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Abstract

Using econometric tools for selecting I(1) and I(2) trends, we found the existence of static long-run steady-state and dynamic

long-run steady-state relations between temperature and radiative forcing of solar irradiance and a set of three greenhouse gases

series. Estimates of the adjustment coefficients indicate that temperature series is error correcting around 5e65% of the disequilibria

each year, depending on the type of long-run relation. The estimates of the I(1) and I(2) trends indicate that they are driven by linear

combinations of the three greenhouse gases and their loadings indicate strong impact on the temperature series. The equilibrium

temperature change for a doubling of carbon dioxide is between 2.15 and 3.4 (C, which is in agreement with past literature and the

report of the IPCC in 2001 using 15 different general circulation models.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the main conclusions achieved by the

Intergovernmental Panel on Climate Change (IPCC,

2001) is that temperature series is warming for the past

150 years. Furthermore, the same reference attributes

the responsibility of the changes to human activities

generated greenhouse gases. A basic argument in this

diagnostic is that temperature series are higher com-

pared to the pre-industrial periods; see also Santer et al.

(1996). There are two sources for this evidence. They

are the physically-based simulation models of climate

and the statistical analysis of historical data, respec-

tively. The simulation models of climate are based on

physical motion equations trying to describe the princi-

pal issues governing the behavior of temperature. They

also include the radiative forcing of greenhouse gases

and tropospheric sulfates. This kind of model are gen-

erally referred as general circulation models (GCMs).

On the other hand, the statistical analysis deals

directly with the historical record of the temperature

variables, solar irradiance and greenhouse gases. In

some cases, this approach uses simple and standard

statistical or econometric tools in identifying for the

effects of human activities (greenhouse gases) on the

temperature series. However, because all these time

series exhibit strong trends, classical tools will indicate

spurious positive relation among these variables. In

consequence, it is important to identify clearly the time

series properties of the data before starting any other

kind of analysis between the series. In this aspect, the

principal goal is the identification for the existence of

unit roots in the data which means the existence of

stochastic trends. It is the starting point of the research

agenda of Stern and Kaufmann (1997, 1999, 2000) and

Kaufmann and Stern (2002).1 Using different statistical
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tests for the identification of unit roots, they find that

temperature series is an I(1) process,2 and that green-

house gases contain two unit roots. After analyzing for

causality between different set of time series, Stern and

Kaufmann (1997) investigate the existence of long-run

steady-state relations (i.e. cointegration between sets of

variables) using multivariate techniques proposed by

Johansen (1988, 1995b). They conclude that there exists

a long-run relation between the set of variables and that

temperature series is reacting to the disequilibria

towards this steady-state relation in around 40e50%

each year. However, the authors believe that this value is

too high and it may be a consequence of the existence of

I(2) trends in the system. Kaufmann and Stern (2002)

recognizes the necessity to take into account for I(2)

trends in an adequate statistical framework.

The statistical framework for I(2) is proportionated

by the approach suggested by Johansen (1992, 1995a);

see also Paruolo (1996); Rahbek et al. (1999); Paruolo

and Rahbek (1999). It is more complex but richer in

terms of the long-run relations that we may find. In fact,

there are the standard (static) long-run steady-state

relations but there also exist the dynamic long-run

steady-state relations which are given by the linear

combinations between the levels of the variables and

their first differences. It is also possible to find medium-

run steady-state relations. In this paper, we follow this

approach.

The empirical results show that global temperature

and solar irradiance series are I(1) processes, carbon

dioxide is an I(2) process, and methane and nitrous

dioxide seem to contain explosive roots. According to

this evidence, three different systems are proposed,

estimated and analyzed. The results indicate that

temperature series is error correcting around 10e50%

of the disequilibria each year, depending of the type of

steady-state relation that is considered. Regarding the

equilibrium temperature change for a doubling of

carbon dioxide, the results indicate that it is between

2.1 and 3.4 (C, depending of the steady-state used to

calculate it. It is worth noting that these values are in

agreement with other values found in the literature (see

Kaufmann and Stern, 2002) and the average value

calculated by the Intergovernmental Panel on Climate

Change (IPCC, 2001).

The rest of this paper is organized as follows. Section

2 presents a brief review of the literature. Section 3 deals

with the methodological issues while Section 4 presents

the empirical results. Section 5 concludes.

2. A brief review of the literature

In order to place this work in the context of the

literature on climate change, a brief summary of some of

the relevant papers is provided below. When we observe

pictures of global temperature series, greenhouse gas

concentrations, and solar irradiance, all give us the

information that they have increased in the last 150

years; see also Stern and Kaufmann (2000). Presence of

strong trends implies that the use of standard statistical

or econometric tools will indicate a significant and

positive association between sets of variables analyzed.

Unfortunately, the use of standard statistical or eco-

nometric tools is misleading in this context. Therefore,

a careful analysis of the statistical properties of the time

series appears as a necessary condition for an adequate

empirical analysis. This is the starting point of the

research applied by Stern and Kaufmann (1997, 1999,

2000), and Kaufmann and Stern (1997, 2002). Apart

from them, there is little research that explicitly argued

in favor of the use of econometric time series methods,

such as Tol (1994), Tol and de Vos (1998), and

Schönwiese (1994). Some other exceptions in the anal-

ysis of the time series properties of global temperature

series are Bloomfield (1992), Bloomfield and Nychka

(1992), Woodward and Gray (1993, 1995), Galbraith

and Green (1993); Richards (1993); Fomby and

Vogelsang (2002). Before them, most of the research

analyzing the relationship between temperature and

forcing variables have used simple regression models as

in Lean et al. (1995), or frequency domain methods as in

Kuo et al. (1990) and Thomson (1995, 1997).

The analysis of the time series properties of tempera-

ture, solar irradiance, greenhouse gases and other

variables has been performed in Stern and Kaufmann

(1997). One of the principal conclusions of their research

is that global temperature series has a unit root or in other

terms, this time series has a stochastic trend, which is

denoted by I(1). At the same time, greenhouse gases

variables have been found to contain one or two unit

roots. The econometric tools used were the well known

unit root statistics proposed by Dickey and Fuller (1979),

Said and Dickey (1984), Phillips and Perron (1988), and

Schmidt and Phillips (1992). As a consequence of the size

and power problems of these unit root statistics in

detecting for more than one unit root,3 there is not a

complete and clear picture regarding the degree of

integration of the greenhouse gases. However, the evi-

dence in favor of twounit roots is present inmore thanone

unit root test. It is also recognized in Stern andKaufmann

(1999, 2000), and Kaufmann and Stern (2002).

When the time series are non-stationary there is room

to test for cointegration, that is, the possible existence of
2 A time series yt is integrated of order d, which is denoted by I(d ) if

d differences are needed to transform it into a stationary time series.

Therefore, I(1)/I(2) means that the series has to be differenced one/two

times to achieve stationarity. 3 See Haldrup and Lildholdt (2002).

762 H. Liu, G. Rodrı́guez / Environmental Modelling & Software 20 (2005) 761e773



long-run relationships between sets of variables ana-

lyzed. In other words, it is possible to find linear

combinations of the variables that annihilates the

stochastic trends. The rest of linear combinations are

still stochastic trends and they drive the behavior of the

time series. The cointegrating relations are named also

static long-run relations because they represent a steady-

state relation between sets of variables. Because in the

short term the variables are not in the steady state, they

will react to these disequilibria. In the case of tem-

perature, for example, it is possible to find a steady-state

relation with greenhouse gases and natural factors (solar

irradiance, for example). In the short term, the tem-

perature (and the other variables) reacts to the dis-

equilibria exhibiting an error correction behavior.

The only two trials to deal with the identification of

cointegration relations have been Stern and Kaufmann

(1997) and Kaufmann and Stern (2002). Using the

methodology of Johansen (1988, 1995b),4 they arrive at

the conclusion that there exists a long-run relationship

between time series of temperature, solar irradiance

and a set of greenhouse gases. The estimates of the

short-run dynamic model indicate that temperature is

correcting around 40e60% of the disequilibria each

year. The authors consider that this value is too high

and they attribute its cause to the existence of I(2)

trends.

The acceptation that time series of greenhouse gases

contain I(2) trends is also present in Stern and

Kaufmann (1999, 2000). In both papers, the authors

apply a multivariate structural time series approach to

model temperature, natural factors and greenhouse

gases.5 The advantage of this kind of models is that

different alternatives for the deterministic components

are allowed. Also, it is possible to allow for I(1) and I(2)

trends. The model is also flexible in including cyclical

components. The basic conclusions are that most time

series analyzed contain a stochastic trend with the

greenhouse gases containing stochastic I(2) trends.

Therefore, the two independent stochastic trends in the

data are associated to the radiative forcings due to

greenhouse gases, solar irradiance, and tropospheric

sulfate aerosols that are found in the northern hemi-

sphere, respectively. More recent research but applied to

the temperature of Australia is Lenten and Moosa

(2003). According to their results, temperatures in six

Australian locations are I(1) processes, the cyclical

component is not significant, seasonality is deterministic

and the irregular (or noise) component is very significant.

On the other hand, some different results are

proportionated by Kelly (2000). He finds that temper-

ature series contains a unit root but that greenhouse

gases are stationary around a time trend. This impres-

sive result implies that temperature rise is due to long

run cycles, and that the relationship with greenhouse

gases is spurious. These results are in complete

opposition to most of the research detailed before.

However, applying first difference to temperature series,

Kelly (2000) estimated a regression between growth

rates of temperature and greenhouse gases, finding

support to previous results regarding the significant

influence of these gases on temperature series.

One important and uncertain parameter of the

general circulation models (GCMs) is the temperature

sensitivity which is measured as the equilibrium

temperature change per unit of the change in radiative

forcing. As Kelly (2000) argues, an alternative measure,

directly proportional to the climate sensitivity, is the

total equilibrium (steady-state) temperature change

from a doubling of greenhouse gases, frequently

denoted as DT2x. Kelly (2000) finds that this parameter

is between 1.27 and 1.33 (C; while for Kaufmann and

Stern (2002) its value is around 2.0 and 2.5 (C, in

agreement with the general circulation models. It is

worthwhile to mention that the IPCC (2001) argues that

the average value of DT2x is 3.5 (C after considering

15 different models.6

In this paper we still use time series tools to analyze

for the existence of steady-state relations between temp-

erature series, solar irradiance and a set of greenhouse

gases. However, unlike the traditional approach of using

the so called I(1) model, as Stern and Kaufmann (1997)

and Kaufmann and Stern (2002), we use econometric

tools allowing for the presence of I(2) trends in the

identification of the long-run relationships. The use of

more sophisticated econometric tools taking into ac-

count for the presence of I(2) trends has been recognized

by Stern and Kaufmann (1999). The presence of two

unit roots in time series allows us to use the so called I(2)

model (see Johansen, 1992, 1995a, 1995b). In this model

the number of cointegrating relations are detected, so

are the number of I(1) and I(2) stochastic trends that still

in the system and drive the behavior of some variables.

In terms of the cointegrating relations, unlike the

analysis of the I(1) model, the I(2) model allows for

the existence of two types of cointegration. The first type

is a linear combination of the variables in their levels,

which is the same definition as that in the I(1) model.

The second type of cointegration is the possibility that

there are linear combinations between the levels of the

variables and their growth rates. It is named polynomial

cointegration and also dynamic steady-state relations.

Further details of I(1) and I(2) models are presented in

the next section.

4 See the I(1) model below for further methodological details.
5 This methodology is based on Harvey (1989).

6 The standard deviation is 0.92 (C and the range goes from 2.0 to

5.1 (C.
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3. Methodological issues

In this section we provide elements relevant to under-

standing the methodological approach applied in the

empirical analysis. Regression with nonstationary time

series implies spurious regression except when there

exists a linear combination (or more than one) between

these variables that reduce the dimension of the space

spanned by them. This is known as cointegration.

3.1. The I(1) model

Let yt, a vector containing n variables, be represented

by the following VAR(k):

yt ¼
Xk

i¼1

Pyt�iCFDtC3t ð1Þ

where it is assumed that 3t is a sequence of i.i.d. zero

mean with covariance matrix U. In most cases it is also

assumed that the errors are Gaussian which is denoted

by 3twN (0,U). The variable Dt contains the possible

deterministic components of the process, such as a con-

stant, a time trend, seasonal dummies and intervention

dummies. This is the model proposed by Johansen

(1988, 1995b) and is widely used in empirical applica-

tions.7

The system (1) is reparameterized as a vector error

correction model (VECM):

Dyt ¼ Pyt�1C

Xk�1

i¼1

GiDyt�iCFDtC3t ð2Þ

with

P ¼ �IC
Xk

i¼1

Pi; Gi ¼
Xk

j¼iC1

Pj:

Notice that the matrix

G ¼ I�
Xk�1

i¼1

Gi:

I(1) cointegration occurs when the matrix P is of

reduced rank, r!n where P may be factorized into

P=ab#, a and b are both full rank matrices of

dimension n!r; the matrix a contains the adjustment

coefficients and b the cointegration vectors. These

vectors have the property that b#yt is stationary, even

though yt itself is non-stationary. Notice that there also

exist full rank matrices at and bt of dimension

n!(n�r) which are orthogonal to a and b, such that

a#ta=0 and b#tb=0, and the rank(bt,b)=n.

An alternative representation of the cointegrated

VAR model is in terms of the common stochastic trends

representation, see Stock and Watson (1998). According

to that, the yt vector is represented by

yt ¼ FDtCC
Xt

i¼1

3iCCðLÞ3t ð3Þ

where C=bt(a#tGbt)
�1
a#t and C(L)3t corresponds to

a n-dimensional I(0) component. Using this representa-

tion it is possible to observe that although yt is

n-dimensional, the vector series is driven by just n�r

common stochastic I(1) trends which are

a#t
Xt

i¼1

3i:

In terms of observable variables the I(1) directions are

calculated as b#tyt which are just a particular linear

combinations of the stochastic trends.

To test the rank of matrix P, Johansen (1995a,b)

developed maximum likelihood cointegration testing

method using the reduced rank regression technique

based on canonical correlations. The procedure consists

of obtaining an n!1 vector of residuals r0t and r1t from

auxiliary regressions (regressions of Dyt and yt�1 on

a constant and the lagged Dyt�1.Dyt�kC1). These

residuals are used to obtain the (n!n) residual product

matrices:

Sij ¼ ð1=TÞ
XT

t¼1

ritr#it; ð4Þ

for i, j=0, 1. The next step is to solve the following

eigenvalue problem

KlS11 � S10S
�1
00 S01 K ¼ 0 ð5Þ

which gives the eigenvalues l̂1R.Rl̂n and the corre-

sponding eigenvectors b̂1 through b̂n, which are also the

cointegrating vectors. A test for the rank of matrix P

can now be performed by testing how many eigenvalues

l equals to unity. One test statistic for the resulting

number of cointegration relations is the Trace statistic

(see Johansen, 1988), which is a likelihood ratio test

defined by

Trace ¼ �T
Xn

i¼rC1

logð1� l̂iÞ ð6Þ

Another useful test is given by testing the significance

of the estimated eigenvalues themselves

lmax ¼ �T logð1� l̂iÞ: ð7Þ

In trace test, the null hypothesis is r=0 (no cointegration)

against the alternative hypothesis that rO 0 (cointegra-

tion). The lmax statistic tests the null hypothesis that r=r0
versus the alternative hypothesis that r=r0C1, where

7 There are large number of empirical applications using this

statistical framework. Two very detailed and influential applications

are Johansen and Juselius (1992 and 1994).
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r0=0, 1,., n�1. For further details regarding the

construction of these statistics, see Johansen (1995b).

In summary, the I(1) model allows to identify the

rank of cointegration (r) and the number of stochastic

trends driving the yt vector. Because in this model it is

assumed that yt contains variables with order of integra-

tion no larger than one, it is clear that the number of

unit roots left in the system is n�r. Notice that the

estimate of b (the cointegration vector) is not identified

in the sense that any linear combination of b is also

a cointegration vector. In this sense, researchers have to

identify these vectors by imposing restrictions that are in

most cases suggested by the economic theory. For

example, in a vector containing four variables, a possible

restriction is that the coefficient associated to the second

variable is zero. If the statistic (distributed as a c
2) does

not reject the null hypothesis, it means that the second

variable is long-run excluded from the cointegration

vector. Another example is the restriction of long-run

homogeneity between a set of variables. If the null

hypothesis is not rejected, it means that the unit vector

(i.e. [1, �1,., �1]) may be used in the subsequent

analysis. The estimated adjustment coefficients (a) are

also tested for restrictions but in this case, the

restrictions are associated with the null hypothesis of

weak exogeneity.

3.2. The I(2) model

In the I(1) model, the matrixP is of reduced rank and

the matrix a#tGbt is of full rank. For the system to be

I(2) it is also required that the matrix a#tGbt be of

reduced rank s1!n�r. Following Johansen (1992,

1995a,b), the model (2) can be reparameterized as

D
2yt ¼ Pyt�1 � GDyt�1C

Xk�2

i¼1

JiD
2yt�iCFDtC3t ð8Þ

where the matrix G is included as a parameter and

Ji ¼ �
Xk�1

j¼iC1

Gj:

With the matrix a#tGbt of reduced rank (sq), it is

possible, as in the I(1) model, to define parameter

matrices x and h such that the second reduced rank

condition is a#tGbt=zh# with z and h both matrices of

dimension (n�r)!s1.

As in the I(1) model, the number of cointegration

relations (or I(0) relations) is denoted by r. However,

unlike I(1) models, n�r does not only represent the

number of I(1) trends in I(2) models. It contains both

the total of I(1) trends and that of I(2) trends, denoted as

s1 and s2, respectively. Consequently there are param-

eters describing the I(0), I(1) and I(2) directions of the

variables and an important goal of the I(2) model is their

identification. Following the notation of Juselius (1999),

these matrices are b, bt1 and bt2 associated with

dimensions r, s1 and n�r�s1=s2 respectively.8 Paruolo

(1996) denotes r, s1, s2 as the integration indices of

the VAR.

In a similar way as in the I(1) model, the common

trends representation of I(2) model is given by

yt ¼ FDtCC2

Xt

j¼1

Xj

i¼1

3iCC1

Xt

i¼1

3iCC �ðLÞ3t ð9Þ

where C2 ¼ bt2ða#t2Qbt2Þ
�1
a#t2 and C*(L) is a matrix

polynomial with all roots strictly outside of the unit

circle. The first clear observation is that yt has s2
common I(2) trends given by

a#t2

Xt

j¼1

Xj

i¼1

3i:

In terms of observable variables, it is given by b#t2yt
which are just linear combinations of the I(2) stochastic

trends.

Furthermore, as mentioned by Haldrup (1999), the

combinations b#yt can cointegrate to I(0) level and/or

have the property that they potentially cointegrate with

b#t2Dyt, which is I(1) by construction. This is named as

polynomial cointegration. These r relations are b#yt�
db#t2Dyt which define the I(0) directions. However, not

all the r I(0) relations need include the differenced I(2)

components. In fact, after defining dt such that d#td=0,

there will be r�s2 non-polynomially cointegrated

relations given by d#tb#yt; and s2 polynomial cointegrat-

ing relations given by d#b#yt�d#db#t2Dyt.
9

The approach suggested by Johansen (1992, 1995b)

to identify the number of I(2) trends is conducted as

a combination of regression and reduced rank re-

gression. It is performed in a similar way as the deter-

mination of the cointegration rank in the I(1) model.

The difference is that now two reduced rank conditions

need to be examined. This is more complicated in the

sense that the second reduced rank condition depends

on the first reduced rank condition. Instead of a joint

8 The notation and technical details of the I(2) model are complex.

Further details regarding the calculation of matrices bt1 and bt2 are

in Juselius (1999), also Haldrup (1999) using a slightly different

notation. In summary, because z and h exist, their complements, zt
and ht, also exist. Then it is possible to define atZ{at1, at2} and

btZ{bt1, bt2}, where at1Zat(a#tat)
�1z at2Zatzt, bt1Z

bt(b#tbt)
�1
h and bt2Zbtht. Therefore, b, bt1 and bt2 are

mutually orthogonal and thus jointly describe a basis for the

n-dimensional space. The a has a similar property.
9 The possibility to decompose r (in r0 and r1, say) exists only when r

O s2. In this case, the r cointegrating relations can be divided into

r0Zr�s2 directly stationary CI(2,2) relations and r1Zs2 polynomially

cointegrating relations.
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estimation of the indices r and s1, Johansen (1992, 1995a)

suggests a two step procedure. The first step is to solve the

reduced rank problem associated with the matrix

P=ab#. It calculates the estimates of ar, br, atr, and

btr for each value of r=0, 1,., n�1. The second step

deals with the second reduced rank condition problem by

replacing the unknown matrices atr, and btr with the

estimates from the first step. The problem is solved for or

s1=0,.,n�r�1. Then what remains to be determined is

which combinations of r and s1 should be chosen. Because

steps 1 and 2 proportionate an array of different values

for r and s1 corresponding to different sub-models, the

selection of r and s1 can be performed in the following

way.10 The array is read starting from the left corner. If

the null hypothesis is rejected, the next element (continu-

ing to the right) is read and so on. After the first row is

done, and if no acceptation is observed, we read the

second row of the array. We continue until the first non-

rejection is found. The associated values of r, s1 and s2 are

selected as the integration indices. Complete technical

details can be found in Paruolo (1996); Johansen (1992,

1995a).

It must be emphasized that only the space spanned by

the cointegrating vectors is identified; the single cointe-

gration relations are unidentified. This issue is also

present in the I(1) model but this problem is more

complex in I(2) models.11

What is perhaps more interesting is the fact that in an

I(2) model there exist more than one steady-state rela-

tions. Recall that in an I(1) models, the cointegration

relations b#yt represents the static long-run steady-state

relation. In the present case, we have two additional

steady-state relations. One is medium-run steady-state

relations represented by b#t1Dyt. The other is dynamic

long-run steady-state relations represented by the poly-

nomially cointegrating relations (see Juselius, 1999, 2003).

In consequence, there exist different adjustment coeffi-

cients associated with each of these steady-state relations.

One should keep in mind that tools for analyzing I(2)

models and statistics used to select integration indexes

are not yet fully developed in econometric literature.

This is the reason why the selection of the number of I(2)

trends should be combined with other tools. One of

them, as suggested by Juselius (1999), is the calculus of

the roots of the companion matrix. If yt vector contains

variables that are integrated no more than order one,

then the total number of unit roots (or close to the unit

circle) of the companion matrix must be n�r. If there

exists more than n�r roots close to the unit circle, it

constitutes a indicator for the presence of I(2) trends.

When there are I(2) trends, the number of roots close to

the unit circle is s1C2s2.

Another useful indicator for the presence of I(2)

trends is to compare the graphs of b#yt and b#R1t, where

R1t is a vector of residuals from regressing yt�1 on

lagged short-run effects (Dyt�i, i=1, 2,., k�1) and Dt.

If the first graph looks non-stationary whereas the

second graph looks stationary, it can be considered as

a strong support for the presence of I(2) trends.

Recently a few empirical applications in the field of

economics have used the I(2) framework. Without the

intention to be exhaustive, some of these references are

Rahbek et al. (1999), Kongsted (2003), Holtemöller

(2002), Vostroknutova (2003), Juselius (1999, 2003),

Fiess and MacDonald (2001), and Haldrup (1999). It is

worthwhile to mention that some of these papers, after

identifying for the presence of I(2) trends, proceed

with transforming the variables in such a form that

a standard I(1) analysis can be performed (see Fiess and

MacDonald, 2001). Almost all references mentioned

study nominal variables such as money supply, nominal

wages, and fundamentally prices. We do not know that

a similar methodology has been applied to climate series.

4. Empirical analysis

4.1. The data and preliminary issues

The data used in this paper include the time series of

global mean temperature deviation (denoted by temp),

the concentrations of methane (ch4), nitrous dioxide

(n2o), carbon dioxide (co2).
12 All data are from the web

site of Goddard Institute for Space Studies available at

http://www.giss.nasa.gov. The data are transformed

into radiative forcing,13 which affects the temperature

10 The test statistic is denoted as Hr,s and it is the same notation

used in the empirical analysis.
11 Regarding the adjustment coefficients, for example, the notion of

weak exogeneity is now different. Paruolo and Rahbek (1999) have

proposed a sequential approach to test for weak exogeneity in the I(2)

model.

12 A preliminary version of the paper included data of chlorofluor-

ocarbons (cfc11 and cfc12). Graphical inspection of both time series

indicates zero values until 1950, after what they increased very fast.

These two variables were found to be I(2) processes in Stern and

Kaufmann (2000).We decided exclude both time series for the following

reasons: (i) the visual analysis indicates a particular behavior that may

distort the analysis; (ii) their importance in terms of all greenhouse is

reduced; (iii) increasing the dimension of the system of equations to be

estimated, therefore reducing the number of freedom degrees given our

sample size; and (iv) identification of cointegration relations is complex

and unlike the field of economics, we are not sure what are the physical

relationships and interactions between all these greenhouse gases series,

solar irradiance and temperature time series. Therefore, by excluding

both variables, we reduce the possibility to find too many cointegration

relations which are always difficult to identify and interpret.
13 Radiative forcing is the change of the net irradiance caused by

factors such as greenhouse gases, water vapor, solar radiation.

Greenhouse gases are of particular interest, as they are most likely

to change radiative forcings over the next decade. The net irradiance is

the difference of the irradiance that the earth absorbed minus the

irradiance the earth emitted, expressed inWm�2, whereW is a measure

of energy (Watt) and m indicates meters.
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directly and indirectly. The formulae are tabulated in the

Intergovernmental Panel of Climate Change (IPCC,

2001). Therefore the radiative forcing of greenhouse

gases at time t are denoted by r f ch4t, r f n2ot, r f co2t. We

also include radiative forcing of solar irradiance (r f sunt)

as another variable in the system.

Fig. 1 presents the evolution of the time series for the

period under study, 1856e2001. It is a similar period as

analyzed by the previous literature but with more recent

information. A clear observation appearing from Fig. 1

is the fact that all greenhouse gases variables present

strong upward trends that have been observed in the

previous literature.

As that argued in the literature (Stern and Kaufmann,

2000), an essential preliminary step in the analysis of

these variables is the identification of the time series

properties. One way to approach this issue is the

application of univariate unit root tests. Stern and

Kaufmann (2000) proceeded using three different uni-

variate unit root tests. However, as documented by

Haldrup and Lildholdt (2002), these statistics are

incorrect. Because when testing for I(2) and the un-

derlying series is indeed integrated of order two, these

statistics give rise to an excessive rejection of the null

hypothesis of a unit root in favor of the stationary and

explosive alternatives. This size distortion is caused

by the fact that the test statistics have a different dis-

tribution originated by one additional unit root. In

consequence, the recommendation of Haldrup and

Lildholdt (2002) is to test I(2) against I(1) prior

to testing I(1) against I(0). The authors conclude that

all basic univariate unit root tests suffer from this

issue.

In a set of results not reported here,14 we applied the

approach suggested by Dickey and Pantula (1987) and

also the statistic proposed by Hasza and Fuller (1979).

The results indicated that the carbon dioxide series

contains two unit roots, that is, it is an I(2) process. The

temperature and solar irradiance series were found to be

I(1) processes, the other greenhouse gases series under

study (nitrous dioxide and methane) appeared contain-

ing explosive roots. The last result is not totally clear

after the application of all statistics. The difficulty with

this case is the fact that explosive roots mimic the

behavior of I(2) processes, see Haldrup and Lildholdt

(2002).

In summary, most of the results confirm the previous

results found in the literature, see Stern and Kaufmann

(2000). Although it appears to be the case, we adopt

another strategy in this paper. This approach consists of

applying multivariate techniques to detect the number of

I(0), I(1) and I(2) trends in the system. As we will see in

1850 1900 1950 2000

-0.5

0.0

0.5 temp

1850 1900 1950 2000

-0.2

-0.1

0.0

0.1
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1850 1900 1950 2000

0.5

1.0

1.5
rfco2

1850 1900 1950 2000

0.2

0.4
rfch4
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0.05
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0.15
rfn2o

Fig. 1. Global temperature deviations (temp), radiative forcing of solar irradiance (rfsun), carbon dioxide (rfco2), methane (rfch4) and nitrous dioxide

(rfn2o); units in Wm�2; 1856e2001.

14 But they are available upon request. We applied standard ADF

test (Dickey and Fuller, 1979; Said and Dickey, 1984), Phillips-Perron

test (Phillips and Perron, 1988), and ADF based on GLS detrended

data as suggested by Elliott et al. (1996).
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the next analysis, there are more than one possible case

in the selection of the integration indices.15

4.2. The first case

The first case is represented by the system with our

five variables, i.e., yt={tempt, r f sunt, r f co2t, r f ch4t, r f

n2ot}. Table 1 presents the results obtained from the

application of the approach of Johansen (1988, 1995b)

in determining the rank of matrix P
16. Both Trace and

lmax statistics indicate that r=3, that is, there exist three

cointegration relations. Because n=5, we have

s1Cs2=n�r=2.

Table 2 presents the results of the statistic Hr,s for

selecting s2. The first row represents the value of the

statistic, the second and third rows are the critical values

at 95.0% and 97.5% (in italics). As we explained in the

previous section, reading of this table starts from the

left-corner and we continue to the right. If no

acceptation is found, we continue to the second row of

values (r=1). The procedure stops when a non-rejection

is found. In the present case, the results indicate that

s2=0 and consequently s1=2. Then, there are two I(1)

trends and there is no I(2) trends in the system.

However, note that using critical values at 97.5%, it is

possible to find s2=1 and consequently s1=1.

As suggested by Juselius (1999), a good way to

complement this information is the calculus of the

eigenvalues of the companion matrix. The eight largest

modules obtained from the unrestricted VAR are:

1.0292, 1.0292, 0.9641, 0.9641, 0.9384, 0.9384, 0.7163,

0.7163. It appears to exist two explosive roots and four

eigenvalues close to the unit circle. In other words, there

appears to exist four unit roots in the system. Now,

because the first step (in the I(1) framework, see Table 1)

indicates r=3, we proceed with imposing this restriction

and now the eight largest modules of the restricted VAR

are: 1.0283, 1.0283, 1.000, 1.000, 0.9378, 0.9378, 0.7179,

0.7179. There are two unit roots as a consequence of the

restriction of r=3 but there are two more eigenvalues

close to the unit circle. It indicates, again, the existence

of four unit roots.17 Remember that in the I(2)

framework the total number of unit roots is given by

s1C2s2, which in the present case indicates that s1=0

and s2=2.

In summary, we have some different information

using the Hr,s statistic and the eigenvalues of the com-

panion matrix. We decide to working with both alter-

natives. Then, they are r=3, s1=1, s2=1 and r=3,

s1=0, s2=2, respectively. In the following, they are

named as Case 1 and Case 2, respectively.

Following the notation used in the previous section,

Table 3a presents cointegration relations and adjust-

ment parameters corresponding to Case 1. Notice that

there are two cointegrating relations including only the

levels of the variables ðb̂0;iyt; i ¼ 1; 2Þ: Furthermore, the

relation b̂1yt � k̂1Dyt denotes the polynomially cointe-

gration relation or what we denoted in the previous

section as the dynamic steady-state relation. The bottom

panel gives the corresponding loadings ðâ0;1; â0;2; â1Þ:
and the coefficients that reflect the composition of the

stochastic I(1) and I(2) trends ât1 and ât2: The table

also presents vectors b̂t1 and b̂t2 that denote the

loadings (adjustment parameters) to the stochastic I(1)

and I(2) trends.

Table 3a specifies that around 46.6% of the dis-

equilibrium in the static long-run steady-state is

Table 1

Testing for cointegrating ranks

H0 lmax Trace lmax 90%

critical values

Trace 90%

critical values

r=0 83.6 196.2 34.8 82.7

r=1 49.4 112.5 29.1 59.0

r=2 41.9 63.1 23.1 39.1

r=3 14.2 21.3 16.9 23.1

r=4 7.1 7.1 10.5 10.6

Yt ¼ ðtempt; r f sunt; rfco2t; rfch4t; rfn2otÞ#.

Table 2

Testing for integration indices

r Hr,s Qr

0 418.0 312.6 252.0 220.8 198.2 196.2

(198.2) (167.9) (142.2) (119.8) (101.5) (87.2)

(203.2) (173.4) (147.1) (124.4) (105.6) (91.2)

1 268.6 171.4 136.8 114.8 112.5

(137.0) (113.0) (92.2) (75.3) (62.8)

(141.5) (117.4) (96.5) (79.0) (66.1)

2 163.4 91.2 69.0 63.1

(86.7) (68.2) (53.2) (42.7)

(90.8) (71.4) (55.9) (45.8)

3 57.9 36.2 21.3

(47.6) (34.4) (25.4)

(50.7) (36.8) (27.9)

4 15.3 7.1

(19.9) (12.5)

(22.2) (14.2)

n�r�s=s2 5 4 3 2 1 0

Yt ¼ ðtempt; rfsunt; rfco2t; rfch4t; rfn2otÞ#:

15 Analysis of I(1) and I(2) models was performed using CATS for

RATS, see Hansen and Juselius (1995). A slightly modified version of

the program of Rahbek et al. (1999) has been used. We also thank

electronic communications with H.C. Kongsted who proportionated

his program used in Kongsted (2003). The estimations of the error

correction models were performed using PcGive 10.0, see Doornik and

Hendry (2001).
16 In all cases, we consider linear trends in the data. An intercept

and a time trend are also allowed in the cointegration space. In terms

of the I(2) framework, it is the model suggested by Rahbek et al.

(1999).

17 Notice that the two explosive roots seem to confirm the

univariate analysis.
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corrected by the temperature series each year. This is

similar as that found by Stern and Kaufmann (2000).

On the other hand, the result that temperature series do

not react to the second static long-run relation is also

interesting. The response of the temperature series to the

dynamic steady-state relations is 19.1%. As we know,

these dynamic steady-state relations ( polynomially

cointegration relations) include the levels and the

growth rates of the variables. Therefore, the result

indicates the response of temperature series to disequi-

libria towards the steady-state. Regarding to the

medium-run steady-state relation ðb̂t1DytÞ, we observe

that it is composed by temperature, solar irradiance,

carbon dioxide and methane series.

Regarding the stochastic I(1) and I(2) trends, we have

the following observations. Firstly, it appears that both

I(1) and I(2) trends are driven by three greenhouse gases

ðât1; ât2Þ, whereas the influence of methane and

nitrous dioxide is higher in stochastic I(2) trend ðât2Þ:
In other words, permanent shocks to the three

greenhouse gases seem to have generated the I(2) trend.

Secondly, the respective loadings (or adjustment param-

eters) to these stochastic I(1) and I(2) trends indicate

that temperature series, solar irradiance and carbon

dioxide are influenced by them ðb̂t1; b̂t2Þ: The results

also show that temperature, carbon dioxide, and solar

irradiance are more influenced by the stochastic I(1)

trend ðb̂t1Þ: However, the stochastic I(2) trend seems to

affect strongly the temperature series ðb̂t2Þ:
Regarding the equilibrium temperature change for

a doubling of carbon dioxide (DT2x), the results indicate

that it is 3.4 (C; see the first long-run steady-state

relation. This value is higher than those found in the

literature but it is in agreement with the average of

estimates from 15 general circulation models coupled to

mixed-layer ocean models reported in IPCC (2001).

Table 3b proportionates similar information but for

the case r=3; s1=0; s2=2. In this case the results show

that there is only one static long-run steady-state

relation and two dynamic steady-state relations. The

loading corresponding to the long-run steady-state rela-

tion seem to indicate that temperature series is not error

correcting which may indicate that the disequilibria are

not corrected at all. The response to the dynamic steady-

state is, as before, higher and with the correct sign. In

fact, it appears that temperature series is correcting

4.8% and 64.6% (each year) of the disequilibria pre-

sented in these relations.

Because in this case s1=0, there are not I(1) trends in

the system. The two I(2) trends seem to be driven by

carbon dioxide and nitrous dioxide in the first case

ðât2;1Þ and by the three greenhouse gases in the second

case ðât2;2Þ. Observing the coefficients in b̂t2;1 and

b̂t2;2, it is clear that the higher influence (in both cases)

is on temperature series. All these results confirm the

analysis of Kaufmann and Stern (2002).

4.3. The second case

Univariate and multivariate analysis seem to indicate

that there are explosive roots in the system. Therefore,

an alternative analysis is to separate the five-variable

system into two sub-systems. The first system contains

three variables: temperature, solar irradiance and car-

bon dioxide. The second system has two variables:

methane and nitrous dioxide, the two variables that

seem to have explosive roots.

Tables 4a and b present the Trace and lmax statistics.

Notice that the selection of the rank of matrix P is valid

even when there are explosive or I(2) trends, see Nielsen

(2001, 2002). Table 4a (3-variables system) indicates that

r=1. The same result is found for Table 4b (2-variables

system).

Tables 5a and b present the results from the Hr,s

statistic. The numbers in italic are critical values at

95% quantiles. In the case of the 3-variables system

(Table 5a), we found s2=1 and consequently s1=1.

The seven largest modules of the companion matrix

Table 3a

Decomposing the systems into I(0), I(1) and I(2) spaces; Case 1

b̂0;1 b̂0;2 b̂1 k̂1 b̂t1 b̂t2

temp 1.000 1.000 1.000 �79.039 �3.921 �5.698

rfsun �0.078 �4.639 �1.638 �26.868 �3.006 �1.937

rfco2 �0.792 �2.161 7.303 �35.985 9.647 �2.594

rfch4 0.928 5.565 �22.491 �21.236 2.074 �1.531

rfn2o �36.398 2.774 96.030 �1.872 �0.258 �0.135

trend 0.015 0.004 �0.050

â0;1 â0;2 â1 ât1 ât2

temp �0.466 0.067 �0.191 �0.000 �0.001

rfsun �0.034 0.096 �0.014 �0.001 �0.002

rfco2 �0.015 0.010 �0.005 0.007 �0.007

rfch4 �0.003 0.002 �0.002 0.011 0.095

rfn2o �0.000 0.002 0.000 �0.009 0.125

Yt ¼ ðtempt; rfsunt; rfco2t; rfch4t; rfn2otÞ#.

Table 3b

Decomposing the systems into I(0), I(1) and I(2) spaces; Case 2

b̂0 b̂1;1 k̂1 b̂1;2 k̂2 b̂t2;1 b̂t2;2

temp 1 1 17.424 1 �20.510 8.404 �5.473

rfsun �5.931 �0.238 �32.565 �0.959 3.306 7.540 �0.954

rfco2 �3.127 �5.878 96.770 1.648 �28.565 �9.968 �3.149

rfch4 6.308 12.513 22.507 �7.305 �8.875 �0.838 �1.444

rfn2o 16.920 �88.710 �2.954 14.819 0.401 0.617 �0.054

trend 0.003 0.049 �0.007

â0 â1;1 â1;2 ât2;1 ât2;2

temp 0.100 �0.048 �0.646 0.0001 �0.002

rfsun 0.075 0.002 �0.031 0.001 �0.007

rfco2 0.009 �0.002 �0.017 �0.018 0.050

rfch4 0.002 0.000 �0.005 0.000 0.139

rfn2o 0.000 �0.000 0.000 0.065 0.048

Yt ¼ ðtempt; r f sunt; rfco2t; rfch4t; rfn2otÞ#.
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corresponding to the unrestricted VAR are: 0.9942,

0.9297, 0.8402, 0.8402, 0.7796, 0.6543, 0.6543. It seems

there are two roots close to the unit circle. When r=1 is

imposed, the seven largest modules are: 1.000, 1.000,

0.9546, 0.8494, 0.8494, 0.6844, 0.6844. We have two unit

roots as the results of restriction r=1. However, there is

another root 0.9546 very close to the unit circle, and this

indicates the presence of I(2) trends. Therefore, accord-

ing to the results of the eigenvalues of the companion

matrix, the total number of unit roots is s1C2s2=3. This

is in agreement with the results of the statistic Hr,s.

Because we have the evidence that solar irradiance and

temperature are both I(1) variables from univariate

tests, it seems that carbon dioxide is the one responsible

for the existence of the I(2) trend.

For the system with 2 variables (Table 5b), the results

indicate s2=1, therefore, s1=0. In this case, the

existence of one I(2) trend is difficult to accept since

our preliminary results (see the last sub-section) indicate

that there are two explosive roots which should be

attributed to the two variables in the 2-variable system.

The five largest modules of the companion matrix from

the unrestricted VAR are: 1.0393, 1.0393, 0.8374,

0.6901, 0.6901. When r=1 is imposed, the eigenvalues

are: 1.029, 1.029, 1.000, 0.714, 0.714. We have one unit

root corresponding to the restriction of r=1 and two

explosive roots. Others are not close to the unit circle.

This information indicates that there is no I(2) trend in

this system, whereas it seems to verify that explosive

roots mimic the behavior of I(2) trends, as reported by

Haldrup and Lildholdt (2002). Therefore in this case we

conclude with r=1, s1=1 and s2=0.

Table 6 shows the estimates of b̂1; k̂1; â1; b̂t1; b̂t2;
ât1 and â12.

18 Each year the temperature series cor-

rects 12.6% the disequilibria in the dynamic long-run

steady-state relation ( polynomial cointegration). It is

interesting to observe that the I(1) trend is driven by

temperature and radiative forcing of solar irradiance but

not by radiative forcing of carbon dioxide. However, the

I(2) trend is completely driven by this greenhouse gas.

The magnitude of the estimates of b̂t1 tells us that the

I(1) trend affects significantly all variables in the system,

with the major effect on temperature series. Because this

I(1) trend is driven by the temperature series itself and

for the radiative forcing of solar irradiance, the esti-

mates of b̂t1 indicate that this trend corresponds to

‘inertial’ (or persistent) factors (temperature itself) and

natural factors (radiative forcing of solar irradiance). In

the case of the magnitudes of b̂t2, the effects are also

appreciated on temperature series. This I(2) trend could

correspond to the human factors, that is, the greenhouse

gases effects, in this case represented by radiative forcing

of carbon dioxide.

The cointegration relation detected in the 2-variable

system indicates a relationship between radiative for-

cing of methane and nitrous dioxide. We introduce this

relation (together with the polynomial cointegration

relation found in the 3-variable system) in the error

correction model to calculate the response of the

temperature series to these steady-state relations.19 The

results indicate that temperature series responds 50.18%

to the static long-run relation between radiative forcing

of methane and nitrous. These results are in agreement

with those results found in the last sub-section.

Table 4a

Testing for cointegrating ranks

H0 lmax Trace lmax 90%

critical values

Trace 90%

critical values

r=0 36.1 54.5 23.1 39.1

r=1 14.7 18.4 16.9 23.0

r=2 3.7 3.7 10.5 10.6

Yt ¼ ðtempt; rfsun; rfco2tÞ#.

Table 4b

Testing for cointegrating ranks

H0 lmax Trace lmax 90%

critical values

Trace 90%

critical values

r=0 43.3 52.2 16.9 23.0

r=1 8.9 8.9 10.5 10.6

Yt ¼ ðrfch4t; rfn2otÞ#.

Table 5a

Testing for integration indices

r Hr,s Qr

0 213.5 114.9 58.0 54.5

(86.7) (68.2) (53.2) (42.7)

1 102.0 21.6 18.4

(47.6) (34.4) (25.4)

2 6.4 3.7

(19.9) (12.5)

n�r�s=s2 3 2 1 0

Yt ¼ ðtempt; rfsun; rfco2tÞ#.

Table 5b

Testing for integration indices

r Hr,s Qr

0 77.3 53.2 52.2

(47.6) (34.4) (25.4)

1 15.6 8.9

(19.9) (12.5)

n�r�s=s2 2 1 0

Yt ¼ ðrfch4t; rfn2otÞ#.

18 There is no similar estimates in the case of the 2-system variables

because there are not I(2) trends.

19 For each one of the cases presented, we estimated the respective

VECM. These estimated were submitted to different test to evaluate

for the presence of autocorrelation, heteroskedasticity, misspecifica-

tion, normality and stability. The equation of temperature appears

robust to all these diagnostic tests. Results are available upon request.
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From Table 6, we found that DT2x ¼ 2:15 (C, which

is in agreement with past literature, see Kaufmann and

Stern (2002).

4.4. The third case

Another alternative is to transform the variables in

such a way that an I(1) framework can be performed.

Based on the results outlined before, temperature series

and radiative forcing of solar irradiance are I(1) pro-

cesses. Hence they enter the new system in levels.

Radiative forcing of carbon dioxide is most likely an I(2)

process and then enters the system in the first differences

(Dr f co2). For the case of radiative forcing of methane

and nitrous dioxide, we found evidence of explosiveness.

Therefore we apply filter DlðDlyt ¼ yt � lyt�1Þ to these

variables with l=1.029. In summary, our 5-variables

system is now composed of yt ¼ ftempt; r f sunt;Drfco2t;
Dlrfch4t;Dlrfn2otg:

Table 7 presents the results from the application of

the Trace and lmax statistics and it suggests r=2. In

order to be sure that our system does not contain I(2)

trends, Table 8 presents the results of the Hr,s statistics.

The results confirm our claim. Therefore the integration

indices are r=2 and s1=n�r=3. The eight largest

modules of the companion matrix for the unrestricted

VAR are: 0.9581, 0.9581, 0.923, 0.923, 0.861, 0.861,

0.848, 0.848. In the case of the restricted VAR (r=2),

these modules are: 1.000, 1.000, 1.000, 0.890, 0.890,

0.858, 0.858, 0.838. We have three unit roots corre-

sponding to the restriction of r=2 and no other roots

close to the unit circle.20 The results seem to confirm

that the total number of unit roots is three implying that

there are not I(2) trends.

Table 9 presents the estimates of the two cointegra-

ting vectors, the loadings values and the I(1) trends. The

null hypothesis for the long-run exclusion of solar

irradiance in the first steady-state relation and the

imposition of a coefficient of �0.5 associated to carbon

dioxide was not rejected with a c2
ð1Þ ¼ 2:75 correspond-

ing to a P-value of 0.10. The long-run exclusion of the

time trend was always strongly rejected.

The estimates of the adjustment parameters show

that temperature series is error correcting 10.8% and

12.3% each year. The first I(1) trend is driven by three

greenhouse gases with a larger weight on radiative

forcing of methane. The second I(1) trend is almost

completely driven by radiative forcing of nitrous dioxide

but with a small participation of radiative forcing of

solar irradiance. The last I(1) trend is driven by two

greenhouse gases with a larger weight on radiative

Table 6

Decomposing the systems into I(0), I(1) and I(2) spaces

b̂1 k̂1 b̂t1 b̂t2

temp 1.000 �0.819 10.505 2.606

rfsun �3.341 �0.085 4.396 0.269

rfco2 �0.500 �1.073 �8.366 3.414

trend 0.006

â1 ât1 ât2

temp �0.126 0.046 0.000

rfsun 0.069 0.085 �0.001

rfco2 �0.001 �0.001 �0.096

Yt ¼ ðtempt; rfsunt; rfco2tÞ#.

Table 7

Testing for cointegrating ranks

H0 lmax Trace lmax 90%

critical values

Trace 90%

critical values

r=0 57.2 131.4 34.8 82.7

r=1 42.4 74.3 29.1 59.0

r=2 17.0 31.9 23.1 39.1

r=3 9.6 14.8 16.9 23.0

r=4 5.2 5.2 10.5 10.6

Yt ¼ ðtempt; rfsunt;Drfco2t;Dlrfch4t;Dlrfn2otÞ#.

Table 8

Testing for integration indices

r Hr,s Qr

0 506.9 384.1 302.3 224.8 163.1 131.4

(198.2) (167.9) (142.2) (119.8) (101.5) (87.2)

1 373.1 254.4 173.4 106.9 74.3

(137.0) (113.0) (92.2) (75.3) (62.8)

2 239.8 155.3 75.8 31.9

(86.7) (68.2) (53.2) (42.7)

3 130.6 52.3 14.8

(47.6) (34.4) (25.4)

4 23.2 5.2

(19.9) (12.5)

n�r�s=s2 5 4 3 2 1 0

Yt ¼ ðtempt; rfsunt;Drfco2t;Dlrfch4t;Dlrfn2otÞ#.

Table 9

Decomposing the systems into I(0), I(1) and I(2) spaces

b̂0;1 b̂0;2 b̂t1;1 b̂t1;2 b̂t1;3

temp 1.000 1.000 �0.016 0.335 0.002

rfsun 0.000 �4.000 0.000 0.086 0.007

Drfco2 �25.133 �0.500 �0.000 0.004 �0.004

Dlrfch4 �31.552 40.057 0.001 �0.000 0.000

Dlrfn2o 1504.442 �196.466 0.000 �0.000 �0.000

trend 0.006 0.005

â0;1 â0;2 ât1;1 ât1;2 ât1;3

temp �0.108 �0.123 0.001 �0.006 �0.008

rfsun �0.000 0.060 �0.006 �0.015 �0.019

Drfco2 �0.001 0.000 0.115 �0.003 0.993

Dlrfch4 0.000 0.001 0.993 �0.009 �0.115

Dlrfn2o �0.001 0.000 0.009 0.999 0.001

Yt ¼ ðtempt; rfsunt;Drfco2t;Dlrfch4t;Dlrfn2otÞ#.

20 In economics, some researchers consider that an eigenvalue of

0.89 is close to the unit circle. In our case, we prefer preclude this kind

of possibility.
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forcing carbon dioxide and again, a small participation

of radiative forcing of solar irradiance.

5. Conclusions

This paper applies multivariate I(1) and I(2) tools to

identify for the existence and the number of long-run

steady-state relations between temperature series and

radiative forcing of solar radiance and a set of three

greenhouse gases. One of the results indicate that

temperature and radiative forcing of solar irradiance

series appear to be I(1) processes, radiative forcing of

carbon dioxide is an I(2) process, and radiative forcing

of methane and nitrous dioxide seem to contain

explosive roots. In most variables (temperature, radia-

tive forcing of solar irradiance and carbon dioxide), our

results confirm previous evidence in the literature.

Given the complex structure and properties of the time

series, we analyzed three alternative cases. In the first

case, a 5-variable system is considered. The second case

consisted of variables with I(1) and I(2) characteristics

and the ones with explosive behavior separately. The last

system considers a transformation of the variables in such

a way that the I(1) framework can be used. Overall, all

systems show that temperature series is error correcting

the disequilibria towards the static steady-state or

dynamic steady-state relations. The degree of adjustment

of the temperature depends on which cointegrating

relations is considered but it goes from 5% to 65%. The

higher rates of adjustment are comparable to the results

found by Stern and Kaufmann (2000). In some cases,

however, temperature series is not error correcting for the

long-run disequilibria. It means that there is nothing in

the system (the earth and its components) that allows for

correcting these disequilibria. On the other hand, the

higher rates of adjustment respect to other disequilibria

could suggest abrupt changes in temperature in order to

correct for these disequilibria.

Another interesting result is the composition of the

I(1) and I(2) trends. According to our results, both

trends are essentially composed by a linear combination

of greenhouse gases that are affecting the temperature

series strongly. In an specific case, we find that the I(1)

trend is driven by temperature and radiative forcing of

solar irradiance, whereas the I(2) trend is driven by

a linear combination of the three greenhouse gases or

exclusively by the radiative forcing of carbon dioxide.

The first component could be associated to inertial and/

or natural factors. In the case of the second component,

it could be related to human factors.

Finally, we find that the equilibrium temperature

change for a doubling of carbon dioxide is between 2.15

and 3.4 (C, which is agreement with previous literature

and the report of the IPCC (2001) using 15 different

general circulation models.
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