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Abstract. TFP measures constructed from chain-aggregated output, such as those pub-

lished by the Bureau of Labor Statistics or Fernald (2014), confound contributions from

neutral and sector-specific technology. Therefore, they should not be used to infer the

path of neutral technology in presence of investment-specific technical change. Two theory-

consistent, utilization-adjusted measures of neutral technology at the quarterly frequency

are proposed for the US business sector. Both indicate that neutral technology progress

declined dramatically after the mid-1970s. In particular, its contribution to US growth fell

from more than 85% before 1973 to less than 25% afterward. The associated welfare loss

is enormous: if neutral technology had continued on its pre-1970s trend, 2017 US output

would have been 70% higher.
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1. Introduction

Since Solow (1956) and Kydland and Prescott (1982), technical change has been at the

heart of macroeconomic theories of growth and business cycles. While early works typically

focused on a single neutral technology shifter in an aggregate production function, referred

to as Total Factor Productivity (TFP), Gordon’s (1990) finding of a sustained downward

trend in quality-adjusted relative prices for durable goods sparked interest in a second source

of technical change related to the production of investment goods. Since then, the literature

has been debating the relative roles of neutral and investment-specific technology progress,

both as regards the sources of economic growth (Greenwood, Hercowitz, and Krusell, 1997;

Whelan, 2003; Greenwood and Krusell, 2007) and business cycles (Greenwood, Hercowitz,

and Krusell, 2000; Fisher, 2006; Justiniano, Primiceri, and Tambalotti, 2010, 2011).

One practical difficulty to settle the debate is that neither source of technology is directly

observable, so that inference about technical change often relies on theoretical restrictions.

For instance, Greenwood, Hercowitz, and Krusell (1997) and Whelan (2003) estimate the

respective US growth contributions of neutral and investment-specific technology from the

behavior of aggregate national account variables, interpreted through the lens of general-

equilibrium models.

More recently, some authors have tried to discipline inference by interpreting empirical

TFP measures as direct observations of neutral technology. For instance, Beaudry and

Lucke (2010) incorporate measured TFP into a VECM analysis focusing on the sources of

US business cycles and assume that it responds to disembodied (neutral) technology shocks

only. Similarly, Schmitt-Grohé and Uribe (2011, 2012) map TFP into neutral technology in

their empirical analysis of real-business-cycle models. This strategy has been made possible

by the construction of quarterly utilization-adjusted TFP series by Beaudry and Lucke (2010)

and Fernald (2014). According to Benati (2014), the latter “is widely regarded as the best

available measure of neutral technological progress.”

In this context, this paper makes two points. The first is that one should not interpret

standard TFP series, such as those published by Beaudry and Lucke or Fernald, but also

by the Bureau of Labor Statistics (BLS, 2007), as observations on neutral technology in the

presence of investment-specific technical change. Instead, I show in Section 2 that in this

case measured TFP is a geometric combination of neutral and investment-specific technology

processes. It follows immediately that empirical studies mapping measured TFP into neutral

technology in multi-sector setups, such as the ones cited above, face potentially serious iden-

tification issues. This finding also rationalizes the long-run comovements between measured

TFP and the relative price of investment found in US data (Schmitt-Grohé and Uribe, 2011;

Benati, 2014), which could originate from their common dependence on investment-specific

technology.
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The root of the problem lies in the ambiguous nature of output measurement in multi-

sector environments. Since Greenwood, Hercowitz, and Krusell (1997), it has become stan-

dard to work with one-sector representations of multi-sector models, in which output is mea-

sured in consumption units and associated with an aggregate production function shifted

by neutral technology. Accordingly, neutral technology should be measured as the ratio be-

tween output in consumption units and the input contributions implied by the production

function. However, Beaudry and Lucke (2010), Fernald (2014), and the BLS all construct

TFP from chain-aggregated output. This measure of production closely resembles a geo-

metric average of real quantities and it grows faster than output in consumption units in

presence of investment-specific technological change. It follows immediately that TFP series

constructed from chain-aggregated output cannot measure neutral technology if investment-

specific technical progress is present. Rather, they correspond to a weighted average of the

two processes for neutral and investment-specific technology.

This is not a new result. In particular, the issues related to output measurement and

the interpretation of TFP measures are well known in the large literature on aggregate

productivity.1 However, the examples from Beaudry and Lucke (2010) and Schmitt-Grohé

and Uribe (2011, 2012) make it clear that some ambiguity remains for a wider audience of

macroeconomists. Another illustration is the survey by Ramey (2016, p. 136), which presents

neutral technology shocks as equivalent to TFP shocks.2 This tendency to misinterpret TFP

suggests that there is some value in clarifying the matter, even though some authors did use

the appropriate interpretation in applied work (for instance Barsky, Basu, and Lee, 2014;

Chen and Wemy, 2015).

The second point is that it is straightforward to construct quarterly utilization-adjusted

TFP measures that can be interpreted as neutral technology in the presence of investment-

specific technical change. In Section 3, I provide two such series for the US economy, which

might be of interest for applied researchers. I construct the first from Fernald’s (2014) data-

base, which reports time series on inputs, output, and factor utilization for the US business

sector. To obtain a TFP series that corresponds to neutral technology, I simply replace Fer-

nald’s chain-aggregated output by output in consumption units. The second measure is pro-

vided directly by Fernald (2014), who decomposes aggregate TFP into distinct consumption-

and investment-sector TFP series. I show that Fernald’s TFP for the consumption sector

is another theory-consistent estimate of neutral technology in standard two-sector setups.

Fernald does not emphasize this interpretation, which is novel.

Although equivalent in theory, these two measures of neutral technology differ slightly

in sample. However, they share common implications regarding the nature and pace of

1See, e.g., Hornstein and Krusell (1996, 2000), Fernald (2015), and Byrne, Fernald, and Reinsdorf (2016).
2Ramey’s (2016) exact sentence is: “Neutral technology shocks, or TFP shocks, are shocks to the process

driving At,” where At is the productivity shifter in an aggregate production function.
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technical change in the US economy. In particular, both series indicate a dramatic decline

in neutral technology growth starting in the mid 1970s, a period which coincides with a

persistent slowdown in US aggregate productivity. Statistical tests for breaks at unknown

dates in the sample identify a single significant trend break in the logarithm of both mea-

sures of neutral technology, with the same estimated break date: 1973Q1.3 The size of the

break is economically significant: TFP measured from output in consumption units grew at

a yearly rate of 1.9% before 1973, but only 0.04% afterward, while yearly growth in Fer-

nald’s consumption-sector TFP fell from 2.1% to just 0.2%. When embedded in a standard

two-sector general-equilibrium model à la Greenwood, Hercowitz, and Krusell (1997), these

figures imply that neutral technical progress explained more than 85% of average US growth

before 1973, but 25% at most afterward.

These results attribute the 1970s productivity slowdown to the break in neutral tech-

nology growth. This is consistent with Hornstein and Krusell (1996) and Greenwood and

Yorukoglu (1997), who found that aggregate productivity declined at that time even though

investment-specific technical progress apparently accelerated.4 This is also consistent with

other measures of neutral technology reported in Greenwood, Hercowitz, and Krusell (1997),

Marquis and Trehan (2008), or Ireland (2013), which all exhibit slow growth or even decline

during the 1970s. Finally, the results put into perspective the swings in aggregate produc-

tivity observed during the 1990s-2000s (Fernald, 2015; Byrne, Fernald, and Reinsdorf, 2016;

Cette, Fernald, and Mojon, 2016; Syverson, 2017). The welfare loss associated with the

slowdown in neutral technology progress is enormous: if technology progress had continued

on its pre-1970s trend, 2017 US output would have been higher by about 70%. Relative to

this figure, recent movements are of limited magnitude.

Throughout the paper, I focus on real two-sector economies that can be aggregated into

a one-sector representation, following Greenwood, Hercowitz, and Krusell (1997) and oth-

ers. It is well known that such an aggregation requires strong modeling assumptions, but

it has become the standard way to think about neutral and investment-specific technical

progress. The quarterly measures of neutral technology I propose are valid only for this class

of two-sector models; see Basu and Fernald (2002) and Basu, Fernald, and Kimball (2006)

for the measurement and interpretation of aggregate productivity in richer multi-sector en-

vironments. I also assume that inputs and outputs are correctly measured, abstracting from

factor utilization in the theoretical discussion. In the empirical part, I rely on Fernald’s

3Fernald (2007) and Marquis and Trehan (2008) also find significant breaks in productivity growth in

the early 1970s. Fernald focuses on aggregate TFP, which depends on both neutral and investment-specific

technology processes. My results suggest that the break originated from neutral technology.
4Both papers propose a theoretical interpretation based on unmeasured learning costs required to master

the new investment technology. See also David (1990), Gordon (2012), and Fernald (2016) for the alternative

idea that diminishing returns from past inventions contributed to the 1970s productivity slowdown.
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(2014) carefully constructed utilization series to obtain TFP measures representing neutral

technology.

2. Measurement in a Two-Sector Model

This section focuses on a simple neoclassical growth model with neutral and investment-

specific technical change. The model sheds light on issues related to the measurement and

interpretation of output and TFP in aggregate economies with multiple sources of techno-

logical progress.

2.1. A stylized model. Consider a stylized stochastic growth model with neutral and

investment-specific technological change, adapted from Greenwood, Hercowitz, and Krusell

(1997, 2000) and Fisher (2006). The economy is closed and all agents behave competitively.

The general equilibrium corresponds to the solution of the following planning problem:

max E0

[

∞
∑

t=0

βt

(

lnCt − θ
H

1+1/κ
t

1 + 1/κ

)]

(1)

subject to

Ct +
It
Vt

≤ AtK
α
t−1H

1−α
t , (2)

Kt = (1− δ)Kt−1 + It, (3)

lnAt = µA + lnAt−1 + ǫAt ,

lnVt = µV + lnVt−1 + ǫVt .

Here, Ct, Ht, It, Kt, At, and Vt denote consumption, hours worked, investment, the capital

stock, neutral technology, and investment-specific technology. β is the household discount

factor, θ is a preference weight, κ is the Frisch elasticity of labor supply, α is the capital

share, and δ is the depreciation rate. Following Fisher (2006), there is a single capital

good, instead of two in Greenwood, Hercowitz, and Krusell (1997, 2000), and neutral and

investment-specific technology have stochastic, rather than deterministic, trends. Parameters

µA and µV denote the average growth rates of neutral and investment-specific technology,

and ǫAt and ǫVt are the permanent technology shocks.

The discussion below does not require an explicit characterization of the model’s general

equilibrium. However, it is useful to remark that the following variables are stationary along

any balanced growth path, in spite of the presence of stochastic trends:

Ct

Qt

,
It

QtVt

,
Kt

QtVt

, Ht, (4)

with Qt = A
1/(1−α)
t V

α/(1−α)
t .

Although stripped down, this framework constitutes the backbone of many quantitative

DSGE models, including those by Smets and Wouters (2007), Justiniano, Primiceri, and
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Tambalotti (2010, 2011), or Schmitt-Grohé and Uribe (2011, 2012). Rı́os-Rull, Schorfheide,

Fuentes-Albero, Kryshko, and Santaeulàlia-Llopis (2012) use a closely related setup to high-

light how parameter identification shapes inference about the aggregate effects of technology

shocks, while Ireland (2013) considers a two-country extension to study stochastic growth in

the US and the euro area. To keep the focus on the measurement issues at the heart of the

paper, I abstract from the usual sources of short-run rigidity (consumption habits, invest-

ment adjustment costs, costly factor utilization), with no effect on the results.5 Assuming

trend-stationary rather than integrated technology would also leave the analysis unchanged.

Other omissions are potentially more important. In particular, the two-sector structure of

the economy implicit in equation (2) must generate a linear transformation frontier between

consumption and investment. While this is a common assumption in the literature about

investment-specific technology, Greenwood, Hercowitz, and Krusell (1997) show that a linear

transformation curve corresponds to a detailed two-sector model only under strong restric-

tions, which may not hold in the data. Alternative setups include Guerrieri, Henderson,

and Kim (2014, 2016), who propose richer two-sector models more in line with empirical

evidence, but in which the distinction between neutral and investment-specific technology

is not clear cut.6 Introducing sticky prices would also create some difficulties related to the

treatment of markups, equilibrium price dispersion, and slow pass-through of technology

shocks to market prices (Moura, 2018).

2.2. Output measurement. As discussed in Hornstein and Krusell (2000), Whelan (2003),

and Greenwood and Krusell (2007), there are different ways to define, and thus measure,

aggregate output in multi-sector models. These accounting differences matter because al-

ternative output measures inherit different properties and require careful interpretation.

Unsurprisingly, these measurement issues spread to TFP series computed as residuals from

aggregate production functions.

Traditionally, the DSGE literature measures output in consumption units, which is defined

as:

Yt := Ct + PtIt, (5)

where Pt is the relative price of investment goods, that is the price of investment in consump-

tion units. In the simple model from Section 2.1, the equilibrium relative price of investment

5As explained in the Introduction, neglecting variable input utilization does not matter for the conceptual

discussion. However, in practice it is important to correct for variations in utilization when interpreting

observed TFP residuals as technology measures, see Fernald (2014).
6Another example is Fisher (2010), who introduces sectoral adjustment costs à la Kim (2003) in an

otherwise standard two-sector model. The adjustment costs create curvature in the transformation frontier

for producing investment and consumption goods and affect both measured TFP and the RPI in equilibrium.
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is the inverse of investment-specific technology:

Pt =
1

Vt

. (6)

This relationship has been exploited by a large literature to infer the role of investment-

specific technological change in economic growth and business cycles (see Section 1 for a list

of references, and Moura (2018) for a criticism of the interpretation of the RPI as a measure

of the inverse of investment-specific technology).

Merging equations (2), (5), and (6) yields

Yt = Ct +
It
Vt

= AtK
α
t−1H

1−α
t , (7)

which directly links Yt to the aggregate production function AtK
α
t−1H

1−α
t . This equality

explains why DSGE modelers often measure output in consumption units. Another rea-

son is that the trend in Yt perfectly captures the trend in household utility along a bal-

anced growth path, so that output in consumption units provides useful information about

aggregate welfare in the model.7 Equation (4) implies that the stochastic trend in Yt is

Qt = A
1/(1−α)
t V

α/(1−α)
t .

An alternative output measure is the chain-aggregated index of production used to com-

pute real GDP in the US National Income and Product Accounts (NIPAs) since 1996. This

measure has received less attention in the DSGE literature, with notable exceptions being

Whelan (2003), who maps a two-sector model into NIPA variables, and Edge, Kiley, and

Laforte (2008) and Chung, Kiley, and Laforte (2010), who estimate a DSGE model mapping

Divisia output into the NIPA real GDP series.8 Technically, the NIPAs construct the chain-

aggregate for GDP as a Fisher index, i.e. as a geometric average of Paasche and Laspeyres

fixed-weighted indexes. As explained in Whelan (2003), in practice the Fisher index for

output is well approximated by a Divisia share-weighted index:

Xt := Cγ
t I

1−γ
t , (8)

where γ = C⋆/(C⋆ + P ⋆I⋆) is the steady-state nominal share of consumption in GDP. The

approximation supposes that the geometric weights in the Divisia index reflect current GDP

shares, so that γ should be time-varying. Here, I use the steady-state values for simplicity

7Greenwood and Krusell (2007) emphasize this correspondence between output in consumption units

and social welfare. However, Whelan (2003) remarks that welfare generally grows at a different rate when

consumers also derive utility from durable goods.
8Following Smets and Wouters (2007), several authors have mapped output in consumption units (as a

DSGE model variable) into chain-aggregated real GDP (as an observable series used in estimation). Other

important papers featuring this approach include Justiniano, Primiceri, and Tambalotti (2010) and Schmitt-

Grohé and Uribe (2012). Clearly, this is not the same as properly defining chain-aggregated real GDP in

the model and mapping it to the appropriate time series from the data.
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without affecting significantly any of the results. Below, I neglect this approximation error

and indifferently refer to Xt as chain-aggregated or Divisia real GDP.

Contrasting equations (7) and (8) highlights a major difference between Xt and Yt: while

output in consumption units deflates investment by the level of investment-specific technol-

ogy Vt, chain-aggregated output does not include such a correction. As a result, Xt and

Yt necessarily exhibit different properties in equilibrium. For instance, equation (4) implies

that the balanced-growth stochastic trend in Xt is QtV
1−γ
t . Since the stochastic trend in Yt

is Qt, output in consumption units and chain-aggregated output grow at different rates in

the presence of investment-specific technological progress (µV > 0), with Xt growing faster

than Yt.

2.3. Technology measurement. Consider now the measurement of technology based on

growth-accounting procedures. Assuming that factor inputs Kt−1 and Ht are perfectly ob-

served and that the production function is known, it is straightforward to see that the TFP

series constructed from output in consumption units Yt is exactly the process for neutral

technology At:

TFPY
t :=

Yt

Kα
t−1H

1−α
t

= At. (9)

On the other hand, the TFP series constructed from chain-aggregated output Xt is given by

TFPX
t :=

Xt

Kα
t−1H

1−α
t

. (10)

Since Xt 6= Yt, it is clear that TFPX
t 6= At. In addition, because Xt and Yt grow at

different rates, TFPX
t does not even necessarily grow at the same rate as neutral technology.

Indeed, simple computations reveal that the stochastic trend in TFPX
t is

trend(TFPX
t ) = AtV

1−γ
t . (11)

It follows that TFP series constructed from chain-aggregated output respond to fluctuations

in Vt and thus mix contributions from neutral and investment-specific technology in two-

sector setups. This is the main result of the paper, stated in the following proposition.

Proposition 1. In a standard two-sector model with both neutral and investment-specific

technology, TFP series constructed from chain-aggregated output do not measure neutral

technology and generally grow at a different rate.

Proposition 1 shows that correctly interpreting a TFP series requires checking the output

measure used for the growth-accounting procedure. As explained in the Introduction, the

BLS, Beaudry and Lucke (2010), and Fernald (2014) all construct TFP from chain-aggregates

for real output. Hence, the resulting TFP series correspond to TFPX
t and will deviate from

neutral technology if investment-specific technology matters. In this case, inference mapping

TFP into neutral technology is bound to yield biased results.
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2.4. Implications. The theoretical analysis has important implications for applied work

about the macroeconomic role of technology shocks. I discuss two simple examples below

and devote the next section to a more substantial one.

Inference about technology shocks. As explained in the Introduction, several authors used

TFP measures in empirical work on the role of neutral and investment-specific technology

shocks in business cycles. Proposition 1 indicates that this strategy is misleading in an envi-

ronment with investment-specific shocks if a TFP measure based on chain-aggregated output

is wrongly interpreted as reflecting only neutral technology. In this case, some movements

in measured TFP originate from investment shocks, but the empirical analysis will wrongly

attribute them to neutral technology shocks. Consequently, standard exercises are likely to

yield biased results, including variance decompositions assessing the respective contributions

of the two technology shocks.

Theory also suggests a simple fix, which is to interpret TFP series built from chain-

aggregated output according to equation (10) instead of as direct measures of neutral tech-

nology. Incorporated in DSGE models, equation (10) captures the differences between At

and measured TFP in a theory-consistent fashion. It also indicates the appropriate long-run

restrictions to identify the effects of neutral and investment-specific technology shocks on

TFP, as in structural VARs. For instance, Barsky, Basu, and Lee (2014, p. 248) recognize

that, in a two-sector setting, Fernald aggregate TFP corresponds to a weighted average of

consumption- and investment-specific TFP series. Chen and Wemy (2015, equation (3)) also

acknowledge this property and correctly deduce that “some of the fluctuations in [investment-

specific technology] will be identified as fluctuations in aggregate TFP” as a result.

Covariation between TFP and the relative price of investment. Another implication of the

theoretical analysis is that, when investment-specific technology has a stochastic trend,

TFPX
t shares a common unit-root process with the relative price of investment Pt. In-

deed, comparing equations (6) and (11) shows that the logarithms of TFPX
t and Pt both

respond to ln(Vt) in the long run. As a result, the common I(1) component corresponds to

the stochastic trend in investment-specific technology, which increases TFPX
t and decreases

Pt in the long run. Therefore, theory implies negative long-run covariation between TFP

and the relative price of investment.

This relationship provides a simple interpretation for the empirical finding that the TFP

series in Beaudry and Lucke (2010) and Fernald (2014) exhibit noticeable long-run comove-

ments with the relative price of investment (Schmitt-Grohé and Uribe, 2011; Benati, 2014).

I develop this argument further and show its empirical plausibility in a companion paper

(Moura, 2020). For applied work, the main lesson is that TFP measures built from chain-

aggregated output and the relative price of investment should not be treated as driven by

independent processes in the specification of empirical models.



10

3. Measuring Neutral Technology

This section proposes two quarterly theory-consistent measures of neutral technology that

solve the identification issue just discussed and can be readily used in applied work. Both

series indicate that neutral technology growth in the US experienced a break in the mid-1970s

and slowed significantly afterward.

3.1. Two measures of neutral technology. The analysis in Section 2 suggests that TFP

built from output in consumption units, TFPY
t , corresponds to neutral technology in stan-

dard one- and two-sector environments. I show that Fernald’s (2014) dataset makes it

straightforward to construct the series as the quarterly frequency. I also discuss an alterna-

tive measure of neutral technology, Fernald’s (2014) TFP for the consumption sector.

3.1.1. Constructing TFPY
t . Equation (9) implies that the Solow residual of an aggregate

production function for output in consumption units is a theory-consistent measure of neutral

technology in standard setups. The equation also identifies the elements required to measure

TFPY
t in the data: first, we need a series for output in consumption units; second, we need a

series for the effective capital services and one for labor input, as well as a series on variable

factor utilization; third, we need the value of the capital share.

Conveniently, Fernald (2014) provides a database reporting carefully constructed quarterly

series for α, ∆ lnK, and ∆ lnH for the US business sector. Fernald also provides an adjust-

ment factor for endogenous variations in input utilization, which is crucial to convert raw

Solow residuals into plausible technology measures. Thus, in order to compute TFPY
t from

equation (9), and given Fernald’s data, one simply needs a series for output in consumption

units.

To ensure consistency with Fernald’s framework, I construct Yt as business output in

consumption units. In practice, I compute the variable as the ratio between nominal busi-

ness output (from NIPA table 1.3.5) and a consumption price index (obtained by chain-

aggregating the price indexes for consumption of non-durable goods and services, from

NIPA table 1.1.4). Then, I construct TFP from output in consumption units by remov-

ing Fernald’s series for input services and utilization, as in equation (9). According to the

theoretical analysis, the resulting series corresponds to neutral technology in the US business

sector. It appears in red in Figure 1.

3.1.2. Fernald’s TFP measure for the consumption sector. Fernald (2014, pp. 9-10) proposes

a decomposition of aggregate TFP into components related to the consumption and invest-

ment sectors. Here, I show that his consumption-sector TFP also corresponds to neutral

technology in standard setups.

Fernald bases the decomposition on two equations. The first (p. 9 in Fernald, 2014)

equates aggregate TFP with a geometric average of consumption and investment TFP. In
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the notation of Section 2, this reads

lnTFPX
t = γ lnTFPC

t + (1− γ) lnTFP I
t , (12)

where γ is the average consumption share of output, and TFPC
t and TFP I

t respectively

denote TFP in the consumption and investment sectors. The second equation (p. 10 in

Fernald, 2014) relates movements in relative prices to changes in relative technology:

lnTFP I
t = lnTFPC

t − ln
P I
t

PC
t

, (13)

where PC
t and P I

t are the nominal prices of consumption and investment.

To show the link between consumption-sector TFP and neutral technology, first merge

equations (12) and (13), replace TFPX
t by its expression from equation (10), and rearrange

to obtain

lnTFPC
t = ln

Xt

Kα
t−1H

1−α
t

+ (1− γ) ln
P I
t

PC
t

. (14)

Then, use the price index associated with Xt, which verifies lnPX
t + lnXt = lnPC

t + lnYt

by construction (both sides represent the log of nominal output since Yt is measured in

consumption units). In addition, the Divisia price index associated with Xt is the share-

weighted geometric average of prices, so lnPX
t = γ lnPC

t + (1− γ) lnP I
t . It follows that

lnXt = ln
PC
t Yt

PX
t

= lnYt − (1− γ) ln
P I
t

PC
t

.

Substituting this expression into equation (14) finally yields

lnTFPC
t = ln

Yt

Kα
t−1H

1−α
t

= lnTFPY
t = lnAt. (15)

This equality proves the equivalence between Fernald’s consumption-sector TFP and neutral

technology in the model from Section 2.

This result is interesting because it allows us to interpret TFP for the consumption sector

as a direct measure of neutral technology. Fernald (2014) does not emphasize this inter-

pretation, which is novel. His original interpretation as consumption-sector technology is

obviously equivalent, but the argument formalizes the idea that consumption-sector technol-

ogy coincides with the standard definition of neutral technology in macroeconomic models.

Besides, applied researchers may be interested in knowing they could use TFPC
t to infer

the behavior of At. Finally, the result also applies to other measures of consumption-sector

TFP discussed in the literature (Ireland and Schuh, 2008; Marquis and Trehan, 2008). In

Figure 1, Fernald’s consumption-sector TFP is shown in blue.
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Figure 1. Log TFP Measures

1950 1960 1970 1980 1990 2000 2010 2020
0

0.25

0.5

0.75

1

Fernald's adjusted TFP

Fernald's C-sector TFP

TFP from output in C units

Notes. The black line represents the cumulative sum of Fernald’s series for the log-difference of

utilization-adjusted TFP for the private business sector; the dashed blue line is the cumulative

sum of Fernald’s series for the log-difference of utilization-adjusted TFP for the consumption

sector; and the dashed red line is the cumulative sum of the log-difference of utilization-adjusted

TFP computed from private business output in consumption units (see the text for details).

3.1.3. Visual representation. Figure 1 contrasts the two measures of neutral technology with

Fernald’s (2014) utilization-adjusted TFP series for the US business sector over the 1948-

2017 sample. The first column in Table 1 reports the growth rate of each series, as well as

further decompositions explained below.

The figure highlights three notable properties of the series. First, the two measures of

neutral technology have grown at slightly different rates, especially in the second part of the

sample. In particular, Fernald’s consumption-sector TFP has grown faster than TFP built

from output in consumption units during and after the 1970s. This discrepancy originates

from differences in constructing the series, especially as regards the choice of the numéraire.

On the one hand, Fernald (2014) defines the price of consumption by deducting an invest-

ment price index from the price index for business output. On the other hand, I take the

consumption price to be that of consumer spending on non-durable consumption goods and

services, in line with the DSGE literature on the relative price of investment (e.g., Fisher,

1999; Justiniano, Primiceri, and Tambalotti, 2011; Moura, 2018). That TFPC
t exceeds TFPY

t

during the 1970s and after indicates that my consumption price index has been increasing
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faster than Fernald’s.9 Nevertheless, when it comes to the big picture, the two measures of

neutral technology display very similar behavior over the postwar period.

Second, the chart shows that since the 1950s neutral technology grew much less rapidly

than Fernald’s aggregate TFP. Indeed, the statistics in Table 1 indicate that At grew between

0.72% and 0.86% a year between 1948 and 2017, depending on whether it is measured from

TFPC
t or TFPY

t , whereas TFPX
t grew nearly 1.30% a year over the same period. Since

aggregate TFP combines neutral and investment-specific technology, the difference between

Fernald’s TFP and the measures of neutral technology originates from investment-specific

technical progress. Therefore, Figure 1 conveys visually the significant identification error

that arises when aggregate TFP is wrongly interpreted as embodying neutral technology

only.

Finally, the figure clearly suggests that the process for neutral technology experienced

a break sometime during the 1970s. Indeed, it grew at about the same rate as aggregate

TFP up to 1970 but clearly diverged afterward, when growth in neutral technology slowed

markedly. Earlier estimates of neutral (Greenwood, Hercowitz, and Krusell, 1997; Ireland,

2013) or consumption-sector (Ireland and Schuh, 2008; Marquis and Trehan, 2008) technol-

ogy exhibit a similar slowdown after the mid-1970s. Next, I use statistical tests to formally

assess the presence of trend breaks and derive implications regarding the sources of US

growth in the postwar period.

3.2. The slowdown in neutral technological progress. I test for structural breaks in

the trend of the three log TFP series shown in Figure 1 using the approach proposed by Bai

and Perron (1998, 2003), which has the double advantage of identifying the number of breaks

and providing asymptotic confidence interval(s) for the break date(s). Letting yt denote log

TFP, the estimated model with m breaks is

∆yt = δj + ut, ut ∼ (0, σ2
j ), t = Tj−1 + 1, . . . , Tj,

where ∆ is the difference operator, j = 1, . . . ,m + 1 indexes the regimes and T1, . . . , Tm

are the potential break points (with the convention that T0 = 0 and Tm+1 = T ). The

variance of the disturbance may not be constant across regimes and the setup also allows for

auto-correlation in ut.

The results, detailed in Appendix A, identify a single significant break (at the 1% level) in

the trend function of each of the three TFP series. The estimated break date is 1973Q1 for

both TFP computed from output in consumption units and Fernald’s consumption-sector

TFP. This common break date squares well with the idea that these two series correspond to

the same theoretical object, namely neutral technology. The estimated break date is 1971Q3

for Fernald’s aggregate TFP, but the width of confidence bands makes it impossible to reject

9See also Beaudry, Moura, and Portier (2015), who discuss how the choice of the numéraire (i.e., the

consumption price) shapes the statistical properties of the relative price of investment.
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Table 1. Average growth rates and contributions to economic growth.

Sample

Variable 1948-2017 1948-1972 1973-2017

Fernald’s TFP (gTFPX ) 1.29% 2.18% 0.79%

Results based on TFP computed from output in consumption units

Neutral technology (µA) 0.72% 1.91% 0.04%

Investment-specific technology (µV ) 1.77% 0.85% 2.25%

Output in consumption units (gY ) 1.94% 3.21% 1.20%

Divisia output (gX) 2.52% 3.48% 1.95%

Contribution of neutral technology to gY 55% 88% 5%

Contribution of neutral technology to gX 42% 81% 3%

Results based on Fernald’s consumption-sector TFP

Neutral technology (µA) 0.86% 2.07% 0.17%

Investment-specific technology (µV ) 1.33% 0.33% 1.85%

Output in consumption units (gY ) 1.94% 3.21% 1.20%

Divisia output (gX) 2.37% 3.31% 1.81%

Contribution of neutral technology to gY 66% 95% 22%

Contribution of neutral technology to gX 54% 92% 14%

Notes. The table reports average annual growth rates for Fernald’s utilization-adjusted TFP, neutral

technology, investment-specific technology, output in consumption units, and chain-aggregated output,

over both the 1948-2017 sample and the two sub-samples. The growth rates of Fernald’s utilization-

adjusted TFP and neutral technology are measured directly from the data, while the others are inferred

from balanced-growth relationships. Finally, the table shows the contribution of neutral technological

progress to growth in the output variables Xt and Yt. See the text for details.

the idea that all three TFP measures experienced a break at the same date.10 These findings

are well in line with the common wisdom that US productivity growth slowed significantly

during the 1970s. Fernald (2007), Marquis and Trehan (2008), and Benati (2014), among

others, all identify breaks in trend productivity at about the same period.

The second and third columns in Table 1 report the statistics for the two sub-samples

identified by the Bai-Perron tests. They confirm that the US economy experienced a dramatic

slowdown in neutral technological progress, which shifted from 1.9%-2.1% a year before 1973

to only 0.05%-0.2% a year afterward.

This structural break has massive implications for the sources of growth in the US economy.

To make the point, I rely on a simple accounting exercise designed to measure the respective

contributions of neutral and investment-specific technology to aggregate growth, in the spirit

of Greenwood, Hercowitz, and Krusell (1997), Whelan (2003), or Greenwood and Krusell

(2007). The decomposition works in four steps:

10According to equation (11), any break in the process for neutral technology At immediately affects the

trend in Fernald’s (2014) aggregate TFP.
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• First, I compute the growth rate of neutral technology (µA) as average growth in

either TFP computed from output in consumption units or Fernald’s TFP series for

the consumption sector.

• Second, I deduce the average growth rate of investment-specific technology (µV ) from

equation (11). Specifically, given average growth in Fernald’s aggregate TFP and the

nominal investment share in business output 1−γ, I set µV = (g
TFP

X − µA) /(1−γ).

I define the investment sector as the sum of fixed investment and consumer durables.

• Third, I use the balanced-growth trends in output in consumption units Yt and chain-

aggregated output Xt to infer their average growth rates. Given estimates of α and

γ, I obtain

gY =
µA

1− α
+

αµV

1− α
, gX = gY + (1− γ)µV .

• Fourth, I compute the contribution of neutral technology to growth in Z as

µA/(1− α)

gZ
, for Z = X, Y .

Because measuring neutral technology using TFPC
t or TFPY

t yields different estimates

of µA, I perform the accounting exercise twice, once for each of the two measures. In line

with the paper’s motivation, all the computations rely on interpreting TFP measures as

observable combinations of neutral and investment-specific technology and using balanced-

growth restrictions to deduce the implied growth rate of output. In contrast, Greenwood,

Hercowitz, and Krusell (1997), Whelan (2003), and Greenwood and Krusell (2007) base their

computations directly on observed GDP growth. Both approaches are equivalent in theory,

but not in practice due to in-sample deviations from balanced growth. Finally, I consider

the contributions to growth both for output in consumption units and for chain-aggregated

output: the former is interesting because it grows at the same rate as social welfare in the

long run in the simple model from Section 2, while the latter grows at the same rate as

standard measures of labor productivity computed from Xt.

The successive rows in Table 1 report the results from the decomposition exercise for both

the full sample and the two sub-samples identified by the break tests. For each sample, the

top row reports average growth in Fernald’s aggregate TFP, with the other rows providing

average growth in neutral technology, investment-specific technology, output in consump-

tion units, and chain-aggregated output. Finally, the last two rows present the estimated

contribution of neutral technology to growth in the output measures Xt and Yt.

As shown in the first column, the full-sample decomposition attributes an important role

to neutral technological progress in driving US growth between 1948 and 2017. Improvement

in neutral technology contributed between 55% and 66% of growth in output in consumption

units (and welfare) over the sample, and between 42% and 54% of growth in chain-aggregated

output. According to the two-sector interpretation of the data, remaining output growth



16

originated from investment-specific technological change. These contributions differ from

those inferred by Greenwood, Hercowitz, and Krusell (1997), who attribute 42% of growth

in output in consumption units to neutral technology and 58% from investment-specific tech-

nology. However, Whelan (2003, p. 651) argues that Greenwood, Hercowitz, and Krusell’s

approach is likely to overstate the role of investment-specific technical progress due to their

choice of data for the relative price of investment.

The sub-sample analysis reveals substantial changes over time in the sources of US growth,

which are masked when looking only at the full sample. The second column in Table 1 shows

that aggregate growth originated almost only from neutral technological change before 1973,

while the third column instead attributes the bulk of growth after 1973 to investment-specific

technological change. The raw figures indicate the magnitude of this change: the contribution

of neutral technology to growth in output in consumption units fell from more than 85% in

the first sub-sample to less than 25% in the second one. For chain-aggregated output, the

contribution went from more than 80% to less than 15%.

This slowdown in neutral technology growth also had large welfare consequences for the US

economy. To see it, suppose that neutral technology had grown after 1972 at the same rate

as during the 1948-1972 sample and take growth in investment-specific technology as given.

Based on the statistics in Table 1, output in consumption units in 2017 would have been

equal to (1+3.21%)44Y1972, instead of the actual (1+1.95%)44Y1972 found in the data.11 This

would make output in consumption units in 2017 more than 70% higher than its actual level,

which signals a tremendous welfare loss (recall that in the simple model from Section 2.1,

welfare has the same trend as Yt). In comparison, the output and welfare losses due to

standard business cycles or even to the Great Recession remain necessarily modest, echoing

Lucas’s (2003) view that long-run welfare gains or losses exceed by far the costs associated

with short-run fluctuations.

Finally, these significant effects of the break in neutral technology growth provide a strong

justification for splitting samples in the early 1970s in empirical work on the US economy.

Given the arguments in favor of a second structural break in the early 1980s, including a

faster decline in the relative price of investment, changes in the conduct of monetary policy,

and lower macroeconomic volatility (see Fisher, 2006, and the references therein), the full

1970s decade might well turn out to be a transition period between two different regimes for

the US economy, away from the post-World War II economic expansion and into the Great

Moderation (Perez-Quiros and McConnell, 2000; Stock and Watson, 2003).

11As can be seen from the table, this counterfactual is valid whether the growth rates are computed from

TFP in consumption units or from Fernald’s consumption-sector TFP.
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4. Conclusion

Thirty years ago, Prescott (1986) argued that “theory is now ahead of business cycle

measurement and [. . . ] should be used to obtain better measures of the key economic time

series.” This paper shows that Prescott’s claim still holds true today. Theory implies that

standard TFP series do not reflect neutral technology in environments with multiple sources

of technical change, contrary to relatively common views. Theory also provides guidance

as to how to recover neutral technology in such setups. When appropriately measured,

neutral technology growth exhibits a significant slowdown in the early 1970s. In particular,

its contribution to US growth fell from up to 85% before 1973 to less than 25% afterward.

The welfare loss associated with slower productivity growth is tremendous, as high as 70%

of 2017 output levels.

These results call for further research along two lines. First, once one acknowledges

that earlier works have mistakenly interpreted TFP as neutral technology in setups with

investment-specific technical shocks, the validity of these papers’ conclusions is immediately

in question. Reevaluating the empirical findings from, e.g., Beaudry and Lucke (2010) and

Schmitt-Grohé and Uribe (2012) might thus be worthwhile. Second, the dramatic slowdown

in neutral technology progress after the 1970s has strong and sustained implications for the

US economy’s productive capacity and, ultimately, welfare. Understanding the causes and

the timing of this break, as well as its magnitude and persistence, is especially important for

macroeconomics. Available theories are not fully convincing and more work is warranted to

reach persuasive conclusions.12

12For instance, unmeasured learning costs do not seem able to account for the permanent fall in neu-

tral productivity, as this would require learning costs to represent an ever-growing share of output. The

alternative theory based on smaller returns to past inventions can explain the permanent effect but not the

brutal shift in neutral technology growth that occurred in the 1970s. Instead, this explanation would imply

a gradual downward adjustment that is not apparent in the data.
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Appendix A. Tests for Structural Breaks

This appendix reports results from Bai and Perron’s (1998) tests for multiple breaks at

unknown dates in the sample in the mean for the log-differences of the three TFP series

considered in Section 3.2 (Fernald’s utilization-adjusted TFP, TFP computed from output

in consumption units, Fernald’s consumption-sector TFP). The objective is to establish

formally the presence of trend breaks in TFP and to estimate the break dates.

Letting yt denote log TFP, the estimated model with m breaks is

∆yt = δj + ut, ut ∼ (0, σ2
j ), t = Tj−1 + 1, . . . , Tj, (16)

where j = 1, . . . ,m + 1 indexes the regimes and T1, . . . , Tm are the break points (with the

convention that T0 = 0 and Tm+1 = T ). The variance of the disturbance needs not be

constant across regimes and the setup also allows for autocorrelation in ut.

I implement the tests following Bai and Perron’s (2003) recommendations. In particular,

I set the trimming parameter at 15%. The results are reported in Table 2, along with

asymptotic critical values for the test statistics. For each series, I start by performing

double-maximum tests checking the presence of at least one break, allowing for a maximum

of m = 2 breaks. To determine the number of breaks, I then compute the supF (1|0) and

supF (2|1) statistics testing the presence of one vs. no break and two vs. one breaks. All

test statistics are constructed using Newey-West standard errors with AR(1) pre-whitening.

For all series, the double-maximum test statistics are equal to the supF (1|0) statistics, so

that I report only the later in Table 2.

As shown in the table, the supF (1|0) tests (and the double-maximum tests) find significant

breaks in the means of the log-differences of all three TFP series. On the other hand,

the supF (2|1) statistics are never significantly different from zero, indicating that the data

support the presence of a single break in each series. The estimated break dates are late 1971
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Table 2. Bai-Perron tests of multiple breaks at unknown dates in the trend

of TFP series.

Variable supF (1|0) supF (2|1) Break date [CI]

Fernald’s TFP 23.2 2.53 1971Q3 [63Q3-75Q2]

TFP from output in consumption units 37.4 5.03 1973Q1 [68Q4-76Q1]

Fernald’s consumption-sector TFP 44.4 2.97 1973Q1 [70Q1-76Q1]

Notes. The model allows for multiple breaks at unknown dates in the mean of the series

and is estimated with 15% trimming. The supF (1|0) and supF (2|1) tests respectively test

the presence of one vs. zero break and two vs. one breaks. Asymptotic critical values at

the 10%, 5%, and 1% levels are 8.02, 9.63, and 13.58 for the supF (1|0) test, and 9.56, 11.14,

and 15.03 for the supF (2|1) test. Confidence intervals have 90% asymptotic coverage.

for Fernald’s (2014) aggregate TFP,13 and early 1973 for the two other TFP series. This

common break date for TFP computed from output in consumption units and Fernald’s

TFP series for the consumption sector supports the notion that both variables represent the

same underlying object, i.e. neutral technology. In addition, the confidence bands for all

break dates overlap significantly, so that it is not possible to reject the idea that all three

TFP series experienced a common break.

13This is slightly different from the estimated break date of 1968Q2 reported by Benati (2014), who used

the same series and the same test procedure. However, Benati’s sample ends in 2008, while the one considered

here runs up to 2017.


