is that not all coalitions have to be

taken into account in the payoff calculation. We call these coalitions relevant coalitions.
All other coalitions can take any worth, and we still get the same payoff. This leads us to
introduce relevant coalition functions where the relevant coalitions receive their original
worth and the other coalitions receive a worth so that their Harsanyi dividend (Harsanyi,
1959) is zero. Harsanyi dividends can be seen as the cooperation benefits of one coalition
over the cooperation benefits of its subcoalitions.
Using relevant coalition functions, we also obtain polynomial runtimes for the Shapley

levels value, under the above conditions, if we use the well-known formula with dividends
in Calvo et al. (1996, Eq.(1)) as the basis for an algorithm. It turns out that games with
relevant coalition functions are closely related to the weighted hypergraph games with
variable-size hyperedges, mentioned in Deng and Papadimitriou (1993).
By adapting an algorithm in Algaba et al. (2007), we can compute the dividends of

relevant coalitions for a relevant coalition function in polynomial-time if the coalitions
are known and their number is polynomially bounded. Thus, we obtain algorithms with
polynomial runtime for values with a dividend representation like the values from the
Harsanyi set (Hammer et al., 1977; Vasil’ev, 1978) or the proportional Shapley value
(Béal et al., 2018; Besner, 2019a) if we know all coalitions with positive or negative
dividends and their number is polynomially bounded.
The aim of this paper is not to present highly polished algorithms but to show in

principle under which circumstances polynomial runtimes can be achieved. To legitimize
the introduced nested Owen levels value and the nested Shapley levels value in cooperative
game theory, we provide simple axiomatizations in the spirit of balanced contributions as
in Calvo et al. (1996).
The paper is organized as follows. Some preliminaries are given in Section 2, Section 3

confirms the exponential runtime of the Shapley value in general and offers some classes of
coalition functions, where the Shapley value can be computed efficiently, in Section 4, three
LS-values are presented with a short axiomatization, Section 5 provides algorithms with
polynomial runtime for LS-values, in Section 6, we introduce relevant coalition functions
and a new formula with dividends for the Shapley levels value, Section 7 generalizes our
results, and Section 8 concludes and discusses some ideas for future work. An appendix
(Section 9) contains all the proofs required for axiomatizations of the LS-values and
Theorem 7.3.

2 Preliminaries

2.1 TU-games

Given a countably infinite set U, the universe of players, we denote by N the set of all
finite subsets of U. A TU-game (N, v) consists of a player set N ∈ N and a coalition

function v : 2N → R, v(∅) = 0. Each subset S ⊆ N is called a coalition. v(S) is called

4

the worth from S, ΩS denotes the set of all non-empty subsets of S, and (S, v) is the
restriction of (N, v) to S ∈ ΩN. We denote by n := |N | the cardinality of N and the set
of all TU-games (N, v) is denoted by VN. A game (N, uS), S ∈ ΩN, defined for all T ⊆ N

by uS(T) = 1 if S ⊆ T and uS = 0 otherwise, is called an unanimity game. For all
S ⊆ N , the Harsanyi dividends ∆v(S) (Harsanyi, 1959) are defined inductively by

∆v(S) :=

{

0, if S = ∅,

v(S)−
∑

R(S ∆v(R), otherwise.
(1)

S ⊆ N is called essential in v if ∆v(S) 6= 0. A player i ∈ N is called a dummy player in
v if v(S∪{i}) = v(S)+v({i}), S ⊆ N\{i}. If we have additionally v({i}) = 0, the dummy
player i is called a null player. Two players i, j ∈ N, i 6= j, are called symmetric in v,
if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N\{i, j}.
A TU-value or solution φ is an operator that assigns to any (N, v) ∈ VN a payoff

vector φ(N, v) ∈ RN. For all (N, v) ∈ VN, the Shapley value Sh (Shapley, 1953b) is
defined by

Shi(N, v) :=
∑

S⊆N,
S∋i

(|S| − 1)! (n− |S|)!

n!

[
v(S)− v(S\{i})

]
for all i ∈ N. (2)

A well-known equivalent formula for the Shapley value is given by

Shi(N, v) :=
∑

S⊆N,S∋i

∆v(S)

|S|
for all i ∈ N. (3)

We refer to the following axioms for TU-values φ on VN.

Efficiency0, E0. For all (N, v) ∈ VN, we have
∑

i∈N φi(N, v) = v(N).

Dummy player0, D0. For all (N, v) ∈ VN and i ∈ N a dummy player in v, we have
φi(N, v) = 0.

Additivity0, A0. For all (N, v), (N,w) ∈ VN, we have φ(N, v) + φ(N,w) = φ(N, v + w).

Balanced contributions0, BC0 (Myerson, 1980). For all (N, v) ∈ VN and i, j ∈ N , we
have φi(N, v)− φi(N\{j}, v) = φj(N, v)− φj(N\{i}, v):

Symmetry0, S0. For all (N, v) ∈ VN, and i, j ∈ N such that i and j are symmetric in v,
we have φi(N, v) = φj(N, v).

2.2 LS-games

In this subsection, some definitions and notations will follow with Besner (2019b). A
partition B := {B1, ..., Bm} of a player set N ∈ N , i.e., Bk 6= ∅ for all k, 1 ≤ k ≤ m,

Bk ∩ Bℓ = ∅, 1 ≤ k < ℓ ≤ m, and
⋃m

k=1Bk = N , is called a coalition structure on N .
Each B ∈ B is called a component and B(i) denotes the component that contains the
player i ∈ N .
For any N ∈ N , a level structure (Winter, 1989) on N , is a finite sequence B :=

{B0, ...,Bh+1} of coalition structures Br, 0 ≤ r ≤ h+1, on N such that B0 =
{
{i}: i ∈ N

}
,

Bh+1 = {N}, and Br+1 is coarser than Br for each r, 0 ≤ r ≤ h, i. e., Br(i) ⊆ Br+1(i) for

5

all i ∈ N . For each r, 0 ≤ r ≤ h+1, Br denotes the r-th level of B. We denote by B the
set of all components B ∈ Br of all levels Br ∈ B, 0 ≤ r ≤ h, and LN denotes the set of
all level structures with player set N .
For B ∈ Bk, 0 ≤ k ≤ r ≤ h + 1, Br(B) denotes the component of the r-th level that

contains as a (not necessary proper) subset the component B and is called an ancestor of
B, if k < r. If r = k+1, we call the ancestor also parent of B. All components with the
same parent B ∈ Br, 1 ≤ r ≤ h + 1, are called children of B and two different children
of B are called siblings in Br−1. Note that a component B can be its own parent or
child (in different levels). For Bk ∈ Br, we define 〈Bk〉

r := {B : B is a child of Br+1(Bk)}
as the set of all children of Br+1(Bk) if 0 ≤ r ≤ h, and 〈Bk〉

r := {N} if r = h + 1. By
| 〈Bk〉

r |, 0 ≤ r ≤ h, we denote the degree of the component Br+1(Bk). The degree

of a level structure B is the maximal degree of all components B ∈ (B ∪ {N}) which
are also parents.
Keep in mind that the definition of level structures also allows identical consecutive

levels. A level structure B is called strict if Br(i) (Br+1(i) for all r, 0 ≤ r ≤ h, and at
least one i ∈ N , possibly different for each level (see Figure 1), we call B totally strict

if Br(i) (Br+1(i) for all r, 0 ≤ r ≤ h, and all i ∈ N (see Figure 2). Note that for a strict
level structure we have n ≥ 2. If in a strict level structure of degree 2 at least one child
of each component that is also a parent is a singleton, we call it degenerate strict (see
Figure 3).

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11}

{1,2} {3,4,5} {6,7} {8} {9,10,11}

{1,2,3,4,5} {6,7,8} {9,10,11}

{1,2,3,4,5,6,7,8,9,10,11}
Level: 3

2

1

0

Figure 1: Structure of the components of a strict level structure in different levels

An LS-game is a triple (N, v,B) consisting of a TU-game (N, v) ∈ VN and a level
structure B ∈ LN. We denote the set of all LS-games on N by VLN.

We define Br :=
{
Br0, ...,Brh+1−r}

∈ LBr

, 0 ≤ r ≤ h, as the induced rth level

structure from B = {B0, ...,Bh+1}. In this context, we regard the components B ∈ Br

as players. Each element of a coalition structure Brk :=
{
{B ∈ Br : B ⊆ B′} : for all B′ ∈

Br+k
}
, 0 ≤ k ≤ h + 1 − r, is a set of all components of the r-th level which are subsets

of the same component of the (r + k)-th level.
(
Br, vr,Br

)
∈ VLBr

is called the induced

rth level game from B and is given by

vr(Q) := v(
⋃

B∈Q

B) for all Q ⊆ Br.

6

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11}

{1,2} {3,4,5} {6,7} {8,9} {10,11}

{1,2,3,4,5} {6,7,8,9,10,11}

{1,2,3,4,5,6,7,8,9,10,11}
Level: 3

2

1

0

Figure 2: Structure of the components of a totally strict level structure in different levels

{1} {2} {3} {4} {5} {6}

{1,2} {3} {4} {5} {6}

{1,2,3} {4} {5} {6}

{1,2,3,4} {5} {6}

{1,2,3,4,5} {6}

{1,2,3,4,5,6} Level: 5

4

3

2

1

0

Figure 3: Structure of the components of a degenerate strict level structure in different levels

For T ∈ ΩN and coalition structures Br|T := {B∩T : B∈ Br, B∩T 6= ∅}, 0 ≤ r ≤ h+1, we
denote by B|T := {B0|T , ...,B

h+1|T} ∈ LT the restricted level structure of B on T . Then,
(T, v,B|T) ∈ VLT is called the restriction of (N, v,B) to T and

(
Br|T , v

r,Br|T
)
∈ VLBr|T

is the induced rth level game from the restriction of (N, v,B) ∈ VLN on T .
For 0 ≤ r ≤ h, Br :=

{
B0, ...,Br, {N}

}
∈ LN is called the rth cut level structure from

B where all levels between the rth and the (h+ 1)th level are cut out from B. (N, v,Br)
is called the rth cut of (N, v,B). Notice that for each B = {B0, ...,Bh+1} we also have
B = Bh. Thus, for a level structure B = {B0, ...,Bh+1} we often write briefly B = Bh

to make clear how many levels the level structure comprises. For each (N, v,B) ∈ VLN

with a trivial level structure B = B0 exists a corresponding TU-game (N, v) and for

each (N, v,B) ∈ VLN with B = B1 exists a corresponding game with coalition structure
(Aumann and Drèze, 1974; Owen, 1977).
An LS-value ϕ is an operator that assigns to any (N, v, B) ∈ VLN a payoff vector

ϕ(N, v, B) ∈ RN. Let (N, v, B) ∈ VLN, B = Bh, T ∈ ΩN, T ∋ i, and

7

KT (i) :=
h∏

r=0

Kr
T (i), where Kr

T (i) :=
1

|{B ∈ Br : B⊆ Br+1(i), B ∩ T 6= ∅}|
. (4)

The Shapley Levels value ShL (Winter, 1989) is defined by3

ShLi (N, v,B) :=
∑

T⊆N,T∋i

KT (i)∆v(T) for all i ∈ N. (5)

If h = 0, ShL coincides with Sh; if h = 1, a level structure coincides with a coalition
structure and it is well-known, that the Owen value Ow (Owen, 1977) can therefore
alternatively, as a special case of the level structure value, be defined by

Owi(N, v,B1) :=
∑

T⊆N,T∋i

KT (i)∆v(T) for all i ∈ N.

We refer to the following axioms for LS-values ϕ on VLN.

Efficiency, E. For all (N, v, B) ∈ VLN, we have
∑

i∈N ϕi(N, v,B) = v(N).

Null player, N. For all (N, v, B) ∈ VLN and i ∈ N a null player in v, we have
ϕi(N, v,B) = 0.

Level game property, LG (Winter, 1989). For all (N, v, B) ∈ VLN, B = Bh, B ∈
Br, 0 ≤ r ≤ h, we have

∑

i∈B

ϕi(N, v,B) = ϕB(B
r, vr,Br).

This property states that the total payoff obtained by all members of a component is
equal to the component’s payoff in the corresponding level game where the component is
regarded as a player.

Balanced contributions, BC (Calvo et al., 1996). For all (N, v, B) ∈ VLN, B = Bh,

and two siblings Bk, Bℓ ∈ Br, 0 ≤ r ≤ h, we have

∑

i∈Bk

ϕi(N, v,B)−
∑

i∈Bk

ϕi(N\Bℓ, v,B|N\Bℓ
) =

∑

i∈Bℓ

ϕi(N, v,B)−
∑

i∈Bℓ

ϕi(N\Bk, v,B|N\Bk
).

BC means that for any two siblings, the sum of the amount that all players of one sibling
would win or lose if the other sibling is eliminated from the game should be the same for
both siblings.

2.3 Time complexity

By time complexity we understand an estimation of the time to run an algorithm. Usually,
the time is specified by the number of elementary operations the algorithm needs to
execute. For simplicity’s sake, a fixed constant time is assumed for each elementary
operation. If we are interested in an upper bound, the worst-case time complexity, we
use big-O notation. In case that we are interested in a lower bound, we use the big-Ω
notation as suggested by Knuth (1976). Normally, the argument of the function used

3This formula for the Shapley levels value comes from Calvo et al. (1996, Eq.(1)).

8

within the big-O or the big-Ω notation is the input size. In this respect, we cite Deng
and Papadimitriou (1993) who stated the following:

“There is a catch, however: If the game is defined by the 2n coalition values, there may
be little to be said about the computational complexity of the various solution concepts,
because the input is already exponential in n, and thus, in most cases, the computational
problems above can be solved very ‘efficiently’.”
It is therefore common practice in this context, to use the number of players as the
reference for the time complexity analysis. Hence we say that an algorithm is efficient if
it runs in polynomial-time with respect to the number n of players.

Notation 2.1. By t(A) we denote the number of elementary operations of algorithm A,
by t(Fr) those within the for-loop starting in line r, by t(Lr) those of the assignments
within line r, and by t(IFr) and t(ELSEr) those within the if- or else-branch starting in
line r.

3 The Shapley value

If we look at formulas (2) or (3) for computing the Shapley value, we see that even the
input of the used worths or dividends requires exponential time. But are we perhaps
simply not yet able to find an algorithm that does not need the worths of all coalitions
for the input? We will see later that for the Shapley levels value, which has with formula
(5) a very similar formula to formula (3), a formula can be found which, except in degen-
erated cases, only requires the worths of polynomially many coalitions. Whether linear
programs can be solved in polynomial-time has long been an open problem, especially
when it became clear that the simplex algorithm as the main solution method requires
exponential time. Finally, the ellipsoid algorithm in Khachiyan (1979) showed that linear
programs are solvable in polynomial-time. However, the fact that generally no algorithm
with polynomial-time can be found for the Shapley value is confirmed by the following
proposition.

Proposition 3.1. There is no algorithm that computes the Shapley value in polynomial-
time for all (N, v) ∈ VN and N ∈ N with respect to the number of players n.

Proof. Let N ∈ N , (N, v1), (N, v2) ∈ VN, K ⊆ N , v1(K) 6= v2(K) and v1(S) = v2(S) for
all S ∈ ΩN\{K}, such that each worth v1(S), v2(S) is independent from all other worths
v1(T), v2(T), T ∈ ΩN\{S}. By (2), we have, for all i ∈ K,

Shi(N, v2)− Shi(N, v1)

=
∑

S⊆N,
S∋i

(s− 1)!(n− s)!

n!

[
v2(S)− v2(S\{i})

]
−

∑

S⊆N,
S∋i

(s− 1)!(n− s)!

n!

[
v1(S)− v1(S\{i})

]

=
(k − 1)!(n− k)!

n!

[
v2(K)− v1(K)

]
6= 0,

where k := |K| and s := |S|. In other words, any algorithm that computes the Shapley
value returns a different result for the two coalition functions v1, v2. Therefore, since K
was arbitrary, the payoff to a player i depends on each worth of the 2n−1 coalitions S ⊆ N

9

containing the player i as long as the worths of the coalitions are independent of each
other. Consequently, all worths must be used at least once in the algorithm, i.e. they
require at least one elementary operation, which corresponds to a runtime of Ω(2n−1) for
a single player.

Fortunately, there are some classes of games where the Shapley value can be computed
efficiently. Airport games are one possibility, as shown in Littlechild and Owen (1973).
This type of cost games can be decomposed into a sum of games where all players are
symmetric or null players. Therefore, here the additive Shapley value can be calculated
very efficiently by symmetry and the null player property of the value.
Another possibility are k-games, introduced by van Den Nouweland et al. (1996). A

k-game coincides to a weighted hypergraph game with hyperedges of size k, introduced by
Deng and Papadimitriou (1993). A TU-game is called a k-game if the coalition function
takes the form:

v(S) =
∑

T⊆S, |T |=k

v(T), k ≥ 0.

As long as k is fixed and thus does not depend on n, we can compute the Shapley value
for such games in polynomial-time. This aspect is discussed in more detail in Section 7.

4 Values for level structures

In this section, we examine LS-values that generalize the Shapley value to LS-games
and calculate the payoff in a top-down procedure: We distribute the worth of the grand
coalition to its children, the components of the hth level, using a TU-value. Then, each
payoff of a component of the hth level is divided by the same TU-value among all its
children, and so on for all levels. Finally, we distribute the payoffs of the first level
components to their children and so to the original players. The various LS-values differ
in the definition of the intermediate games4.

4.1 The Shapley levels value as a weighted Shapley hierarchy levels value

We recall the definition of the Shapley levels value as a special case of the weighted Shapley
hierarchy levels values (Besner, 2019b) and a related notation.

Notation 4.1. Let (N, v, B) ∈ VLN, B = Bh, i ∈ N, and T ∈ ΩBk(i), 0 ≤ k ≤ h. We
denote by T k

i := {B ∈ Bk : B ⊆ Bk+1(i), B 6= Bk(i)} ∪ {T} the set of all children of the
component Bk+1(i), where the child Bk(i) is replaced by coalition T .

Definition 4.2. (see Besner (2019b, Remark 3.5)) Let (N, v, B) ∈ VLN, B = Bh, i ∈ N,

and for all k, 0 ≤ k ≤ h, T ∈ ΩBk(i), be T k
i the set from Notation 4.1, and define v̄h+1

i := v,

and v̄ki by

v̄ki (T) := ShT (T
k
i , ṽ

k
i) for all T ∈ ΩBk(i),

4Owen (1977) called such a game quotient game.

10

where ṽki is specified recursively via

ṽki (Q) := v̄k+1
i (

⋃

S∈Q

S) for all Q ⊆ T k
i .

Then the Shapley levels value ShL is given by

ShLi (N, v,B) := v̄0i ({i}) for all i ∈ N.

We use the following axiomatization as a starting point for further axiomatizations.

Theorem 4.3. (Calvo et al., 1996) ShL is the unique LS-value that satisfies E and BC.

4.2 The nested Shapley levels value

In many hierarchically structured organizations, it is common for the actors of a single
organizational unit to act only among themselves. Interaction across organizational units
only takes place at a higher level. The top-down payoff calculation of the following value
is based on this principle.

Definition 4.4. Let (N, v, B) ∈ VLN, B = Bh, i ∈ N, v̄h+1
i (N) := v(N), and for all

k, 0 ≤ k ≤ h, be v̄ki (B
k(i)) given by

v̄ki (B
k(i)) := ShBk(i)(B

k|Bk+1(i), ṽ
k
i), (6)

where ṽki is specified recursively via

ṽki (Q) :=

{

v̄k+1
i (Bk+1(i)), if Q = Bk|Bk+1(i),

v(
⋃

B∈QB) if Q (Bk|Bk+1(i).
(7)

Then the nested Shapley levels value ShNL, suggested in Sastre and Trannoy (2002),
is given by

ShNL

i (N, v,B) := v̄0i ({i}) for all i ∈ N.

Remark 4.5. Due to the additivity of the Shapley value, we can interpret the top-down
distribution mechanism also in this way: Within each (parent) component, there is a
recursive two-step bargaining process. In a first step, the children divide as players in a
game, restricted to their parent, the original worth of the parent via the Shapley value.
In a second step, the surplus that the parent has received as a player over what it has
earned itself is additionally distributed evenly among the children. We obtain the following
equivalent definition that especially shows the coincidence of the value with the nested
Shapley value5 defined in Sastre and Trannoy (2002) in case of a level structure with
h = 1:
Let (N, v, B) ∈ VLN, B = Bh. Then Sh

NL is recursively defined by

ShNL

Bk(i)(B
k, vk,Bk)

:=







ShBh(i)(B
h, vh), if k = h,

ShBk(i)(B
k|Bk+1(i), v

k) +
ShNL

Bk+1(i)
(Bk+1, vk+1,Bk+1)− v(Bk+1(i))

| 〈Bk(i)〉k |
, if 0 ≤ k < h,

(8)

and ShNL

i (N, v, B) := ShNL

{i}(B
0, v0,B0) for all i ∈ N .

5Kamijo (2009) called this value two-step Shapley value.

11

We introduce a new axiom that coincides obviously for a trivial level structure with BC.

Nested balanced contributions, NBC. For all (N, v, B) ∈ VLN, B = Bh, two siblings
Bk, Bℓ ∈ Br, 0 ≤ r ≤ h, we have

∑

i∈Bk

ϕi(N, v,B)−
∑

i∈Bk

ϕi

(
Br+1(i)\Bℓ, v,Br|Br+1(i)\Bℓ

)

=
∑

i∈Bℓ

ϕi(N, v,B)−
∑

i∈Bℓ

ϕi

(
Br+1(i)\Bk, v,Br|Br+1(i)\Bk

)
.

An interpretation of this property would be as follows: The sum of the amount that all
players of one sibling would win or lose if the other sibling dropped out of the game and
this would result in a game then being played only within the parent component and no
longer on the entire level structure, should be the same for both siblings. Of course, the
higher redundant levels are then obsolete.

Proposition 4.6. ShNL satisfies E, LG, and NBC but not N.

We present an axiomatization of the nested Shapley levels value.

Theorem 4.7. ShNL is the unique LS-value that satisfies E and NBC.

To obtain the class of nested weighted Shapley levels values, we could also introduce
a weight system, similar as by the weighted Shapley hierarchy Shapley levels values, this
time only for all components, and replace the Shapley value in (6) with a corresponding
weighted Shapley value (Shapley,1953a). A nested weighted balanced contributions

axiom could be used for axiomatization. We will not go into that here.

4.3 The nested Owen levels value

We can now imagine that the active interaction of components which are siblings no longer
takes place only within the parent component, but also with the siblings of the parent
component or even with siblings of other ancestors. The extreme case is the Shapley levels
value that takes into account all ancestors and their siblings in the payoff calculation. In
the following LS value, we consider only the siblings of the parent component. The same
approach, restricted to a coalition structure, is used by Owen (1977) in his famous value.
Therefore, our LS-value, like the Shapley levels value, can be seen as an extension of the
Owen value to level structures. Again, we use a notation.

Notation 4.8. Let (N, v, B) ∈ VLN, B = Bh, i ∈ N, S ⊆ Bk(i) be such that S =
⋃

B∈Bk−1,B⊆SB is a union of children of Bk(i) if 1 ≤ k ≤ h, and S = {i} if k = 0. We

denote by Sk
i := {B ∈ Bk : B ⊆ Bk+1(i), B 6= Bk(i)} ∪ {S} the set containing all children

of the component Bk+1(i), where the child Bk(i) is replaced by coalition S.

Definition 4.9. Let (N, v, B) ∈ VLN, B = Bh, i ∈ N, define v̄h+1
i := v, and let v̄ki (S) for

all S ⊆ Bk(i), S =
⋃

B∈Bk−1,B⊆SB if 1 ≤ k ≤ h, or for S = {i} if k = 0, be given by

v̄ki (S) :=

{

ShS(B
k|Bk+1(i), ṽ

k
i), if S = Bk(i),

ShS(S
k
i , v

k
i), S

k
i the set from Notation 4.8, otherwise,

12

where vki is given by

vki (Q) := v(
⋃

T∈Q

T) for all Q ⊆ Sk
i

and ṽki is specified recursively via

ṽki (Q) := v̄k+1
i (

⋃

T∈Q

T) for all Q ⊆ Bk|Bk+1(i).

Then the nested Owen levels value OwNL is given by

OwNL

i (N, v,B) := v̄0i ({i}) for all i ∈ N.

Remark 4.10. Due to the additivity of the Shapley value (and thus of the Owen and
the nested Owen levels value), similar to the nested Shapley levels value, we can give an
alternative definition of the nested Owen levels value that justifies the naming. Within
each parent of a (parent) component B, a recursive two-step bargaining process is installed.
In a first step, all children of B receive as players in a game, restricted to the parent of B,
a share of the original worth of the parent of B via the Owen value. In a second step, the
surplus that B as a player on the whole game has received over what it has earned in the
restriction on its parent is additionally distributed evenly among the children of B. We
obtain the following equivalent definition, where Bk

k+1|Bk+2(i) means the induced kth level

structure of the (k + 1)th cut of B|Bk+2(i):

Let (N, v, B) ∈ VLN, B = Bh. Then Ow
NL is recursively defined by

OwNL

Bk(i)(B
k, vk,Bk)

:=







ShBh(i)(B
h, vh), if k = h,

OwBk(i)

(
Bk|Bk+2(i), v

k,Bk
k+1|Bk+2(i)

)

+
OwNL

Bk+1(i)

(
Bk+1, vk+1,Bk+1

)
− ShBk+1(i)

(
Bk+1|Bk+2(i), v

k+1
)

| 〈Bk(i)〉k |
, if 0 ≤ k ≤ h− 1,

(9)

and OwNL

i (N, v, B) = OwNL

{i}(B
0, v0,B0) for all i ∈ N .

Remark 4.11. OwNL coincides with Sh if h = 0 and with Ow if h = 1.

The following property is similar to NBC.

Nested balanced Owen contributions, NBOC. For all (N, v, B) ∈ VLN, B = Bh,

two siblings Bk, Bℓ ∈ Br, 0 ≤ r ≤ h, we have

∑

i∈Bk

ϕi(N, v,B)−
∑

i∈Bk

ϕi

(
Br+2(i)\Bℓ, v,Br+1|Br+2(i)\Bℓ

)

=
∑

i∈Bℓ

ϕi(N, v,B)−
∑

i∈Bℓ

ϕi

(
Br+2(i)\Bk, v,Br+1|Br+2(i)\Bk

)
, (10)

where Br+2(i) := Bh+1(i) and Br+1 := Bh if r = h.

13

The interpretation is similar to NBC. Suppose one sibling leaves the game and this
would lead to a situation where the other sibling can only play a game within the parent
component of its parent (without its sibling). Then the sum of the payoffs that all players
of a sibling win or lose is the same for both siblings.

Proposition 4.12. OwNL satisfies E, LG, and NBOC but not N.

Theorem 4.13. OwNL is the unique LS-value that satisfies E and NBOC.

5 Runtime complexity for algorithms of LS-values

As far as we know, there are no studies of how the extension of a solution such as the
Shapley value to an LS value such as the Shapley levels value affects time complexity.
The hierarchical structure of level structures is related to the data structure of trees in
computer science or rooted trees in graph theory6. In computer science, trees are one of
the most fundamental concepts for coping with complexity. In this context, only the use
of trees in databases, hierarchical file systems in operating systems, or search trees for the
management of information should be mentioned.
We will show below that level structures can analogously reduce complexity. Since

identical levels do not bring any new information and all the LS-values examined here
give the same results when redundant levels are removed, in the following complexity
analyses, we will only consider strict level structures, at least with regard to the original
full player set.

Proposition 5.1. For each level structure B ∈ LN, B = Bh, we have

(i) h ≤ n− 2, if B is strict,

(ii) h ≤ (log2 n)− 1, if B is totally strict.

Proof. (i) For a strict level structure B ∈ LN, B = Bh, we have |Br+1| < |Br| for all
r, 0 ≤ r ≤ h. Due to |B0| = n, it follows |Bh+1| ≤ n − (h + 1) and thus, by |Bh+1| = 1,
h ≤ n− 2.
(ii) Let B ∈ LN, B = Bh, be totally strict. If h = 0, we have 2h+1 = 2 ≤ n. For each

additional level, the size of the player set must at least double. It follows, by induction
on the size h, 2h+1 ≤ n⇔ h ≤ (log2 n)− 1.

Next, we want to state that we only need the worths of certain coalitions for the compu-
tation of the LS-values that are computed in a top-down procedure.

Remark 5.2. To compute the Shapley levels value for a player i ∈ N and a level structure
B ∈ LN, based on Definition 4.2, we need only to take into account the worths of two groups
of coalitions T ⊆ N : first, all components B ∈ B, B ∋ i, and their siblings, and second,
all coalitions that these components can form as unions, so that for each of these coalitions
if any two components are involved in such a coalition, one component is an ancestor or
sibling of an ancestor of the other, or both components are siblings. We denote the set of

6In a different perspective, Álvarez-Mozos et al. (2017) describe how hierarchical structures can be
transformed into level structures.

14

all coalitions from these both groups by Ri
B as the set of relevant coalitions for player

i on B. The worths of all other coalitions S ∈ ΩN\Ri
B can take any worth and we get the

same payoff for player i.

Remark 5.3. To compute the nested Shapley levels value for a player i ∈ N and a level
structure B ∈ LN, based on Definition 4.4, we need only to take into account the worths
of two groups of coalitions T ⊆ N : first, all components B ∈ B, B ∋ i, and their siblings,
and second all coalitions that children within one parent, containing player i, can form as
unions among themselves. We denote the set of all coalitions from these both groups by
RShi

B as the set of relevant nested Shapley coalitions for player i on B. The worths

of all coalitions S ∈ ΩN\RShi

B can take any worth and we get the same payoff.

Remark 5.4. To compute a nested Owen levels value for a player i ∈ N and a level
structure B ∈ LN, based on Definition 4.9, we need only to take into account the worths of
three groups of coalitions T ⊆ N : first, all components B ∈ B, B ∋ i, and their siblings,
and second all coalitions that children within one parent, containing player i, can form as
unions among themselves, and third all coalitions that each of these coalitions can form
with siblings of their parent as unions. We denote the set of all coalitions from these three
groups by ROwi

B as the set of relevant nested Owen coalitions for player i on B. The

worths of all coalitions S ∈ ΩN\ROwi

B can take any worth and we get the same payoff.

If the degree of a level structure is not bounded, we cannot expect to find a polynomial-
time algorithm for our LS-values, since, e.g., all values for a trivial level structure coincide
with the Shapley value. Therefore, we use level structures of fixed degree for the algo-
rithms. First, we indicate the complexities of the intermediate games.

Theorem 5.5. Let (N, v) ∈ VN, D ∈ ΩN, and d := |D|. To compute Shi(D, v) for a
single player i ∈ D requires a time O(d2d).

Proof. By (2), we have the following algorithm.

Algorithm 5.1. Compute Shi(D, v)

Input: A player i ∈ D and v(S) for all S ⊆ D.
1: sum := 0
2: for all S ⊆ D, S ∋ i, do

3: sum := sum+
(|S| − 1)! (d− |S|)!

d!

[
v(S)− v(S\{i})

]

4: end for

5: Shi(D, v) := sum

6: return Shi(D, v).

Complexity: We have t(Algorithm 5.1) = 1+ t(F2)+ 1 = 2+2d−1t(L3). If the faculties
are not stored, we have t(L3) ∈ O(d). Therefore, Algorithm 5.1 has a time O(d2d).

Now we are ready to give the complexities of our LS-values.

Theorem 5.6. For all (N, v, B) ∈ VLN such that B is a totally strict level structure of
degree d, it requires to compute ShLi (N, v,B) for all players i ∈ N a time O(nd log n).

15

Proof. We give a pseudocode algorithm based on Definition 4.2.

Algorithm 5.2. Compute ShLi (N, v,B)

Input: A level structure B ∈ LN, B = Bh, a player i ∈ N , and v(S) for all S ∈ Ri
B.

1: for all S ∈ Ri
B do // the relevant coalitions for player i

2: v̄h+1(S) := v(S)
3: end for

4: for k = h to 0 do // the descending levels
5: for all T ∈ ΩBk(i) ∩Ri

B do // all subsets of component Bk(i) which are relevant
coalitions for player i

6: for all Q ⊆ T k
i do // all subsets from T k

i , defined in Notation 4.1
7: ṽki (Q) := v̄k+1

i (
⋃

S∈Q S)
8: end for

9: v̄ki (T) := ShT (T
k
i , ṽ

k
i) // calls a method/function that computes Sh

before the assignment, e.g. Algorithm 5.1
10: end for

11: end for

12: ShLi (N, v,B) := v̄0i ({i})
13: return ShLi (N, v,B).

Complexity: Let B be a totally strict level structure of degree d. We have, by Proposi-
tion 5.1, h ≤ (log2 n)− 1. It follows

|Ri
B| ≤ 2d · 2d−1 · · · 2d−1

︸ ︷︷ ︸

h times

−1 ≤ 2 · 2d−1 · · · 2d−1
︸ ︷︷ ︸

log2 n times

−1 = 2 · 2log2 n(d−1) − 1 = 2nd−1 − 1. (11)

In line 6, we have |T k
i | ≤ d. It follows

t(F6) ≤ 2d. (12)

Thus, we have

t(Algorithm 5.2) = t(F1) + t(F4) + 1 ≤
(11)

2nd−1 +
∑0

k=h t(F5)

≤
Prop.5.1

(11)

2nd−1 + (log2 n)2n
d−1

[
t(F6) + t(L9)

]

≤
(12)

2nd−1 + (log2 n)2n
d−12d + (log2 n)2n

d−1t(L9).

By Theorem 5.5, we have t(L9) ∈ O(d2d). Therefore, Algorithm 5.2 has a time
O(nd−1 log n). The claim follows by running the algorithm for n players.

Remark 5.7. Theorem 5.6 remains valid for arbitrary level structures of degree d as
long as h is logarithmic in n. If B is degenerate strict, Algorithm 5.2 has no polynomial
runtime.

Despite this generally positive result, the time complexity of computing the level structure
value may be too high in many cases. In practice, the degree of B must be very small,
even if n is not very large. Using the nested Shapley levels value may be often more
appropriate.

16

Theorem 5.8. For all (N, v, B) ∈ VLN, and B of degree d, it requires to compute
ShNL

i (N, v,B) for all players i ∈ N

(i) a time O(n2) if B is strict,

(ii) a time O(n log n) if B is totally strict.

Proof. We give a pseudocode algorithm based on Definition 4.4.

Algorithm 5.3. Compute ShNL

i (N, v,B)

Input: A level structure B ∈ LN, B = Bh, a player i ∈ N , and v(S) for all S ∈ RShi

B .

1: v̄h+1
i (N) := v(N)

2: for k = h to 0 do // the descending levels
3: ṽki (B

k|Bk+1(i)) := v̄k+1
i (Bk+1(i)) // the worth for the restricted grand coalition

where all children of Bk+1(i) are players
4: for all Q (Bk|Bk+1(i), Q 6= ∅, do // all coalitions that the children of Bk+1(i)

as players can form, except Bk|Bk+1(i)

5: ṽki (Q) := v(
⋃

B∈QB)
6: end for

7: v̄ki (B
k(i)) := ShBk(i)(B

k|Bk+1(i), ṽ
k
i) // calls a method/function that computes
Sh before the assignment, e.g. Algorithm 5.1

8: end for

9: ShNL
i (N, v,B) := v̄0i ({i})

10: return ShNL
i (N, v,B).

Complexity: (i) Let B be a strict level structure of degree d. We have

t(Algorithm 5.3) = 1 + t(F2) + 1 = ≤
Prop.5.1

2 + (n− 1)
[
1 + t(F4) + t(L7)

]

≤ 1 + n+ (n− 1)(2d − 2) + (n− 1)t(L7)

By Theorem 5.5, we have t(L7) ∈ O(d2d). Therefore, Algorithm 5.3 has for a strict level
structure a time O(n). The claim follows by running the algorithm for n players.
(ii) Let B be a totally strict level structure of degree d. By Proposition 5.1, the for

loop, line 2, now runs at most log2 n times instead of (n− 2) times. Analogous to (i), it
follows

t(Algorithm 5.3) = 2 + log2 n+ log2 n(2
d − 2) + log2 n · t(L7)

By Theorem 5.5, we have t(L7) ∈ O(d2d). Therefore, Algorithm 5.3 has for a totally strict
level structure a time O(log n). The claim follows by running the algorithm for n players.

Remark 5.9. As long as h is linear in n, Theorem 5.8 (i) remains valid and as long as h
is logarithmic in n, Theorem 5.8 (ii) remains valid for arbitrary level structures of degree
d. Again, the impact of d is not negligible in practice. Although, at least for small d, in
Algorithm 5.1, the faculties could be stored directly, resulting in a slightly better runtime
of O(2d) for Shi(D, v), the influence of d is still exponential.

17

For ShNL only the relationships of the children within the parent are relevant. OwNL

also takes into account the relationships of the children of the parent to the siblings of
the parent with a runtime complexity of the same order.

Theorem 5.10. For all (N, v, B) ∈ VLN, and B of degree d, it requires to compute
OwNL

i (N, v,B) for all players i ∈ N

(i) a time O(n2) if B is strict,

(ii) a time O(n log n) if B is totally strict.

Proof. We give a pseudocode algorithm based on Definition 4.9.

Algorithm 5.4. Compute OwNL

i (N, v,B)

Input: A level structure B ∈ LN, B = Bh, a player i ∈ N , and v(S) for all S ∈ ROwi

B .
1: if h = 0 then

2: OwNL
i (N, v,B) := Shi(N, v) // calls a method/function that computes Sh

before the assignment, e.g. Algorithm 5.1
3: else // h ≥ 1
4: for all T ⊆ N, T =

⋃

B∈Bh,B⊆TB do // all coalitions that the components of
the hth level can form with their own complete player sets among themselves

5: v̄h+1
i (T) := v(T)

6: end for

7: for k = h to 1 do // the descending levels
8: for all Q ⊆ Bk|Bk+1(i) do // all coalitions that the children of Bk+1(i)

as players can form
9: ṽki (Q) := v̄k+1

i (
⋃

T∈Q T)
10: end for

11: v̄ki (B
k(i)) := ShBk(i)(B

k|Bk+1(i), ṽ
k
i) // calls a method/function that computes
Sh before the assignment, e.g. Algorithm 5.1

12: for all S ⊆ Bk(i), S =
⋃

B∈Bk−1,B⊆SB, do // all coalitions that the children of

Bk(i) can form with their own complete player sets among themselves
13: for all Q ⊆ Sk

i do // all subsets from the set containing all children of
Bk+1(i) where Bk(i) is replaced by coalition S (see Notation 4.8)

14: vki (Q) := v(
⋃

T∈Q T)
15: end for

16: v̄ki (S) := ShS(S
k
i , v

k
i) // calls a method/function that computes Sh

before the assignment, e.g. Algorithm 5.1
17: end for

18: end for

19: for all Q ⊆ B0|B1(i) do // all coalitions that the components of the 0th
level, restricted to B1(i), as players can form

20: ṽ0i (Q) := v̄1i (
⋃

T∈Q T)
21: end for

22: OwNL
i (N, v,B) := v̄0i ({i})

23: end if

24: return OwNL
i (N, v,B).

18

Complexity: (i) Let B be a strict level structure of degree d. We have

t(Algorithm 5.4)

≤ t(IF1) + t(ELSE3) = 1 + t(L2) + t(F4) + t(F7) + t(F19) + 1

≤
Prop.5.1

2 + t(L2) + 2d− 1 + (n− 2)
[
t(F8) + t(L11) + t(F12)

]
+ 2d− 1

≤ 2d+1 + t(L2) + (n− 2)
[

2d − 1 + t(L11) + (2d − 1)
[
t(F13) + t(L16)

]]

≤ 2d+1 + t(L2) + (n− 2)
[

2d − 1 + t(L11) + (2d − 1)
[
2d − 1 + t(L16)

]]

.

By Theorem 5.5, we have t(L2), t(L11), t(L16) ∈ O(d2d). Therefore, Algorithm 5.4 has for
a strict level structure a time O(n). The claim follows by running the algorithm for n
players.
(ii) Let B be a totally strict level structure of degree d. By Proposition 5.1, the for

loop, line 7, now runs at most (log2 n − 1) times instead of (n − 2) times. Analogous to
(i), it follows

t(Algorithm 5.4) ≤ 2d+1 + t(L2)

+(log2 n− 1)
[

2d − 1 + t(L11) + (2d − 1)
[
2d − 1 + t(L16)

]]

.

By Theorem 5.5, we have t(L2), t(L11), t(L16) ∈ O(d2d). Therefore, Algorithm 5.4 has
for a totally strict level structure a time O(log n) and the claim follows by running the
algorithm for n players.

Remark 5.11. Theorem 5.10 (i) remains valid for arbitrary level structures of degree d
as long as h is linear in n, Theorem 5.10 (ii) remains valid for arbitrary level structures
of degree d as long as h is logarithmic in n. The effect of d is now quadratic to that of
d in Algorithm 5.3 (22d instead of 2d). Therefore, in practice, the maximum degree d can
now only be half as large as that used for ShNL to compute OwNL in a reasonable time.

6 Relevant coalition functions

In this section, we will look again at the Shapley levels value. By the dividend representa-
tion in (5), ShL equals, for a fixed player set and level structure, a Harsanyi solution from
the Harsanyi set (Hammer et al., 1977; Vasil’ev, 1978). Usually, we need the dividends
to compute a Harsanyi solution, which normally takes exponential time to calculate.

Theorem 6.1. Let (N, v) ∈ VN. To compute the dividends ∆v(T) for all T ⊆ N requires
a time O(3n).

Proof. For the proof, we adapt the “dividend” algorithm in Algaba et al. (2007):

Algorithm 6.1. Compute ∆v

Input: (N, v) ∈ VN.
1: ∆v(∅) := 0
2: for ℓ = 1 to n do // gives the size of the coalitions

19

3: for m = 1 to

(
n

ℓ

)

do // all coalitions of size ℓ

4:

∆v(Tℓm) := v(Tℓm)−
∑

S(Tℓm

∆v(S) // (1)

5: end for

6: end for

7: return ∆v(T) for all T ⊆ N ,

where Tℓm is the mth coalition with |Tℓm | = ℓ.

Description: After the algorithm has computed the dividends of all singletons, the
dividends of the larger coalitions are successively computed using the dividends of the
smaller coalitions.
Complexity: We have

t(Algorithm 6.1) = 1 + t(F2) = 1 +
n∑

ℓ=1

t(F3) = 1 +
n∑

ℓ=1

(nℓ)∑

m=1

t(L4)

= 1 +
n∑

ℓ=1

(nℓ)∑

m=1

(1 + 2ℓ − 1) = 1 +
n∑

ℓ=1

(
n

ℓ

)

2ℓ =
n∑

ℓ=0

(
n

ℓ

)

2ℓ = 3n.

Therefore, Algorithm 6.1 has a time O(3n)

Rash implementation of (5) in an executable algorithm for the computation of ShL thus
requires exponential time. In the following, we will propose an explicit expression for the
Shapley levels value with a polynomial runtime for totally strict level structures of fixed
degree. Therefore, we generalize the concept of relevant coalitions.

Definition 6.2. Let (N, v) ∈ VN, R ⊆ ΩN, and vR such that vR(T) := v(T) for all T ∈ R
and ∆vR(S) = 0 for all S ∈ ΩN\R. We call vR the (R-)relevant coalition function

for v and all T ∈ R are called (R-)relevant coalitions.

If we know the relevant coalitions and their number is not too large, the computation of
dividends for a relevant coalition function can be done efficiently.

Theorem 6.3. Let (N, v) ∈ VN and R ⊆ ΩN be the set of relevant coalitions for v. If
the number of all T ∈ R is bounded by a polynomial of degree k, computing all dividends
∆vR(T) requires a time O(n2k).

Proof. For the proof, we again adapt the “dividend” algorithm in Algaba et al. (2007).

Algorithm 6.2. Compute ∆vR

Input: vR(T) for all T ∈ R.
1: for ℓ = 1 to n do // gives the size of the coalitions
2: for m = 1 to |Rℓ| do // all coalitions from R of size ℓ
3:

∆vR(Tℓm) := vR(Tℓm)−
∑

S(Tℓm
,S∈R

∆vR(S) // (1)

4: end for

20

5: end for

6: return ∆vR(T) for all T ∈ R,

where Rℓ is the set of all coalitions from R of size ℓ and Tℓm is the mth coalition from
Rℓ.

Description: As in Algorithm 6.1, first the dividends of all singletons are computed and
then, successively, the dividends of larger coalitions using the dividends of the smaller ones.
Complexity: The number of summands in line 3 is bounded by a polynomial of degree

k. Thus, we have t(L3) ∈ O(nk). The number of calls of line 3 by the two nested loops,
line 1, line 2, is bounded by a polynomial of degree k. It follows

t(Algorithm 6.2) = t(F1) =
n∑

i=ℓ

t(F2) =
n∑

ℓ=1

|Ri|∑

m=1

t(L3).

Therefore, Algorithm 6.2 has a time O(n2k).

For a totally strict level structure of degree d, the number of the Ri
B-relevant coalitions

is bounded by a polynomial of degree (d − 1). In fact, the time O(n2d−2) to compute
the dividends for all T ∈ Ri

B can still be improved if we take advantage of the special
structure of a level structure.

Theorem 6.4. Let (N, v, B) ∈ VLN, B be a totally strict level structure of degree d, and

vR
i

B be the Ri
B-relevant coalition function for v. Computing all dividends ∆(

vR
i

B

)(T) for

all T ∈ Ri
B requires a time O

(
n

d

log3 2
)
.

Proof. For the proof, we look at a coalition function where all children of B1(i) and all
siblings of all ancestors of {i} are the players. All coalitions which these players can form
have the same worth as the corresponding previous coalitions. Thus, the dividends of
these new coalitions also match the corresponding original dividends. Since we have, by
Proposition 5.1, at most d+(log2 n−1)(d−1) = d log2 n+1 players, we need, by Theorem

6.1, a time O(3d log2 n+1) = O(n
d

log3 2) to compute all dividends.

The following alternative definition of ShL follows immediately by Remark 5.2 and (5).

Remark 6.5. Let (N, v, B) ∈ VLN, vR
i

B be the Ri
B-relevant coalition function for v and

all i ∈ N, and KT (i) be the expressions from (4). Then the Shapley Levels value ShL is
given by

ShLi (N, v,B) =
∑

T∈Ri

B
, T∋i

KT (i)∆(
vR

i

B

)(T) for all i ∈ N.

Also for an algorithm, based on an explicit expression, we have a polynomial runtime for
the Shapley levels value.

Theorem 6.6. For all (N, v, B) ∈ VLN such that B is a totally strict level structure of

degree d, it requires to compute ShLi (N, v,B) for all players i ∈ N a time O
(
n
(d

log3 2
+1))

if
we use an algorithm based on (5).

21

Proof. We give a pseudocode algorithm based on Remark 6.5 and thus based on (5).

Algorithm 6.3. Compute ShLi (N, v,B) with dividends

Input: A level structure B ∈ LN, B = Bh, a player i ∈ N , and v(T) for all T ∈ Ri
B.

1: Compute ∆(
vR

i

B

)(T) for all T ∈ Ri
B

2: sum := 0
3: for all T ∈ Ri

B, T ∋ i do // the relevant coalitions for player i
4: KT (i) := 1 // initialization
5: for r = 0 to h do // the levels

6: KT (i) := KT (i) ·
1

|{B ∈ Br : B⊆ Br+1(i), B ∩ T 6= ∅}|
// (4)

7: end for

8: sum := sum+KT (i)∆(
vR

i

B

)(T) // sums up to (5)

9: end for

10: ShLi (N, v,B) := sum

11: return ShLi (N, v,B).

Complexity: Let B be a totally strict level structure of degree d. We have, according to
the proof of Theorem 5.6, h ≤ (log2 n) − 1 and |Ri

B| ≤ (2nd−1 − 1). By Theorem 6.4, it

follows t(Line 1) ∈ O
(
n

d

log3 2
)
. We have t(L6), t(L8) ≤ c, c ∈ N, and obtain

t(Algorithm 6.3) = t(Line 1) + 1 + t(F3) + 1

≤ t(Line 1) + 2 + (2nd−1 − 1)
[
1 + t(F5) + t(L8)

]

≤
[

t(Line 1) + 2 + 2nd−1
[
1 + log2 n · c+ c

]]

∈ O
(
n

d

log3 2
)
.

The claim follows by running the algorithm for n players.

7 General reflections

In previous sections, an efficient payoff computation was possible because we did not have
to consider all coalitions in the LS-values examined. The same payoffs could also be
obtained if, in the related coalition functions, the relevant coalitions would receive their
original worth and the other coalitions a worth that results in a dividend of zero. Since
we can consider for any coalition function all essential coalitions as relevant, a simple
relationship emerges.

Remark 7.1. Let (N, v) ∈ VN. If we define R as the set of all essential coalitions in v,
we have v = vR.

For the LS-values, a certain perspective on the hierarchical structure was crucial to deter-
mine which coalitions were considered being relevant. Apart from a hierarchical structure,
in practice, there are often many other restrictions on the formation of coalitions: group
size, spatial restrictions such as rooms, buildings, and locations, or specific requirements
for certain members within a team such as military units, ship or aircraft crews, or de-
velopment and programming teams. In networks (no complete graph), we often have a

22

direct or indirect connection within a fixed number of coalitions. Definition 6.2 allows the
formation of any relevant coalition that may actually or even theoretically be formed.
Relevant coalition functions have a close connection to graph and hypergraph games

in Deng and Papadimitriou (1994). A (undirected) hypergraph G = (N,E) consists
of a set N of nodes and a set E of non-empty subsets of N , called hyperedges. If
the hyperedges are only 2-element subsets of nodes, we call G a graph. Since the set of
nodes N corresponds to a player set N , we can also interpret each hyperedge S ∈ E as a
coalition S ∈ ΩN of players.
Deng and Papadimitriou define for a given undirected graph G = (N,E) with an integer

weight vG(S) on each edge S ∈ E a TU-game (N, vG) by vG(T) :=
∑

S⊆T, S∈E vG(S) for
all T ⊆ N . They show that for such games the Shapley value for a player i ∈ N is
to compute by Shi(N, vG) =

1
2

∑

S∈E,S∋i vG(S), which results in time O(n2) to compute
the Shapley value for the complete player set. In a first extension, the authors allow
games with an underlying hypergraph with weighted hyperedges of a fixed size k ≥ 2.
The coalition function vG is still given by vG(T) :=

∑

S⊆T, S∈E vG(S) for all T ⊆ N .
Since the number of edges is polynomial in n, the Shapley value can be computed by
Shi(N, vG) =

1
k

∑

S∈E,S∋i vG(S) in polynomial-time.
In the last extension, the size of the hyperedges can vary as long as the number of hy-

peredges is polynomial in n. This extension is mentioned only rudimentarily. Therefore,
a small but for our further considerations significant lack of clarity in Deng and Papadim-
itriou (1994) should be pointed out. As long as we have no proper subset relationship
between hyperedges, by (1), the worth of a hyperedge in vG is equal to the Harsanyi
dividend of the corresponding coalition, all other coalitions have a dividend of zero, and
the worth of any coalition is equal to the sum of the worths of all hyperedges contained
in that coalition. But, if a hyperedge T ∈ E contains another hyperedge S (T with a
non-zero weight as a proper subset, the worth of T cannot be the sum of the worths of S
and T simultaneously. Therefore, in the following, we define the weights on each hyper-
edge S ∈ E as the Harsanyi dividend ∆vG(S) and vG is given by vG(T) :=

∑

S∈E ∆vG(S)
for all T ⊆ N . We believe that this is what Deng and Papadimitriou had in mind.
If we make a small generalization to hyperedges with arbitrary weights, allow that

singletons can also be hyperedges, and the number of hyperedges no longer has to be
polynomial in n, we have for each TU-game (N, vG) with G = (N,E) a corresponding
TU-game (N, vR) and vice versa such that E = R, ∆vG(S) = ∆vR(S) for all S ⊆ N , and
thus vG = vR. In particular, we have vG = v if v = vR (see Remark 7.1). While the
work of Deng and Papadimitriou was, in many respects, groundbreaking for the following
literature, this relationship seems to be little or not at all known in the literature so
far7. This correlation means that the representation in our small generalization is fully
expressive, i.e., it can model any TU-game!
In Deng and Papadimitriou (1994), the coalition function is given (in our generalization)

by the weights of the hyperedges and thus by the dividends of the relevant coalitions. It
follows, by the same arguments as in Deng and Papadimitriou (1994) and Remark 7.1,
that the Shapley value can be computed for all TU-games (N, v) in polynomial-time as
long as the number of all essential coalitions in v is polynomial in n and we know the
essential coalitions and their dividends. If the dividends for the essential coalitions are

7Ieong and Shoham, (2005, p. 194) and Michalak et al, (2013, p. 614/615), for example, only look at
graphs, which naturally are not fully expressive.

23

not explicitly given, we can compute them in advance in polynomial-time according to
Theorem 6.3 using Algorithm 6.2. Note the following relationship.

Remark 7.2. Let (N, v) ∈ VN and R be the set of all essential coalitions in v. Then the
Shapley value Sh is given by

Shi(N, v) :=
∑

S∈R, S∋i

∆v(S)

|S|
for all i ∈ N.

It is clear from the outset which coalitions we consider as relevant for k-games and games
on hypergraphs. For level structures, we have determined which coalitions are relevant by
selecting an LS-value. We do this indirectly when we select a value for TU-games. The
equal surplus division value (Driessen and Funaki, 1991) is nothing else than the Shapley
value, calculated with the relevant coalition function where only the singletons and the
grand coalition are considered as relevant. The same applies to the proportional rule
(Moriarity, 1975) and the proportional Shapley value (Béal et al., 2018; Besner, 2019a).
That is, if in fact only the singletons and the grand coalition are essential, we can still use
the axiomatizations of, say, the Shapley value to select a value, but then use the simple
formula of the equal surplus division value for the calculation. A very similar relationship
exists between the Shapley levels value and the other two LS-values examined.

Theorem 7.3. For all (N, v, B) ∈ VLN, we have

(i) ShNL

i (N, v,B) = ShLi (N, v
R

Shi

B ,B) and

(ii) OwNL

i (N, v,B) = ShLi (N, v
R

Owi

B ,B) for all i ∈ N ,

where RShi

B is the set of relevant nested Shapley coalitions and ROwi

B the set of relevant
nested Owen coalitions for player i.

By Theorem 7.3 and Remark 6.5, we immediately obtain the following corollary.

Corollary 7.4. Let (N, v, B) ∈ VLN, vR
Shi

B be the RShi

B -relevant coalition function, vR
Owi

B

be the ROwi

B -relevant coalition function for v and all i ∈ N, and KT (i) be the expressions

from (4). Then the nested Shapley Levels value ShNL and the nested Owen levels value
OwNL are given by

ShNL

i (N, v,B) =
∑

T∈R
Shi

B
, T∋i

KT (i)∆(
vR

Shi

B

)(T) and

OwNL

i (N, v,B) =
∑

T∈R
Owi

B
, T∋i

KT (i)∆(
vR

Owi

B

)(T) for all i ∈ N.

Suppose that the number of essential coalitions is polynomially bounded and we know
them and their worths or dividends. Then Remark 7.2 can serve as a blueprint for all
values from the Harsanyi set or for the TU-values from the generalized Harsanyi set
(Besner, 2020), for which the coefficients of the related dividends can then be computed
in polynomial-time, such as the proportional Shapley value or the proportional Harsanyi
solution (Besner, 2020). The representation of the Banzhaf value (Banzhaf, 1965) in van
den Brink and van der Laan (1998, Theorem 2.1) is also suitable.

24

We know the essential coalitions especially in games where not only the grand coalition
but also other coalitions (in the same period) are actually formed. Here, the dividend
of the larger coalition that is formed is only added to the dividends of already formed
coalitions, which are part of this coalition. Not formed coalitions receive a zero dividend.
We are thinking, for example, of a cost function in which specific costs can be assigned to
a unit or cost center (dividends), and the coalitional worth of the cost center comprises
the sum of these costs and all costs of its sub-cost centers. Such situations are likely to
occur often in totally positive games (Vasil’ev, 1975), i.e., games in which all coalitions
have a non-negative dividend (see also the example in Besner (2020)).

8 Conclusion and discussion

In this paper, we have examined three different LS-values. Based on corresponding algo-
rithms, we could obtain polynomial runtimes for each value, depending on the structure
of the level structure. In principle, the results shown for the runtimes can also be trans-
ferred to weighted variants of our LS-values such as the weighted Shapley hierarchy levels
values. For the nested Owen levels value, we have only considered coalitions of children of
a parent with the siblings of the parent as relevant coalitions. Further extensions would
be if we would allow relevant coalitions also with siblings of the ancestors on any number
of levels. As long as this number of levels is logarithmic in n, we get polynomial runtimes.
All offered algorithms for LS-values can be executed for each player independently of

the others, so that parallel computing can improve the runtime in practice by up to a
factor n. However, the degree of the level structure remains the limiting factor. Of course,
the runtimes of LS-values that coincide with a value from the Harsanyi set for a fixed level
structure or use such a value in an intermediate game can also benefit from the restriction
to a set of relevant coalitions.
Sparse matrices require significantly less storage space in numerical analysis and scien-

tific computing and can help to use more efficient algorithms. Similarly, relevant coalition
functions can be regarded as advantageous for the values presented here. On the one
hand, we can solve problems caused by the huge representations, which are completely
useless in practice, and on the other hand, much shorter runtimes are required for payoff
computations. Just as there are specialized computers and algorithms for sparse matrices,
used especially in the field of artificial intelligence, the use of relevant coalition functions
could open up new areas of research and application for cooperative game theory.
The values, in this case for the relevant coalition functions, still satisfy their axioms,

such as efficiency, null player, additivity, etc., depending on the value, including perhaps
the most important axiom for practice, computational ease.
Even if the number of players is not too large, the worths of the coalitions of all possible

coalitions may not be known or determinable in a reasonable time, and it may not be
possible to store them appropriately. Although we would use approximation methods
for TU-values, we would finally have to agree on certain coalitions or subsets of the n!
orderings of the players and related worths of coalitions somehow, for example, based
on Monte Carlo simulation (see, e.g., Mann and Shapley (1960) and Stanojevic et al.
(2010)), the normal distribution function (see, e.g., Owen (1972)), or other in some way
randomized algorithms (see, e.g., Fatima et al. (2008) and van Campen et al. (2018)).
Based on Theorem 6.3, new approximation methods, which still need to be developed,

25

may offer some advantages when using dividends and relevant coalition functions. On the
one hand, values for which only a definition with dividends is known or practicable, such
as most values from the Harsanyi set, can then be approximated; on the other hand, we
can specifically influence which coalitions are relevant. For example, all coalitions that
result from the restrictions listed in Section 7, such as group size, spatial restrictions, and
so on, are suitable. We can also consider relevant coalition functions, which define as
relevant coalitions only those for which data already exist or for which data are available
in a certain time period. The aim should be to agree on a set of relevant coalitions whose
number is limited by a polynomial in n. We assume that the grand coalition N is actually
forming. However, other situations are not excluded in principle but may require special
treatment to receive efficient payoffs.
Even if it seems inexact to use only a certain number of coalitions for the computation,

it is often better to use the important or actually forming coalitions additionally for the
payoff computation than to do without them completely when applying the equal division
value or the proportional rule, for example. We can interpret the value that uses the
relevant coalition function as a new value that considers only the relevant coalitions as the
important ones. The worths or dividends of non-relevant coalitions have not disappeared,
they have just been included in the coalition worths or dividends of the coalitions which
are the relevant supersets of them.
Such a superset always exists when the grand coalition is among the relevant coalitions.

For example, if we compute the proportional rule, the dividends of all coalitions with at
least two players are summarized in the dividend of the grand coalition if the singletons
and the grand coalition are the relevant coalitions. If we compute the Shapley levels value
for a player i ∈ N with Algorithm 6.3, the dividend of a coalition S ⊆ N that i forms
with other players outside the parent is always included in the dividend of the coalition
that consists of all children of the smallest component containing S, where each child
itself contains at least one player of S.
Altogether, the algorithms and methods presented in this study should give new im-

pulses for the practical application of methods of cooperative game theory, e.g., in supply
chain management, cost allocation, resource allocation to processes in operating systems,
resource allocation of virtual machines, network analysis, etc..

Acknowledgements We are grateful to Winfried Hochstättler for pointing out to us that it
should be possible to use level structures to obtain polynomial runtimes for values for cooperative
games and his helpful comments.

9 Appendix

9.1 Proof of Proposition 4.6

• E and LG but not N: Since Sh meets E0, it is easy to see that ShNL satisfies E.
LG also follows directly from the top-down distribution mechanism and since Sh

satisfies E0. With the help of a small example, we can see that N is not satisfied: Let
(N, uS, B) ∈ VLN, N = {1, 2, 3}, B = B2 such that B1 :=

{
{1, 2}, {3}

}
and uS be the

unanimity game with carrier S := {2, 3}. Player 1 is a null player in uS but we have
ShNL

1 (N, uS, B) =
1
4
6= 0.

26

• NBC: Let (N, v, B) ∈ VLN, B = Bh, and Bk, Bℓ ∈ Br, 0 ≤ r ≤ h, such that Bℓ ⊆
Br+1(Bk). It is well-known that Sh satisfies BC0 and thus for each TU-game restricted
to a component of the (k + 1)th level where the components of the kth level are the
players. Therefore, by LG, NBC is satisfied for r = h. By induction on the size
m := h− r, (8), and LG, the claim follows immediately.

9.2 Proof of Theorem 4.7

The existence part follows by Proposition 4.6. Therefore, we only have to show uniqueness.
Let (N, v, B) ∈ VLN, B = Bh, and ϕ and ψ be two LS-values which satisfy E and

NBC. It is sufficient to show
∑

i∈B

ϕi(N, v,B) =
∑

i∈B

ψi(N, v,B) for all B ∈ Br and all r, 0 ≤ r ≤ h+ 1. (13)

If r = h+ 1, (13) is satisfied by E. We use a first induction I1 on the size m, 0 ≤ m ≤ h,

for all levels r, 0 ≤ r ≤ h, where m := h− r.
Induction basis I1: Let m = 0 and thus r = h.

If |{B : B ∈ Bh}| = 1, (13) is satisfied by E. We use a second induction I2 on the size
t := |{B : B ∈ Bh}|, t ≥ 2.
Induction basis I2: Let t = 2. We have exactly two components Bk, Bℓ ∈ Bh. By E, it

follows
∑

i∈Bk

ϕi

(
N\Bℓ, v,Bh|N\Bℓ

)
=

∑

i∈Bk

ψi

(
N\Bℓ, v,Bh|N\Bℓ

)

and
∑

i∈Bℓ

ϕi

(
N\Bk, v,Bh|N\Bk

)
=

∑

i∈Bℓ

ψi

(
N\Bk, v,Bh|N\Bk

)
.

We obtain, by NBC,
∑

i∈Bk

ϕi(N, v,B)−
∑

i∈Bk

ψi(N, v,B) =
∑

i∈Bℓ

ϕi(N, v,B)−
∑

i∈Bℓ

ψi(N, v,B).

It follows

2 ·
[∑

i∈Bk

ϕi(N, v,B)−
∑

i∈Bk

ψi(N, v,B)
]

=
∑

i∈N

ϕi(N, v,B)−
∑

i∈N

ψi(N, v,B) =
E

0

and therefore, (13) is satisfied.
Induction step I2: Assume that (13) holds for t′ ≥ 2 and all t′′, 1 ≤ t′′ < t′, (IH2). Let

t := t′ + 1. We choose two different components Bk, Bℓ ∈ Bh. It follows
∑

i∈Bk

ϕi

(
N\Bℓ, v,Bh|N\Bℓ

)
=

(IH2)

∑

i∈Bk

ψi

(
N\Bℓ, v,Bh|N\Bℓ

)

and
∑

i∈Bℓ

ϕi

(
N\Bk, v,Bh|N\Bk

)
=

(IH2)

∑

i∈Bℓ

ψi

(
N\Bk, v,Bh|N\Bk

)

27

We obtain, by NBC,
∑

i∈Bk

ϕi(N, v,B)−
∑

i∈Bk

ψi(N, v,B) =
∑

i∈Bℓ

ϕi(N, v,B)−
∑

i∈Bℓ

ψi(N, v,B). (14)

(14) holds for all B ∈ Bh. It follows for an arbitrary B ∈ Bh,

t ·
[∑

i∈B

ϕi(N, v,B)−
∑

i∈B

ψi(N, v,B)
]

=
∑

i∈N

ϕi(N, v,B)−
∑

i∈N

ψi(N, v,B) =
E

0.

Therefore, (13) is satisfied. Note, since N and h were arbitrary, we have also shown, for
all 0 ≤ r ≤ h and two siblings Bk, Bℓ ∈ Br,

∑

i∈Bk

ϕi

(
Br+1(Bk)\Bℓ, v,Br|Br+1(Bk)\Bℓ

)
=

∑

i∈Bk

φi

(
Br+1(Bk)\Bℓ, v,Br|Br+1(Bk)\Bℓ

)
. (15)

Induction step I1: Assume that (13) holds for m′, 0 ≤ m′ < h, and all m′′, 0 ≤ m′′ < m′,

(IH1). Let m = m′ + 1, r = h−m′ − 1, Br+1 ∈ Br+1, and t := |{B ∈ Br : B ⊆ Br+1}|. If
t = 1, we have only one B ∈ Br, B ⊆ Br+1. It follows

∑

i∈B

ϕi(N, v,B) =
∑

i∈Br+1

ϕi(N, v,B) =
(IH1)

∑

i∈Br+1

ψi(N, v,B) =
∑

i∈B

ψi(N, v,B).

Let now t ≥ 2. We choose two siblings Bk, Bℓ ∈ Br. We have
∑

i∈Bk

ϕi

(
Br+1\Bℓ, v,Br|Br+1\Bℓ

)
=
(15)

∑

i∈Bk

ψi

(
Br+1\Bℓ, v,Br|Br+1\Bℓ

)

and
∑

i∈Bℓ

ϕi

(
Br+1\Bk, v,Br|Br+1\Bk

)
=
(15)

∑

i∈Bℓ

ψi

(
Br+1\Bk, v,Br|Bs+1\Bk

)
.

By NBC, we obtain
∑

i∈Bk

ϕi(N, v,B)−
∑

i∈Bk

ψi(N, v,B) =
∑

i∈Bℓ

ϕi(N, v,B)−
∑

i∈Bℓ

ψi(N, v,B). (16)

(16) holds for all B ∈ Br, B ⊆ Br+1. It follows for an arbitrary B ∈ Br, B ⊆ Br+1,

t ·
[∑

i∈B

ϕi(N, v,B)−
∑

i∈B

ψi(N, v,B)
]

=
∑

i∈Br+1

ϕi(N, v,B)−
∑

i∈Br+1

ψi(N, v,B) =
(IH1)

0.

Thus, we have
∑

i∈B ϕi(N, v,B) =
∑

i∈B ψi(N, v,B) for all B ∈ Br, B ⊆ Br+1, and, by the
induction argument, uniqueness is shown.

9.3 Proof of Proposition 4.12

• E and LG but not N: Since Sh meet E0 and Ow meet E, it is easy to see that OwNL

satisfies E. LG also follows directly from the top-down distribution mechanism and
since Sh meet E0 and Ow meet E. The following example shows that N is not satisfied.
Let (N, uS, B) ∈ VLN, B := B2, N = {1, 2, 3, 4}, with B1 :=

{
{1, 2}, {3}, {4}

}
,B2 :=

{
{1, 2, 3}, {4}

}
, and be uS the unanimity game with carrier S := {2, 3, 4}. Player 1 is

a null player in uS but we have OwNL

1 (N, uS, B) =
1
8
6= 0.

28

• NBOC: Let (N, v, B) ∈ VLN, B = Bh, Bk, Bℓ ∈ Br, 0 ≤ r ≤ h, such that Bℓ ⊆
Br+1(Bk). If r = h, (10) is satisfied by LG and since Sh meets BC0. Let now r < h.
By (9), we have

OwNL

Bk
(Br, vr,Br)−OwBk

(
Br|Br+2(Bk), v

r,Br
r+1|Br+2(Bk)

)

= OwNL

Bℓ
(Br, vr,Br)−OwBℓ

(
Br|Br+2(Bℓ), v

r,Br
r+1|Br+2(Bℓ)

)
.

Since Ow as a special case of the Shapley levels value satisfies BC, it follows

OwNL

Bk
(Br, vr,Br)−OwBk

(
Br|Br+2(Bk)\Bℓ

, vr,Br
r+1|Br+2(Bk)\Bℓ

)

= OwNL

Bℓ
(Br, vr,Br)−OwBℓ

(
Br|Br+2(Bℓ)\Bk

, vr,Br
r+1|Br+2(Bℓ)\Bk

)
.

By Remark 4.11 and LG, the claim follows immediately.

9.4 Proof of Theorem 4.13

The existence part follows by Proposition 4.12. Therefore, we only have to show unique-
ness. Let (N, v, B) ∈ VLN, B = Bh, h arbitrary, and ϕ and ψ be two LS-values which
satisfy E and NBOC. It is sufficient to show

∑

i∈B

ϕi(N, v,B) =
∑

i∈B

ψi(N, v,B) for all B ∈ Br and all 0 ≤ r ≤ h+ 1. (17)

We use a first induction I1 on the levels starting with level h+ 1.
Induction basis I1: Let r = h+ 1. Then (17) is satisfied by E.
Induction step I1: Assume that (17) is satisfied for all r, 0 ≤ s < r ≤ h+ 1, (IH1).

Let Bs+1 ∈ Bs+1. We use a second induction I2 on the size t := |{B ∈ Bs : B ⊆ Bs+1}|.
Induction basis I2: Let t = 1. We have only one B ∈ Bs, B ⊆ Bs+1, and, by E, it

follows
∑

i∈B

ϕi(N, v,B) =
∑

i∈Bs+1

ϕi(N, v,B) =
(IH1)

∑

i∈Bs+1

ψi(N, v,B) =
∑

i∈B

ψi(N, v,B). (18)

Note that (18) holds also for all restricted cuts as in (10) with r = s.
Induction step I2: Assume that (17) holds for t′ ≥ 1 and all 1 ≤ t′′ < t′, (IH2). Let

t := t′ + 1. We choose two siblings Bk, Bℓ ∈ Bs, Bk, Bℓ ⊆ Bs+1. It follows

∑

i∈Bk

ϕi

(
Bs+2(i)\Bℓ, v,Bs+1|Bs+2(i)\Bℓ

)
=

(IH2)

∑

i∈Bk

ψi

(
Bs+2(i)\Bℓ, v,Bs+1|Bs+2(i)\Bℓ

)

and
∑

i∈Bℓ

ϕi

(
Bs+2(i)\Bk, v,Bs+1|Bs+2(i)\Bk

)
=

(IH2)

∑

i∈Bℓ

ψi

(
Bs+2(i)\Bk, v,Bs+1|Bs+2(i)\Bk

)
.

We obtain, by NBOC,

∑

i∈Bk

ϕi(N, v,B)−
∑

i∈Bk

ψi(N, v,B) =
∑

i∈Bℓ

ϕi(N, v,B)−
∑

i∈Bℓ

ψi(N, v,B). (19)

29

(19) holds for all B ∈ Bs, B ⊆ Bs+1. It follows for an arbitrary B ∈ Bs, B ⊆ Bs+1,

t ·
[∑

i∈B

ϕi(N, v,B)−
∑

i∈B

ψi(N, v,B)
]

=
∑

i∈Bs+1

ϕi(N, v,B)−
∑

i∈Bs+1

ψi(N, v,B) =
(IH1)

0.

Thus, we have
∑

i∈B ϕi(N, v,B) =
∑

i∈B ψi(N, v,B) for all B ∈ Bs, B ⊆ Bs+1, and, by the
induction argument, uniqueness is shown.

9.5 Proof of Theorem 7.3

Let (N, v, B) ∈ VLN, B = Bh, u := vR
Shi

B , w := vR
Owi

B , and, for 0 ≤ k ≤ h, be T k
i the set

from Notation 4.1 and Sk
i the set from Notation 4.8.

(i) By Definition 4.2, we have for ShLi (N, u,B) and all k, 0 ≤ k ≤ h, ūki (B
k(i)) =

ShBk(i)(B
k|Bk+1(i), ũ

k
i), where ũ

k
i is given by

ũki (Q) =

{

ūk+1
i (Bk+1(i)), if Q = Bk|Bk+1(i),

u(
⋃

B∈QB) if Q (Bk|Bk+1(i) by D0.

Therefore, the claim follows by Remark 5.3 and (6) and (7) in Definition 4.4.
(ii) We denote w̄k

i and w̃k
i in Definition 4.9 by ȳki and ỹki respectively to distinguish

them from w̄k
i and w̃k

i in Definition 4.2. By Remark 5.4, it is sufficient to show w̄k
i (B

k(i))
in Definition 4.2 equals ȳki (B

k(i)) in Definition 4.9 for all k, 0 ≤ k ≤ h.
For this, we use induction on the size k, h ≥ k ≥ 0, and show additionally for a cki ∈ R

that

w̄k
i (S) =







ShS(B
k|Bk+1(i), w̃

k
i), if S = Bk(i),

ShS(S
k
i , w

k
i)) + cki , if S (Bk(i), S =

⋃

B∈Bk−1,B⊆SB,

w(S) + cki , if S (Bk(i), S ∩ Bk−1(i) 6= ∅, S 6= Bk−1(i),

(20)

where wk
i is given by wk

i (Q) = w(
⋃

S∈Q S) for all Q ⊆ Sk
i , and w̃k

i by w̃k
i (Q) =

w̄k+1
i (

⋃

S∈Q S) for all Q ⊆ Bk|Bk+1(i).

Induction basis: Let k = h. By Definition 4.2 and for cki := 0, (20) is satisfied for
ShLi (N,w,B) since Sh satisfies D0. Due to ỹhi = w̃h

i , the claim is satisfied for k = h.
Induction step: Assume that (20) and the claim are satisfied for k′, 1 ≤ k′ ≤ h, (IH).

Let k := k′ − 1.
By Definition 4.2, (20), and (IH), we have w̄k

i (B
k(i)) = ShBk(i)(B

k|Bk+1(i), w̃
k
i), where

w̃k
i (Q) is given by

w̃k
i (Q) =

{

w̄k+1
i (Bk+1(i)) = ȳk+1

i (Bk+1(i)) if Q = Bk|Bk+1(i),

ȳk+1
i (

⋃

S∈Q S) + ck+1 if Q (Bk|Bk+1(i),

We define a game (Bk|Bk+1(i), ẘ
k
i) by

ẘk
i (Q) =

{

0 if Q = Bk|Bk+1(i),

ck+1 if Q (Bk|Bk+1(i),

30

In this game, all players are symmetric. Since Sh satisfies S0 and E0, each player gets a
payoff of zero in this game with Sh. We have w̃k

i = ỹki + ẘk
i . By Definition 4.9 and since

Sh satisfies A0, it follows ȳki (B
k(i)) = w̄k

i (B
k(i)).

By (IH), we have

w̄k+1
i (T) =

{

ShT (T
k+1
i , wk+1

i) + ck+1
i , if T (Bk+1(i), T =

⋃

B∈Bk,B⊆TB,

w(T) + cki , if T (Bk+1(i), T ∩ Bk(i) 6= ∅, T 6= Bk(i).

We define w̆k+1
i by

w̆k+1
i (T) :=

{

w̄k+1
i (T)− w(T), if T (Bk+1(i), T =

⋃

B∈Bk,B⊆TB,

ck+1, if T (Bk+1(i), T ∩ Bk(i) 6= ∅, T 6= Bk(i).

It follows, w̄k+1
i = w + w̆k+1

i . Therefore, by Definition 4.2 and, since Sh satisfies A0, we
have w̄k

i (S) = ShS(S
k
i , w

k
i)) + cki , if S (Bk(i), S =

⋃

B∈Bk−1,B⊆SB, and, since Sh satisfies

additionally D0, w̄k
i (S) = w(S) + cki , if S (Bk(i), S ∩ Bk−1(i) 6= ∅, S 6= Bk−1(i). The

claim follows by induction.

References

Algaba, E., Bilbao, J., Fernández, J., Jiménez, N., & López, J. (2007). Algorithms for computing the
myerson value by dividends. Discrete Mathematics Research Progress, 1–13.

Álvarez-Mozos, M., & Tejada, O. (2011). Parallel characterizations of a generalized Shapley value and a
generalized Banzhaf value for cooperative games with level structure of cooperation. Decision Support
Systems, 52 (1), 21–27.

Álvarez-Mozos, M., van den Brink, R., van der Laan, G., & Tejada, O. (2017). From hierarchies to lev-
els: new solutions for games with hierarchical structure. International Journal of Game Theory, 1–25.

Aumann, R.J., Drèze, J., 1974. Cooperative games with coalition structures. International Journal of
Game Theory 3, 217–237.

Banzhaf, J.F. (1965). Weighted voting does not work: a mathematical analysis. Rutgers Law Review 19,
317–343.

Béal, S., Ferrières, S., Rémila, E., & Solal, P. (2018) The proportional Shapley value and applications.
Games and Economic Behavior 108, 93–112.

Besner, M. (2019a). Axiomatizations of the proportional Shapley value. Theory and Decision, 86 (2),
161–183.

Besner, M. (2019b). Weighted Shapley hierarchy levels values. Operations Research Letters 47, 122–126.
Besner, M. (2020). Value dividends, the Harsanyi set and extensions, and the proportional Harsanyi

solution. International Journal of Game Theory, 1–23.
Van den Brink, R., & van der Laan, G. (1998). Axiomatizations of the normalized Banzhaf value and

the Shapley value. Social Choice and Welfare, 15 (4), 567–582.
Calvo, E., Lasaga, J. J., & Winter, E. (1996). The principle of balanced contributions and hierarchies of

cooperation, Mathematical Social Sciences, 31 (3), 171–182.
Van Campen, T., Hamers, H., Husslage, B., & Lindelauf, R. (2018). A new approximation method for

the Shapley value applied to the WTC 9/11 terrorist attack. Social Network Analysis and Mining,
8 (3).

Chantreuil, F. (2001). Axiomatics of level structure values. In: Holler M.J., Owen G. (eds) Power Indices
and Coalition Formation (pp. 45–62). Springer, Boston, MA.

Deng, X., & Papadimitriou, C. H. (1994) On the Complexity of Cooperative Solution Concepts, Mathe-
matics of Operations Research, 19 (2), 257–266.

Driessen, T. S. H., & Funaki, Y. (1991). Coincidence of and collinearity between game theoretic solu-
tions. Operations-Research-Spektrum, 13 (1), 15–30.

31

Fatima, S. S., Wooldridge, M., & Jennings, N. R. (2008). A linear approximation method for the Shap-
ley value. Artificial Intelligence, 172 (14), 1673–1699.

Futia, C. (1977). The complexity of economic decision rules. Journal of Mathematical Economics, 4 (3),
289–299.

Gómez-Rúa, M., & Vidal-Puga, J. (2011). Balanced per capita contributions and level structure of co-
operation. Top, 19 (1), 167–176.

Hammer, P. L., Peled, U. N., & Sorensen, S. (1977). Pseudo-boolean functions and game theory. I. Core
elements and Shapley value. Cahiers du CERO, 19, 159–176.

Harsanyi, J. C. (1959). A bargaining model for cooperative n-person games. In: A. W. Tucker & R. D.
Luce (Eds.), Contributions to the theory of games IV (325–355). Princeton NJ: Princeton University
Press.

Ieong, S., & Shoham, Y. (2005). Marginal contribution nets: a compact representation scheme for coali-
tional games. In Proceedings of the 6th ACM conference on Electronic commerce, pp. 193–202.

Kalai, E., & Stanford, W. (1988). Finite rationality and interpersonal complexity in repeated games.
Econometrica: Journal of the Econometric Society, 397–410.

Kamijo, Y. (2009). A two-step Shapley value for cooperative games with coalition structures. Interna-
tional Game Theory Review, 11 (02), 207–214.

Kamijo, Y. (2013). The collective value: a new solution for games with coalition structures. Top, 21 (3),
572–589.

Khachiyan, L. G. (1979). A polynomial algorithm in linear programming. Doklady Akademii Nauk SSSR
244, 1093–1096 (translated in Soviet Mathematics Doklady 20, 191–194, 1979).

Knuth, D. E. (1976). Big omicron and big omega and big theta. ACM Sigact News, 8 (2), 18–24.
Littlechild, S. C., & Owen, G. (1973). A simple expression for the Shapley value in a special case. Man-

agement Science, 20 (3), 370–372.
Mann, I., & Shapley, L. S. (1960) Values of large games. IV: Evaluating the Electoral College by Monte

Carlo Techniques. The RAND Corporation, Memorandum RM-2651
Michalak, T. P., Aadithya, K. V., Szczepanski, P. L., Ravindran, B., & Jennings, N. R. (2013).

Efficient computation of the Shapley value for game-theoretic network centrality. Journal of Artificial
Intelligence Research, 46, 607–650.

Moriarity, S. (1975). Another approach to allocating joint costs. International The Accounting Review,
50 (4), 791–795.

Myerson, R. B. (1980). Conference structures and fair allocation rules. International Journal of Game
Theory, 9 (3), 169–182.

Van Den Nouweland, A., Borm, P., van Golstein Brouwers, W., Groot Bruinderink, R., & Tijs, S. (1996).
A game theoretic approach to problems in telecommunication. Management Science, 42 (2), 294–303.

Owen, G. (1972). Multilinear extensions of games. Management Science, 18 (5–part–2), 64–79.
Owen, G. (1977). Values of games with a priori unions. In Essays in Mathematical Economics and Game

Theory, Springer, Berlin Heidelberg, 76–88.
Rubinstein, A. (1986). Finite automata play the repeated prisoner’s dilemma. Journal of economic the-

ory, 39 (1), 83–96.
Sánchez-Sánchez, F., & Vargas-Valencia, M. (2018) Games with nested constraints given by a level struc-

ture. Journal of Dynamics & Games, 5 (2), 95.
Sastre, M., & Trannoy, A. (2002). Shapley inequality decomposition by factor components: Some

methodological issues. Journal of Economics, 9, 51–89.
Shapley, L. S. (1953a). Additive and non-additive set functions. Princeton University.
Shapley, L. S. (1953b). A value for n-person games. H. W. Kuhn/A. W. Tucker (eds.), Contributions to

the Theory of Games, Vol. 2, Princeton University Press, Princeton, 307–317.
Simon, H. A. (1972). Theories of bounded rationality. Decision and organization, 1 (1), 161–176.
Stanojevic, R., Laoutaris, N., & Rodriguez, P. (2010) On economic heavy hitters: Shapley value anal-

ysis of 95th-percentile pricing. In Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement, 75–80.

Vasil’ev, V. A. (1975). The Shapley value for cooperative games of bounded polynomial variation. Opti-
mizacija Vyp, 17, 5–27.

Vasil’ev, V. A. (1978). Support function of the core of a convex game. Optimizacija Vyp, 21, 30–35.
Winter, E. (1989). A value for cooperative games with levels structure of cooperation. International

Journal of Game Theory, 18 (2), 227–240.

	Values for level structures with polynomial-time algorithms and general considerations
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 TU-games
	2.2 LS-games
	2.3 Time complexity

	3 The Shapley value
	4 Values for level structures
	4.1 The Shapley levels value as a weighted Shapley hierarchy levels value
	4.2 The nested Shapley levels value
	4.3 The nested Owen levels value

	5 Runtime complexity for algorithms of LS-values
	6 Relevant coalition functions
	7 General reflections
	8 Conclusion and discussion
	Acknowledgements
	9 Appendix
	9.1 Proof of Proposition 4.6
	9.2 Proof of Theorem 4.7
	9.3 Proof of Proposition 4.12
	9.4 Proof of Theorem 4.13
	9.5 Proof of Theorem 7.3

	References

