
Munich Personal RePEc Archive

Time-varying parameters Realized

GARCH models for tracking attenuation

bias in volatility dynamics

Gerlach, Richard and Naimoli, Antonio and Storti, Giuseppe

University of Sydney, University of Salerno, University of Salerno

12 March 2020

Online at https://mpra.ub.uni-muenchen.de/99398/

MPRA Paper No. 99398, posted 07 Apr 2020 14:04 UTC



Time-varying parameters Realized GARCH

models for tracking attenuation bias in volatility

dynamics

1st April 2020

Abstract

This paper proposes novel approaches to the modeling of attenuation bias effects

in volatility forecasting. Our strategy relies on suitable generalizations of the

Realized GARCH model by Hansen et al. (2012) where the impact of lagged

realized measures on the current conditional variance is weighted according to

the accuracy of the measure itself at that specific time point. This feature

allows assigning more weight to lagged volatilities when they are more accurately

measured. The ability of the proposed models to generate accurate forecasts of

volatility and related tail risk measures, Value-at-Risk and Expected Shortfall, is

assessed by means of an application to a set of major stock market indices. The

results of the empirical analysis show that the proposed specifications are able to

outperform standard Realized GARCH models in terms of out-of-sample forecast

performance under both statistical and economic criteria.

JEL Codes: C58, C22 ,C53.

Keywords: Realized GARCH, Realized Volatility, Realized Quarticity, Attenuation

Bias, Measurement Error, Tail Risk Forecasting.

1 Introduction

It is widely acknowledged that the use of realized volatility measures (Hansen and

Lunde, 2011) can be beneficial for improving the accuracy of volatility forecasts on a

daily scale. This is typically done by choosing one of the following approaches.

First, dynamic models can be directly fitted to time series of realized measures.

Examples include the Heterogeneous AutoRegressive (HAR) (Corsi, 2009) and the
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class of Multiplicative Error Models (MEM) (Engle, 2002; Engle and Gallo, 2006). A

drawback of this approach is that the focus is on the estimation of the expected level

of the realized measure, rather than on the estimation of the conditional variance of

returns. As clarified in the next section, realized measures are designed to consistently

estimate the integrated variance, which is related to but different from, the conditional

variance. Namely, in the absence of microstructure noise and jumps, the integrated

variance can be interpreted as an unbiased estimator of the conditional variance of

returns.

The second approach makes use of time series models for daily returns, e.g.

GARCH-type models, where the conditional variance is driven by one or more

realized measures. The main idea is to replace a noisy volatility proxy, such as the

squared daily returns used in standard GARCH models, with a more efficient realized

measure. Differently from the above-mentioned approach, in this case both low (daily

returns) and high (realized measures) frequency information is employed in the model.

Examples of models in this class include the HEAVY model of Shephard and Sheppard

(2010) and the Realized GARCH model of Hansen et al. (2012). These two models

are closely related but, nevertheless, are characterized by some distinctive features.

Realized GARCH models include a measurement equation, allowing one to gain, in

a fully data-driven fashion, deeper insight on the statistical properties of the realized

measure and its relationship with the latent volatility. In addition, the measurement

equation offers a convenient framework for simulation and generation of multi-step

ahead forecasts. Differently, in HEAVY models, the generation of multi-step ahead

forecasts is guaranteed by the inclusion of an additional dynamic updating equation for

the conditional expectation of the chosen realized measure.

A complication arising with both approaches is that realized measures are noisy

estimates of the underlying integrated variance, generating a classical errors-in-

variables problem. This typically leads to the rise of what is often called attenuation

bias. More precisely, the estimated response of the conditional variance to the past

realized measure will be biased towards 0, compared to what we would have found

replacing the realized measure by the latent integrated variance. The size of this effect

is not constant but time-varying since it is directly related to the variability of the

volatility measurement error.

Although it is evident that accounting for this time-varying attenuation bias can

potentially lead to improved volatility forecasts, this issue has not yet received much

attention in the literature. Recently, Bollerslev et al. (2016) found that, in a HAR model,

letting the volatility persistence depend on the estimated degree of measurement error

leads to some improvement in the model’s predictive performance. In the same spirit,

Buccheri and Corsi (2019) proposed time-varying parameter HAR models, that can

account for both measurement errors and non-linearities in the dynamics of realized

measures. Moving to a GARCH framework, Shephard and Xiu (2016) found evidence

that, in a GARCH-X model, the magnitude of the response coefficients associated with

different realized volatility measures is related to the quality of the measure itself.

Finally, Hansen and Huang (2016) observed that the response of the current conditional

variance to past unexpected volatility shocks is negatively correlated with the accuracy

of the associated realized volatility measure.

Our contribution to the research in this field is threefold. First, we provide
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theoretical insight on the impact of attenuation bias in the Realized GARCH

framework. Our theoretical findings are then confirmed by a Monte Carlo simulation

study taking a contaminated log-linear Realized GARCH model of order (1,1) as the

Data Generating Process. Summarizing the theoretical and empirical evidence, we find

that measurement errors in the computation of realized volatility measures lead to: i)

downward bias in the volatility reaction parameter, the so called “ARCH” coefficient;

and ii) upward bias in the volatility inertial decay parameter, the so called “GARCH”

coefficient. These two biases compensate for each other, so that the overall volatility

persistence is unaffected. Second, we develop extensions of the standard log-linear

Realized GARCH model, that account for time-varying attenuation bias effects in

the conditional variance dynamics. This is achieved by allowing the coefficients, of

the dynamic volatility updating equation of the log-linear Realized GARCH model,

to vary over time as a function of an estimator of the asymptotic variance of the

realized measure. For the realized variance estimator, this is given by a rescaling of

the integrated quarticity of intra-daily returns, while, for the log-transformed realized

variance, Corsi et al. (2008) show that the asymptotic variance depends on the ratio

of the integrated quarticity of intra-daily returns to the squared integrated variance.

As a consequence, the resulting model will give more weight to lagged volatilities

when these are more accurately measured. Third, we empirically assess the impact of

accounting for time-varying attenuation bias on the accuracy of volatility and tail-risk

forecasts. Our empirical findings on a set of international stock market indices provide

evidence that the proposed modeling approach is able to outperform the benchmark

Realized GARCH model, both in terms of purely statistical, and also economically

meaningful, loss functions. Specifically, the forecasting ability of a given model is

assessed under three different criteria. First, the predictive partial log-likelihood (as

defined in Hansen et al., 2012) is used to assess the model’s ability to predict the

conditional distribution of future returns. Second, the QLIKE loss (Patton et al., 2009)

is used to rank models according their ability to forecast volatility. Finally, we focus

on the ability to accurately predict Value-at-Risk (VaR) and Expected Shortfall (ES)

at different confidence levels. Namely, in order to assess the models’ performances

in forecasting VaR, we rely on the Quantile Loss function (Koenker, 2005), while for

evaluating joint forecasts of the pair (VaR, ES) we refer to the class of strictly consistent

loss functions proposed by Fissler and Ziegel (2016).

The paper is organized as follows. Section 2 reviews the basic theoretical

framework behind the computation of realized measures and Section 3 discusses

the Realized GARCH model of Hansen et al. (2012). In Section 4, we then

provide theoretical and empirical insight on the occurrence of attenuation bias effects

in Realized GARCH models while Section 5 illustrates the proposed time-varying

parameters Realized GARCH models. Section 6 focuses on the associated estimation

and inference procedures and Section 7 presents the results of the empirical application.

Finally, Section 8 concludes.
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2 Realized measures: a short review

In recent years, the availability of high-frequency financial market data has enabled

researchers to build reliable measures of the latent daily volatility, based on the use of

intra-daily returns. In the econometric and financial literature, these are widely known

as realized volatility measures. The theoretical background to these measures is given

by the dynamic specification of the price process in continuous time. Formally, let the

logarithmic price pt of a financial asset be determined by the stochastic differential

process

d pt = µtdt +σtdWt 0 ≤ t ≤ T , (1)

where µt and σt are the drift and instantaneous volatility processes, respectively, whilst

Wt is a standard Brownian motion; σt is assumed to be independent of Wt . Under

assumption of a frictionless market, the logarithmic price pt follows a semi-martingale

process.

In that case, given a sequence of partitions t − 1 = τ0 ≤ τ1 ≤ . . . ≤ τM = t, the

Quadratic Variation (QV ) of log-returns rt = pt − pt−1, given by

QVt = plim
M→∞

M−1

∑
j=0

(pτ j+1
− pτ j

)2,

coincides with the Integrated Variance (IV )

IVt =
∫ t

t−1
σ2

s ds . (2)

In the absence of microstructure noise and measurement errors, Barndorff-Nielsen and

Shephard (2002) show that IV is consistently estimated by Realized Volatility (RV )

RVt =
M

∑
i=1

r2
t,i , (3)

where

rt,i = pt−1+i∆ − pt−1+(i−1)∆

is the i-th ∆-period intraday return, M = 1/∆. Although IV and the conditional variance

of returns do not coincide, there is a precise relationship between these two quantities:

under standard integrability conditions (Andersen et al., 2001) it can be shown that

E(IVt |Ft−1) = var(rt |Ft−1) , (4)

where Ft−1 denotes the information set at time (t − 1). In other words, the optimal

forecast of IV can be interpreted as the conditional variance of returns and the

difference between these two quantities is given by a zero mean error.

Barndorff-Nielsen and Shephard (2002) show that RV consistently estimates the

true latent volatility, when ∆ −→ 0. They also find that, conditional on the observed

realization of IVt , the asymptotic distribution of RVt is Gaussian

√
M(RVt − IVt)√

2IQt

→
d

N(0,1) , (5)
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where IQt =
∫ t

t−1 σ4
s ds is the Integrated Quarticity (IQ). This, in turn, can be

consistently estimated as

RQt =
M

3

M

∑
i=1

r4
t,i . (6)

Replacing IQt by RQt in equation (5) still gives

√
M(RVt − IVt)√

2RQt

→
d

N(0,1). (7)

In financial modeling, the use of log(RVt) is often preferred to the “plain” RVt estimator,

due to its favourable finite sample properties (see Corsi et al. (2008), among others).

The approximate asymptotic distribution of log(RVt) can be shown to be

(log(RVt)− log(IV t))√
2RQt

MRV 2
t

→
d

N(0,1). (8)

Furthermore, Corsi et al. (2008) provide empirical evidence that, in a HAR model,

choosing the logarithmic realized variance as a dependent variable and allowing for

time-varying volatility of realized volatility leads to substantial improvements in fit

and forecasting performance.

3 Realized GARCH models

The Realized GARCH (RGARCH) model, introduced by Hansen et al. (2012), extends

the class of GARCH models by first replacing squared returns, as the driver of the

volatility dynamics, with a more efficient proxy, such as a RV measure. With this

change alone, the resulting specification can be seen as a GARCH-X model, where

the realized measure is used as an explanatory variable. A second extension is that

the Realized GARCH “completes” the GARCH-X by adding a measurement equation,

explicitly modeling the contemporaneous relationship between the realized measure

and the latent conditional variance.

Formally, let {rt} be a time series of financial returns and {xt} be a time series

of realized measures of volatility. Focus here is on the logarithmic RGARCH model,

defined via

rt = µt +
√

ht zt , (9)

h̃t = ω +β h̃t−1 + γ x̃t−1 , (10)

x̃t = ξ +ϕ h̃t + τ(zt)+ut , (11)

where x̃t = log(xt), ht = var(rt |Ft−1) is the conditional variance and h̃t = log(ht). To

simplify the exposition, in the remainder, it is assumed that µt = E(rt |Ft−1) = 0. The

innovations zt and ut are assumed to be mutually independent, with zt ∼
iid

(0,1) and

ut ∼
iid

(0,σ2
u ).
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The function τ(zt) can accommodate leverage effects, since it captures the

dependence between returns and future volatility. A common choice (see e.g. Hansen

et al. (2012)), found to be empirically satisfactory, is

τ(zt) = τ1 zt + τ2(z
2
t −1) .

Substituting the measurement equation into the volatility equation, the model implies

an AR(1) representation for h̃t

h̃t = (ω +ξ γ)+(β +ϕγ)h̃t−1 + γ wt−1 , (12)

where wt = τ(zt)+ut and E(wt) = 0. The coefficient (β +ϕγ) reflects the persistence

in (the logarithm of) volatility, whereas γ represents the impact of both the lagged

return and realized measure on future (log-)volatility. To ensure that the h̃t is

stationary, the required restriction is β + ϕγ < 1. Estimation of model parameters

can be easily performed by numerically maximizing a Gaussian Quasi-Likelihood

function. Regarding the statistical properties of these estimates, Li et al. (2019) have

recently formally proved their consistency and asymptotic normality for the log-linear

RGARCH model.

Compared to the linear RGARCH, the log-linear specification has two main

advantages: first, it is more flexible, since no constraints on the parameters are required

in order to ensure positivity of the conditional variance, which holds automatically

by construction; second, the logarithmic transformation substantially reduces the

heteroskedasticity of the measurement equation error term. For these reasons, this

paper exclusively focuses on the log-linear specification of the Realized GARCH

model.

4 Attenuation-bias effects in RGARCH models

In this section, our aim is to provide some insight on how attenuation bias effects can

arise in RGARCH models. In order to simplify the exposition, without implying any

loss of generality, we assume that there are no leverage effects in the measurement

equation (τ1 = τ2 = 0) and exclude complications related to microstructure noise and

jumps. Also, in the remainder of this section we assume stationarity of the RGARCH

processes considered.

To start, let us consider a simple log-linear RGARCH model of order (1,0), where

the realized measure is replaced by the latent IVt . Referring to the notation defined in

the previous section, the resulting specification can be reformulated as an AR(1) for

ĨV t = log(IV t)

ĨV t = µI +πI ĨV t−1 +ut,I , (13)

where ut,I is assumed to be a sequence of zero mean iid errors with finite variance σ2
u,I ,

µI =ωIϕI +ξI and πI = ϕIγI , with the subscript I indicating that the parameters refer to

the model fitted using the true IVt . In addition, we assume γI > 0 and βI ≥ 0, consistent

with recurrent empirical evidence on the dynamics of time series of realized variances.
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The integrated variance is a latent variable and, in real data application, it can be

approximated by the realized variance. Letting εt be a series of iid measurement errors

with finite variance σ2
ε , we can write

R̃V t = ĨV t + εt ,

where R̃V t = log(RVt). It can be shown, by standard arguments, that equation (13)

implies an ARMA(1,1) model for R̃V t (see Bollerslev et al. (2016))

R̃V t = µI +πIR̃V t−1 + εt −πIεt−1 +ut,I . (14)

Assume now that a misspecified AR(1) model is fitted to R̃V t

R̃V t = ωR +πRR̃V t−1 +ut,R,

where ut,R is an iid sequence of zero mean errors with variance σ2
u,R. Letting cR(k) =

cov(R̃V t , R̃V t−k) and cI(k) = cov(ĨV t , ĨV t−k), for k > 0, by the assumptions made on

εt , ut,I and ut,R

cR(1) = cI(1) = πIcI(0) (15)

and

cR(0) = cI(0)+σ2
ε . (16)

It then easily follows that

πR =
πIcI(0)

cI(0)+σ2
ε

= πI

(
1+

σ2
ε

cI(0)

)−1

, (17)

leading to the conclusion, in line with the findings of Bollerslev et al. (2016), that

modeling the noisy RVt , instead of the latent IVt , implies an autoregressive coefficient

πR lower than that characterizing the dynamics of the latent IVt . Equation (17) clearly

shows that the impact of this attenuation bias directly depends on the noise variance

ratio
σ2

ε

var(ĨV t )
: higher ratios correspond to more substantial reductions in volatility

persistence.

Since the empirical properties of the observed time series of financial returns

usually require working with models of order (1,1), it is of interest to extend our

investigation to consider the impact of attenuation bias in this setting. Assuming a

RGARCH(1,1) for IVt implies that IVt follows the ARMA(1,1) model

ĨV t = µI +πI ĨV t−1 −βIut−1,I +ut,I , (18)

where the autoregressive coefficient is now given by πI = βI +ϕIγI , with βI > 0. By

standard theory, the following recursion holds

ρI(k) = πIρI(k−1), ∀k > 1 , (19)

where ρI(k) = cI(k)/cI(0) is the lag-k autocorrelation function of ĨV t . This implies

that

πI =
ρI(k)

ρI(k−1)
.
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Also, it can be shown (see (Bollerslev, 1988), among others) that

ρI(1) =
(1−πIβI)(πI −βI)

1+β 2
I −2πIβI

. (20)

The value of βI can be then obtained as the solution to the following quadratic equation

(see Kristensen and Linton (2006))

β 2
I +bIβI +1 = 0 , (21)

where

bI =−π2
I +1−2πIρI(1)

πI −ρI(1)
.

For bI <−2, a well defined solution for βI in (21) is given by

βI =
−bI −

√
b2

I −4

2
.

The other available solution is not admissible since it is the reciprocal of the previous

one and leads to values βI > 1, in contradiction with the stationarity assumption.

Taking the same approach as for the (1,0) case, let us now assume that a misspecified

ARMA(1,1) model is identified for RVt

R̃V t = µR +πRR̃V t−1 −βRut−1,R +ut,R. (22)

By (15) and (19), it then follows that

πR =
ρR(k)

ρR(k−1)
=

ρI(k)

ρI(k−1)
= πI ,

so that the two models for IVt and RVt will be characterized by the same AR coefficient.

Regarding βR, as previously shown for the IV model, the value of βR, for bR <−2, can

be obtained as

βR =
−bR −

√
b2

R −4

2
,

where

bR =−π2
I +1−2πIρR(1)

πI −ρR(1)
.

It can be easily shown that βR is characterized by an upward bias with respect to βI

and that this bias tends to increase with the variance of the measurement error εt . Since

πI = πR, the upward bias in βR will, in turn, correspond to a downward bias in the

value of γR. To start, remind that cR(0) > cI(0) so that ρR(1) < ρI(1). Differentiating

βR with respect to ρR(1) then leads to the following expression

∂βR

∂ρR(1)
=

∂βR

∂bR

∂bR

∂ρR(1)
=−1

2


1+

bR√
b2

R −4


 π2

I −1

(πI −ρR(1))2
(23)

8



for bR < −2 and 0 < πI < 1, where the latter condition follows from the stationarity

assumption. Under these constraints, it is easy to show that the derivative in (23) will

always be negative for all admissibile ρR(1) values. So, as σ2
ε increases, by (16) ρR(1)

will decrease leading to an increase in the value of βR.

In order to better illustrate and interpret the relationship between the parameters

of RGARCH models of order (1,1) and the measurement error variance, we have

performed a Monte Carlo simulation study. The structure of the simulation process

can be summarized as follows:

1. Generate zt ∼
iid

(0,1) and ut,I ∼
iid

N(0,σ2
u,I) , for t = 1, . . . ,T .

2. Generate an artificial log(IVt) series from the ARMA(1,1) model

ĨV t = µI +πI ĨV t−1 +wt,I −βIwt−1,I , for t = 1, . . . ,T ,

where wt,I = τI(zt)+ut,I .

3. Generate returns from a RGARCH(1,1) for ĨV t .

4. Contaminate ĨV t by an additive measurement error (εt ∼
iid

N(0,σ2
ε )), in order to

generate an artificial R̃V t series.

5. Using the ML method, fit a RGARCH(1,1) model using R̃V t as a realized

measure.

6. Repeat steps (i)-(v) for nsim times.

The above design is implemented setting nsim = 1000 and T = 2000, after discarding

the first 1000 observations taken as burn-in period. For the distribution of zt two

different settings have been considered: zt ∼
iid

N(0,1) and zt ∼
iid

√
ν−2

ν t(ν), with ν = 5.

Also, in order to illustrate the impact of the noise variance ratio (σε/σu,I)
2 on the

magnitude of the attenuation bias, keeping the value of σu,I fixed to 0.4, three different

values of the measurement error standard deviation σε have been considered: σε ∈
(0.2,0.4,0.6). Finally, regarding the coefficients of the dynamic volatility equation, in

order to mimic different empirical settings, three different sets of parameter values have

been considered. The parameters of the simulated DGPs have been reported in the left

panel (columns 1-10) of Table 1. The last nine columns, in the right panel, summarize

the simulation results in terms of: simulated mean, relative bias and standard deviation

of the estimated (γR,βR,πR) coefficients. The simulation confirms our theoretical

findings: the βR and γR coefficients are affected by upward and downward biases,

respectively, while the estimates of πR are approximately unbiased. In addition, we

find that, as σε increases, for both βR and γR, the estimated bias tends to increase in

modulus. For βR, we also find that, for fixed πI , the value of the estimated relative bias

tends to increase as γI increases and βI decreases.

In conclusion of our discussion, some remarks should be made. In the simulation,

a simplified setting is considered, in which the realized measurement error is assumed

homoskedastic. However, the theoretical results reviewed in Section 2 suggest the
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Table 1: Simulated DGP settings and coefficients (columns 1-10), average estimate, relative bias and Monte Carlo standard error of the

estimated parameters γR, βR and πR, for nsim = 1000 simulations from RGARCH(1,1) model (columns 11-19). Key to table: θ̄ : average

of estimated θ values from the nsim simulated series; RB(θI)=
θ̄R−θI

θI
×100 (percentage relative bias); σθ : Monte Carlo standard errors of

estimated θ values from the nsim simulated series.

DGP design
Summary of estimated parameters

Average Relative Bias Standard Error

zt ωI γI βI ξI ϕI τ1,I τ2,I σu,I σε γ̄R β̄R π̄R RB(γI) RB(βI) RB(πI) σγR
σβR

σπR

N(0,1) 0.005 0.30 0.60 0.00 1.00 −0.05 0.10 0.40 0.20 0.260 0.637 0.897 −13.333 6.167 −0.333 0.031 0.028 0.016

N(0,1) 0.005 0.40 0.50 0.00 1.00 −0.05 0.10 0.40 0.20 0.347 0.551 0.898 −13.250 10.200 −0.222 0.032 0.027 0.014

N(0,1) 0.005 0.60 0.30 0.00 1.00 −0.05 0.10 0.40 0.20 0.515 0.382 0.897 −14.167 27.333 −0.333 0.032 0.026 0.012

N(0,1) 0.005 0.30 0.60 0.00 1.00 −0.05 0.10 0.40 0.40 0.194 0.703 0.896 −35.333 17.167 −0.444 0.027 0.029 0.019

N(0,1) 0.005 0.40 0.50 0.00 1.00 −0.05 0.10 0.40 0.40 0.257 0.640 0.897 −35.750 28.000 −0.333 0.028 0.029 0.016

N(0,1) 0.005 0.60 0.30 0.00 1.00 −0.05 0.10 0.40 0.40 0.387 0.510 0.896 −35.500 70.000 −0.444 0.028 0.027 0.014

N(0,1) 0.005 0.30 0.60 0.00 1.00 −0.05 0.10 0.40 0.60 0.140 0.756 0.895 −53.333 26.000 −0.556 0.022 0.032 0.023

N(0,1) 0.005 0.40 0.50 0.00 1.00 −0.05 0.10 0.40 0.60 0.190 0.707 0.896 −52.500 41.400 −0.444 0.023 0.030 0.019

N(0,1) 0.005 0.60 0.30 0.00 1.00 −0.05 0.10 0.40 0.60 0.289 0.610 0.897 −51.833 103.333 −0.333 0.025 0.028 0.015

t(0,1,5) 0.005 0.30 0.60 0.00 1.00 −0.05 0.10 0.40 0.20 0.267 0.629 0.897 −11.000 4.833 −0.333 0.032 0.027 0.015

t(0,1,5) 0.005 0.40 0.50 0.00 1.00 −0.05 0.10 0.40 0.20 0.359 0.542 0.898 −10.250 8.400 −0.222 0.041 0.026 0.013

t(0,1,5) 0.005 0.60 0.30 0.00 1.00 −0.05 0.10 0.40 0.20 0.534 0.368 0.898 −11.000 22.667 −0.222 0.048 0.027 0.012

t(0,1,5) 0.005 0.30 0.60 0.00 1.00 −0.05 0.10 0.40 0.40 0.203 0.693 0.897 −32.333 15.500 −0.333 0.031 0.030 0.017

t(0,1,5) 0.005 0.40 0.50 0.00 1.00 −0.05 0.10 0.40 0.40 0.275 0.621 0.897 −31.250 24.200 −0.333 0.035 0.030 0.015

t(0,1,5) 0.005 0.60 0.30 0.00 1.00 −0.05 0.10 0.40 0.40 0.409 0.491 0.898 −31.833 63.667 −0.222 0.048 0.033 0.013

t(0,1,5) 0.005 0.30 0.60 0.00 1.00 −0.05 0.10 0.40 0.60 0.154 0.739 0.893 −48.667 23.167 −0.778 0.034 0.063 0.062

t(0,1,5) 0.005 0.40 0.50 0.00 1.00 −0.05 0.10 0.40 0.60 0.207 0.689 0.896 −48.250 37.800 −0.444 0.032 0.032 0.018

t(0,1,5) 0.005 0.60 0.30 0.00 1.00 −0.05 0.10 0.40 0.60 0.313 0.586 0.897 −47.833 95.333 −0.333 0.039 0.035 0.015

1
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assumption of homoskedastic measurement errors is an evident over-simplification.

In the presence of a time-varying measurement error variance, the size of the

attenuation bias, for both γ and β , is expected to be time-varying as a function of

the value of this variance. This issue is addressed in the next section, proposing

and discussing extensions of the standard RGARCH model that can account for time-

varying attenuation bias effects.

5 Time-Varying Coefficient Realized GARCH models

with dynamic attenuation bias

In the previous section, evidence is provided on the impact that measurement errors,

arising in the approximation of IV via the discretely sampled RV , can have on the

dynamic properties of the conditional variance in Realized GARCH models. Here,

relying on this evidence, we propose a generalization of the basic Realized GARCH

specification, accounting for dynamic attenuation bias effects; effects due to the time-

varying variability of measurement errors in ex-post volatility estimation. As in

Bollerslev et al. (2016), a natural solution to deal with this issue is to consider time-

varying parameter models, where the response of log(ht) to the lagged realized measure

indirectly depends on the value of σ2
uR,t

, through the ratio RQt−1/RV 2
t−1.

Practical implementation of these ideas in the RGARCH framework leads to the

Time-Varying Realized GARCH (TV-RGARCH) model, as defined by the following

equations

h̃t = ω +βt h̃t−1 + γt R̃V t−1 , (24)

R̃V t = ξR +ϕR h̃t + τR(zt)+ut,R , (25)

γt = γ + γ1Ỹt−1 , (26)

βt = β +β1Ỹt−1 , (27)

where R̃Qt = log(
√

RQt), Ỹt = log(Yt) = log(
√

RQt/RVt) = R̃Qt − R̃V t . Consistently

with the evidence provided in Section 4, the fitted values of the γ1 and β1 coefficients

are expected to have negative and positive signs, respectively. If this holds, at time

t − 1, lower values of Ỹt−1 will correspond to higher (lower) values of γt (βt ). It

can be immediately noted that the RGARCH model is nested in the TV-RGARCH

specification for γ1 = β1 = 0.

By simple algebra, the TV-RGARCH model can be further generalized by replacing

the specifications in equations (26)-(27) by the following

γt = γ + γ1R̃Qt−1 + γ2R̃V t−1 , (28)

βt = β +β1R̃Qt−1 +β2R̃V t−1 . (29)

We call the resulting model Extended TV-RGARCH (ETV-RGARCH). Equations (28)
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and (29) can further be re-parameterized setting

γ2 =−γ1 +ηγ ,

β2 =−β1 +ηβ ,

making evident that the ETV-RGARCH nests the TV-RGARCH model for ηγ = ηβ =
0. So, under the null of a TV-RGARCH model, we have γ2 = −γ1 and β2 = −β1.

Thus, the estimated γ2 and β2 coefficients are expected to be, respectively, positive and

negative.

In order to make the (E)TV-RGARCH model dynamically complete and allow the

generation of multi-step ahead forecasts, we need to augment equations (24)-(27) with

a further measurement equation for R̃Qt

R̃Qt = ξQ +ϕQ h̃t + τQ(zt)+ut,Q . (30)

Conditional on Ft−1, we assume that (ut,R,ut,Q) and zt are stochastically independent

and

(
ut,R

ut,Q

∣∣∣∣Ft−1

)
∼
iid

MV N2(0,Σu), Σu =

(
σ2

u,R ρR,Q σu,R σu,Q

ρR,Q σu,R σu,Q σ2
u,Q

)
,

where the notation MV N2(µ,Σ) indicates a bivariate Normal distribution with

expectation µ and variance-covariance matrix Σ.

Remark 1. We model ut,R, the error term in the measurement equation for R̃V t , as being

conditionally homoskedastic. This assumption is indeed not central to our approach

and could be easily relaxed. In this respect, recalling the discussion in Section 4, the

term ut,R, being given by some function of two different error sources, has a complex

form. Of these two error sources: the first is given by the random measurement error

related to the discrepancy between the log-transformed realized measure and the latent

ĨV t , that is εt , in the example provided in Section 4; the second source of error is related

to the discrepancy between ĨV t and the log-transformed conditional variance h̃t , that is

wt,I = ut,I +τI(zt), adding leverage effects to the example provided in Section 4. While

it could be a reasonable simplification to assume that ut,I and zt are homoskedastic,

recall Section 2, the same of course does not hold for the realized measurement error

εt . So, conditional heteroskedasticity of εt could potentially provide support for the

hypothesis of conditional heteroskedasticity of ut,R. However, the size of this effect,

and its empirical detectability, will inevitably depend on the relative variabilities of

the components of ut,R, i.e. εt and wt,I . To investigate the presence of conditional

heteroskedasticity in the ut,R series, as a robustness check, we have considered an

alternative model specification where the conditional variance of the RV measurement

equation noise is time-varying, i.e.

(ut,R|Ft−1) ∼
iid

N(0,σ2
uR,t

).

Since the variance of the realized measurement error εt is a function of the ratio

IQt/IV 2
t , it seems natural to model σ2

uR,t
as a function of its empirical counterpart

12



RQt/RV 2
t . Namely, motivated by standard results on the asymptotic distribution of R̃V t ,

in order to model the dynamics of σ2
uR,t

, letting Yt =
√

RQt/RVt , we have considered

the following specification

σ2
uR,t

= exp{δ0 +δ1V (Yt−1)} , (31)

where the function V (.) has been chosen to be either the log or the identity function;

the exponential formulation guarantees the positivity of the estimated variance, thus

avoiding to impose any constraints on the parameters δ0 and δ1. For δ1 = 0 the (E)TV-

RGARCH model is obtained as a special case.

Remark 2. As shown by Hansen et al. (2012) for the basic RGARCH model, the TV-

RGARCH model can be also represented as a Hidden Markov Model (HMM) driven by

the latent chain h̃t . Namely, substituting the measurement equations for R̃V t and R̃Qt

into h̃t , we obtain the following representation of the conditional variance equation of

the ETV-RGARCH model

h̃t = λ0 +λ1,t h̃t−1 +λ2h̃2
t−1 +w∗

t−1 , (32)

where, under the stated assumptions, w∗
t is a sequence of iid errors1 defined as

w∗
t = κ3wR,t + γ1ξR wQ,t + γ1wR,t wQ,t + γ2w2

R,t (33)

and

λ0 = ω + γξR + γ1ξRξQ + γ2ξ 2
R ,

λ1,t = κ0 +κ1wR,t−1 +κ2wQ,t−1 ,

λ2 = β1ϕQ +β2ϕR + γ1ϕRϕQ + γ2ϕ2
R ,

κ0 = β +β1ξQ +β2ξR + γϕR + γ1ξRϕQ + γ1ξQϕR +2γ2ξRϕR ,

κ1 = β2 + γ1ϕQ +2γ2ϕR ,

κ2 = β1 + γ1ϕR ,

κ3 = γ + γ1ξQ +2γ2ξR.

The equivalent representation for TV-RGARCH models can be obtained by substituting

γ2 = −γ1 and β2 = −β1 in the above equations. So, although both (E)TV-RGARCH

and RGARCH models can be written as HMM models, the stochastic structure of the

(E)TV-RGARCH model is more complex than that of the RGARCH model, since the

model is now driven by a non-linear latent chain. This feature substantially complicates

the derivation of stationarity and ergodicity conditions for the proposed TV-RGARCH

models. Investigation of these problems goes beyond the scope of this paper and has

been currently left for future research.

1Note that E(w∗
t ) 6= 0. However, without any loss of generality, equation (32) could be written as

h̃t = λ̄0 +λ1,t h̃t−1 +λ2h̃2
t−1 + w̄t−1 ,

where λ̄0 = λ0 +E(w∗
t ) and w̄t = w∗

t −E(w∗
t ), so that E(w̄t) = 0. The value of E(w∗

t ) can be derived by

simple algebra.
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6 Estimation and inference

The estimation of model parameters can be easily done by numerically maximizing

the likelihood function implied by appropriate assumptions made on the model’s error

terms zt , ut,R and ut,Q. In particular, the joint conditional density of (rt , R̃V t , R̃Qt) can

be factorized as

fr,R,Q(rt , R̃V t , R̃Qt |Ft−1) = fr(rt |Ft−1) fR,Q(R̃V t , R̃Qt |rt ,Ft−1) .

It follows that the contribution of the t-th observation to the overall log-likelihood can

be decomposed as

ℓ(rt , R̃V t , R̃Qt |Ft−1,θ) = log
(

fr,R,Q(rt , R̃V t , R̃Qt |Ft−1)
)
= log( fr(rt |Ft−1))

+ log
(

fR,Q(R̃V t , R̃Qt |rtFt−1)
)
. (34)

Due to the normality assumption for ut formulated in Section 5, (R̃V t , R̃Qt |rt ,Ft−1)

follows a MV N2 distribution. Further, we assume zt ∼
√

ν−2
ν tν , where tν denotes a

Student’s t distribution with ν degrees of freedom. The overall log-likelihood will be

then given by

L (r, R̃V, R̃Q|θ) =
T

∑
t=1

log( fr(rt |Ft−1))+
T

∑
t=1

log
(

fR,Q(R̃V t , R̃Qt |rt ,Ft−1)
)

= ℓr + ℓR,Q .

We will refer to ℓr and ℓR,Q as the partial and measurement log-likelihoods respectively.

Under the stated distributional assumptions, we get

ℓ(rt , R̃V t , R̃Qt |Ft−1,θ) = K̃(ν)− 1

2
h̃t −

ν +1

2
log

[
1+

r2
t

ht(ν −2)

]

− 1

2
log(|Σu|)−

1

2
u
′
tΣ

−1
u ut , (35)

for t = 1, . . . ,T , where θ is the vector of unknown model parameters, ut = (ut,R ,ut,Q)
′

and K̃(ν) = log(K(ν)), with

K(ν) =
Γ( ν+1

2
)√

π(ν −2)Γ( ν
2
)
.

The MLE of θ can be obtained by numerically maximizing the aggregated log-

likelihood

θ̂ T = argmax
θ

T

∑
t=1

L (r, R̃V, R̃Q|θ).

Under the usual regularity conditions, standard errors for the elements of θ̂ T can be

easily obtained from the numerically approximated observed Fisher information matrix
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and inference can be performed relying on the asymptotic normality of θ̂ T . In order to

double check the validity of the standard asymptotic results on the distribution of θ̂ T ,

as in Borup and Jakobsen (2019), exploiting the dynamically complete nature of the

proposed model, we have implemented a parametric Bootstrap resampling algorithm

along the lines described in Paparoditis and Politis (2009). The main steps of the

Bootstrap resampling procedure are summarized below. Throughout the presentation,

the following notational conventions will be adopted: X (B) denotes the Bootstrap

replicate of X , ψ̂ is the estimate of coefficient ψ based on in-sample data and, finally,

the notation ψ̂(B) denotes the estimate of coefficient ψ based on bootstrapped data.

1. Save the residual vector from in-sample estimation

et = (ẑt , ût,R, ût,Q)
′

and standardize it using the estimated variance and covariance matrix of et

at = Σ̂
−1/2
e et , t = 1, . . . ,T ,

where

Σ̂e =

(
1 01,2

02,1 Σ̂u

)

with A−1/2 denoting the Cholesky decomposition of the matrix A and 0r,s being

a (r× s) matrix of zeros.

2. Resample with replacement the time series of at to generate the time series of

Bootstrap residuals e
(B)
t = Σ̂

1/2
e a

(B)
t =

(
ẑ
(B)
t , û

(B)
t,R , û

(B)
t,Q

)′
.

3. Using the e
(B)
t , recursively generate a Bootstrap replicate of (rt ,RVt ,RQt)

′ for

t = 1, . . . ,T . The set of recursions needed to generate
(

r
(B)
t ,RV

(B)
t ,RQ

(B)
t

)′
is

given by

β̂
(B)
t = β̂ + β̂1 log

(√
RQ

(B)
t−1/RV

(B)
t−1

)
= β̂ + β̂1Ỹ

(B)
t−1 ,

γ̂
(B)
t = γ̂ + γ̂1 log

(√
RQ

(B)
t−1/RV

(B)
t−1

)
= γ̂ + γ̂1Ỹ

(B)
t−1 ,

h̃
(B)
t = ω̂ + γ̂

(B)
t R̃V

(B)

t−1 + β̂
(B)
t h̃

(B)
t−1 ,

r
(B)
t =

√
h
(B)
t z

(B)
t ,

q
(B)
t = ξ̂ + ϕ̂ h̃

(B)
t + M̂τ ζ

(B)
t +u

(B)
t ,

for t = 1 . . . ,T , where ξ̂ =
(

ξ̂R, ξ̂Q

)′
, ϕ̂ = (ϕ̂R, ϕ̂Q)

′
, q

(B)
t =

(
R̃V

(B)

t , R̃Q
(B)

t

)′
,

u
(B)
t =

(
u
(B)
t,R ,u

(B)
t,Q

)′
, ζ

(B)
t =

(
z
(B)
t ,
(

z
(B)
t

)2

−1

)′
and

M̂τ =

(
τ̂1,R τ̂2,R

τ̂1,Q τ̂2,Q

)
.
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4. Fit the model to the Bootstrapped data

(
r
(B)
t , R̃V

(B)

t , R̃Q
(B)

t

)′
and save the

estimated parameter vector θ̂
(B)

.

5. Repeat steps (ii)-(iv) for B = 999 times.

The resampling procedure described above is later used to provide an estimate of

the sampling distributions of the estimated coefficients, along with standard errors

and confidence intervals. The results of this exercise, discussed in detail in Section

7.2, suggest that, overall, the asymptotic normality assumption deriving from standard

likelihood theory provides a close approximation to the estimated distributions.

7 Empirical application

7.1 Data

In order to assess the merits of the proposed approach for risk management, we present

the results of an empirical application to four major stock market indices: DAX 30

(Germany), FTSE 100 (UK), Hang Seng (Hong Kong) and S&P 500 (USA). For each

of these markets, 5-minute time series of the index value were downloaded from

Thomson Reuters Tick History considering the period from January 2002 to April

2018. Daily open-to-close returns and realized measures were then computed limiting

the attention to the official trading hours of each index. Furthermore, the data were

cleaned removing the last day of each year, some extreme outliers and the last 5-

minute observation of each trading day, as usual. Due to the cleaning procedure,

different trading days and holiday variations, the sample period consists of 4096 daily

observations for DAX 30, 4063 for FTSE 100, 3951 for Hang Seng (HSI) and 4014 for

S&P 500.

Looking at the time plots of the daily open-to-close log-returns (Figure 1) and 5-

minute RVs (Figure 2), four important events can be detected. First, the effects of the

2008-2009 financial crisis are clearly visible in all the series, while the effects of the

2011-2012 sovereign debt crisis are more easily detectable in the US and European

series, being particularly evident for the DAX series. Similarly, at the beginning of

the sample period, a high volatility period, mainly related to the explosion of the dot-

com bubble and the introduction of Euro, is mostly visible for the DAX and FTSE

indices, less clearly evident in the S&P 500 and not detectable in the HSI index. Last, a

high volatility period affects, with different intensities, all the markets across 2015 and

2016. Different events can be identified as potential determinants of this phenomenon:

including the Chinese stock market turbulence; the Greek debt default in 2015; the

end of quantitative easing in the United States at the end of 2014; and the Brexit

referendum in 2016. The main descriptive statistics of returns are reported in Table

15 in the Empirical Appendix.

In line with asymptotic theory, a point measure of the accuracy of the log-

transformed realized variance is obtained by computing the ratio Yt . The time series

plots in Figure 3 reveal that, for all markets considered, the log-ratio Ỹt is characterized

by remarkable short term fluctuations, thus supporting the intuition that accounting
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Figure 1: Time series of daily open-to-close log-returns
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Daily log-returns for the stock market indices DAX 30 (top-left), FTSE 100 (top-right), Hang Seng (bottom-

left) and S&P500 (bottom-right) for the full sample period 2002/01/01 – 2018/04/30.

for a time-varying attenuation bias effect could be beneficial for volatility and risk

forecasting.

7.2 In-sample analysis

Referring to the four stock market indices considered, this section assesses the in-

sample performance of the proposed models, taking the standard RGARCH model as

a benchmark and considering the full sample period from 2002/01/01 to 2018/04/30.

Model parameters have been estimated by maximum likelihood as described in Section

6. Table 2 reports the estimated coefficients and standard errors, based on the observed

information matrix. Overall, the fitted coefficients are in most cases significantly

different from 0 at the usual 5% level. The only exceptions are the intercepts of the

volatility, ω , and measurement equations, ξR and ξQ, that, in some cases, result to be

not significantly different from 0. Also, for DAX 30 and FTSE 100, the β coefficient

is not significant for the ETV-RGARCH. Similarly, the τ1,R and τ1,Q coefficients are

never significant for the HSI index. The ξR and ϕR coefficients are, overall, very close

to 0 and 1, respectively, suggesting that the log-transformed RV is an approximately

unbiased proxy of the latent log(ht).
Focusing on the TV-RGARCH models, it is interesting to see that the estimated γ1

and β1 coefficients are significantly different from 0 at the usual 5% level, providing

evidence in favor of the presence of time-varying attenuation bias effects. Also, as

expected, γ1 and β1 have negative and positive signs, respectively, confirming the

intuition that, when log(RVt−1) provides a more (less) accurate estimate of the latent

signal log(IVt), the following hold: i) the impact of R̃V t−1 on h̃t , as measured by

γt , is higher (lower); ii) the contribution of the inertial component log(ht−1) to the

value of log(ht), as measured by βt , is lower (higher). This behavior is clearly evident

17



Table 2: In-sample estimation results

DAX 30 FTSE 100 HSI S&P 500

RG TV-RG ETV-RG RG TV-RG ETV-RG RG TV-RG ETV-RG RG TV-RG ETV-RG

ω −0.171 −0.352 −0.085 −0.039 −0.090 0.190 −0.096 −0.262 0.260 −0.002 −0.157 1.082

(0.082) (0.096) (0.367) (0.089) (0.100) (0.108) (0.062) (0.076) (0.559) (0.109) (0.111) (0.322)

γ 0.362 0.471 1.061 0.363 0.442 0.876 0.226 0.304 0.668 0.479 0.546 0.796

(0.016) (0.022) (0.111) (0.016) (0.022) (0.120) (0.013) (0.018) (0.097) (0.019) (0.021) (0.129)

γ1 — −0.134 −0.195 — −0.113 −0.204 — −0.126 −0.164 — −0.214 −0.210

(0.034) (0.037) (0.043) (0.050) (0.035) (0.036) (0.057) (0.059)

γ2 — — 0.252 — — 0.242 — — 0.194 — — 0.222

(0.043) (0.056) (0.039) (0.063)

β 0.614 0.474 −0.060 0.619 0.523 0.139 0.752 0.646 0.380 0.508 0.419 0.420

(0.015) (0.022) (0.137) (0.015) (0.021) (0.125) (0.014) (0.019) (0.138) (0.017) (0.020) (0.128)

β1 — 0.166 0.227 — 0.148 0.241 — 0.159 0.197 — 0.250 0.248

(0.034) (0.036) (0.044) (0.051) (0.036) (0.037) (0.058) (0.060)

β2 — — −0.281 — — −0.277 — — −0.224 — — −0.247

(0.043) (0.057) (0.041) (0.064)

ξR −0.068 0.008 0.037 −0.401 −0.385 −0.282 −0.257 −0.380 −0.373 −0.629 −0.557 −0.628

(0.213) (0.210) (0.193) (0.225) (0.221) (0.184) (0.243) (0.251) (0.370) (0.205) (0.188) (0.199)

ϕR 1.008 1.015 1.018 1.000 1.001 1.011 1.023 1.010 1.010 0.963 0.970 0.963

(0.023) (0.023) (0.021) (0.023) (0.022) (0.018) (0.025) (0.026) (0.038) (0.021) (0.019) (0.020)

τ1,R −0.135 −0.133 −0.134 −0.087 −0.089 −0.090 0.002 0.003 0.003 −0.107 −0.107 −0.108

(0.008) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.008) (0.008) (0.008)

τ2,R 0.107 0.108 0.107 0.100 0.098 0.097 0.141 0.140 0.140 0.099 0.099 0.099

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.005) (0.005) (0.005)

σ2
u,R 0.219 0.213 0.211 0.181 0.177 0.176 0.212 0.208 0.207 0.234 0.231 0.230

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

ξQ — −0.015 0.015 — −0.289 −0.187 — −0.817 −0.796 — −0.767 −0.834

(0.208) (0.191) (0.221) (0.186) (0.249) (0.359) (0.182) (0.194)

ϕQ — 0.979 0.981 — 0.984 0.994 — 0.936 0.938 — 0.933 0.926

(0.022) (0.021) (0.022) (0.019) (0.026) (0.036) (0.018) (0.019)

τ1,Q — −0.115 −0.115 — −0.077 −0.077 — 0.006 0.006 — −0.080 −0.081

(0.010) (0.010) (0.008) (0.008) (0.009) (0.009) (0.009) (0.009)

τ2,Q — 0.137 0.138 — 0.114 0.114 — 0.153 0.153 — 0.110 0.110

(0.007) (0.007) (0.006) (0.006) (0.007) (0.007) (0.006) (0.006)

σ2
u,Q — 0.366 0.363 — 0.273 0.272 — 0.326 0.325 — 0.291 0.290

(0.008) (0.008) (0.006) (0.006) (0.007) (0.007) (0.007) (0.006)

ρ — 0.911 0.911 — 0.927 0.927 — 0.932 0.931 — 0.946 0.946

(0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

ν 8.696 8.947 9.161 11.565 11.882 12.152 7.049 6.998 7.303 8.493 8.819 8.850

(0.811) (0.377) (0.215) (0.520) (0.278) (1.862) (0.342) (0.351) (0.675) (0.258) (0.362) (0.364)

ℓr 13215.061 13223.392 13227.509 14271.797 14281.768 14284.177 13521.888 13528.673 13532.320 14253.075 14257.277 14258.017

L (θ) 10510.500 10463.282 10481.143 11980.648 12895.611 12903.836 10982.892 11639.085 11649.732 11469.198 12816.408 12828.051

In-sample parameter estimates for the full sample period 2002/01/01 – 2018/04/30. ℓr: partial log-likelihood. L (θ): log-likelihood. Standard errors are

reported in parentheses. Parameters that are not significant at the 5% level are reported in boldface.
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Figure 2: Time series of 5-min Realized Volatility

DAX 30

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0.000

0.002

0.004

0.006

FTSE 100

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0.000

0.002

0.004

0.006

HSI

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0.000

0.002

0.004

0.006

S&P 500

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0.000

0.002

0.004

0.006

Daily 5-minute Realized Volatility for the stock market indices DAX 30 (top-left), FTSE 100 (top-right),

Hang Seng (bottom-left) and S&P500 (bottom-right) for the full sample period 2002/01/01 – 2018/04/30.

from Figure 4, representing the time series of the fitted γt and βt coefficients for the

TV-RGARCH model. Furthermore, the plots reveal another interesting feature: the

average of the fitted γt (dashed line in the plot) is substantially higher than the fitted

time-invariant γ coefficient of the standard RGARCH model (solid line in the plot). A

similar argument holds, reversed, for βt . This implies that the volatility and tail risk

estimates generated by the fitted RGARCH and TV-RGARCH models will differ due

to the action of two different factors: the first is a level effect related to the discrepancy

between E(γt) and E(βt), on one side, and the RGARCH parameters γ and β , on the

other; differently, the second factor depends on short term fluctuations of the ratio Yt

around its mean level.

The same general picture applies to the ETV-RGARCH model, with the estimated

γ1 and β1 being negative and positive, respectively, as for the TV-RGARCH model.

Further, as expected, γ2 and β2 take opposite signs. The dynamic profiles of the

time-varying coefficients γt and βt (Figure 5) are qualitatively not different from that

observed for the TV-RGARCH model. This is confirmed by Table 3, showing the

sample correlation coefficients between γt and βt , fitted by TV-RGARCH and ETV-

RGARCH respectively.

Table 4 reports the results of three sets of likelihood ratio tests. First, we separately

test the validity of the restrictions implied by the standard RGARCH models against

the alternative TV-RGARCH and ETV-RGARCH models. Second, we test the TV-

RGARCH hypothesis against the alternative of a more general ETV-RGARCH model.

In the first case, the reference asymptotic distribution of the test statistic under the

null is given by a χ2
2 , for the TV-RGARCH model, and by a χ2

4 , if the alternative

corresponds to an ETV-RGARCH model. In the second set, the reference distribution

for testing the TV-RGARCH model against a more general ETV-RGARCH is given

by a χ2
2 distribution. In both cases, since the full-likelihoods of RGARCH and (E)TV-
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Figure 3: Time series of log
(√

RQt

RVt

)
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for the stock market indices DAX 30 (top-left), FTSE 100 (top-right), Hang

Seng (bottom-left) and S&P500 (bottom-right) for the full sample period 2002/01/01 – 2018/04/30.

RGARCH are based on different information sets, testing is based on the partial log-

likelihood component ℓr. For all the markets considered, the benchmark RGARCH

model is always rejected at the usual 5% significance level against both alternatives:

TV-RGARCH and ETV-RGARCH. When testing the TV-RGARCH against the more

general ETV-RGARCH, the data provide mixed evidence, since we find that only in

two cases out of four, DAX 30 and HSI, the null is rejected. The last set of likelihood

ratio tests, in the bottom panel of Table 4, again compares the TV-RGARCH model,

under the null, against the alternative hypothesis of an ETV-RGARCH but using the

full likelihood L (θ). The results show that, when considering the full likelihood,

the TV-RGARCH model is always rejected against the more flexible ETV-RGARCH

model.

Table 3: Sample correlation coefficients between γt (ργ ) and βt (ρβ ) fitted by TV-

RGARCH and ETV-RGARCH models.

DAX 30 FTSE 100 HSI S&P 500

ργ 0.640 0.722 0.811 0.952

ρβ 0.720 0.799 0.892 1.000

As a robustness check, we also consider the estimation of heteroskedastic variants

of the TV-RGARCH and ETV-RGARCH, as described in Remark 1 at the end of

Section 5. Our data, however, do not provide strong evidence in favor of the presence

of heteroskedasticity, for both the conditional variance specifications considered.

Namely, the estimation results for heteroskedastic models, reported in Table 18 in

the Empirical Appendix, suggest that the homoskedasticity assumption (corresponding
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Figure 4: Time series of estimated γt and βt for TV-RGARCH
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Time-varying γt and βt of TV-RGARCH model for the stock market indices DAX 30 (top-left), FTSE 100

(top-right), Hang Seng (bottom-left) and S&P500 (bottom-right) for the full sample period 2002/01/01 –

2018/04/30. Gray solid-line: RGARCH coefficient. Gray dashed-line: average of TV-RGARCH time-

varying coefficient.
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Figure 5: Time series of estimated γt and βt for ETV-RGARCH
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Time-varying γt and βt of ETV-RGARCH model for the stock market indices DAX 30 (top-left), FTSE

100 (top-right), Hang Seng (bottom-left) and S&P500 (bottom-right) for the full sample period 2002/01/01

– 2018/04/30. Gray solid-line: RGARCH coefficient. Gray dashed-line: average of TV-RGARCH time-

varying coefficient. Gray dotted-line: average of ETV-RGARCH time-varying coefficient.
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Table 4: Likelihood ratio statistics for the full sample period 2002/01/01 – 2018/04/30.

Top panel: likelihood ratio statistics for the partial log-likelihood ℓr. Bottom panel:

likelihood ratio statistics for the full log-likelihood L (θ). P-values are reported in

parentheses.

DAX 30 FTSE 100 HSI S&P 500

TV-RG ETV-RG TV-RG ETV-RG TV-RG ETV-RG TV-RG ETV-RG

RG 16.663 24.896 19.941 24.760 13.570 20.864 8.404 9.890

(0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.015) (0.042)

TV-RG — 8.233 — 4.818 — 7.295 — 1.481

(0.016) (0.090) (0.026) (0.477)

TV-RG — 35.722 — 16.450 — 21.294 — 23.286

(0.000) (0.000) (0.000) (0.000)

to δ1 = 0) cannot be rejected in the majority of cases. Also, the introduction of

the heteroskedastic component does not seem to have a remarkable impact on the

estimates of the other model parameters. Accordingly, a simple likelihood ratio

test, comparing heteroskedastic vs homoskedastic models, would reveal that the

introduction of the heteroskedastic component, in the vast majority of cases, does not

bring to any significant improvement in the overall likelihood L . Finally, we focused

our attention on the partial likelihood ℓr which measures the ability of the fitted model

to reproduce the conditional distribution of returns, hence being a the critical entity for

risk management applications. Our findings indeed show that increments in ℓr, when

present, are always negligible. So, the introduction of the heteroskedastic component

is not expected to bring any noticeable gains for tail risk forecasting. It is worth noting

that, under this respect, our findings are in line with those of and Hansen et al. (2012)

and Hansen and Huang (2016).

The above results are based on standard maximum likelihood theory. In order

to double check the validity of the implied asymptotic approximation, we have

implemented the Bootstrap resampling procedure described in Section 6 for all the

model specifications considered. However, in order to save space, in this section

we only report results for the ETV-RGARCH model. The results obtained for the

RGARCH and TV-RGARCH models, qualitatively similar to those reported for the

ETV-RGARCH, have been reported in the Empirical Appendix.

Figure 6 reports the histograms of the standardized Bootstrap estimates for the

ETV-RGARCH model’s parameters. In general, the plots suggest that the empirical

distributions of the estimates are consistent with the asymptotic normality assumption.

Mild positive skewness is detected only for the estimated degrees of freedom parameter

ν . Furthermore, Table 5 shows that the Bootstrap means and standard errors are in

general very close to the ML estimated coefficients and associated asymptotic standard

errors. In addition, the table also reports the 95% Bootstrap percentile confidence

intervals for each of the estimated coefficients. Looking at the estimated intervals it can

be immediately noted how the assessment of the significance of estimated coefficients

23



based on asymptotic theory is in close agreement with the findings deriving from the

analysis of the Bootstrap intervals.

7.3 Out-of-sample analysis

In this section the proposed model specifications are used to generate out-of-sample

one-step-ahead forecasts of volatility, VaR and ES. Our forecasting design is based on

a rolling window scheme with daily re-estimation. For all markets, the initial in-sample

period covers the time interval from 2002/01/01 to 2008/05/31, resulting in different

time series lengths for the different indices considered: 1604 for the DAX 30, 1590 for

the FTSE 100, 1555 for the HSI and 1558 for the S&P 500. For each index, subsequent

re-estimations are then based over moving windows of the same length. The out-of-

sample period has been chosen to allow the inclusion of the most relevant financial

events of the current century, starting from the climax of the 2008-2009 financial crisis,

while still keeping a sufficiently long in-sample estimation window.

The performances of the proposed models are compared with those of the standard

RGARCH, taken as a benchmark. Also, as a further robustness check, we consider

a set of alternative specifications of TV-RGARCH models characterized by different

specifications of the time-varying coefficients βt and γt . These have been summarized

in Table 6. The aim is here to double check the appropriateness of the specifications of

γt and βt discussed in Section 5 and the sensitivity of our empirical results to the model

assumed for γt and βt .

Next, we assess the out-of-sample forecasting ability of the model considering

different loss functions. First, the ability to accurately forecast the distribution of future

returns, for each model, is assessed by computing, as in Hansen et al. (2012), the out-

of-sample predictive partial log-likelihood

ℓ̂r

(
θ̂
)

t+1
= K̃(ν̂)− 1

2
log
(
ĥt+1

)
− ν̂ +1

2
log

[
1+

r2
t+1

ĥt+1(ν̂ −2)

]
, (36)

for t = T, . . . ,T + H − 1, with H being the length of the out-of-sample forecasting

period.

The accuracy in forecasting future volatility is then evaluated by means of the

QLIKE loss function. This choice is motivated by two considerations. First, the QLIKE

is robust to noisy volatility proxies (Patton, 2011). Second, compared to other robust

alternatives, this loss function has been found to be more powerful in rejecting poorly

performing predictors (Liu et al., 2015). The QLIKE loss has been computed according

to the formula

QLIKE =
1

H

H

∑
j=1

(
log(ĥT+ j)+

RVT+ j

ĥT+ j

)
, (37)

where ĥT+ j is the 1-step-ahead conditional variance forecast at time T + j. It is trivial

to show that models providing better forecasts will be characterized by lower values of

QLIKE.

Furthermore, the quality of individual VaR forecasts is assessed using the

Conditional Coverage test of Christoffersen (1998) and the Dynamic Quantile test of
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Figure 6: Histograms and superimposed non-parametric densities of 999 standardized

Bootstrap estimates of the parameters of the ETV-RGARCH model
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Table 5: Summary of Bootstrap estimates for the ETV-RGARCH model

DAX 30 FTSE 100 HSI S&P 500

Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975

ω −0.085 −0.168 0.367 0.402 −1.049 0.551 0.190 0.121 0.108 0.374 −0.682 0.805 0.260 0.175 0.559 0.497 −0.983 1.051 1.082 0.822 0.322 0.340 0.078 1.360

γ 1.061 1.056 0.111 0.104 0.854 1.256 0.876 0.870 0.120 0.121 0.638 1.099 0.668 0.667 0.097 0.106 0.469 0.880 0.796 0.779 0.129 0.125 0.535 1.019

γ1 −0.195 −0.194 0.037 0.036 −0.267 −0.122 −0.204 −0.203 0.050 0.044 −0.291 −0.113 −0.164 −0.165 0.036 0.038 −0.240 −0.087 −0.210 −0.211 0.059 0.062 −0.341 −0.095

γ2 0.252 0.251 0.043 0.040 0.172 0.328 0.242 0.241 0.056 0.048 0.151 0.334 0.194 0.197 0.039 0.042 0.114 0.276 0.222 0.224 0.063 0.064 0.098 0.357

β −0.060 −0.072 0.137 0.111 −0.302 0.153 0.139 0.133 0.125 0.125 −0.106 0.373 0.380 0.365 0.138 0.119 0.120 0.604 0.420 0.387 0.128 0.129 0.129 0.631

β1 0.227 0.226 0.036 0.036 0.154 0.297 0.241 0.240 0.051 0.045 0.150 0.330 0.197 0.199 0.037 0.040 0.118 0.276 0.248 0.248 0.060 0.062 0.131 0.379

β2 −0.281 −0.282 0.043 0.040 −0.359 −0.203 −0.277 −0.277 0.057 0.050 −0.372 −0.183 −0.224 −0.227 0.041 0.044 −0.313 −0.139 −0.247 −0.251 0.064 0.065 −0.382 −0.123

ξR 0.037 0.054 0.193 0.279 −0.463 0.619 −0.282 −0.264 0.184 0.289 −0.791 0.357 −0.373 −0.350 0.370 0.361 −1.021 0.391 −0.628 −0.615 0.199 0.250 −1.073 −0.116

ϕR 1.018 1.020 0.021 0.030 0.964 1.081 1.011 1.013 0.018 0.029 0.959 1.075 1.010 1.013 0.038 0.037 0.942 1.089 0.963 0.964 0.020 0.025 0.919 1.015

τ1,R −0.134 −0.133 0.007 0.008 −0.150 −0.119 −0.090 −0.090 0.007 0.007 −0.103 −0.077 0.003 0.002 0.007 0.008 −0.013 0.017 −0.108 −0.108 0.008 0.008 −0.123 −0.094

τ2,R 0.107 0.109 0.005 0.007 0.096 0.124 0.097 0.097 0.005 0.006 0.085 0.108 0.140 0.140 0.006 0.006 0.130 0.151 0.099 0.099 0.005 0.006 0.088 0.111

σ2
u,R 0.211 0.211 0.005 0.005 0.200 0.221 0.176 0.175 0.004 0.005 0.165 0.186 0.207 0.206 0.005 0.007 0.194 0.220 0.230 0.229 0.005 0.006 0.218 0.241

ξQ 0.015 0.030 0.191 0.269 −0.474 0.566 −0.187 −0.170 0.186 0.286 −0.701 0.445 −0.796 −0.777 0.359 0.343 −1.412 −0.081 −0.834 −0.824 0.194 0.243 −1.271 −0.337

ϕQ 0.981 0.983 0.021 0.029 0.929 1.040 0.994 0.996 0.019 0.029 0.943 1.058 0.938 0.940 0.036 0.035 0.874 1.012 0.926 0.927 0.019 0.024 0.882 0.976

τ1,Q −0.115 −0.115 0.010 0.012 −0.138 −0.093 −0.077 −0.077 0.008 0.009 −0.094 −0.061 0.006 0.005 0.009 0.010 −0.014 0.026 −0.081 −0.081 0.009 0.010 −0.099 −0.061

τ2,Q 0.138 0.141 0.007 0.011 0.120 0.164 0.114 0.114 0.006 0.007 0.100 0.128 0.153 0.153 0.007 0.007 0.140 0.166 0.110 0.110 0.006 0.007 0.096 0.125

σ2
u,Q 0.363 0.362 0.008 0.010 0.342 0.382 0.272 0.271 0.006 0.009 0.254 0.291 0.325 0.324 0.007 0.010 0.305 0.345 0.290 0.289 0.006 0.008 0.274 0.305

ρ 0.911 0.911 0.003 0.003 0.905 0.916 0.927 0.927 0.002 0.003 0.921 0.932 0.931 0.931 0.002 0.002 0.927 0.936 0.946 0.946 0.002 0.002 0.942 0.950

ν 9.161 9.257 0.215 1.430 7.136 12.820 12.152 12.568 1.862 2.365 9.179 18.831 7.303 7.399 0.675 0.789 6.013 9.220 8.850 9.042 0.364 1.239 7.104 11.717

Coef: estimated coefficient; µB: mean of Bootstrap estimates; SE: asymptotic standard error ; SE.B: standard error of Bootstrap estimates; q0.025: 2.5%

Bootstrap percentile; q0.975: 97.5% Bootstrap percentile.
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Table 6: Model specifications for robustness check

Model βt equation γt equation Error distribution

TV-RGARCH∗ βt = β +β1 (Yt−1) γt = γ + γ1 (Yt−1) ut ∼ MV N2(0,Σu)

TV-RGARCH∗-S βt = β +β1 (
√

Yt−1) γt = γ + γ1 (
√

Yt−1) ut ∼ MV N2(0,Σu)

TV-RGARCH∗-S2 βt = β +β1 (Yt−1)
2 γt = γ + γ1 (Yt−1)

2
ut ∼ MV N2(0,Σu)

TV-RGARCH∗-2 βt = β +β1 (Yt−1)
β2 γt = γ + γ1 (Yt−1)

γ2 ut ∼ MV N2(0,Σu)

Engle and Manganelli (2004). The usual Quantile Loss (Koenker, 2005) is then used to

rank models according their ability to accurately forecast VaR. Namely, letting VaRt(α)
be the α-level one-step-ahead VaR forecast at time t, the Quantile Loss at level α (QLα )

is given by

QLα =
H

∑
j=1

(α −LT+ j)(rT+ j −VaRT+ j(α)), (0 < α < 1) , (38)

where Lt = I(rt <VaRt(α)).
Finally, to assess the ability of the proposed models to jointly forecast VaR and ES,

we rely on the results of Fissler and Ziegel (2016) on the joint elicitability of the couple

(VaR, ES). In particular, they show that (VaR, ES) is jointly elicitable with respect to

the following class of strictly consistent loss functions

FZt(rt ,vt ,et |α,G1,G2) = (Lt −α)

(
G1(vt)−G1(rt)+

1

α
G2(et)vt

)

− G2(et)

(
1

α
Ltrt − et

)
−G2(et), (39)

where G1 is weakly increasing, G2 is strictly increasing and strictly positive, and G ′
2 =

G2. It can be shown that the expected value of the loss in (39) is uniquely minimized by

setting vt and et equal to the level-α VaR and ES series, respectively. Following Patton

et al. (2019), we assume VaR and ES to be strictly negative and ESt(α)≤VaRt(α)< 0,

with G1(x) = 0 and G2(x) =−1/x, resulting in the following loss function

FZ
(0)
t =

1

αESt(α)
Lt (rt −VaRt(α))+

VaRt(α)

ESt(α)
+ log(−ESt(α))−1 , (40)

where ESt(α) is the α-level one-step-ahead ES at time t. As for the other loss

functions, models that, over the chosen forecasting period, show lower average values

of FZ
(0)
t are preferred.

The significance of performance gaps across different models is assessed by means

of the Model Confidence Set (MCS) (Hansen et al., 2011).
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Table 7: Predictive Partial log-likelihood (ℓ̂r) and MCS p-values using both Range (p-

value R) and Semi-Quadratic (p-value SQ) statistics. For each market index, we report

in bold the highest maximized log-likelihood value, in box models ∈ 90% MCS

and in box models ∈ 75% MCS. The out-of-sample period for the market indices

is 2008/06/01 – 2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396

for Hang Seng and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500

ℓ̂r p-value R p-value SQ ℓ̂r p-value R p-value SQ ℓ̂r p-value R p-value SQ ℓ̂r p-value R p-value SQ

RGARCH 8070.297 0.0002 0.0044 8668.795 0.0266 0.0674 8175.131 0.0840 0.0394 8856.416 0.1236 0.2352

TV-RGARCH∗-S2 8079.344 0.7550 0.7062 8676.778 0.8720 0.8566 8181.348 0.3012 0.1780 8860.155 0.7496 0.6716

TV-RGARCH∗-S 8079.940 0.8546 0.7914 8677.034 0.8720 0.8566 8182.594 0.4852 0.3628 8860.901 0.7960 0.8566

TV-RGARCH∗-2 8079.059 0.1378 0.3638 8676.838 0.8652 0.8566 8182.614 0.3012 0.3134 8860.358 0.7496 0.7164

TV-RGARCH∗ 8079.773 0.8546 0.7914 8677.070 0.8720 0.8566 8182.023 0.1504 0.1352 8860.609 0.7496 0.7164

TV-RGARCH 8079.530 0.3694 0.6176 8676.870 0.8652 0.8566 8182.835 0.4852 0.3628 8861.089 0.9914 0.9914

ETV-RGARCH 8080.683 1.0000 1.0000 8677.526 1.0000 1.0000 8183.642 1.0000 1.0000 8861.099 1.0000 1.0000

Table 8: Average values of QLIKE loss using 5-min RV as volatility proxy and MCS

p-values using both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics.

For each market index, we report in bold the minimum loss value, in box models ∈
90% MCS and in box models ∈ 75% MCS. The out-of-sample period for the market

indices is 2008/06/01 – 2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE

100, 2396 for Hang Seng and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500

Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ

RGARCH -8.2741 0.0004 0.0016 -9.0421 0.0412 0.0732 -8.8664 0.0004 0.0018 -9.0741 0.0538 0.0546

TV-RGARCH∗-S2 -8.2780 0.1170 0.1202 -9.0462 1.0000 1.0000 -8.8797 0.0074 0.0068 -9.0771 0.1654 0.1274

TV-RGARCH∗-S -8.2787 0.1580 0.1490 -9.0458 0.2040 0.4238 -8.8821 0.0076 0.0068 -9.0780 0.2058 0.1554

TV-RGARCH∗-2 -8.2786 0.1580 0.1490 -9.0455 0.2040 0.2770 -8.8825 0.0076 0.0084 -9.0765 0.1674 0.1390

TV-RGARCH∗ -8.2785 0.1580 0.1490 -9.0461 0.8480 0.7760 -8.8812 0.0074 0.0068 -9.0777 0.1908 0.1554

TV-RGARCH -8.2787 0.1580 0.1490 -9.0455 0.1886 0.2300 -8.8826 0.0076 0.0084 -9.0782 0.2058 0.1554

ETV-RGARCH -8.2814 1.0000 1.0000 -9.0458 0.8480 0.7760 -8.8853 1.0000 1.0000 -9.0797 1.0000 1.0000
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Table 9: One-step ahead Value at Risk backtesting at the risk level α = 0.01. VRate:

violation rate i.e. proportion of returns smaller than VaR in the out-of-sample period.

CC p-value and DQ p-value: p-values for the Conditional Coverage and Dynamic

Quantile test, respectively. Models showing the violation rate closest to the assumed

nominal value are indicated in bold. Boxes indicate p-values lower than 5%. The out-

of-sample period for the market indices is 2008/06/01 – 2018/04/30, for a total of 2492

daily returns for DAX 30, 2473 for FTSE 100, 2396 for Hang Seng and 2456 for S&P

500.

DAX 30 FTSE 100 HSI S&P 500

VRate CC p-value DQ p-value VRate CC p-value DQ p-value VRate CC p-value DQ p-value VRate CC p-value DQ p-value

RGARCH 0.0132 0.1932 0.3669 0.0125 0.3365 0.0598 0.0134 0.1890 0.3133 0.0159 0.0140 0.0156

TV-RGARCH∗-S2 0.0112 0.6046 0.6912 0.0113 0.5006 0.0471 0.0117 0.5181 0.4681 0.0147 0.0556 0.0664

TV-RGARCH∗-S 0.0116 0.5158 0.6352 0.0117 0.4554 0.5392 0.0121 0.4243 0.4360 0.0147 0.0556 0.0702

TV-RGARCH∗-2 0.0116 0.5158 0.6339 0.0121 0.3988 0.6166 0.0121 0.4243 0.4335 0.0143 0.0832 0.1100

TV-RGARCH∗ 0.0116 0.5158 0.6327 0.0113 0.5006 0.6129 0.0117 0.5181 0.4698 0.0147 0.0556 0.0690

TV-RGARCH-S 0.0116 0.5158 0.6351 0.0117 0.4554 0.5413 0.0121 0.4243 0.4377 0.0147 0.0556 0.0708

ETV-RGARCH 0.0128 0.2596 0.5031 0.0121 0.3988 0.4762 0.0121 0.4243 0.4591 0.0155 0.0228 0.0405

For the predictive partial log-likelihood, the results reported in Table 7 show

that the ETV-RGARCH is always returning the minimum value of the (negative)

predictive partial log-likelihood and both the TV-RGARCH and ETV-RGARCH are

always included in the 75% MCS for both the Range (R) and Semi-Quadratic (SQ)

statistics. The standard RGARCH model is always excluded from the MCS at both

levels considered for DAX 30, FTSE 100 and HSI and enters the 90% MCS only for

S&P 500.

Moving to consider the QLIKE loss (Table 8), the ETV-RGARCH is returning the

minimum value of the loss function in three cases out of four and is the only model

always included in the 75% MCS for both the R and SQ statistics. For HSI, no other

model is included in the MCS at any level while, for the remaining indices and for both

R and SQ, the considered variants of the TV-RGARCH enter the MCS at the 90% or

75% level. The RGARCH model is always excluded from the MCS for both confidence

levels and test statistics considered.

Next we consider the results of VaR backtesting for two different risk levels: 0.01

and 0.025. At the 0.01 level (Table 9), models incorporating a correction for dynamic

attenuation bias always pass the diagnostic tests at the usual 5% level. The only

exceptions are the ETV-RGARCH model, signficant only at the 1% level for the S&P

500, and the TV-RGARCH∗-S2, for which, in the case of the FTSE 100, the DQ tests

returns a p-value slightly below 5%. The RGARCH model, although performing well

for the other three indices, does not pass the diagnostic tests for the S&P 500. It should

however be noted that, for the S&P 500 dataset, all the models considered have a

borderline performance returning p-values very close to the 5% acceptance threshold.

Differently, at the 0.025 level (Table 10), the TV-RGARCH type models are always

passing the diagnostic tests while, for the DAX 30, the RGARCH model does not pass

the DQ test.

When considering the accuracy in predictive VaR, assessed via the Quantile Loss,

we find that, at the 0.01 level (Table 11), the TV-RGARCH is the only model always

included in the 75% MCS for, both the R and SQ statistics, while the ETV-RGARCH
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Table 10: One-step ahead Value at Risk backtesting at the risk level α = 0.025. VRate:

violation rate i.e. proportion of returns smaller than VaR in the out-of-sample period.

CC p-value and DQ p-value: p-values for the Conditional Coverage and Dynamic

Quantile test, respectively. Models showing the violation rate closest to the assumed

nominal value are indicated in bold. Boxes indicate p-values lower than 5%. The out-

of-sample period for the market indices is 2008/06/01 – 2018/04/30, for a total of 2492

daily returns for DAX 30, 2473 for FTSE 100, 2396 for Hang Seng and 2456 for S&P

500.

DAX 30 FTSE 100 HSI S&P 500

VRate CC p-value DQ p-value VRate CC p-value DQ p-value VRate CC p-value DQ p-value VRate CC p-value DQ p-value

RGARCH 0.0321 0.0901 0.0069 0.0295 0.1906 0.0889 0.0263 0.5778 0.9433 0.0293 0.4094 0.7492

TV-RGARCH∗-S2 0.0289 0.4772 0.2694 0.0275 0.2759 0.5183 0.0275 0.2577 0.6865 0.0281 0.6280 0.8063

TV-RGARCH∗-S 0.0293 0.4070 0.2405 0.0263 0.6028 0.7301 0.0275 0.2577 0.5997 0.0281 0.6280 0.8178

TV-RGARCH∗-2 0.0297 0.3418 0.2222 0.0259 0.9287 0.8624 0.0275 0.2577 0.6001 0.0281 0.6280 0.8227

TV-RGARCH∗ 0.0293 0.4070 0.2389 0.0271 0.2819 0.5128 0.0271 0.2627 0.7164 0.0281 0.6280 0.8146

TV-RGARCH 0.0301 0.2825 0.2583 0.0259 0.9287 0.8626 0.0275 0.2577 0.6045 0.0281 0.6280 0.8198

ETV-RGARCH 0.0305 0.1427 0.2238 0.0271 0.7978 0.8649 0.0259 0.2484 0.5682 0.0289 0.4799 0.8336

Table 11: Average Quantile Loss function at the risk level α = 0.01 and MCS p-values

using both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics. For each

market index, we report in bold the minimum loss value, in box models ∈ 90% MCS

and in box models ∈ 75% MCS. The out-of-sample period for the market indices is

2008/06/01 – 2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396

for Hang Seng and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500

Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ

RGARCH 0.7984 0.1058 0.2030 0.6214 0.0004 0.0024 0.7134 0.1168 0.2192 0.6295 0.0014 0.0010

TV-RGARCH∗-S2 0.7899 0.7684 0.6698 0.6100 0.4922 0.4946 0.7076 0.2470 0.3192 0.6224 0.0014 0.0018

TV-RGARCH∗-S 0.7886 1.0000 1.0000 0.6087 1.0000 1.0000 0.7067 0.4184 0.3520 0.6193 0.1732 0.2430

TV-RGARCH∗-2 0.7892 0.7684 0.6698 0.6093 0.4998 0.5628 0.7076 0.2470 0.2932 0.6188 0.6834 0.6834

TV-RGARCH∗ 0.7892 0.7684 0.6698 0.6089 0.7768 0.7768 0.7075 0.2470 0.2932 0.6204 0.0014 0.0046

TV-RGARCH 0.7889 0.7684 0.6698 0.6093 0.4998 0.5628 0.7062 0.4184 0.3520 0.6186 1.0000 1.0000

ETV-RGARCH 0.7950 0.6656 0.5460 0.6119 0.4854 0.3806 0.7038 1.0000 1.0000 0.6229 0.0014 0.0046

Table 12: Average Quantile Loss function at the risk level α = 0.025 and MCS p-

values using both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics. For

each market index, we report in bold the minimum loss value, in box models ∈
90% MCS and in box models ∈ 75% MCS. The out-of-sample period for the market

indices is 2008/06/01 – 2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE

100, 2396 for Hang Seng and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500

Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ

RGARCH 1.7258 0.0022 0.0350 1.3221 0.0094 0.0140 1.4184 0.0500 0.0430 1.3164 0.0014 0.0002

TV-RGARCH∗-S2 1.7065 0.5556 0.6260 1.3089 0.3106 0.3950 1.4011 0.1056 0.1022 1.2997 0.0092 0.0166

TV-RGARCH∗-S 1.7047 1.0000 1.0000 1.3053 1.0000 1.0000 1.3963 0.1056 0.2172 1.2951 0.2748 0.2908

TV-RGARCH∗-2 1.7052 0.8234 0.8496 1.3059 0.7922 0.6484 1.3963 0.1056 0.2172 1.2932 1.0000 1.0000

TV-RGARCH∗ 1.7049 0.8368 0.8496 1.3061 0.7922 0.6484 1.3981 0.1056 0.1304 1.2966 0.0368 0.0592

TV-RGARCH 1.7056 0.5556 0.6260 1.3057 0.7922 0.6484 1.3950 0.5488 0.5488 1.2941 0.4624 0.4624

ETV-RGARCH 1.7185 0.2594 0.2914 1.3074 0.7922 0.6484 1.3925 1.0000 1.0000 1.2967 0.2748 0.2908
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Table 13: Average FZ(0) loss function at the risk level α = 0.01 and MCS p-values

using both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics. For each

market index, we report in bold the minimum loss value, in box models ∈ 90% MCS

and in box models ∈ 75% MCS. The out-of-sample period for the market indices is

2008/06/01 – 2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396

for Hang Seng and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500

Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ

RGARCH -3.4690 0.0002 0.0818 -3.7516 0.0008 0.0106 -3.5748 0.1208 0.1566 -3.7224 0.0124 0.0264

TV-RGARCH∗-S2 -3.4834 0.3670 0.4266 -3.7732 0.5256 0.5238 -3.5872 0.5370 0.5156 -3.7327 0.0124 0.0220

TV-RGARCH∗-S -3.4868 0.5458 0.5458 -3.7766 1.0000 1.0000 -3.5891 0.5370 0.5156 -3.7387 0.0880 0.1518

TV-RGARCH∗-2 -3.4858 0.3670 0.4514 -3.7761 0.8300 0.8234 -3.5880 0.1208 0.3898 -3.7386 0.3682 0.2574

TV-RGARCH∗ -3.4855 0.3670 0.4514 -3.7760 0.8300 0.8234 -3.5880 0.1208 0.3898 -3.7362 0.0124 0.0264

TV-RGARCH -3.4864 0.5310 0.5306 -3.7756 0.5562 0.6646 -3.5897 0.5370 0.5156 -3.7407 0.3682 0.2574

ETV-RGARCH -3.4918 1.0000 1.0000 -3.7751 0.8300 0.8234 -3.5934 1.0000 1.0000 -3.7475 1.0000 1.0000

Table 14: Average FZ(0) loss function at the risk level α = 0.025 and MCS p-values

using both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics. For each

market index, we report in bold the minimum loss value, in box models ∈ 90% MCS

and in box models ∈ 75% MCS. The out-of-sample period for the market indices is

2008/06/01 – 2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396

for Hang Seng and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500

Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ Average p-value R p-value SQ

RGARCH -3.6346 0.0128 0.0850 -3.9302 0.0180 0.0232 -3.7916 0.0254 0.0304 -3.9322 0.0026 0.0016

TV-RGARCH∗-S2 -3.6507 0.7078 0.7698 -3.9409 0.3416 0.3202 -3.8077 0.1280 0.1488 -3.9462 0.0098 0.0024

TV-RGARCH∗-S -3.6527 1.0000 1.0000 -3.9456 0.8370 0.8370 -3.8108 0.3742 0.2840 -3.9512 0.0550 0.0624

TV-RGARCH∗-2 -3.6521 0.7078 0.8564 -3.9452 0.7824 0.8056 -3.8106 0.1280 0.1822 -3.9526 0.2100 0.2172

TV-RGARCH∗ -3.6522 0.7078 0.8564 -3.9443 0.6018 0.6874 -3.8098 0.1280 0.1822 -3.9495 0.0098 0.0066

TV-RGARCH -3.6521 0.7078 0.8564 -3.9451 0.7824 0.8056 -3.8115 0.3742 0.2840 -3.9524 0.2100 0.2172

ETV-RGARCH -3.6515 0.7078 0.8564 -3.9460 1.0000 1.0000 -3.8143 1.0000 1.0000 -3.9581 1.0000 1.0000

models enters the 75% MCS for all indices except for the S&P 500. The RGARCH is

always excluded from the MCS for FTSE 100 and S&P 500 but it enters the 90% MCS

for DAX 30 and HSI. For the 0.025 level (Table 12), we find that the TV-RGARCH

and ETV-RGARCH are the only models always included in the 75% MCS while, on

the other hand, the RGARCH never enters the MCS.

A similar picture is observed when jointly evaluating the quality of VaR and ES

forecasts via the FZ(0) loss function (Tables 13 and 14). For both the 0.01 and 0.025

levels the following facts arise: both the TV-RGARCH and ETV-RGARCH models are

always entering the 75% MCS, with one exception: the TV-RGARCH for S&P 500 at

the 0.025 risk level only enters the 90% MCS; the RGARCH-model is never included

in the 75% MCS and enters the 90% MCS only for the HSI at the 0.01 level; For both

risk levels, the ETV-RGARCH model is returning the minimum average FZ(0) value

for three out of the four indices considered (excluding FTSE 100, for the 0.01 level,

and DAX 30, for the 0.025 risk level).

In conclusion: the results of our out-of-sample forecasting experiment show

that: i) for both volatility and tail risk forecasting, the proposed time-varying
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RGARCH models, TV-RGARCH and ETV-RGARCH, always outperform the standard

RGARCH model; ii) the proposed TV-RGARCH and ETV-RGARCH models are not

outperformed by the alternative time-varying specifications considered as robustness

checks; iii) the results are in general robust to the specification of the functional form

of the γt and βt coefficients.

8 Concluding Remarks

We have proposed novel model specifications that generalize the log-linear RGARCH

model by Hansen et al. (2012), so as to account for time-varying attenuation bias

effects. The proposed models appear to be effective in capturing the dependency of

volatility dynamics on the variability of the measurement error of the reference log-

transformed realized measure. The results of an application to VaR and ES forecasting,

for four major stock market indices, support the profitability of the proposed model in

risk management applications. Estimation of model parameters can be efficiently done

via ML estimation. Furthermore, accurate finite sample inference has been obtained

implementing a parametric Bootstrap procedure.

The derivation of the statistical properties of the proposed models is an interesting

but challenging issue that has not been investigated in this paper. Although it is

easy to show that, as for the standard RGARCH model, the TV-RGARCH model,

and its extensions, can be written as Hidden Markov Models, depending on a latent

Markov chain, analytical derivation of stationarity and ergodicity conditions is made

troublesome by the non-linearity of the latent chain; investigation of these issues has

been currently left for future research.
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Empirical Appendix

Table 15: Summary statistics

DAX 30 FTSE 100 HSI S&P 500

rt RV
†

t rt RV
†

t rt RV
†

t rt RV
†

t

n.obs 4096 4096 4063 4063 3951 3951 4014 4014

Min −0.071 0.035 −0.070 0.026 −0.132 0.039 −0.082 0.017

Max 0.092 67.627 0.088 58.520 0.095 40.069 0.074 57.833

Q1 −0.005 0.396 −0.004 0.172 −0.005 0.222 −0.004 0.181

Median 0.001 0.749 0.000 0.305 0.000 0.368 0.000 0.334

Q3 0.006 1.512 0.005 0.643 0.004 0.628 0.004 0.736

Mean 0.000 1.525 0.000 0.677 −0.001 0.661 0.000 0.814

Stdev 0.012 2.762 0.009 1.661 0.010 1.425 0.010 2.041

Skew 0.127 8.303 0.096 16.169 −0.220 13.531 −0.204 11.571

Kurt 5.216 123.868 8.403 430.361 15.997 275.734 9.306 214.716

Summary statistics of daily log-returns rt and daily Realized Volatilities RVt († :

intra-daily returns rt,i × 100) for the stock market indices DAX 30, FTSE 100, Hang Seng and

S&P500 for the full sample period 2002/01/01 – 2018/04/30. n.obs: number of observations for

each series; Min: Minimum; Max: Maximum; Q1: First Quartile; Q3: Third Quartile; Median;

Mean; Stdev: Standard deviation; Skew: Skewness; Kurt: Kurtosis.
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Figure 7: Histograms and superimposed non-parametric densities of 999 standardized

Bootstrap estimates of the parameters of the RGARCH model
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Figure 8: Histograms and superimposed non-parametric densities of 999 standardized

Bootstrap estimates of the parameters of the TV-RGARCH model
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Table 16: Summary of Bootstrap estimates for the RGARCH model

DAX 30 FTSE 100 HSI S&P 500

Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975

ω −0.171 −0.178 0.082 0.112 −0.393 0.029 −0.039 −0.046 0.089 0.110 −0.267 0.163 −0.096 −0.106 0.062 0.089 −0.296 0.050 −0.002 −0.014 0.109 0.123 −0.252 0.229

γ 0.362 0.362 0.016 0.017 0.331 0.394 0.363 0.363 0.016 0.016 0.330 0.392 0.226 0.226 0.013 0.013 0.202 0.253 0.479 0.478 0.019 0.018 0.443 0.514

β 0.614 0.614 0.015 0.013 0.590 0.640 0.619 0.618 0.015 0.013 0.593 0.642 0.752 0.752 0.014 0.012 0.729 0.774 0.508 0.508 0.017 0.014 0.481 0.536

ξR −0.068 −0.064 0.213 0.284 −0.589 0.510 −0.401 −0.401 0.225 0.278 −0.921 0.169 −0.257 −0.239 0.243 0.356 −0.896 0.505 −0.629 −0.614 0.205 0.228 −1.031 −0.152

ϕR 1.008 1.008 0.023 0.030 0.952 1.070 1.000 1.000 0.023 0.028 0.947 1.058 1.023 1.025 0.025 0.037 0.957 1.100 0.963 0.965 0.021 0.023 0.922 1.013

τ1,R −0.135 −0.135 0.008 0.008 −0.152 −0.119 −0.087 −0.088 0.007 0.007 −0.101 −0.074 0.002 0.002 0.007 0.008 −0.013 0.017 −0.107 −0.107 0.008 0.008 −0.122 −0.092

τ2,R 0.107 0.109 0.005 0.008 0.095 0.124 0.100 0.100 0.005 0.006 0.088 0.112 0.141 0.142 0.006 0.006 0.131 0.153 0.099 0.099 0.005 0.006 0.088 0.111

σ2
u,R 0.219 0.219 0.005 0.006 0.207 0.231 0.181 0.180 0.004 0.006 0.170 0.192 0.212 0.211 0.005 0.007 0.199 0.225 0.234 0.234 0.005 0.006 0.222 0.246

ν 8.696 8.923 0.811 1.347 6.797 12.012 11.565 11.944 0.520 2.084 8.913 17.064 7.049 7.169 0.342 0.731 5.976 8.778 8.493 8.704 0.258 1.200 6.840 11.553

Coef: estimated coefficient; µB: mean of Bootstrap estimates; SE: asymptotic standard error ; SE.B: standard error of Bootstrap estimates; q0.025: 2.5%

Bootstrap percentile; q0.975: 97.5% Bootstrap percentile.
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Table 17: Summary of Bootstrap estimates for the TV-RGARCH model

DAX 30 FTSE 100 HSI S&P 500

Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975 Coef µB SE SE.B q0.025 q0.975

ω −0.352 −0.351 0.096 0.137 −0.622 −0.086 −0.090 −0.093 0.100 0.117 −0.322 0.129 −0.262 −0.276 0.076 0.102 −0.489 −0.084 −0.157 −0.166 0.111 0.131 −0.426 0.068

γ 0.471 0.470 0.022 0.024 0.424 0.519 0.442 0.443 0.022 0.021 0.403 0.486 0.304 0.302 0.018 0.019 0.267 0.338 0.546 0.544 0.021 0.022 0.502 0.586

γ1 −0.134 −0.132 0.034 0.037 −0.205 −0.061 −0.113 −0.113 0.043 0.042 −0.193 −0.030 −0.126 −0.125 0.035 0.037 −0.197 −0.056 −0.214 −0.215 0.057 0.060 −0.334 −0.106

β 0.474 0.474 0.022 0.020 0.435 0.516 0.523 0.521 0.021 0.018 0.486 0.556 0.646 0.647 0.019 0.017 0.613 0.681 0.419 0.419 0.020 0.019 0.382 0.455

β1 0.166 0.165 0.034 0.037 0.092 0.238 0.148 0.149 0.044 0.043 0.065 0.228 0.159 0.157 0.036 0.038 0.084 0.233 0.250 0.251 0.058 0.060 0.140 0.370

ξR 0.008 0.004 0.210 0.295 −0.561 0.592 −0.385 −0.394 0.221 0.253 −0.876 0.121 −0.380 −0.348 0.251 0.319 −0.980 0.329 −0.557 −0.555 0.188 0.226 −0.981 −0.082

ϕR 1.015 1.015 0.023 0.032 0.955 1.077 1.001 1.000 0.022 0.026 0.951 1.053 1.010 1.013 0.026 0.033 0.947 1.082 0.970 0.970 0.019 0.023 0.928 1.017

τ1,R −0.133 −0.134 0.007 0.008 −0.148 −0.118 −0.089 −0.090 0.007 0.007 −0.104 −0.076 0.003 0.003 0.007 0.008 −0.013 0.018 −0.107 −0.108 0.008 0.008 −0.123 −0.092

τ2,R 0.108 0.109 0.005 0.007 0.097 0.123 0.098 0.098 0.005 0.006 0.087 0.110 0.140 0.140 0.006 0.006 0.129 0.150 0.099 0.099 0.005 0.006 0.088 0.111

σ2
u,R 0.213 0.212 0.005 0.006 0.202 0.223 0.177 0.176 0.004 0.005 0.166 0.187 0.208 0.208 0.005 0.007 0.195 0.221 0.231 0.231 0.005 0.006 0.219 0.242

ξQ −0.015 −0.014 0.208 0.285 −0.556 0.563 −0.289 −0.297 0.221 0.251 −0.775 0.195 −0.817 −0.785 0.249 0.298 −1.351 −0.150 −0.767 −0.766 0.182 0.223 −1.165 −0.311

ϕQ 0.979 0.979 0.022 0.030 0.922 1.040 0.984 0.984 0.022 0.025 0.935 1.034 0.936 0.939 0.026 0.031 0.879 1.002 0.933 0.933 0.018 0.022 0.893 0.978

τ1,Q −0.115 −0.115 0.010 0.012 −0.138 −0.092 −0.077 −0.077 0.008 0.009 −0.095 −0.059 0.006 0.006 0.009 0.010 −0.015 0.026 −0.080 −0.081 0.009 0.010 −0.100 −0.062

τ2,Q 0.137 0.140 0.007 0.011 0.119 0.161 0.114 0.115 0.006 0.008 0.101 0.130 0.153 0.153 0.007 0.007 0.140 0.166 0.110 0.110 0.006 0.008 0.096 0.126

σ2
u,Q 0.366 0.365 0.008 0.010 0.346 0.385 0.273 0.273 0.006 0.009 0.255 0.290 0.326 0.326 0.007 0.010 0.306 0.346 0.291 0.291 0.007 0.008 0.276 0.306

ρ 0.911 0.911 0.003 0.003 0.905 0.917 0.927 0.927 0.002 0.003 0.922 0.932 0.932 0.932 0.002 0.002 0.927 0.937 0.946 0.946 0.002 0.002 0.942 0.950

ν 8.947 9.166 0.377 1.478 7.119 12.989 11.882 12.268 0.278 2.206 9.055 17.743 6.998 7.277 0.351 0.771 5.987 9.053 8.819 9.027 0.362 1.153 7.175 11.751

Coef: estimated coefficient; µB: mean of Bootstrap estimates; SE: asymptotic standard error ; SE.B: standard error of Bootstrap estimates; q0.025: 2.5%

Bootstrap percentile; q0.975: 97.5% Bootstrap percentile.
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Table 18: In-sample estimation results for TV-RGARCH and ETV-RGARCH with time-varying variance of the measurement error ut,R.

DAX 30 FTSE 100 HSI S&P 500

TV-HRG TV-HRG∗ ETV-HRG ETV-HRG∗ TV-HRG TV-HRG∗ ETV-HRG ETV-HRG∗ TV-HRG TV-HRG∗ ETV-HRG ETV-HRG∗ TV-HRG TV-HRG∗ ETV-HRG ETV-HRG∗

ω −0.345 -0.345 -0.078 -0.090 -0.094 -0.093 0.149 0.155 -0.259 -0.257 0.271 0.272 -0.157 -0.157 1.083 1.083

(0.070) (0.095) (0.435) (0.342) (0.102) (0.093) (0.409) (0.386) (0.065) (0.066) (0.571) (0.687) (0.127) (0.105) (0.329) (0.311)

γ 0.472 0.472 1.075 1.073 0.442 0.442 0.853 0.856 0.301 0.301 0.675 0.675 0.545 0.545 0.797 0.797

(0.020) (0.022) (0.113) (0.110) (0.022) (0.022) (0.119) (0.118) (0.018) (0.018) (0.095) (0.101) (0.022) (0.021) (0.128) (0.120)

γ1 −0.136 -0.136 -0.199 -0.199 -0.113 -0.113 -0.201 -0.201 -0.119 -0.120 -0.157 -0.158 -0.212 -0.211 -0.208 -0.207

(0.035) (0.035) (0.038) (0.037) (0.041) (0.042) (0.049) (0.049) (0.034) (0.034) (0.035) (0.035) (0.058) (0.058) (0.060) (0.059)

γ2 — — 0.257 0.257 — — 0.237 0.238 — — 0.189 0.189 — — 0.220 0.219

(0.044) (0.043) (0.055) (0.056) (0.039) (0.039) (0.064) (0.063)

β 0.473 0.473 -0.074 -0.074 0.523 0.522 0.155 0.153 0.650 0.650 0.374 0.374 0.419 0.419 0.419 0.419

(0.022) (0.022) (0.142) (0.132) (0.021) (0.021) (0.142) (0.146) (0.019) (0.019) (0.142) (0.146) (0.020) (0.020) (0.130) (0.126)

β1 0.168 0.169 0.231 0.231 0.149 0.149 0.238 0.239 0.152 0.152 0.191 0.191 0.248 0.247 0.245 0.244

(0.034) (0.035) (0.037) (0.037) (0.042) (0.043) (0.050) (0.050) (0.035) (0.035) (0.036) (0.037) (0.059) (0.059) (0.061) (0.060)

β2 — — -0.287 -0.287 — — -0.273 -0.273 — — -0.218 -0.219 — — -0.245 -0.244

(0.045) (0.043) (0.056) (0.057) (0.041) (0.041) (0.065) (0.064)

ξR 0.000 -0.002 0.025 0.025 -0.389 -0.391 -0.281 -0.282 -0.381 -0.386 -0.392 -0.396 -0.558 -0.559 -0.628 -0.628

(0.134) (0.208) (0.240) (0.186) (0.229) (0.204) (0.253) (0.230) (0.197) (0.200) (0.260) (0.329) (0.221) (0.160) (0.214) (0.182)

ϕR 1.014 1.014 1.017 1.017 1.001 1.001 1.011 1.011 1.010 1.009 1.008 1.008 0.970 0.970 0.963 0.963

(0.016) (0.022) (0.026) (0.020) (0.023) (0.021) (0.026) (0.023) (0.020) (0.021) (0.027) (0.034) (0.022) (0.015) (0.021) (0.018)

τ1,R −0.133 -0.133 -0.134 -0.134 -0.089 -0.089 -0.090 -0.089 0.004 0.004 0.004 0.004 -0.107 -0.107 -0.108 -0.108

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.008) (0.008) (0.008) (0.008)

τ2,R 0.108 0.108 0.107 0.107 0.098 0.098 0.097 0.097 0.140 0.140 0.141 0.141 0.099 0.099 0.099 0.099

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.006) (0.005) (0.005) (0.005) (0.005)

δ0 −1.598 -1.572 -1.615 -1.581 -1.656 -1.706 -1.679 -1.716 -1.479 -1.538 -1.473 -1.541 -1.459 -1.463 -1.459 -1.467

(0.042) (0.027) (0.042) (0.026) (0.045) (0.026) (0.046) (0.026) (0.048) (0.026) (0.048) (0.026) (0.048) (0.024) (0.049) (0.024)

δ1 0.035 0.074 0.041 0.079 -0.058 -0.100 -0.043 -0.082 -0.067 -0.114 -0.076 -0.127 -0.006 -0.017 -0.010 -0.022

(0.025) (0.044) (0.025) (0.044) (0.029) (0.050) (0.030) (0.050) (0.031) (0.048) (0.031) (0.048) (0.036) (0.050) (0.036) (0.051)

ξQ −0.021 -0.022 0.005 0.005 -0.296 -0.297 -0.187 -0.188 -0.813 -0.817 -0.811 -0.815 -0.768 -0.769 -0.834 -0.834

(0.130) (0.205) (0.234) (0.182) (0.228) (0.204) (0.251) (0.229) (0.195) (0.198) (0.251) (0.315) (0.215) (0.152) (0.208) (0.176)

ϕQ 0.978 0.978 0.980 0.980 0.984 0.984 0.994 0.994 0.937 0.936 0.936 0.936 0.933 0.933 0.926 0.926

(0.016) (0.022) (0.025) (0.020) (0.023) (0.021) (0.025) (0.023) (0.020) (0.020) (0.026) (0.032) (0.022) (0.014) (0.021) (0.018)

τ1,Q −0.115 -0.115 -0.115 -0.115 -0.076 -0.076 -0.077 -0.077 0.007 0.007 0.006 0.006 -0.080 -0.080 -0.081 -0.081

(0.010) (0.010) (0.010) (0.010) (0.008) (0.008) (0.008) (0.008) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

τ2,Q 0.137 0.137 0.137 0.138 0.115 0.115 0.114 0.114 0.153 0.153 0.153 0.153 0.110 0.110 0.110 0.110

(0.006) (0.007) (0.007) (0.007) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.007) (0.006) (0.005) (0.006) (0.006)

σ2
u,Q 0.366 0.366 0.363 0.363 0.273 0.273 0.272 0.272 0.326 0.326 0.325 0.325 0.291 0.291 0.290 0.290

(0.008) (0.008) (0.008) (0.008) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.006) (0.006)

ρ 0.911 0.911 0.911 0.911 0.927 0.927 0.927 0.927 0.932 0.932 0.932 0.932 0.946 0.946 0.946 0.946

(0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

ν 8.935 8.936 9.146 9.140 11.886 11.889 12.130 12.145 7.139 7.139 7.295 7.296 8.808 8.811 8.850 8.850

(1.783) (0.814) (0.365) (0.285) (0.699) (0.279) (0.586) (0.442) (0.354) (0.385) (0.305) (0.501) (0.377) (1.920) (0.563) (0.702)

ℓr 13223.361 13223.359 13227.531 13227.518 14281.794 14281.803 14284.034 14284.063 13528.720 13528.737 13532.400 13532.409 14257.275 14257.274 14258.011 14258.012

L (θ) 10464.304 10464.722 10482.557 10482.767 12897.490 12897.626 12904.855 12905.156 11641.340 11641.923 11652.579 11653.158 12816.422 12816.466 12828.086 12828.140

In-sample parameter estimates for the full sample period 2002/01/01 – 2018/04/30. Estimates refer to the TV-RGARCH (TV-RG) and ETV-RGARCH

(ETV-RG) models which are based on the time-varying variance of the measurement error: σ2
uR,t = exp{δ0 +δ1V (Yt−1)}. The function V (·) corresponds

to the identity function for TV-(Heteroskedastic)RG and ETV-(Heteroskedastic)RG and the logarithm for TV-HRG∗ and ETV-HRG∗. ℓr: partial log-

likelihood. L (θ): log-likelihood. Standard errors are reported in parentheses. Parameters that are not significant at the 5% level are reported in boldface.
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