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Abstract

This paper proposes novel approaches to the modeling of attenuation bias effects
in volatility forecasting. Our strategy relies on suitable generalizations of the
Realized GARCH model by Hansen et al. (2012) where the impact of lagged
realized measures on the current conditional variance is weighted according to
the accuracy of the measure itself at that specific time point. This feature
allows assigning more weight to lagged volatilities when they are more accurately
measured. The ability of the proposed models to generate accurate forecasts of
volatility and related tail risk measures, Value-at-Risk and Expected Shortfall, is
assessed by means of an application to a set of major stock market indices. The
results of the empirical analysis show that the proposed specifications are able to
outperform standard Realized GARCH models in terms of out-of-sample forecast
performance under both statistical and economic criteria.

JEL Codes: C58, C22 ,C53.

Keywords: Realized GARCH, Realized Volatility, Realized Quarticity, Attenuation
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1 Introduction

It is widely acknowledged that the use of realized volatility measures (Hansen and
Lunde, 2011) can be beneficial for improving the accuracy of volatility forecasts on a
daily scale. This is typically done by choosing one of the following approaches.

First, dynamic models can be directly fitted to time series of realized measures.
Examples include the Heterogeneous AutoRegressive (HAR) (Corsi, 2009) and the



class of Multiplicative Error Models (MEM) (Engle, 2002; Engle and Gallo, 2006). A
drawback of this approach is that the focus is on the estimation of the expected level
of the realized measure, rather than on the estimation of the conditional variance of
returns. As clarified in the next section, realized measures are designed to consistently
estimate the integrated variance, which is related to but different from, the conditional
variance. Namely, in the absence of microstructure noise and jumps, the integrated
variance can be interpreted as an unbiased estimator of the conditional variance of
returns.

The second approach makes use of time series models for daily returns, e.g.
GARCH-type models, where the conditional variance is driven by one or more
realized measures. The main idea is to replace a noisy volatility proxy, such as the
squared daily returns used in standard GARCH models, with a more efficient realized
measure. Differently from the above-mentioned approach, in this case both low (daily
returns) and high (realized measures) frequency information is employed in the model.
Examples of models in this class include the HEAVY model of Shephard and Sheppard
(2010) and the Realized GARCH model of Hansen et al. (2012). These two models
are closely related but, nevertheless, are characterized by some distinctive features.
Realized GARCH models include a measurement equation, allowing one to gain, in
a fully data-driven fashion, deeper insight on the statistical properties of the realized
measure and its relationship with the latent volatility. In addition, the measurement
equation offers a convenient framework for simulation and generation of multi-step
ahead forecasts. Differently, in HEAVY models, the generation of multi-step ahead
forecasts is guaranteed by the inclusion of an additional dynamic updating equation for
the conditional expectation of the chosen realized measure.

A complication arising with both approaches is that realized measures are noisy
estimates of the underlying integrated variance, generating a classical errors-in-
variables problem. This typically leads to the rise of what is often called attenuation
bias. More precisely, the estimated response of the conditional variance to the past
realized measure will be biased towards 0, compared to what we would have found
replacing the realized measure by the latent integrated variance. The size of this effect
is not constant but time-varying since it is directly related to the variability of the
volatility measurement error.

Although it is evident that accounting for this time-varying attenuation bias can
potentially lead to improved volatility forecasts, this issue has not yet received much
attention in the literature. Recently, Bollerslev et al. (2016) found that, in a HAR model,
letting the volatility persistence depend on the estimated degree of measurement error
leads to some improvement in the model’s predictive performance. In the same spirit,
Buccheri and Corsi (2019) proposed time-varying parameter HAR models, that can
account for both measurement errors and non-linearities in the dynamics of realized
measures. Moving to a GARCH framework, Shephard and Xiu (2016) found evidence
that, in a GARCH-X model, the magnitude of the response coefficients associated with
different realized volatility measures is related to the quality of the measure itself.
Finally, Hansen and Huang (2016) observed that the response of the current conditional
variance to past unexpected volatility shocks is negatively correlated with the accuracy
of the associated realized volatility measure.

Our contribution to the research in this field is threefold. First, we provide



theoretical insight on the impact of attenuation bias in the Realized GARCH
framework. Our theoretical findings are then confirmed by a Monte Carlo simulation
study taking a contaminated log-linear Realized GARCH model of order (1,1) as the
Data Generating Process. Summarizing the theoretical and empirical evidence, we find
that measurement errors in the computation of realized volatility measures lead to: i)
downward bias in the volatility reaction parameter, the so called “ARCH” coefficient;
and ii) upward bias in the volatility inertial decay parameter, the so called “GARCH”
coefficient. These two biases compensate for each other, so that the overall volatility
persistence is unaffected. Second, we develop extensions of the standard log-linear
Realized GARCH model, that account for time-varying attenuation bias effects in
the conditional variance dynamics. This is achieved by allowing the coefficients, of
the dynamic volatility updating equation of the log-linear Realized GARCH model,
to vary over time as a function of an estimator of the asymptotic variance of the
realized measure. For the realized variance estimator, this is given by a rescaling of
the integrated quarticity of intra-daily returns, while, for the log-transformed realized
variance, Corsi et al. (2008) show that the asymptotic variance depends on the ratio
of the integrated quarticity of intra-daily returns to the squared integrated variance.
As a consequence, the resulting model will give more weight to lagged volatilities
when these are more accurately measured. Third, we empirically assess the impact of
accounting for time-varying attenuation bias on the accuracy of volatility and tail-risk
forecasts. Our empirical findings on a set of international stock market indices provide
evidence that the proposed modeling approach is able to outperform the benchmark
Realized GARCH model, both in terms of purely statistical, and also economically
meaningful, loss functions. Specifically, the forecasting ability of a given model is
assessed under three different criteria. First, the predictive partial log-likelihood (as
defined in Hansen et al., 2012) is used to assess the model’s ability to predict the
conditional distribution of future returns. Second, the QLIKE loss (Patton et al., 2009)
is used to rank models according their ability to forecast volatility. Finally, we focus
on the ability to accurately predict Value-at-Risk (VaR) and Expected Shortfall (ES)
at different confidence levels. Namely, in order to assess the models’ performances
in forecasting VaR, we rely on the Quantile Loss function (Koenker, 2005), while for
evaluating joint forecasts of the pair (VaR, ES) we refer to the class of strictly consistent
loss functions proposed by Fissler and Ziegel (2016).

The paper is organized as follows. Section 2 reviews the basic theoretical
framework behind the computation of realized measures and Section 3 discusses
the Realized GARCH model of Hansen et al. (2012). In Section 4, we then
provide theoretical and empirical insight on the occurrence of attenuation bias effects
in Realized GARCH models while Section 5 illustrates the proposed time-varying
parameters Realized GARCH models. Section 6 focuses on the associated estimation
and inference procedures and Section 7 presents the results of the empirical application.
Finally, Section 8 concludes.



2 Realized measures: a short review

In recent years, the availability of high-frequency financial market data has enabled
researchers to build reliable measures of the latent daily volatility, based on the use of
intra-daily returns. In the econometric and financial literature, these are widely known
as realized volatility measures. The theoretical background to these measures is given
by the dynamic specification of the price process in continuous time. Formally, let the
logarithmic price p; of a financial asset be determined by the stochastic differential
process

dp: = W dt + 0;dW; 0<:t<T, (D

where L, and o; are the drift and instantaneous volatility processes, respectively, whilst
W; is a standard Brownian motion; o; is assumed to be independent of W;. Under
assumption of a frictionless market, the logarithmic price p; follows a semi-martingale
process.

In that case, given a sequence of partitions t — 1 =79 < 71 < ... < Ty =1, the
Quadratic Variation (QV) of log-returns r; = p, — p;_1, given by

M-1
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coincides with the Integrated Variance (IV)
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In the absence of microstructure noise and measurement errors, Barndorff-Nielsen and
Shephard (2002) show that IV is consistently estimated by Realized Volatility (RV')

M
RV, =Y r7:, 3)
i=1

where
Tti = Dt—14+iA — Pr—1+(i—1)A
is the i-th A-period intraday return, M = 1 /A. Although IV and the conditional variance

of returns do not coincide, there is a precise relationship between these two quantities:
under standard integrability conditions (Andersen et al., 2001) it can be shown that

E(IV,|F 1) = var(r;|F:1 1), 4)

where .%;_; denotes the information set at time (# — 1). In other words, the optimal
forecast of IV can be interpreted as the conditional variance of returns and the
difference between these two quantities is given by a zero mean error.

Barndorff-Nielsen and Shephard (2002) show that RV consistently estimates the
true latent volatility, when A — 0. They also find that, conditional on the observed
realization of IV, the asymptotic distribution of RV, is Gaussian
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where 1Q, = [ | o}ds is the Integrated Quarticity (/Q). This, in turn, can be
consistently estimated as

MM
RO =2 Y rii- (©)
i=1
Replacing I1Q; by RQ; in equation (5) still gives

VIRV, —1V,)
V2RO,

In financial modeling, the use of log(RYV,) is often preferred to the “plain” RV; estimator,
due to its favourable finite sample properties (see Corsi et al. (2008), among others).
The approximate asymptotic distribution of log(RV;) can be shown to be

5 N(O,1). (7)

(log(RV;) —log(1V+))

2RO
MRV?

5 N(O,1). ®)

Furthermore, Corsi et al. (2008) provide empirical evidence that, in a HAR model,
choosing the logarithmic realized variance as a dependent variable and allowing for
time-varying volatility of realized volatility leads to substantial improvements in fit
and forecasting performance.

3 Realized GARCH models

The Realized GARCH (RGARCH) model, introduced by Hansen et al. (2012), extends
the class of GARCH models by first replacing squared returns, as the driver of the
volatility dynamics, with a more efficient proxy, such as a RV measure. With this
change alone, the resulting specification can be seen as a GARCH-X model, where
the realized measure is used as an explanatory variable. A second extension is that
the Realized GARCH “completes” the GARCH-X by adding a measurement equation,
explicitly modeling the contemporaneous relationship between the realized measure
and the latent conditional variance.

Formally, let {r,} be a time series of financial returns and {x;} be a time series
of realized measures of volatility. Focus here is on the logarithmic RGARCH model,
defined via

Vt:IJt‘F\/hTZm ©)
=0+ Bh o+ V%1, (10)
5=+ oh+1(z)tu, (11)

where %, = log(x;), h = var(r;|.Z ) is the conditional variance and %, = log(h,). To
simplify the exposition, in the remainder, it is assumed that i, = E(r;|%;_1) = 0. The

innovations z; and u, are assumed to be mutually independent, with z ~ (0,1) and
111
Ur ~ (07 GI% )
iid



The function 7(z) can accommodate leverage effects, since it captures the
dependence between returns and future volatility. A common choice (see e.g. Hansen
et al. (2012)), found to be empirically satisfactory, is

T(Zt) =Tz "FTZ(Z,Z — 1) .

Substituting the measurement equation into the volatility equation, the model implies
an AR(1) representation for A,

he = (@+EY)+ (B+@Vh—1 +ywi1 , (12)

where w, = 7(z;) +u, and E(w;) = 0. The coefficient (8 + @7) reflects the persistence
in (the logarithm of) volatility, whereas 7y represents the impact of both the lagged
return and realized measure on future (log-)volatility. To ensure that the Z, is
stationary, the required restriction is § + @y < 1. Estimation of model parameters
can be easily performed by numerically maximizing a Gaussian Quasi-Likelihood
function. Regarding the statistical properties of these estimates, Li et al. (2019) have
recently formally proved their consistency and asymptotic normality for the log-linear
RGARCH model.

Compared to the linear RGARCH, the log-linear specification has two main
advantages: first, it is more flexible, since no constraints on the parameters are required
in order to ensure positivity of the conditional variance, which holds automatically
by construction; second, the logarithmic transformation substantially reduces the
heteroskedasticity of the measurement equation error term. For these reasons, this
paper exclusively focuses on the log-linear specification of the Realized GARCH
model.

4 Attenuation-bias effects in RGARCH models

In this section, our aim is to provide some insight on how attenuation bias effects can
arise in RGARCH models. In order to simplify the exposition, without implying any
loss of generality, we assume that there are no leverage effects in the measurement
equation (71 = 7, = 0) and exclude complications related to microstructure noise and
jumps. Also, in the remainder of this section we assume stationarity of the RGARCH
processes considered.

To start, let us consider a simple log-linear RGARCH model of order (1,0), where
the realized measure is replaced by the latent /V;. Referring to the notation defined in
the previous section, the resulting specification can be reformulated as an AR(1) for
IV, =log(1V,)

IVi=+mlV_ 1 +u g, (13)

where u, 7 is assumed to be a sequence of zero mean iid errors with finite variance 637 I8
W = @y @;+ & and 7 = @;y;, with the subscript / indicating that the parameters refer to
the model fitted using the frue IV;. In addition, we assume y; > 0 and f3; > 0, consistent
with recurrent empirical evidence on the dynamics of time series of realized variances.



The integrated variance is a latent variable and, in real data application, it can be
approximated by the realized variance. Letting & be a series of iid measurement errors
with finite variance 682, we can write

ﬁ/t:ﬁt+gt7

where RV ; = log(RV;). It can be shown, by standard arguments, that equation (13)
implies an ARMA(1,1) model for RV, (see Bollerslev et al. (2016))

k\‘//[:H[‘i’ﬂ]k\‘//tf]‘i“st*jr[&}f]+M[_’]. (14)
Assume now that a misspecified AR(1) model is fitted to RV ;
ﬁ/t =R+ ﬂRE‘//t—l + U R,

where u, g is an iid sequence of zero mean errors with variance 62 . Letting cg(k) =

cov(ﬁ/t,ﬁ/t,k) and ¢j(k) = cov(INV,jV,,k), for k > 0, by the assumptions made on
&, U1 and Ut R

CR(I) = C[(l) = E[C[(O) (15)
and
cr(0) = ¢;(0) + o2 (16)
It then easily follows that
~1
e (0) ol
=" = 1 17
m= oo = (1 o) )

leading to the conclusion, in line with the findings of Bollerslev et al. (2016), that
modeling the noisy RV}, instead of the latent /V;, implies an autoregressive coefficient
7g lower than that characterizing the dynamics of the latent /V;. Equation (17) clearly
shows that the impact of this attenuation bias directly depends on the noise variance

2
ratio ((F%/ ): higher ratios correspond to more substantial reductions in volatility
var(IV;

persistence.

Since the empirical properties of the observed time series of financial returns
usually require working with models of order (1,1), it is of interest to extend our
investigation to consider the impact of attenuation bias in this setting. Assuming a
RGARCH(1,1) for IV; implies that IV; follows the ARMA(1,1) model

IV, =w+mlvV, — Brug—11+uz 1, (18)

where the autoregressive coefficient is now given by m; = ; + ¢;y;, with §; > 0. By
standard theory, the following recursion holds

pl(k) :7171p1(k—1), Vk>1, (19)
where p;(k) = ¢;(k)/c;(0) is the lag-k autocorrelation function of IV,. This implies
that w

Pr
m=——".
" pik—1)



Also, it can be shown (see (Bollerslev, 1988), among others) that

(L =mpBr)(m —Br)
P = e 20)

The value of B can be then obtained as the solution to the following quadratic equation
(see Kristensen and Linton (2006))

B7+bifi+1=0, Q1)

where

_ 717]2 +1-— 27171[)1(1)
m—pr(1)

For b; < —2, a well defined solution for f; in (21) is given by

—by—\/b?—4

2

by =

Br=

The other available solution is not admissible since it is the reciprocal of the previous
one and leads to values B > 1, in contradiction with the stationarity assumption.
Taking the same approach as for the (1,0) case, let us now assume that a misspecified
ARMAC(1,1) model is identified for RV,

RV; = g+ TRRV,_\ — Brit 1 g + s &- (22)
By (15) and (19), it then follows that

__prt) _ pi(k)
T k=) k=)

so that the two models for IV, and RV; will be characterized by the same AR coefficient.
Regarding B, as previously shown for the IV model, the value of Bg, for bg < —2, can

be obtained as
—br — 4 /b12e —4

2 )

Br =

where
w41 -2mpr(1)

m — pr(1)
It can be easily shown that g is characterized by an upward bias with respect to 3;
and that this bias tends to increase with the variance of the measurement error &. Since
7y = g, the upward bias in Bg will, in turn, correspond to a downward bias in the
value of yz. To start, remind that cg(0) > ¢;(0) so that pg(1) < p;(1). Differentiating
Br with respect to pg(1) then leads to the following expression

br =

(9[31( _ % 8bR __1 o bR 7'[12—1
dpr(1) — dbgrdpr(l) 2 b2 —4 (m — pr(1))?

(23)



for bg < —2 and 0 < 7y < 1, where the latter condition follows from the stationarity
assumption. Under these constraints, it is easy to show that the derivative in (23) will
always be negative for all admissibile pg(1) values. So, as 67 increases, by (16) pg(1)
will decrease leading to an increase in the value of fg.

In order to better illustrate and interpret the relationship between the parameters
of RGARCH models of order (1,1) and the measurement error variance, we have
performed a Monte Carlo simulation study. The structure of the simulation process
can be summarized as follows:

1. Generate z ~ (0,1) and u, s %N(O,Gil), fortr=1,....T.
2. Generate an artificial log(IV;) series from the ARMA(1,1) model
f‘;l:,I,LI—!—EIIA‘;,,l—|—wl71—ﬁ1w,,1_,1, fort=1,...,T,
where w, ; = Ty (z,) + uy 1.

3. Generate returns from a RGARCH(1,1) for % P

4. Contaminate IV, by an additive measurement error (& ~ N(0,06?)), in order to
12

generate an artificial RV, series.

5. Using the ML method, fit a RGARCH(1,1) model using RV ; as a realized
measure.

6. Repeat steps (i)-(v) for ng;y, times.

The above design is implemented setting n;,, = 1000 and T = 2000, after discarding
the first 1000 observations taken as burn-in period. For the distribution of z; two

different settings have been considered: z ~ N(0,1) and z ~ \/ 52 t(v), with v =5.
11 11

Also, in order to illustrate the impact of the noise variance ratio (¢ /0, ;)> on the
magnitude of the attenuation bias, keeping the value of ¢, fixed to 0.4, three different
values of the measurement error standard deviation o, have been considered: o, €
(0.2,0.4,0.6). Finally, regarding the coefficients of the dynamic volatility equation, in
order to mimic different empirical settings, three different sets of parameter values have
been considered. The parameters of the simulated DGPs have been reported in the left
panel (columns 1-10) of Table 1. The last nine columns, in the right panel, summarize
the simulation results in terms of: simulated mean, relative bias and standard deviation
of the estimated (7yg,Bg,7g) coefficients. The simulation confirms our theoretical
findings: the Bgr and Y coefficients are affected by upward and downward biases,
respectively, while the estimates of 7z are approximately unbiased. In addition, we
find that, as o, increases, for both Bg and 79, the estimated bias tends to increase in
modulus. For Bg, we also find that, for fixed 7, the value of the estimated relative bias
tends to increase as 7; increases and f; decreases.

In conclusion of our discussion, some remarks should be made. In the simulation,
a simplified setting is considered, in which the realized measurement error is assumed
homoskedastic. However, the theoretical results reviewed in Section 2 suggest the
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Table 1: Simulated DGP settings and coefficients (columns 1-10), average estimate, relative bias and Monte Carlo standard error of the
estimated parameters Yg, Br and 7g, for ng;, = 1000 simulations from RGARCH(1,1) model (columns 11-19). Key to table: 6: average

of estimated 6 values from the ng;,, simulated series; RB(6;)= 9’*9; % % 100 (percentage relative bias); og: Monte Carlo standard errors of

estimated 0 values from the ng;,, simulated series.

Summary of estimated parameters

DGP design
Average Relative Bias Standard Error
% [} Y Br & ()] Ti1 T4 Oul Ot TR Br TR RB(y1) RB(B;) RB(m) Oy OB, Ong
N(0,1) 0.005 030 060 000 100 -0.05 0.10 040 0.20 0.260 0.637 0.897 -13.333 6.167 -0.333 0.031 0.028 0.016
N(0,1) 0.005 040 050 0.00 1.00 -0.05 0.10 040 0.20 0.347 0.551 0.898 -13.250 10.200 -0.222 0.032 0.027 0.014
N(0,1) 0.005 0.60 030 0.00 1.00 -0.05 0.10 040 0.20 0.515 0.382 0.897 -14.167  27.333 -0.333 0.032 0.026 0.012
N(0,1) 0.005 030 060 000 100 -0.05 0.10 040 0.40 0.194 0.703 0.896 -35.333 17.167 -0.444 0.027 0.029 0.019
N(0,1) 0.005 040 0.50 0.00 1.00 -0.05 0.10 040 0.40 0.257 0.640 0.897 -35.750  28.000 -0.333 0.028 0.029 0.016
N(0,1) 0.005 0.60 030 0.00 1.00 -0.05 0.10 040 0.40 0.387 0.510 0.896 -35.500  70.000 -0.444 0.028 0.027 0.014
N(0,1) 0.005 030 060 000 100 -0.05 0.10 040 0.60 0.140 0.756 0.895 -53.333  26.000 -0.556 0.022 0.032 0.023
N(0,1) 0.005 040 050 0.00 1.00 -0.05 0.10 040 0.60 0.190 0.707 0.896 -52.500  41.400 -0.444 0.023 0.030 0.019
N(0,1) 0.005 0.60 030 0.00 1.00 -0.05 0.10 040 0.60 0.289 0.610 0.897 -51.833  103.333 -0.333 0.025 0.028 0.015
t(0,1,5) 0.005 030 0.60 0.00 1.00 -0.05 0.10 040 020 0.267 0.629 0.897 -11.000 4.833 -0.333 0.032 0.027 0.015
1(0,1,5) 0.005 040 0.50 0.00 1.00 -0.05 0.10 040 0.20 0.359 0.542 0.898 -10.250 8.400 -0.222 0.041 0.026 0.013
1(0,1,5) 0.005 0.60 0.30 0.00 1.00 -0.05 0.10 040 0.20 0.534 0368 0.898 -11.000  22.667 -0.222 0.048 0.027 0.012
t(0,1,5) 0.005 030 0.60 0.00 100 -0.05 0.10 040 0.40 0.203 0.693 0.897 -32.333 15.500 -0.333 0.031 0.030 0.017
1(0,1,5) 0.005 040 0.50 0.00 1.00 -0.05 0.10 040 0.40 0.275 0.621 0.897 -31.250  24.200 -0.333 0.035 0.030 0.015
1(0,1,5) 0.005 0.60 0.30 0.00 1.00 -0.05 0.10 040 0.40 0.409 0.491 0.898 -31.833  63.667 -0.222 0.048 0.033 0.013
1(0,1,5) 0.005 030 0.60 0.00 1.00 -0.05 0.10 040 0.60 0.154 0.739 0.893 -48.667  23.167 -0.778 0.034 0.063 0.062
1(0,1,5) 0.005 040 0.50 0.00 1.00 -0.05 0.10 040 0.60 0.207 0.689 0.896 —-48.250  37.800 -0.444 0.032 0.032 0.018

1(0,1,5) 0.005 0.60 0.30 0.00 1.00 -0.05 0.10 040 0.60 0313 0.586 0.897 -47.833 95333 -0.333 0.039 0.035 0.015




assumption of homoskedastic measurement errors is an evident over-simplification.
In the presence of a time-varying measurement error variance, the size of the
attenuation bias, for both ¥ and f, is expected to be time-varying as a function of
the value of this variance. This issue is addressed in the next section, proposing
and discussing extensions of the standard RGARCH model that can account for time-
varying attenuation bias effects.

5 Time-Varying Coefficient Realized GARCH models
with dynamic attenuation bias

In the previous section, evidence is provided on the impact that measurement errors,
arising in the approximation of IV via the discretely sampled RV, can have on the
dynamic properties of the conditional variance in Realized GARCH models. Here,
relying on this evidence, we propose a generalization of the basic Realized GARCH
specification, accounting for dynamic attenuation bias effects; effects due to the time-
varying variability of measurement errors in ex-post volatility estimation. As in
Bollerslev et al. (2016), a natural solution to deal with this issue is to consider time-
varying parameter models, where the response of log(#; ) to the lagged realized measure
indirectly depends on the value of GI%R,I’ through the ratio RQ;_ /RV?

Practical implementation of these ideas in the RGARCH framework leads to the
Time-Varying Realized GARCH (TV-RGARCH) model, as defined by the following
equations

h=0+Bh_1+%RV,_, (24)
RV, =&+ @rh +Tr(z) + s (25)
%=v+nY1, (26)
B =B+BiYi-1, 27)

where RQ, = log(vRQ,), Y, = log(¥;) = log(v/RO: /RV;) = RQ, — RV,. Consistently
with the evidence provided in Section 4, the fitted values of the y; and B; coefficients
are expected to have negative and positive signs, respectively. If this holds, at time
t — 1, lower values of 17,,1 will correspond to higher (lower) values of % (B;). It
can be immediately noted that the RGARCH model is nested in the TV-RGARCH
specification for y; = B; = 0.

By simple algebra, the TV-RGARCH model can be further generalized by replacing
the specifications in equations (26)-(27) by the following

%=Y+%RO_ + 1RV, 1, (28)
B =B+ BiRO, 1 + PRV, ;. (29)

We call the resulting model Extended TV-RGARCH (ETV-RGARCH). Equations (28)

11



and (29) can further be re-parameterized setting

r=-n+ny,
B:=—-Bi+ng,

making evident that the ETV-RGARCH nests the TV-RGARCH model for ny = ng =
0. So, under the null of a TV-RGARCH model, we have y» = —v1 and B, = —f;.
Thus, the estimated 9» and 3, coefficients are expected to be, respectively, positive and
negative.

In order to make the (E)TV-RGARCH model dynamically complete and allow the
generation of multi-step ahead foreceEts, we need to augment equations (24)-(27) with
a further measurement equation for RQ,

RO, = &g+ Pohy+To(zr) +tr g (30)
Conditional on .%;_, we assume that (u g,u; o) and z; are stochastically independent
and
2
o O.RO,
R F ) ) ~ MVNL(0,5),  Zu= ko PROTURONC)
U0 iid PR,0 Ou.R Ou,0 GLLQ

where the notation MVN,(u,X) indicates a bivariate Normal distribution with
expectation (1 and variance-covariance matrix X.

Remark 1. We model u; g, the error term in the measurement equation for RV t» as being
conditionally homoskedastic. This assumption is indeed not central to our approach
and could be easily relaxed. In this respect, recalling the discussion in Section 4, the
term u; g, being given by some function of two different error sources, has a complex
form. Of these two error sources: the first is given by the random measurement error
related to the discrepancy between the log-transformed realized measure and the latent
1V, that is &, in the example provided in Section 4; the second source of error is related
to the discrepancy between IV, and the log-transformed conditional variance #;, that is
we 1 = u; 1+ 7r(2), adding leverage effects to the example provided in Section 4. While
it could be a reasonable simplification to assume that u,; ; and z;, are homoskedastic,
recall Section 2, the same of course does not hold for the realized measurement error
&. So, conditional heteroskedasticity of & could potentially provide support for the
hypothesis of conditional heteroskedasticity of u; g. However, the size of this effect,
and its empirical detectability, will inevitably depend on the relative variabilities of
the components of u; g, i.e. & and w;;. To investigate the presence of conditional
heteroskedasticity in the u; p series, as a robustness check, we have considered an
alternative model specification where the conditional variance of the RV measurement
equation noise is time-varying, i.e.
(ur R|F1-1) il.NdN(OvGL%R,z)

Since the variance of the realized measurement error & is a function of the ratio

1Q,/IV?, it seems natural to model GquJ as a function of its empirical counterpart
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RQ, /RV}?. Namely, motivated by standard results on the asymptotic distribution of RV,
in order to model the dynamics of o, letting ¥; = +/RQ;/RV;, we have considered
the following specification

LtR 1

ol =exp{&+6V (Y_1)}, 31

where the function V (.) has been chosen to be either the log or the identity function;
the exponential formulation guarantees the positivity of the estimated variance, thus
avoiding to impose any constraints on the parameters &y and &;. For 6; = 0 the (E)TV-
RGARCH model is obtained as a special case.

Remark 2. As shown by Hansen et al. (2012) for the basic RGARCH model, the TV-
RGARCH model can be also represented as a Hidden Markov Model (HMM) driven by
the latent chain h, Namely, substituting the measurement equations for RV, and RQ,

into ht, we obtain the following representation of the conditional variance equation of
the ETV-RGARCH model

Z[ = A{)"’A«]’[’/;[f] +)L«2’/:l{[271 +W;<71 5 (32)
where, under the stated assumptions, w? is a sequence of iid errors' defined as

w; = K3Wr; + Y1&rWo, + YiWr: Wo, + YzWIZQJ (33)

and

Ao = o+ vE+néréo + &R,
Ay =Ko+ Kiwg—1 +KoWg -1,

= Bi9o + Bk + N1 PrP + 1203 .
Ko =B+ Bi1&o+ Brbr + YPr + 11ErPo + V1 &0 OR + 2126R PR
ki =P+ %@ +20¢r,
=P +7¢r,
i =Y+ 1 +2nkr.

The equivalent representation for TV-RGARCH models can be obtained by substituting
%> = —y1 and B, = —p; in the above equations. So, although both (E)TV-RGARCH
and RGARCH models can be written as HMM models, the stochastic structure of the
(E)TV-RGARCH model is more complex than that of the RGARCH model, since the
model is now driven by a non-linear latent chain. This feature substantially complicates
the derivation of stationarity and ergodicity conditions for the proposed TV-RGARCH
models. Investigation of these problems goes beyond the scope of this paper and has
been currently left for future research.

Note that E(w}) # 0. However, without any loss of generality, equation (32) could be written as
b= o+ Aoy + Ak

where Ag = A9 + E(w}) and W, = w — E(w}), so that E(w,) = 0. The value of E(w}) can be derived by
simple algebra.

13



6 Estimation and inference

The estimation of model parameters can be easily done by numerically maximizing
the likelihood function implied by appropriate assumptions made on the model’s error
terms z;, u; g and u; o. In particular, the joint conditional density of (rt,ﬁ/ ,,@,) can
be factorized as

fr,R,Q(rtvﬁ/laE\étL%fl) = fr(rt|<%7l)fR,Q(ﬁ/ta@thw%—l)-

It follows that the contribution of the 7-th observation to the overall log-likelihood can
be decomposed as

Ur.RV,RQ|Fi-1,0) = 1og(furo(rn RV.,RQ| Fi1)) = log (f(r] Fi1))
+ tog (feo(RV,,ROIrFi 1)) (34)

Due to the normality assumption for u, formulated in Section 5, (ﬁ/ t,f(Q,M, Fi-1)

follows a MV N, distribution. Further, we assume z; ~ \/"sztv, where t,, denotes a

Student’s t distribution with v degrees of freedom. The overall log-likelihood will be
then given by

Z(rRV.RQIO) = Y log(f(nFi1)+ Y log (fro(RVi, RO, Fi-1))
=1 =1
= Er‘i‘éR,Q-

We will refer to £, and (g ¢ as the partial and measurement log-likelihoods respectively.
Under the stated distributional assumptions, we get

~ o~ —— 1~ v+l r?
(r;,RV,,RQ,|.#_1,0) = K(V)—=h———1log |1+ —"—
(0, RV1,RQ;|-71-1,0) V)=5h-= Og{Jrh,(v—z)}
1 |
) log(|Zy]) — Eu,Zu l,, (35)
forr=1,...,T, where 0 is the vector of unknown model parameters, u; = (u; g, ul7Q)/

—

and K(v) =log(K(v)), with

(v =2)I(3)
The MLE of 6 can be obtained by numerically maximizing the aggregated log-
likelihood

T —~ ——
Or = argmaxz Z(r,RV,RQ|0).
6 =1

Under the usual regularity conditions, standard errors for the elements of @T can be
easily obtained from the numerically approximated observed Fisher information matrix
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and inference can be performed relying on the asymptotic normality of 87. In order to
double check the validity of the standard asymptotic results on the distribution of or,
as in Borup and Jakobsen (2019), exploiting the dynamically complete nature of the
proposed model, we have implemented a parametric Bootstrap resampling algorithm
along the lines described in Paparoditis and Politis (2009). The main steps of the
Bootstrap resampling procedure are summarized below. Throughout the presentation,
the following notational conventions will be adopted: X (B) denotes the Bootstrap
replicate of X, { is the estimate of coefficient y based on in-sample data and, finally,
the notation lf/(B) denotes the estimate of coefficient y based on bootstrapped data.

1. Save the residual vector from in-sample estimation

€ = (Zla ﬁz,R, ﬁt,Q)/

and standardize it using the estimated variance and covariance matrix of e;

where

at:ie_l/zet, tzl,

7T7

& 1 )
Ye = (02,1 iu )

with A~1/2 denoting the Cholesky decomposition of the matrix A and 0, being
a (r x s) matrix of zeros.

. Resample with replacement the time series of a, to generate the time series of

A, !/
Bootstrap residuals eEB) = Zl/ 2a,(B) = (2,(3) ,ﬁ,(?,ﬁt(ég)) .

. Using the e,(B>

!
t =1,...,T. The set of recursions needed to generate (rt(B) ,RV,(B>,RQI(B)> is
given by

, recursively generate a Bootstrap replicate of (r;,RV;,RQ;)’ for

A

B+ i log ( rOY®) /RV}BE) —B+pY®),

#P = g+ilog (@/R‘é@) = 7+077,

W= oV B
W= P,
o = E+on" 4arg” +u”,

fort=1...

Il
T~
2
=~
=
J
Q
=
~

2 A A !/
7. where & = (&n.do) . 0 = (Pr.00)'. 4"
! 2 !
("‘f(l;)”t(BQ)) &= (ZSB),(ZZ(Z”) —1) and
.- Bk TR
T %I,Q %Z,Q .
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4. Fit the model to the Bootstrapped data <rt(B),RV,(B),RQ,( )> and save the

. ~ (B
estimated parameter vector 6( >.

5. Repeat steps (ii)-(iv) for B = 999 times.

The resampling procedure described above is later used to provide an estimate of
the sampling distributions of the estimated coefficients, along with standard errors
and confidence intervals. The results of this exercise, discussed in detail in Section
7.2, suggest that, overall, the asymptotic normality assumption deriving from standard
likelihood theory provides a close approximation to the estimated distributions.

7 Empirical application

7.1 Data

In order to assess the merits of the proposed approach for risk management, we present
the results of an empirical application to four major stock market indices: DAX 30
(Germany), FTSE 100 (UK), Hang Seng (Hong Kong) and S&P 500 (USA). For each
of these markets, 5-minute time series of the index value were downloaded from
Thomson Reuters Tick History considering the period from January 2002 to April
2018. Daily open-to-close returns and realized measures were then computed limiting
the attention to the official trading hours of each index. Furthermore, the data were
cleaned removing the last day of each year, some extreme outliers and the last 5-
minute observation of each trading day, as usual. Due to the cleaning procedure,
different trading days and holiday variations, the sample period consists of 4096 daily
observations for DAX 30, 4063 for FTSE 100, 3951 for Hang Seng (HSI) and 4014 for
S&P 500.

Looking at the time plots of the daily open-to-close log-returns (Figure 1) and 5-
minute RVs (Figure 2), four important events can be detected. First, the effects of the
2008-2009 financial crisis are clearly visible in all the series, while the effects of the
2011-2012 sovereign debt crisis are more easily detectable in the US and European
series, being particularly evident for the DAX series. Similarly, at the beginning of
the sample period, a high volatility period, mainly related to the explosion of the dot-
com bubble and the introduction of Euro, is mostly visible for the DAX and FTSE
indices, less clearly evident in the S&P 500 and not detectable in the HSI index. Last, a
high volatility period affects, with different intensities, all the markets across 2015 and
2016. Different events can be identified as potential determinants of this phenomenon:
including the Chinese stock market turbulence; the Greek debt default in 2015; the
end of quantitative easing in the United States at the end of 2014; and the Brexit
referendum in 2016. The main descriptive statistics of returns are reported in Table
15 in the Empirical Appendix.

In line with asymptotic theory, a point measure of the accuracy of the log-
transformed realized variance is obtained by computing the ratio ¥,. The time series
plots in Figure 3 reveal that, for all markets considered, the log-ratio Y; is characterized
by remarkable short term fluctuations, thus supporting the intuition that accounting

16



Figure 1: Time series of daily open-to-close log-returns
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Daily log-returns for the stock market indices DAX 30 (top-left), FTSE 100 (top-right), Hang Seng (bottom-
left) and S&P500 (bottom-right) for the full sample period 2002/01/01 — 2018/04/30.

for a time-varying attenuation bias effect could be beneficial for volatility and risk
forecasting.

7.2 In-sample analysis

Referring to the four stock market indices considered, this section assesses the in-
sample performance of the proposed models, taking the standard RGARCH model as
a benchmark and considering the full sample period from 2002/01/01 to 2018/04/30.
Model parameters have been estimated by maximum likelihood as described in Section
6. Table 2 reports the estimated coefficients and standard errors, based on the observed
information matrix. Overall, the fitted coefficients are in most cases significantly
different from O at the usual 5% level. The only exceptions are the intercepts of the
volatility, @, and measurement equations, &g and ijQ, that, in some cases, result to be
not significantly different from 0. Also, for DAX 30 and FTSE 100, the 3 coefficient
is not significant for the ETV-RGARCH. Similarly, the 7|  and 7; o coefficients are
never significant for the HST index. The g and @g coefficients are, overall, very close
to 0 and 1, respectively, suggesting that the log-transformed RV is an approximately
unbiased proxy of the latent log(#;).

Focusing on the TV-RGARCH models, it is interesting to see that the estimated ¥,
and B; coefficients are significantly different from O at the usual 5% level, providing
evidence in favor of the presence of time-varying attenuation bias effects. Also, as
expected, 71 and ; have negative and positive signs, respectively, confirming the
intuition that, when log(RV;_) provides a more (less) accurate estimate of the latent
signal log(1V;), the following hold: i) the impact of RV,_| on hy, as measured by
¥, is higher (lower); ii) the contribution of the inertial component log(/,_;) to the
value of log(h, ), as measured by f3;, is lower (higher). This behavior is clearly evident
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Table 2: In-sample estimation results

DAX 30 FTSE 100 HSI S&P 500
RG TV-RG  ETV-RG RG TV.RG  ETV-RG RG TV-RG  ETV-RG RG TV-RG  ETV-RG
) ~0.171 —0.352 —0.085 ~0.039 —0.090 0.190 ~0.096 -0.262 0.260 ~0.002 —0.157 1.082
(0.082) (0.096) (0.367) (0.089) (0.100) (0.108) (0.062) (0.076) (0.559) (0.109) (0.111) (0.322)
y 0.362 0.471 1.061 0.363 0.442 0.876 0.226 0.304 0.668 0.479 0.546 0.796
0.016) (0.022) 0.111) (0.016) (0.022) (0.120) (0.013) 0.018) (0.097) 0.019) (0.021) (0.129)
7 — -0.134 -0.195 — -0.113 -0.204 — -0.126 -0.164 — -0.214 -0.210
(0.034) (0.037) (0.043) (0.050) (0.035) (0.036) (0.057) (0.059)
% — — 0.252 — — 0.242 — — 0.194 — — 0.222
(0.043) (0.056) (0.039) (0.063)
B 0.614 0.474 ~0.060 0.619 0.523 0.139 0.752 0.646 0.380 0.508 0.419 0.420
0.015) (0.022) (0.137) (0.015) (0.021) (0.125) (0.014) (0.019) (0.138) 0.017) (0.020) (0.128)
Bi — 0.166 0.227 — 0.148 0.241 — 0.159 0.197 — 0.250 0.248
(0.034) (0.036) (0.044) (0.051) (0.036) (0.037) (0.058) (0.060)
B> — — -0.281 — — -0.277 — — -0.224 — — —0.247
(0.043) (0.057) (0.041) (0.064)
& -0.068 0.008 0.037 -0.401 -0.385 -0.282 -0.257 -0.380 -0.373 -0.629 -0.557 -0.628
0.213) (0.210) (0.193) (0.225) (0.221) (0.184) (0.243) 0.251) (0.370) (0.205) (0.188) (0.199)
or 1.008 1.015 1.018 1.000 1.001 1.011 1.023 1.010 1.010 0.963 0.970 0.963
(0.023) (0.023) (0.021) (0.023) (0.022) (0.018) (0.025) (0.026) (0.038) 0.021) (0.019) (0.020)
TiR -0.135 -0.133 -0.134 -0.087 -0.089 -0.090 0.002 0.003 0.003 -0.107 -0.107 -0.108
(0.008) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.008) (0.008) (0.008)
Tor 0.107 0.108 0.107 0.100 0.098 0.097 0.141 0.140 0.140 0.099 0.099 0.099
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.005) (0.005) (0.005)
oZr 0.219 0.213 0.211 0.181 0.177 0.176 0.212 0.208 0.207 0.234 0.231 0.230
(0.005) (0.005) (0.005) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
& — -0.015 0.015 — -0.289 —0.187 — -0.817 -0.796 — -0.767 -0.834
(0.208) (0.191) (0.221) (0.186) (0.249) (0.359) (0.182) (0.194)
00 — 0.979 0.981 — 0.984 0.994 — 0.936 0.938 — 0.933 0.926
(0.022) (0.021) (0.022) (0.019) (0.026) (0.036) (0.018) (0.019)
Tip — -0.115 -0.115 — -0.077 -0.077 — 0.006 0.006 — -0.080 -0.081
(0.010) (0.010) (0.008) (0.008) (0.009) (0.009) (0.009) (0.009)
To — 0.137 0.138 — 0.114 0.114 — 0.153 0.153 — 0.110 0.110
(0.007) (0.007) (0.006) (0.006) (0.007) (0.007) (0.006) (0.006)
ol — 0.366 0.363 — 0.273 0.272 — 0.326 0.325 — 0.291 0.290
(0.008) (0.008) (0.006) (0.006) (0.007) (0.007) (0.007) (0.006)
p — 0911 0911 — 0.927 0.927 — 0.932 0.931 — 0.946 0.946
(0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
v 8.696 8.947 9.161 11.565 11.882 12.152 7.049 6.998 7.303 8.493 8.819 8.850
0.811) (0.377) (0.215) (0.520) (0.278) (1.862) (0.342) 0.351) (0.675) (0.258) (0.362) (0.364)
¢, 13215061 13223392 13227.509 14271797 14281.768  14284.177 13521.888 13528.673 13532.320 14253.075 14257.277 14258.017
£(6) 10510500 10463282 10481.143 11980.648 12895.611  12903.836 10982.892  11639.085 11649.732 11469.198  12816.408 12828.051

In-sample parameter estimates for the full sample period 2002/01/01 — 2018/04/30. ¢, partial log-likelihood. .Z(6): log-likelihood. Standard errors are
reported in parentheses. Parameters that are not significant at the 5% level are reported in boldface.



Figure 2: Time series of 5-min Realized Volatility
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Daily 5-minute Realized Volatility for the stock market indices DAX 30 (top-left), FTSE 100 (top-right),
Hang Seng (bottom-left) and S&P500 (bottom-right) for the full sample period 2002/01/01 — 2018/04/30.

from Figure 4, representing the time series of the fitted % and J; coefficients for the
TV-RGARCH model. Furthermore, the plots reveal another interesting feature: the
average of the fitted 7, (dashed line in the plot) is substantially higher than the fitted
time-invariant 7y coefficient of the standard RGARCH model (solid line in the plot). A
similar argument holds, reversed, for ;. This implies that the volatility and tail risk
estimates generated by the fitted RGARCH and TV-RGARCH models will differ due
to the action of two different factors: the first is a level effect related to the discrepancy
between E(Y) and E(f3;), on one side, and the RGARCH parameters 7y and 3, on the
other; differently, the second factor depends on short term fluctuations of the ratio ¥;
around its mean level.

The same general picture applies to the ETV-RGARCH model, with the estimated
71 and B; being negative and positive, respectively, as for the TV-RGARCH model.
Further, as expected, 7> and 3, take opposite signs. The dynamic profiles of the
time-varying coefficients y; and f; (Figure 5) are qualitatively not different from that
observed for the TV-RGARCH model. This is confirmed by Table 3, showing the
sample correlation coefficients between ¥ and 3, fitted by TV-RGARCH and ETV-
RGARCH respectively.

Table 4 reports the results of three sets of likelihood ratio tests. First, we separately
test the validity of the restrictions implied by the standard RGARCH models against
the alternative TV-RGARCH and ETV-RGARCH models. Second, we test the TV-
RGARCH hypothesis against the alternative of a more general ETV-RGARCH model.
In the first case, the reference asymptotic distribution of the test statistic under the
null is given by a xzz for the TV-RGARCH model, and by a xf, if the alternative
corresponds to an ETV-RGARCH model. In the second set, the reference distribution
for testing the TV-RGARCH model against a more general ETV-RGARCH is given
by a 7522 distribution. In both cases, since the full-likelihoods of RGARCH and (E)TV-
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Figure 3: Time series of log (\gvitQ’)
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Daily log-ratio log (\/RQ, / RV,) for the stock market indices DAX 30 (top-left), FTSE 100 (top-right), Hang
Seng (bottom-left) and S&P500 (bottom-right) for the full sample period 2002/01/01 — 2018/04/30.

RGARCH are based on different information sets, testing is based on the partial log-
likelihood component ¢,. For all the markets considered, the benchmark RGARCH
model is always rejected at the usual 5% significance level against both alternatives:
TV-RGARCH and ETV-RGARCH. When testing the TV-RGARCH against the more
general ETV-RGARCH, the data provide mixed evidence, since we find that only in
two cases out of four, DAX 30 and HSI, the null is rejected. The last set of likelihood
ratio tests, in the bottom panel of Table 4, again compares the TV-RGARCH model,
under the null, against the alternative hypothesis of an ETV-RGARCH but using the
full likelihood #(0). The results show that, when considering the full likelihood,
the TV-RGARCH model is always rejected against the more flexible ETV-RGARCH
model.

Table 3: Sample correlation coefficients between % (py) and f; (pg) fitted by TV-
RGARCH and ETV-RGARCH models.

DAX 30 FTSE100 HSI S&P 500
Py 0.640 0.722 0.811 0.952
Pp 0.720 0.799 0.892 1.000

As a robustness check, we also consider the estimation of heteroskedastic variants
of the TV-RGARCH and ETV-RGARCH, as described in Remark 1 at the end of
Section 5. Our data, however, do not provide strong evidence in favor of the presence
of heteroskedasticity, for both the conditional variance specifications considered.
Namely, the estimation results for heteroskedastic models, reported in Table 18 in
the Empirical Appendix, suggest that the homoskedasticity assumption (corresponding
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Figure 4: Time series of estimated ¥ and f3; for TV-RGARCH
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Time-varying ¥ and B, of TV-RGARCH model for the stock market indices DAX 30 (top-left), FTSE 100
(top-right), Hang Seng (bottom-left) and S&P500 (bottom-right) for the full sample period 2002/01/01 —
2018/04/30. Gray solid-line: RGARCH coefficient. Gray dashed-line: average of TV-RGARCH time-
varying coefficient.
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Figure 5: Time series of estimated % and ; for ETV-RGARCH
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Table 4: Likelihood ratio statistics for the full sample period 2002/01/01 —2018/04/30.
Top panel: likelihood ratio statistics for the partial log-likelihood ¢,. Bottom panel:
likelihood ratio statistics for the full log-likelihood .#(6). P-values are reported in
parentheses.

DAX 30 FTSE 100 HSI S&P 500

TV-RG ETV-RG TV-RG ETV-RG TV-RG ETV-RG TV-RG ETV-RG

RG 16.663  24.896 19.941 24.760 13.570  20.864 8.404 9.890
(0.000)  (0.000) (0.000)  (0.000) (0.001)  (0.000) (0.015) (0.042)

TV-RG — 8.233 — 4.818 — 7.295 — 1.481
(0.016) (0.090) (0.026) 0.477)

TV-RG — 35.722 — 16.450 — 21.294 — 23.286
(0.000) (0.000) (0.000) (0.000)

to 8; = 0) cannot be rejected in the majority of cases. Also, the introduction of
the heteroskedastic component does not seem to have a remarkable impact on the
estimates of the other model parameters. Accordingly, a simple likelihood ratio
test, comparing heteroskedastic vs homoskedastic models, would reveal that the
introduction of the heteroskedastic component, in the vast majority of cases, does not
bring to any significant improvement in the overall likelihood .. Finally, we focused
our attention on the partial likelihood ¢, which measures the ability of the fitted model
to reproduce the conditional distribution of returns, hence being a the critical entity for
risk management applications. Our findings indeed show that increments in ¢,, when
present, are always negligible. So, the introduction of the heteroskedastic component
is not expected to bring any noticeable gains for tail risk forecasting. It is worth noting
that, under this respect, our findings are in line with those of and Hansen et al. (2012)
and Hansen and Huang (2016).

The above results are based on standard maximum likelihood theory. In order
to double check the validity of the implied asymptotic approximation, we have
implemented the Bootstrap resampling procedure described in Section 6 for all the
model specifications considered. However, in order to save space, in this section
we only report results for the ETV-RGARCH model. The results obtained for the
RGARCH and TV-RGARCH models, qualitatively similar to those reported for the
ETV-RGARCH, have been reported in the Empirical Appendix.

Figure 6 reports the histograms of the standardized Bootstrap estimates for the
ETV-RGARCH model’s parameters. In general, the plots suggest that the empirical
distributions of the estimates are consistent with the asymptotic normality assumption.
Mild positive skewness is detected only for the estimated degrees of freedom parameter
v. Furthermore, Table 5 shows that the Bootstrap means and standard errors are in
general very close to the ML estimated coefficients and associated asymptotic standard
errors. In addition, the table also reports the 95% Bootstrap percentile confidence
intervals for each of the estimated coefficients. Looking at the estimated intervals it can
be immediately noted how the assessment of the significance of estimated coefficients
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based on asymptotic theory is in close agreement with the findings deriving from the
analysis of the Bootstrap intervals.

7.3 Out-of-sample analysis

In this section the proposed model specifications are used to generate out-of-sample
one-step-ahead forecasts of volatility, VaR and ES. Our forecasting design is based on
arolling window scheme with daily re-estimation. For all markets, the initial in-sample
period covers the time interval from 2002/01/01 to 2008/05/31, resulting in different
time series lengths for the different indices considered: 1604 for the DAX 30, 1590 for
the FTSE 100, 1555 for the HST and 1558 for the S&P 500. For each index, subsequent
re-estimations are then based over moving windows of the same length. The out-of-
sample period has been chosen to allow the inclusion of the most relevant financial
events of the current century, starting from the climax of the 2008-20009 financial crisis,
while still keeping a sufficiently long in-sample estimation window.

The performances of the proposed models are compared with those of the standard
RGARCH, taken as a benchmark. Also, as a further robustness check, we consider
a set of alternative specifications of TV-RGARCH models characterized by different
specifications of the time-varying coefficients ; and %. These have been summarized
in Table 6. The aim is here to double check the appropriateness of the specifications of
7% and B, discussed in Section 5 and the sensitivity of our empirical results to the model
assumed for ¥ and S;.

Next, we assess the out-of-sample forecasting ability of the model considering
different loss functions. First, the ability to accurately forecast the distribution of future
returns, for each model, is assessed by computing, as in Hansen et al. (2012), the out-
of-sample predictive partial log-likelihood
V41

2

A A —— 1 A
2, (9)z+1 =K(V)— Elog (hisr) — log

2
4=l | 36
i1 (V—2)

fort =T,...,T + H— 1, with H being the length of the out-of-sample forecasting
period.

The accuracy in forecasting future volatility is then evaluated by means of the
QLIKE loss function. This choice is motivated by two considerations. First, the QLIKE
is robust to noisy volatility proxies (Patton, 2011). Second, compared to other robust
alternatives, this loss function has been found to be more powerful in rejecting poorly
performing predictors (Liu et al., 2015). The QLIKE loss has been computed according

to the formula
H

1 - RVr ;i
QLIKE = 7 ) <1og(hr+j) + P s ) ; (37)

j=1 T+j

where fzr+ j is the 1-step-ahead conditional variance forecast at time 7"+ j. It is trivial
to show that models providing better forecasts will be characterized by lower values of
QLIKE.

Furthermore, the quality of individual VaR forecasts is assessed using the
Conditional Coverage test of Christoffersen (1998) and the Dynamic Quantile test of
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Figure 6: Histograms and superimposed non-parametric densities of 999 standardized
Bootstrap estimates of the parameters of the ETV-RGARCH model
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Table 5: Summary of Bootstrap estimates for the ETV-RGARCH model

DAX 30 FTSE 100 HSI S&P 500

Coef g SE SEB qooxs  qo9rs Coef Up SE SEB qooxs qo9is Coef g SE SEB  qo02s qo9rs Coef g SE SEB  qoos o975
©  -0.085 -0.168 0.367 0.402 -1.049 0551 0.190  0.121 0.108 0374 -0.682 0805 0260 0.175 0559 0497 -0.983 1.051  1.082 0822 0322 0340 0078 1360
y 1061 1.056 0.111 0.104 0854 1256 0876 0870 0.20 0.121 0.638 1.099  0.668 0.667 0097 0.106 0469 0.880 0796 0779 0.129 0.125 0535 1.019
N -0.195 -0.194 0.037 0036 -0.267 -0.122  -0204 -0.203 0.050 0.044 —0.291 -0.113 -0.164 -0.165 0.036 0.038 —0.240 —0.087 —0.210 —0.211 0.059 0.062 —0.341 —-0.095
0252 0251 0043 0040 0172 0328 0242 0241 0056 0.048 0.51 0334  0.194 0.197 0039 0042 0.114 0276 0222 0224 0063 0064 0098 0357
B -0.060 —0.072 0.137 0.111 0.302 0.153 0.139 0133 0125 0.125 -0.106 0373 0380 0365 0.38 0.119 0.120 0.604 0420 0387 0.128 0129 0.129 0.631
Bi 0227 0226 0036 0036 0154 0297 0241 0240 0051 0045 0.50 0330 0197 0.199 0037 0.040 0.118 0276 0248 0248 0.060 0062 0.131 0379
B -0281 —0.282 0.043 0040 —0.359 -0.203  -0277 -0277 0.057 0.050 -0.372 -0.183 —0.224 —0.227 0.041 0.044 0313 —0.139  —0.247 0251 0.064 0.065 -0.382 —-0.123
& 0037 0054 0193 0279 -0.463 0619  -0282 -0264 0.184 0289 -0.791 0357 -0373 —0.350 0370 0361 -1.021 0391 -0.628 —0.615 0.199 0.250 -1.073 -0.116
g 1018 1.020 0021 0030 0964 1081 1011 1013 0018 0029 0959 1075 1010 1013 0038 0037 0942 1089 0963 0964 0020 0025 0919 1015
Tig  -0.134 -0.133 0.007 0008 -0.150 -0.119  -0.090 -0.090 0.007 0.007 -0.103 -0.077  0.003 0.002 0.007 0.008 -0.013 0.017 -0.108 -0.108 0.008 0.008 -0.123 -0.094
g 0107 0109 0005 0007 0096 0.24 0097 0097 0005 0.006 0085 0108  0.40 0.40 0.006 0.006 0.130 0.I51  0.099 0.099 0005 0.006 0.088 0.111
62 0211 0211 0005 0005 0200 0221 0.176  0.175 0.004 0005 0.165 0.86 0207 0206 0005 0.007 0.94 0220 0230 0229 0005 0006 0218 0241
& 0015 0030 0191 0269 -0474 0566  -0.187 -0.170 0.186 0.286 —0.701  0.445 -0.796 -0.777 0359 0343 -1.412 -0.081  —0.834 —0.824 0.194 0.243 —1.271 -0.337
9o 0981 0983 0021 0029 0929 1.040 0994 0996 0019 0029 0943 1058 0938 0940 0036 0035 0874 1012 0926 0927 0019 0024 0882 0976
Tip -0.115 -0.115 0010 0012 -0.138 -0.093  -0.077 -0.077 0.008 0.009 -0.094 -0.061 0006 0.005 0.009 0010 -0.014 0026 -0.081 —0.081 0.009 0.010 -0.099 -0.061
T 0138 041 0007 0011 020 0164  0.114 0.114 0006 0007 0.100 0.28 053 0153 0007 0007 0.140 0.166  0.110 0.110 0006 0.007 0.096 0.125
62, 0363 0362 0008 0010 0342 0382 0272 0271 0006 0009 0254 0291 0325 0324 0007 0010 0305 0345 0290 0289 0006 0008 0274 0.305
P 0911 0911 0003 0003 0905 0916 0927 0927 0002 0003 0921 0932 0931 0931 0002 0002 0927 0936 0946 0946 0.002 0002 0942 0950
v 9.161 9257 0215 1430 7.136 12.820 12152 12.568 1.862 2.365 9.179 18.831 7303 7.399 0.675 0.789 6013 9.220 8850 9.042 0364 1239 7.104 11717
Coef: estimated coefficient; tp: mean of Bootstrap estimates; SE: asymptotic standard error ; SE.B: standard error of Bootstrap estimates; gg. o25: 2.5%

Bootstrap percentile; gg.975: 97.5% Bootstrap percentile.



Table 6:

Model specifications for robustness check

Model B equation % equation Error distribution
TV-RGARCH* B =B+ B (Y, 1) =Y+MN (Y, 1) u; ~ MVNZ(O,ZU)
TV-RGARCH*-S =B+ B (VY1) =7+7 (VY1) u, ~ MVN,(0,%y)
TV-RGARCH*-S2 =B+pBi (Yi_1)? =y+n%_1)? u, ~ MVN(0,5,)
TV-RGARCH*-2 B =B +pi(Y_)P =y+7 (Y_)P u, ~ MVN,(0,5y)

Engle and Manganelli (2004). The usual Quantile Loss (Koenker, 2005) is then used to
rank models according their ability to accurately forecast VaR. Namely, letting VaR; (o)
be the a-level one-step-ahead VaR forecast at time ¢, the Quantile Loss at level o (QLy)
is given by

H

OLq =Y (a—Lry;j)(rryj—VaRrij(@)),
=

O<a<l), (38)

where L, = I(r; < VaR,(t)).

Finally, to assess the ability of the proposed models to jointly forecast VaR and ES,
we rely on the results of Fissler and Ziegel (2016) on the joint elicitability of the couple
(VaR, ES). In particular, they show that (VaR, ES) is jointly elicitable with respect to
the following class of strictly consistent loss functions

1
FZ(r,v,ei|®,G1,G2) = (Lt—a)(Gl(Vt)_Gl(rt)+aGZ(et)Vt)
1
- GZ(et)<aLtrt_et) —g2(€t)> (39)

where G is weakly increasing, G, is strictly increasing and strictly positive, and ¢, =
G». It can be shown that the expected value of the loss in (39) is uniquely minimized by
setting v, and e; equal to the level-o¢ VaR and ES series, respectively. Following Patton
etal. (2019), we assume VaR and ES to be strictly negative and ES; (&) < VaR,(a) <0,
with G (x) = 0 and G, (x) = —1/x, resulting in the following loss function

FZP>aE;“ﬂLdn\@RAaD+‘g§ﬁg)+ng&Uﬂ)1, (40)
where ES;(¢t) is the a-level one-step-ahead ES at time 7. As for the other loss
functions, models that, over the chosen forecasting period, show lower average values
of F Zfo) are preferred.

The significance of performance gaps across different models is assessed by means

of the Model Confidence Set (MCS) (Hansen et al., 2011).
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Table 7: Predictive Partial log-likelihood (¢,) and MCS p-values using both Range (p-
value R) and Semi-Quadratic (p-value SQ) statistics. For each market index, we report
in bold the highest maximized log-likelihood value, in box models € 90% MCS
and in - models € 75% MCS. The out-of-sample period for the market indices
is 2008/06/01 — 2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE 100, 2396
for Hang Seng and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500
2, p-value R p-value SQ 2, p-value R p-value SQ 2, p-value R p-value SQ i, p-value R p-value SQ
RGARCH 8070.297  0.0002 0.0044 8668.795  0.0266 0.0674 8175.131  0.0840 0.0394 8856.416  0.1236 0.2352

TV-RGARCH*-S2  8079.344
TV-RGARCH*-S  8079.940
TV-RGARCH*-2  8079.059
TV-RGARCH* 8079.773
TV-RGARCH

8676.778
8677.034
8676.838
8677.070

8181.348 0.1780 8860.155
8182.594 8860.901
8182.614 8860.358
8182.023 0.1504 0.1352 8860.609
8079.530 8676.870 8182.835 8861.089
ETV-RGARCH 8080.683 8677.526 8183.642 8861.099

Table 8: Average values of QLIKE loss using 5-min RV as volatility proxy and MCS
p-values using both Range (p-value R) and Semi-Quadratic (p-value SQ) statistics.
For each market index, we report in bold the minimum loss value, in 'box models €
90% MCS and in - models € 75% MCS. The out-of-sample period for the market
indices is 2008/06/01 — 2018/04/30, for a total of 2492 for DAX 30, 2473 for FTSE
100, 2396 for Hang Seng and 2456 for S&P 500.

DAX 30 FTSE 100 HSI S&P 500
Average p-value R p-valueSQ  Average p-valueR  p-valueSQ  Average p-valueR  p-value SQ  Average p-valueR _ p-value SQ
RGARCH -8.2741 0.0004 0.0016 -9.0421 0.0412 0.0732 -8.8664 0.0004 0.0018 -9.0741 0.0538 0.0546
TV-RGARCH'-S2 82780 = 0.1170  0.1202 -9.0462 88797 00074 00068 90771 01654  0.1274
TV-RGARCH'-S 82787 | 0.1580  0.1490 9.0458 | 0.2040 88821 00076 00068 90780 ~ 02058  0.1554
TV-RGARCH™2  -82786 | 0.1580  0.1490 00455 02040 88825 00076 00084 90765~ 0.1674  0.1390
TV-RGARCH* 82785 01580 0.1490 9.0461 88812 00074 00068 90777 © 01908  0.1554
TV-RGARCH 82787 01580 0.1490 00455 01886 02300 88826 0.0076  0.0084 90782~ 02058  0.1554

ervroarcr  -s2sis [O000NNNNIOOON  -o.0:ss ORSONNNOTIGON -5.v: [IOONMNNIO00NN -5.077
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Table 9: One-step ahead Value at Risk backtesting at the risk level &« = 0.01. VRate:
violation rate i.e. proportion of returns smaller than VaR in the out-of-sample period.
CC p-value and DQ p-value: p-values for the Conditional Coverage and Dynamic
Quantile test, respectively. Models showing the violation rate closest to the assumed
nominal value are indicated in bold. Boxes indicate p-values lower than 5%. The out-
of-sample period for the market indices is 2008/06/01 — 2018/04/30, for a total of 2492
daily returns for DAX 30, 2473 for FTSE 100, 2396 for Hang Seng and 2456 for S&P
500.

DAX 30 FTSE 100 HSI S&P 500
VRate CCp-value DQpvalue ~ VRate CCp-value DQp-value ~ VRate CCp-value DQp-value  VRate CCp-value DQ p-value

RGARCH 0.0132 0.1932 0.3669 0.0125 0.3365 0.0598 0.0134 0.1890 0.3133 0.0159 0.0140 0.0156

TV-RGARCH*-S2  0.0112 0.6046 0.6912 0.0113 0.5006 0.0117 0.5181 0.4681 0.0147 0.0556 0.0664
TV-RGARCH*-S  0.0116 0.5158 0.6352 0.0117 0.4554 0.5392 0.0121 0.4243 0.4360 0.0147 0.0556 0.0702
TV-RGARCH*-2 0.0116 0.5158 0.6339 0.0121 0.3988 0.6166 0.0121 0.4243 0.4335 0.0143 0.0832 0.1100
TV-RGARCH* 0.0116 0.5158 0.6327 0.0113 0.5006 0.6129 0.0117 0.5181 0.4698 0.0147 0.0556 0.0690
TV-RGARCH-S 0.0116 0.5158 0.6351 0.0117 0.4554 0.5413 0.0121 0.4243 0.4377 0.0147 0.0556 0.0708

ETV-RGARCH 00128 02596 0.5031 00121 0.3988 04762 00121 04243 0.4591 00155 [0.0228

For the predictive partial log-likelihood, the results reported in Table 7 show
that the ETV-RGARCH is always returning the minimum value of the (negative)
predictive partial log-likelihood and both the TV-RGARCH and ETV-RGARCH are
always included in the 75% MCS for both the Range (R) and Semi-Quadratic (SQ)
statistics. The standard RGARCH model is always excluded from the MCS at both
levels considered for DAX 30, FTSE 100 and HSI and enters the 90% MCS only for
S&P 500.

Moving to consider the QLIKE loss (Table 8), the ETV-RGARCH is returning the
minimum value of the loss function in three cases out of four and is the only model
always included in the 75% MCS for both the R and SQ statistics. For HSI, no other
model is incl