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Abstract

Standard choice experiments are hampered by the fact that utility is either unknown
or imperfectly measured by experimenters. As a consequence, the inferences available to
researchers are limited. By contrast, we design a choice experiment where the objects are
valued according to only a single attribute with a continuous measure and we can observe
the true preferences of subjects. Subjects have an imperfect perception of the choice
objects but can improve the precision of their perception with cognitive effort. Subjects
are given a choice set involving several lines of various lengths and are told to select one of
them. They strive to select the longest line because they are paid an amount that increases
with the length of their choice. Our design allows us to observe the search history, the
response times, and make unambiguous conclusions about the optimality of choices. We
find a negative relationship between the demanding nature of the choice problems and
the likelihood that subjects select the optimal lines. We also find a positive relationship
between the demanding nature of the choice problems and the response times. However,
we find evidence that suboptimal choices are associated with longer response times than
are optimal choices. This result appears to be consistent with Fudenberg, Strack, and
Strzalecki (2018). Additionally, our experimental design permits a multinomial discrete
choice analysis. Our results suggest that the errors in our data are better described as
having a Gumbel distribution rather than a normal distribution. We also observe effects
consistent with memory decay and attention. Finally, we find evidence that choices in our
experiment exhibit the independence from irrelevant alternatives (IIA) property.
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1 Introduction

Standard choice experiments are hampered by the fact that utility is either unknown or imper-

fectly measured by experimenters. As a consequence, the inferences available to researchers

are limited. In contrast, we design a choice experiment where objects are valued according to

only a single attribute with a continuous measure and we can observe the exact value accruing

to the subjects. However, subjects do not always select the optimal choice because they have

an imperfect perception of the choice objects.

In our experiment, subjects are given choice sets consisting of lines of various lengths.

The subjects are directed to select one of the lines from the choice set. Subjects are paid an

amount that increases with the length of their selected line.

While we are able to observe the true objective length of each line, it is well-known that

subjects have imperfect perception the objective features of objects (Weber, 1834; Fechner,

1860; Thurstone, 1927a,b). This insight has led researchers to consider that subjects’ prefer-

ences might be imperfectly perceived by the subjects themselves and this serves as a justifi-

cation for random choice and random utility models. Since the beginning of this literature,

authors have been making explicit references to Weber, Fechner, or Thurstone.1 Despite this

known connection between imperfect perception of objective properties and stochastic choice,

to our knowledge, ours is one of only a few experiments that employ the technique of using

an objectively measurable object as a proxy for utility.

In our experiment, subjects can only view one line at a time.2 There are otherwise no

restrictions on the nature of their search, as long as the choice occurred within 60 seconds.

Subjects have an imperfect perception of the choice objects but can improve the precision of

their perception with cognitive effort. Our design allows us to unobtrusively observe the search

1See Bradley and Terry (1952), Luce (1959a, 1959b, 1994, 2005), Becker, DeGroot, and Marschak (1963),
McFadden (1974, 1976, 1981, 2001), Yellott (1977), Falmagne (1978), Mas-Colell, Whinston, and Green (1995),
Ballinger and Wilcox (1997), Loomis, Peterson, Champ, Brown, and Lucero (1998), Butler (2000), Butler and
Loomes (2007), Blavatskyy (2008, 2011), Caplin (2012), Lévy-Garboua, Maafi, Masclet, and Terracol (2012),
Fudenberg, Iijima, and Strzalecki (2015), Agranov and Ortoleva (2017), Argenziano and Gilboa (2017), Khaw,
Li, and Woodford (2017), Alós-Ferrer, Fehr, and Netzer (2018), Caplin, Csaba, Leahy, and Nov (2018), Navarro-
Martinez, Loomes, Isoni, Butler, and Alaoui (2018), Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella (2019),
Horan, Manzini, and Mariotti (2019), Olschewski, Newell, and Scheibehenne (2019), and Webb (2019).

2Also see Payne, Braunstein, and Carroll (1978) and Payne, Bettman, and Johnson (1993).
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history and the response times of the subjects. To our knowledge, ours is the first example of

an experiment where utility is represented by a static, single-attribute physical quantity with

an uncountable measure in a (nearly) unrestricted choice setting.

It seems that choice problems with a larger number of lines in the choice set, a choice

set of lines of similar lengths, and a choice set involving longer lines are more demanding

for the subjects. We find a negative relationship between these demanding choice problems

and the likelihood that subjects select the optimal lines. We also find a positive relationship

between the demanding nature of the choice problems and the response times. However,

we find evidence that suboptimal choices are associated with longer response times than are

optimal choices.3 This somewhat counterintuitive result emerges from a model where an agent

faces a choice with uncertain utility and there is a constant cost of gathering information

about the choice problem. In this setting, which seems to correspond to our experiment,

Fudenberg, Strack, and Strzalecki (2018) show that suboptimal decisions will tend to take, on

average, a longer time. Additionally, our experimental design permits a multinomial discrete

choice analysis. Our results suggest that the errors are better described as having a Gumbel

distribution rather than a normal distribution. We also observe effects that are consistent with

(possibly endogenous) memory decay and attention. Finally, we find evidence that choices in

our dataset are consistent with the independence from irrelevant alternatives (IIA) property.

2 Related literature

2.1 Random utility and random choice

Numerous random utility or random choice experimental and theoretical papers have emerged

in an effort to better understand choice.4 Some authors examine the role of consideration sets

3We also note that this result does not appear to be driven by endogeneity.
4A partial list of these efforts, not previously mentioned, would include Debreu (1958), Tversky (1969),

Loomes, Starmer, and Sugden (1989), Sopher and Gigliotti (1993), Loomes and Sugden (1995), Sopher and Nar-
ramore (2000), Gul and Pesendorfer (2006), Rubinstein and Salant (2006), Weibull, Mattsson, and Voorneveld
(2007), Tyson (2008), Caplin, Dean, and Martin (2011), Conte, Hey, and Moffatt (2011), Reutskaja, Nagel,
Camerer, and Rangel (2011), Wilcox (2011), Gul, Natenzon, and Pesendorfer (2014), Loomes and Pogrebna
(2014), Woodford (2014), Caplin and Dean (2015), Caplin and Martin (2015), Cubitt, Navarro-Martinez, and
Starmer (2015), Matějka and McKay (2015), Aguiar, Boccardi, and Dean (2016), Apesteguia, Ballester, and
Lu (2017), Dean and Neligh (2017), Ahumada and Ulku (2018), Apesteguia and Ballester (2018), Echenique,
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(Masatlioglu, Nakajima, and Ozbay, 2012; Manzini and Mariotti, 2014), private information

(Lu, 2016), the preference for randomness (Agranov and Ortoleva, 2017; Cerreia-Vioglio,

Dillenberger, Ortoleva, and Riella, 2019), and the preference for flexibility (Ahn and Sarver,

2013) in explaining the apparent randomness in choice data. These factors help us understand

choice, but it is our view that imperfect perception of one’s preferences is fundamental in every

choice setting. In our experiment, there is no plausible preference for randomization, there is

no preference for flexibility, there is no private information, there are not multiple attributes

that could possibly interact (for instance, as compliments or substitutes), and we can observe

the consideration set. Despite the simple and objective nature of our setting, we observe choice

that is apparently random.

Further, the experimental study of imperfect perception of one’s preferences tends to be

hampered by the fact that utility is typically unknown or imperfectly measured. However,

because we know the objective value of the imperfectly perceived choice objects, our design

yields a unique dataset with which to study random choice.

2.2 Choice involving imperfectly perceived objects

We are not the first authors to study choice in a setting where material outcomes depend on

imperfectly perceived objects with objectively measurable properties. For instance, researchers

have made payments to subjects as a function of judgments involving the relative quantity of

dots (Caplin and Dean, 2015; Dutilh and Rieskamp, 2016), the dominant direction of moving

dots (Bhui, 2019a; 2019b), the number of flickering dots (Oud et al., 2016), a dynamic display

of dots (Zeigenfuse, Pleskac, and Liu, 2014), the heights of bars of dynamic size (Tsetsos et

al., 2016), and the area occupied by objects of various sizes (Polanía, Krajbich, Grueschow,

and Ruff, 2014).5

To our knowledge, Duffy, Gussman, and Smith (2019) is the only other paper that de-

scribes a choice experiment where suboptimal choices are perfectly observable because utility

Saito, and Tserenjigmid (2018), Koida (2018), Kovach and Tserenjigmid (2018), Caplin, Dean, and Leahy
(2019), Cattaneo, Ma, Masatlioglu, and Suleymanov (2019), Conte and Hey (2019), and Natenzon (2019).

5Gabaix et al. (2006) and Sanjurjo (2015, 2017) also describe experiments where the experimenter knows
the choice object with the highest objective value. However, due to computational limitations (rather than
imperfect perception in our setting) the subjects often do not make the optimal selection.
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is represented by a static, single-attribute physical quantity with an uncountable measure.

However, Duffy, Gussman, and Smith (2019) was conducted under time restrictions and the

subjects were placed under a differential cognitive load. Therefore, our paper appears to be

the only example of an experiment where utility is represented by a static, single-attribute

physical quantity with an uncountable measure in a (nearly) unrestricted choice setting.

2.3 Response times and choice

Observations of response times have been used to gain insights on choice, beyond those avail-

able by simply observing the outcome of the decision.6 One key insight from this literature is

that longer response times tend to be associated with choices or judgments that are closer to

indifference.7 We observe similar results in our setting: choice sets with lines of more similar

lengths are associated with longer response times. We also observe longer response times both

for choice sets with a larger number of lines and for choice sets with longer lines.

In many choice problems, it is not clear if a suboptimal decision was made. However,

in perceptual decision problems, optimal choices can easily be distinguished from suboptimal

choices. Researchers find a negative relationship between accuracy of these perceptual choices

and response times.8 In other words, suboptimal choices tend to take a longer time than do

optimal actions.9 ,10 Fudenberg, Strack, and Strzalecki (2018), demonstrate that this relation-

ship emerges from a model of an agent in a choice problem with unknown utility and a cost

of acquiring information about the choice options. This setup appears to be similar to our

6See Clithero (2018) and Spiliopoulos and Ortmann (2018) for recent overviews of the response time liter-
ature in economics.

7For instance, see Henmon (1911), Volkmann (1934), Dashiell (1937), Mosteller and Nogee (1951), Jamieson
and Petrusic (1977), Hey (1995), Moffatt (2005), Chen and Fischbacher (2016), Alós-Ferrer, Graníc, Kern, and
Wagner (2016), Echenique and Saito (2017), Alós-Ferrer and Garagnani (2019), and Konovalov and Krajbich
(2019).

8For instance, see Henmon (1911), Kellogg (1931), Swensson (1972), and Bhui (2019b).
9Swensson (1972), Luce (1986), and Ratcliff and McKoon (2008) note that this relationship tends to hold

when the experimenter emphasizes the accuracy of the decision. The authors also note that the opposite rela-
tionship between errors and response times holds when the speed of the decision is stressed by the experimenter.

10 In general settings, caution should be used when examining the relationship between response times and
suboptimal actions. For example, Rubinstein (2013) finds shorter response times on responses that are clearly
mistakes. By contrast Kiss, Rodriguez-Lara, Rosa-Garcia (2020) find that in decisions where there is a dominant
strategy, suboptimal decisions are associated with longer response times. Achtziger and Alós-Ferrer (2014) find
that if the optimal decision is in conflict with reinforcement learning then optimal responses tend to have longer
response times, but in the event that they are aligned, then optimal responses tend to have shorter response
times.
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experiment. Consistent with the predictions of Fudenberg, Strack, and Strzalecki, we find

evidence that suboptimal decisions are associated with longer responses times. Further, our

result does not appear to be endogenous.

3 Experimental design

3.1 Overview

The experiment was programmed on E-Prime 2.0 software (Psychology Software Tools, Pitts-

burgh, PA). The sessions were performed on standard 21.5 inch (54.6 cm) Dell EliteDisplay

E221 monitors. E-Prime imposed a resolution of 1024 pixels by 768 pixels. A total of 112

subjects participated in the experiment.

3.2 Line selection task

In each trial, subjects were presented a choice set of lines that ranged in number between

2 and 6. Each of these choice set sizes occurred with probability 1

5
and were drawn with

replacement. Subjects were able to only view one line at a time. The lines were labeled in

alphabetic order in the center of the screen. Letters A and B always represented the first two

options, and consecutive letters were added as needed. Subjects could view a particular line

by clicking on the letter label that corresponds to that particular line. To view another line,

subjects click on its corresponding label. This would make the new line appear and the old

line disappear.

Each line appeared within a rectangular region of 400 pixels in the horizontal direction

and 150 pixels in the vertical direction. The boundaries of these regions were not visible to

the subjects. The lines were randomly offset, both vertically and horizontally, within these

regions such that there was a minimum cushion between the line and the edge of the region.

This cushion was 20 pixels in the horizontal direction and 10 pixels in the vertical direction.

The offsetting was fixed for each line throughout each trial. The regions were non-overlapping

and arranged in 2 columns and 3 rows, with the regions for A and B in the top row, the

regions for C and D in the middle row, and the regions for E and F in the bottom row.
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The length of the lines in any trial were determined by subtracting various amounts from

the longest line. There were 10 possible longest line lengths, ranging in 16 pixel (0.73 cm)

increments from 160 pixels (7.4 cm) to 304 pixels (14.1 cm). The lines each had a height of

0.36 cm and were the identical shade of grey. Each of the 10 possible longest line lengths

appeared in 10 trials and in random order.

There were three difficulty treatments. In the difficult treatment, one line was exactly

one pixel shorter than the longest, and the other differences were drawn from a uniform on

{−1, ...,−10}. In themedium treatment, one line was exactly 11 pixels shorter than the longest

and the other differences were drawn from a uniform on {−11, ...,−30}. In the easy treatment,

one line was exactly 31 pixels shorter than the longest, and the other differences were drawn

from a uniform on {−31, ...,−60}. Therefore, the shortest possible line was 100 pixels. The

difficult, medium, and easy treatments each occurred with probability 1

3
, in random order,

and were drawn with replacement. The subjects were not informed of the existence of these

treatments.

Adjacent to each letter label was a box indicating that the subject currently selected that

line. Subjects could change this selection at any time during the allotted 60 seconds. The

subjects could view the time remaining, rounded to the nearest second. See Figure 1 for a

screenshot11 and Figure 2 for a characterization of the regions, which were not visible to the

subjects.

11See https://osf.io/f7gu4 for the full set of screenshots.
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Figure 1: Screenshot from a trial with 5 lines in the choice set, where line A is being viewed,

line D is currently selected, and there are 53 seconds remaining.
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Figure 2: A characterization of the regions, invisible to the subjects, which contain the

corresponding lines.

The choice within each trial was the line that was selected when either the subject hit the

Enter key or when the allotted 60 seconds elapsed. The earnings on this task were increasing

in the length of the choice in that trial. Specifically, if a line x pixels in length was selected

then in that trial the subject earned:

$5 ∗
(x− 100)

(304− 100)
.

In other words, the payment was $5 multiplied by the fraction of the difference between the

selected line and the shortest possible line with the difference between the longest possible line

and the shortest possible line. If subjects did not select a line before they hit Enter or before

time expired, it was assumed that the selected line had a length of 100, thereby earning 0 in

that trial.
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There was a 3 second stage between any two line judgment tasks where the subjects were

told, "Relax. . . wait 3 seconds before new trial. DO NOT press RETURN without clicking on

a box."

At the start of every trial, the location of the mouse on the screen was randomly deter-

mined. Each computer had the mouse speed setting of 6 out of 11.

3.3 Unincentivized practice

The subjects had an unincentivized practice on the line selection task. If the subjects did not

view any lines, did not select a line that they viewed, or did not select any lines, the subjects

were informed of this and were directed to repeat the practice line selection task.

3.4 Survey questions

After every line trial was completed, but before the subjects were paid, the subjects were

given a set of survey questions, administered via paper. We elicited the gender of the subject,

the handedness (right or left) of the subject, and the standard versions of the 3 Cognitive

Reflection Test (CRT) questions (Frederick, 2005).12 ,13

3.5 Experimental details

Three line selection trials were randomly selected for payment. Additionally, subjects were

paid a $5 show-up fee. Subjects were paid in cash and amounts were rounded up to the nearest

$0.25. Subjects earned a mean of $14.50.

There were 112 subjects each completing 100 line selection trials. However, there were 80

trials in which no line was viewed by the subject, 145 trials in which no line was selected by the

subject, and 211 trials (1.88%) in which either no line was selected or no line was viewed. We

12See https://osf.io/f7gu4 for the version that was given to the subjects.
13The subjects were also asked to provide an optional estimate of their grade point average (between 0.0

and 4.0). However, the response rate was sufficiently low (92 of 112 subjects offered some response) and many
responses were difficult to interpret. Therefore, we do not include this in our analyses. Additionally, the subjects
were asked to provide an optional estimate of their SAT or ACT percentile rank. Again, many responses were
incomplete or difficult to interpret, therefore we do not include these responses in the analysis.
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exclude these trials from the analysis because we do not know how to interpret these trials. We

therefore have 10, 989 valid line selection trials. The data is available at https://osf.io/f7gu4.

3.6 Discussion of the design

We do not put any constraints on the nature of the search, beyond the 60 second limit and

the restriction that only one line can be viewed at a time. This allows us to measure response

times and search histories as unobtrusively as possible.

The design of the interface was motivated by Duffy, Gussman, and Smith (2019), who

found a negative relationship between accuracy on a trial and the distance between the line

with the longest length and its letter label. However, the options with a larger distance

between the line and the label also tended to have a larger time that had elapsed since the

line was last viewed at the end of the trial. Therefore, Duffy, Gussman, and Smith were not

able to distinguish between the temporal explanation and the distance explanation. However,

we improve on this design in that every option has the identical distance between the line and

the label.

4 Results

4.1 Optimality of choices

Here we explore the optimality of choices. We define the Selected longest variable to be 1 if

the choice was the longest line in the choice set, and 0 otherwise. We conduct regressions

with the Selected longest variable as dependent variable. As the dependent variable is binary,

we employ a logistic specification. Since the Selected longest variable appears to be affected

by the difficulty treatments, the number of lines treatments, the longest line treatments, and

the letter that contained the longest line, we include these as independent variables.14 For

the difficulty treatments, we include dummy variables indicating whether the treatment was

Easy or whether the treatment was Difficult. To account for the letter label of the longest

line, we offer specifications where we estimate a unique dummy variable for each of the 20

14See Tables A1−A4 for the summary statistics. for Selected longest.
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combinations of letter-number of lines.15 Due to the repeated nature of the observations, we

also offer fixed-effects specifications where we estimate a dummy variable for each subject.

We run other specifications that control for the demographics of the subjects: whether the

subjects reported being left handed, whether the subjects reported being female, and the sum

of their CRT score. We summarize these regressions in Table 1.

Table 1: Logistic regressions of the Selected longest line variable

(1) (2) (3) (4)
Longest line normalized −0.0044∗∗∗ −0.0044∗∗∗ −0.0042∗∗∗ −0.0042∗∗∗

(0.0006) (0.0006) (0.0005) (0.0005)
Number of lines normalized −0.257∗∗∗ − −0.242∗∗∗ −

(0.018) (0.018)
Easy treatment dummy 2.273∗∗∗ 2.291∗∗∗ 2.205∗∗∗ 2.219∗∗∗

(0.098) (0.099) (0.097) (0.097)
Difficult treatment dummy −1.729∗∗∗ −1.747∗∗∗ −1.630∗∗∗ −1.646∗∗∗

(0.055) (0.056) (0.053) (0.053)
Trial −0.0017† −0.0019∗ −0.0016† −0.0017∗

(0.0009) (0.0009) (0.0009) (0.0009)
Letter dummies No Y es No Y es

Fixed effects Y es Y es No No

Demographics No No Y es Y es

AIC 9716.7 9655.7 9893.5 9836.1

We provide the coefficient estimates and the standard errors in parentheses. We
do not provide the estimates of the intercepts, the Letter dummies, the subject-
specific dummies in the fixed effects regressions or the demographics estimates.
AIC refers to the Akaike information criterion (Akaike, 1974). Each regression
has 10, 989 observations. ∗∗∗ denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes
p < 0.05, and † denotes p < 0.1.

In every specification, we find a negative relationship between the quality of the choice

and the features of the choice problem that we describe as demanding.16 We find that the

accuracy of the choice decreases when there is a larger number of lines (choice overload effects)

and decreases in the difficulty treatments. Additionally, we see that the accuracy decreases in

the length of the longest line. This result could be interpreted as suggesting that subjects are

15As in Table A4. However, in the analysis immediately below we do not explore the effect of the letter label
on the quality of the choice. We postpone our discussion of this issue until later in the paper.

16 In Table A8, we examine the robustness of these results. We conduct the analogous tobit regressions with
Longest line minus the selected line as the dependent variable. Our results are not changed.
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simply worse at judging longer lines than shorter lines. This explanation is consistent with

classic psychology (Fechner, 1860). On the other hand, it is possible that subjects expended

less effort on trials with longer lines because they knew that they would earn more on these

trials. These effort-wealth effects provide another explanation for the negative coefficient

estimates for the Longest line variable. We will say more about this matter below. Finally,

we find evidence that choices become less accurate across trials.

4.2 Quality of the Searches

The analysis above suggests a relationship between the quality of the choice and features of

the choice problem that we describe as demanding. It is not clear whether this relationship

is driven by low quality searches in these demanding choice problems. One measure of the

quality of the search is the number of lines viewed in the trial, where a higher number would

suggest more effort in searching. We define the View clicks variable to be the number of total

line view clicks in the trial. We conduct an analysis, identical to Table 1, with the exception

that the dependent variable is View clicks and the regression is linear, not logistic. Table 2

summarizes this analysis.

Table 2: Regressions of the View clicks variable

(1) (2) (3) (4)
Longest line normalized 0.002∗ 0.002∗ 0.002∗ 0.002∗

(0.0008) (0.0008) (0.0009) (0.0009)
Number of lines normalized 1.876∗∗∗ − 1.896∗∗∗ −

(0.026) (0.031)
Easy treatment dummy −2.084∗∗∗ −2.090∗∗∗ −2.006∗∗∗ −2.006∗∗∗

(0.090) (0.090) (0.107) (0.107)
Difficult treatment dummy 1.338∗∗∗ 1.333∗∗∗ 1.374∗∗∗ 1.376∗∗∗

(0.090) (0.090) (0.106) (0.106)
Trial −0.024∗∗∗ −0.024∗∗∗ −0.024∗∗∗ −0.024∗∗∗

(0.001) (0.001) (0.001) (0.001)
Letter dummies No Y es No Y es

Fixed effects Y es Y es No No

Demographics No No Y es Y es

AIC 60559.2 60545.9 64415.6 64399.7

We provide the coefficient estimates and the standard errors in parentheses. We
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do not provide the estimates of the intercepts, the Letter dummies, the subject-
specific dummies in the fixed effects regressions or the demographics estimates.
AIC refers to the Akaike information criterion. Each regression has 10, 989 obser-
vations. ∗∗∗ denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and †

denotes p < 0.1.

The results summarized in Table 2 seem to suggest that there is a positive relationship

between the quality of the search and the demanding nature of the choice problem. The

number of view clicks is increasing in the length of the longest line, increasing in the number

of lines in the choice set, and increasing in the difficulty treatments. This suggests to us that

more, not less, effort was devoted to demanding choice problems. We also note that there

is a negative relationship between view clicks and trial, suggesting a decrease in effort across

trials.

We admit that the number of lines viewed is one of many measures of the quality of the

search. Another such measure is the response time on the trial. We conduct an analysis,

identical to that in Table 2, but we employ the log of the response time as the dependent

variable.17 Table 3 summarizes this analysis.18

Table 3: Regressions of the log of Response time variable

(1) (2) (3) (4)
Longest line normalized 0.0003∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗

(0.00004) (0.00004) (0.00004) (0.00004)
Number of lines normalized 0.083∗∗∗ − 0.083∗∗∗ −

(0.0012) (0.0014)
Easy treatment dummy −0.118∗∗∗ −0.118∗∗∗ −0.117∗∗∗ −0.116∗∗∗

(0.004) (0.004) (0.005) (0.005)
Difficult treatment dummy 0.057∗∗∗ 0.057∗∗∗ 0.056∗∗∗ 0.056∗∗∗

(0.004) (0.004) (0.005) (0.005)
Trial −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗

(0.00006) (0.00006) (0.00007) (0.00007)
Letter dummies No Y es No Y es

Fixed effects Y es Y es No No

Demographics No No Y es Y es

AIC −6089.7 −6066.4 −2591.5 −2555.1

17See Tables A1−A4 for the summary statistics.
18Although negative AIC values are somewhat unusual, negative values are possible and it remains the case

that lower values indicate a better fit.
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We provide the coefficient estimates and the standard errors in parentheses. We
do not provide the estimates of the intercepts, the Letter dummies, the subject-
specific dummies in the fixed effects regressions or the demographics estimates.
AIC refers to the Akaike information criterion. Each regression has 10, 989 obser-
vations. ∗∗∗ denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and †

denotes p < 0.1.

It seems that response times are larger for decisions that are more demanding: a larger

number of lines in the choice set, the difficulty of the treatment, and the length of the longest

line in the trial. Based on the results of Tables 2 and 3, it seems that subjects expend more,

not less, effort on demanding trials. Therefore we cannot explain the longest line length results

of Table 1 as due to diminished effort.

4.3 Relationship between quality of choice and consideration sets

There is a literature that posits that suboptimal choice occurs because subjects do not consider

every object in the choice set, but only a subset. Further this consideration set is not typically

observable to the experimenter. However, due to our design, we are able to observe whether

subjects viewed the longest line.

Among the 10, 956 trials where subjects viewed the longest line, there are 3302 observations

where the longest line was not selected. However, in none of the 33 trials where subjects did

not view the longest line, was the longest line selected. Therefore in our data, 99.0% of the

suboptimal choices occurred in trials where subjects viewed the longest line. This suggests

that the bulk of our suboptimal choices can be explained due to imperfect perception, rather

than not considering the longest line.

In Table 1, we explored whether subjects optimally select the longest line by conducting

regressions with the Selected longest line variable. Another question is whether subjects

selected the longest line, among the lines that were viewed. We define the Selected longest line

viewed variable to be 1 if the longest line among those viewed was selected, and 0 otherwise.

We conduct an analysis, similar to Table 1 but rather than using the Selected longest line

variable, we employ the Selected longest line viewed variable. We summarize these regressions

in Table 4.
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Table 4: Logistic regressions of Selected longest line viewed variable

(1) (2) (3) (4)
Longest line normalized −0.0042∗∗∗ −0.0042∗∗∗ −0.0040∗∗∗ −0.0040∗∗∗

(0.0006) (0.0006) (0.0005) (0.0005)
Number of lines normalized −0.249∗∗∗ − −0.235∗∗∗ −

(0.018) (0.018)
Easy treatment dummy 2.304∗∗∗ 2.322∗∗∗ 2.240∗∗∗ 2.253∗∗∗

(0.100) (0.100) (0.099) (0.099)
Difficult treatment dummy −1.719∗∗∗ −1.737∗∗∗ −1.626∗∗∗ −1.643∗∗∗

(0.055) (0.056) (0.053) (0.053)
Trial −0.0014 −0.0016† −0.0014 −0.0015†

(0.0009) (0.0009) (0.0009) (0.0009)
Letter dummies No Y es No Y es

Fixed effects Y es Y es No No

Demographics No No Y es Y es

AIC 9712.7 9651.9 9865.6 9808.8

We provide the coefficient estimates and the standard errors in parentheses. We
do not provide the estimates of the intercepts, the Letter dummies, the subject-
specific dummies in the fixed effects regressions or the demographics estimates.
AIC refers to the Akaike information criterion. Each regression has 10, 989 obser-
vations. ∗∗∗ denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and †

denotes p < 0.1.

The results of Table 4 are similar to those in Table 1. Further, the suboptimal choices

that we observe in our experiment do not appear to be driven by consideration set effects.

Rather, the suboptimal choices appear to be driven by imperfect perception of the objectively

measurable choice objects.

4.4 Relationship between quality of choice and response times

Response times of the trials in which the longest line was selected (mean = 12.250s, SD =

8.426) are smaller than the response times in trials in which the longest line was not selected

(mean = 15.730s, SD = 10.428), according to a Wilcoxon Two-Sample Test (Z = 18.915, p <

0.001). This effect is further robust across longest line treatments, number of line treatments,

and difficulty treatments.19

In order to more carefully investigate this matter, we conduct regressions with the log

of Response time as the dependent variable. We employ specifications similar to those in

19See Tables A5−A7.
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Table 3, however we include Selected longest as an independent variable. Further, for those

specifications without fixed-effects, we include an independent variable that is the average of

the log of the Response times for that particular subject. We summarize this analysis in Table

5.

Table 5: Regressions of the log of Response time variable

(1) (2) (3) (4)
Longest line normalized 0.0003∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗

(0.00004) (0.00004) (0.00004) (0.00004)
Number of lines normalized 0.083∗∗∗ − 0.082∗∗∗ −

(0.0012) (0.0012)
Easy treatment dummy −0.115∗∗∗ −0.115∗∗∗ −0.114∗∗∗ −0.114∗∗∗

(0.004) (0.004) (0.004) (0.004)
Difficult treatment dummy 0.051∗∗∗ 0.052∗∗∗ 0.051∗∗∗ 0.052∗∗∗

(0.004) (0.004) (0.004) (0.004)
Trial −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗

(0.00006) (0.00006) (0.00006) (0.00006)
Selected Longest −0.016∗∗∗ −0.014∗∗ −0.016∗∗∗ −0.014∗∗∗

(0.004) (0.004) (0.004) (0.004)
Sub’s Average log RT − − 0.994∗∗∗ 0.992∗∗∗

(0.014) (0.014)
Letter dummies No Y es No Y es

Fixed effects Y es Y es No No

Demographics No No Y es Y es

AIC −6093.4 −6067.4 −6680.2 −6651.1

We provide the coefficient estimates and the standard errors in parentheses. We
do not provide the estimates of the intercepts, the Letter dummies, the subject-
specific dummies in the fixed effects regressions or the demographics estimates.
AIC refers to the Akaike information criterion. Each regression has 10, 989 obser-
vations. ∗∗∗ denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and †

denotes p < 0.1.

In every specification, the Selected Longest variable is negative and significant. We inter-

pret this as suggesting that, even when controlling for the fixed characteristics of the subjects,

suboptimal choices tend to take longer than optimal choices.

The reader is likely concerned about endogeneity because the Selected longest variable

is possibly correlated with the errors in the regressions. However, when we conduct Spear-

man correlations between the unstandardized residuals and the Selected longest variable in
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specifications (1) − (4), the p-values, respectively, are 0.94, 0.92, 0.92, and 0.89. When we

conduct Pearson correlations, the qualitative results are not changed. Further, our qualitative

results are not changed when we use the student residuals rather than the unstandardized

residuals.20 We interpret this as suggesting that our specifications are not suffering from an

endogeneity bias caused by the inclusion of the Selected longest variable. We conclude that

the relationship between response times and the optimality of the choice is not driven by

a possible subject-level relationship between skill at the task and the speed by which it is

accomplished.

4.5 Multinomial discrete choice analysis and the nature of the stochastic

utility

An assumption in multinomial discrete choice analysis is that choice is stochastic because

of an unobserved stochastic component in the utility function.21 A common specification in

these random utility models (RUM) is that there is a non-stochastic component of the utility

function and an additive stochastic component. For example, option j would have utility:

Uj = Vj + εj ,

where Vj is the non-stochastic component and εj is the random component. RUMs typically

assume that agents select the item with the largest realized utility. Specifically, a choice of i

from the set K = {1, ..., k} arises when:

Vi + εi ≥ Vj + εj for every j ∈ K.

Further, the non-stochastic components to the RUMs are not typically observable. There-

fore researchers include a set of observable features possibly relevant to the choice j, xj =

(xj1, ..., xjn). In order to account for the effect of each of these factors, researchers also es-

20 In Table A9, we offer a robustness check of Table 5. There we estimate a treatment variable coefficient for
every subject. Our qualitative results are not changed.

21For instance, see McFadden (1974, 1976, 1981, 2001).
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timate β = (β1, ..., βn). In these settings, the estimate of the non-stochastic component is

Vj = β ∗ xj . However, in our setting, the length of the line is the only relevant attribute.

Therefore, the non-stochastic component of option j simplifies to:

Vj = β ∗ Lengthj ,

where β is a scalar.

We also note that there is a number of specifications of the stochastic component. For

instance, εj might be assumed to be normally distributed. On the other hand, the stochastic

component might also be assumed to have the Gumbel distribution, e−e
−ε
. (Confusingly, this is

also referred to as the Type I extreme-value distribution, the double exponential distribution,

and the log-Weibull distribution.) In our experiment, we can perfectly observe the objective

lengths of the lines and the choices made by the subjects. We can therefore run specifications

that employ either of these assumptions of the error distribution and observe which provides

a better fit.

We run one specification where the stochastic component has the Gumbel distribution and

is independently and identically distributed for every option. As McFadden (1974) and Yellot

(1977) show, this structure implies the Luce (1959a) stochastic choice model, whereby the

probability that option j is selected from set K is:

P (j) =
eβ∗Lengthj

∑
k∈K

eβ∗Lengthk
.

We refer to this Conditional Logistic model as "Logit" and denote it as specification (1).

We also run a specification where the stochastic component is assumed to have a normal

distribution and is independently and identically distributed for every option. Yellot (1977)

shows that this corresponds to Case V of Thurstone (1927a). We refer to this Multinomial

Probit model as "Probit" and denote it as specification (2).

It is not clear that the linear specification of Length is the most appropriate. There are

researchers who argue that there is not a linear relationship between stimuli and the perception
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of stimuli, but rather they are related by the log function (Fechner, 1860).22 According to

this classic view in psychology, the non-stochastic component of the utility function should be

specified as:

Vj = β ∗ log(Lengthj).

With this "Log" specification, we conduct an analysis that assumes that the errors have a

Gumbel distribution. We denote this specification as (3). Also within this Log specification,

we conduct an analysis that assumes that errors have a normal distribution. We denote this

specification as (4).

There are other researchers who argue that the relationship between stimuli and the per-

ception of the stimuli is neither linear nor logarithmic, but is rather described by the power

function (Stevens, 1961). Research suggests that the specification of this power function

depends on the type of stimulus. Some research suggests that the exponent in the power

function, when the stimulus is length, is 1.04 (Teghtsoonian, 1971). According to this view,

the non-stochastic component of the utility function should be specified as:

Vj = β ∗ (Lengthj)
1.04.

With this "Power" specification, we conduct an analysis that assumes that the errors have a

Gumbel distribution. We denote this specification as (5). Also within this Power specification,

we conduct an analysis that assumes that errors have a normal distribution. We denote this

specification as (6).

We report the Akaike Information Criterion (AIC, Akaike, 1974) for each specification,

restricted to a particular number of lines treatment. We also report the estimate of β for each

model in each setting. These analyses23 are summarized in Table 6.

22This is a version of what is sometimes referred to as Fechner’s Law.
23Each specification was executed with the MDC (multinomial discrete choice) procedure in SAS. Specifi-

cations (1), (3), and (5) were performed with the clogit option. Specification (2), (4), and (6) were performed
with the mprobit option.
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Table 6: Comparisons of different multinomial discrete choice models

Linear Log Power
Logit Probit Logit Probit Logit Probit
(1) (2) (3) (4) (5) (6)

2 Lines β est. 0.126 0.097 64.193 49.104 0.097 0.075
AIC 1917 1928 1899 1913 1919 1930

3 Lines β est. 0.139 0.104 69.951 51.525 0.108 0.080
AIC 2602 2607 2615 2629 2603 2608

4 Lines β est. 0.144 0.163 72.918 57.223 0.112 0.112
AIC 3218 3513 3197 3228 3220 3384

5 Lines β est. 0.135 0.194 66.324 45.846 0.105 0.074
AIC 4046 5166 4066 4113 4047 4067

6 Lines β est. 0.131 0.089 64.954 43.736 0.101 0.069
AIC 4394 4407 4386 4402 4397 4410

We provide the estimates of β and the Akaike Information Criterion (AIC) for
the various models restricted to treatments with identical numbers of lines. Each
of the estimates for β are significantly different from 0 with p < 0.001.

Regardless of the specification (Linear, Log, or Power) and regardless of the number of

lines treatment, we find that the Logit specification has a lower AIC than the corresponding

Probit specification. We interpret these results as suggesting that the models, which assume

that the errors have a Gumbel distribution, provide a better fit than the models that assume

that errors have a normal distribution.

4.6 Memory decay and choice

Reutskaja, Nagel, Camerer, and Rangel (2011) report that the quality of choices tend to be

diminishing in number of items viewed between the last item viewed and the best item viewed.

Here we examine whether our subjects exhibit similar behavior that is consistent with memory

decay.

There appears to be a relationship between the quality of the choice and number of letters

alphabetically between the letter label of the longest line and the last letter label in the choice

set.24 Below, we test whether there is such a relationship. Similar to the analysis summarized

in Table 1, the dependent variable is Selected longest and we include the same specifications

for the treatment variables and the Trial variable.
24See Table A4.
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We introduce the Distance from last variable, which provides a measure of the alphabetic

distance between the letter label of the longest line and the last alphabetic letter label in the

choice set. For instance, in the 2 Line treatment, if line A is the longest then the variable is 1

and if line B is the longest then 0. In the 3 Line treatment, if A is the longest then the variable

is 2, if B is the longest then 1, and if C is the longest then 0. We include Distance from last as

an independent variable. We also include specifications with the interaction between the Trial

variable and the Distance from last variable. For identification reasons, we do not include the

Letter dummy variables. We also include specifications with an independent variable of the

average of the Selected longest variable for that particular subject. We include these with

the demographics and we denote their inclusion with Demographics+. We summarize these

regressions in Table 7.

Table 7: Logistic regressions of the Selected longest line variable

(1) (2) (3) (4)
Distance from last −0.151∗∗∗ −0.149∗∗∗ −0.138∗∗∗ −0.137∗∗∗

(0.021) (0.021) (0.039) (0.038)
Longest line normalized −0.005∗∗∗ −0.004∗∗∗ −0.005∗∗∗ −0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)
Number of lines normalized −0.183∗∗∗ −0.178∗∗∗ −0.183∗∗∗ −0.178∗∗∗

(0.021) (0.021) (0.021) (0.021)
Easy treatment dummy 2.282∗∗∗ 2.258∗∗∗ 2.282∗∗∗ 2.258∗∗∗

(0.098) (0.098) (0.098) (0.098)
Difficult treatment dummy −1.736∗∗∗ −1.702∗∗∗ −1.736∗∗∗ −1.702∗∗∗

(0.056) (0.055) (0.056) (0.055)
Trial −0.0018∗ −0.0017† −0.0014 −0.0014

(0.0009) (0.0009) (0.0013) (0.0013)
Trial*Distance from last − − −0.0003 −0.0002

(0.0006) (0.0006)
Letter dummies No No No No

Fixed effects Y es No Y es No

Demographics+ No Y es No Y es

AIC 9668.3 9498.6 9670.1 9500.5

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the subject-specific dummies
in the fixed effects regressions or the demographics estimates. AIC refers to the
Akaike information criterion. Each regression has 10, 989 observations. ∗∗∗ denotes
p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.
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In each specification, the Distance from last coefficient estimate is significant and negative.

This suggests the presence of memory decay in the subjects.

One explanation for the negative coefficient estimates for the Distance from last variable

is that subjects view the lines in alphabetical order (A then B then C etc.). However, lines

viewed in the more distant past are recalled with a lower precision: either the location of the

longest line or the length of the longest line. To explore this possibility, we define the variable

Time since longest to be the time elapsed since subjects viewed the longest line when the trial

ended. Table 8 demonstrates the relationship between the Time since longest variable and the

letter label of the longest line in that trial.

Table 8: Time since longest line by number of lines and letter label of the longest

A B C D E F
2 Lines 0.828 s 0.485 s − − − −
3 Lines 1.393 s 1.064 s 0.954 s − − −
4 Lines 2.096 s 2.026 s 1.400 s 1.239 s − −
5 Lines 3.012 s 2.629 s 2.403 s 2.214 s 1.662 s −
6 Lines 3.991 s 3.480 s 2.978 s 2.338 s 2.819 s 2.201 s

Table 8 suggests that there is a negative relationship between the Time since longest

variable and the number of letter labels alphabetically between the longest line and the last

letter label in the choice set. Here we test whether such a relationship is related to the

optimality of choice in the trial. To do so, we conduct an analysis similar to Table 7, however

we employ the Time since longest variable, rather than the Distance from last variable. We

summarize these regressions in Table 9.
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Table 9: Logistic regressions of the Selected longest line variable

(1) (2) (3) (4)
Time since longest −0.844∗∗∗ −0.794∗∗∗ −0.666∗∗∗ −0.623∗∗∗

(0.022) (0.021) (0.037) (0.035)
Longest line normalized −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)
Number of lines normalized 0.077∗∗ 0.063∗∗ 0.082∗∗∗ 0.069∗∗

(0.023) (0.023) (0.024) (0.023)
Easy treatment dummy 2.442∗∗∗ 2.432∗∗∗ 2.457∗∗∗ 2.451∗∗∗

(0.124) (0.122) (0.125) (0.122)
Difficult treatment dummy −1.677∗∗∗ −1.650∗∗∗ −1.681∗∗∗ −1.655∗∗∗

(0.069) (0.067) (0.069) (0.067)
Trial −0.005∗∗∗ −0.005∗∗∗ 0.0006 0.0006

(0.001) (0.001) (0.0015) (0.0014)
Trial*Time since longest − − −0.004∗∗∗ −0.004∗∗∗

(0.0007) (0.0007)
Letter dummies No No No No

Fixed effects Y es No Y es No

Demographics+ No Y es No Y es

AIC 6816.0 6741.4 6785.2 6712.0

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the subject-specific dummies
in the fixed effects regressions or the demographics estimates. AIC refers to the
Akaike information criterion. Each regression has 10, 989 observations. ∗∗∗ denotes
p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

We find a negative relationship between the time elapsed since the longest line was viewed

at the end of the trial and the quality of the choice. This result is consistent with the possibility

that subjects suffer from memory decay. We also note the negative Trial-Time since longest

interaction. This suggests that the effects consistent with memory decay are exacerbated

across trials. While the other coefficient estimates resemble those from Table 1, it should be

noted that the Number of lines estimate is positive. This suggests that, when accounting for

the Time since longest variable, there is a positive relationship between the number of lines

and selecting the longest line.

However, the results summarized in Table 9 should be viewed with caution. The Spearman

correlations between the Time since longest variable and the residuals (both unstandardized

and Pearson standardized) are each significant at 0.001. This suggests that our regressions

could suffer from an endogeneity bias.
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Overall the results from Tables 7 and 9 suggest effects that are consistent with memory

decay. It appears that lines viewed in the more distant past are remembered with a lower

precision. Duffy, Gussman, and Smith (2019) also found evidence of memory decay, yet their

interface had a feature that not every item in the choice set had an equal distance between the

line and its letter label. It is possible that the Duffy, Gussman, and Smith design exacerbated

a differential memory decay. However, in our interface, every line is equidistant from its letter

label and we find differential effect consistent with (possibly endogenous) memory decay.

4.7 Attention and choice

Testing for evidence consistent with memory decay is not the only such investigation on the

effects of limited cognitive resources. Here we investigate the role of attention in choice.

Research finds that the time that a subject spends viewing (or fixated on) an object in a

choice setting is associated with a higher likelihood of selecting the object.25 One measure of

attention is the total time spent viewing a line. We perform an analysis, similar to Tables 7

and 9, but with Time viewing longest as an independent variable. This variable sums the time,

possibly across multiple durations, which the subject viewed the longest line in the choice set.

We summarize these regressions in Table 10.

25See Armel, Beaumel, and Rangel (2008), Armel and Rangel (2008), Krajbich, Armel, and Rangel (2010),
and Krajbich and Rangel (2011).
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Table 10: Logistic regressions of the Selected longest line variable

(1) (2) (3) (4)
Time viewing longest 0.164∗∗∗ 0.134∗∗∗ 0.126∗∗∗ 0.103∗∗∗

(0.011) (0.010) (0.017) (0.016)
Longest line normalized −0.005∗∗∗ −0.005∗∗∗ −0.005∗∗∗ −0.005∗∗∗

(0.001) (0.001) (0.001) (0.001)
Number of lines normalized −0.260∗∗∗ −0.255∗∗∗ −0.259∗∗∗ −0.254∗∗∗

(0.019) (0.019) (0.019) (0.019)
Easy treatment dummy 2.412∗∗∗ 2.365∗∗∗ 2.412∗∗∗ 2.363∗∗∗

(0.099) (0.098) (0.099) (0.098)
Difficult treatment dummy −1.778∗∗∗ −1.739∗∗∗ −1.781∗∗∗ −1.742∗∗∗

(0.057) (0.056) (0.057) (0.056)
Trial 0.002∗ 0.0015 −0.0011 −0.0012

(0.0009) (0.0009) (0.0015) (0.0015)
Trial*Time viewing longest − − 0.0009∗∗ 0.0008∗

(0.0003) (0.0003)
Letter dummies No No No No

Fixed effects Y es No Y es No

Demographics+ No Y es No Y es

AIC 9459.3 9329.5 9453.6 9325.9

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the subject-specific dummies
in the fixed effects regressions or the demographics estimates. AIC refers to the
Akaike information criterion. Each regression has 10, 989 observations. ∗∗∗ denotes
p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

In every specification, the quality of the choice is increasing in the time viewing the longest

line. A similar result is reported by Krajbich and Rangel (2011). We interpret this as consistent

with attention being related to choice. We also find that the interaction between Trial and

Time viewing longest is positive. This provides some evidence that the attention effects become

stronger across trials.

Similar to the analysis summarized in Table 9, we interpret these results with caution due

to the possibility of endogeneity introduced by including the Time viewing longest variable.

Similar to the analysis from Table 9, the Spearman correlations between the Time viewing

longest variable and the residuals (both unstandardized and Pearson standardized) are each

significant at 0.001. These results suggest that (possibly endogenous) attention is related to

choice.

26



4.8 Independence from irrelevant alternatives

Our dataset provides a unique opportunity to test the independence from irrelevant alterna-

tives (IIA) property. Recall that our choice sets always involve a longest line and another line

that is a specific amount shorter than this longest line. The difference between these lines is 1

pixel in the difficult treatment, 11 pixels in the medium treatment, and 31 pixels in the easy

treatment. Choice sets with more than 2 lines are constructed by including lines that have

lengths less than or equal to the shorter of these lines. We now refer to lines in the difficult

treatment 1 pixel shorter than the longest, lines in the medium treatment 11 pixels shorter

than the longest, or lines in the easy treatment 31 pixels shorter than the longest to be the

second longest line in the choice set.

To test IIA in our setting, we can observe if the ratio of the probability that the longest

line is selected and the probability that the second longest line is selected varies with the size

of the choice set.26 Because not every trial has a unique second longest line, we only consider

observations with a unique second longest line. Further, since we are interested in the relative

selection of the longest and the second longest line, we consider only trials in which either

the longest or the second longest lines were selected. This allows us to interpret the Selected

longest variable as the relative choice between the longest and the second longest lines. Due to

the non-monotonic relationship between the size of the choice set and the choices, we estimate

a unique dummy variable for each choice set size. In order to investigate the effect of the

size of the choice set on choice, we report the Wald statistic for the Number of lines dummy

variables. We also report the associated p-value.

The other elements of the analysis are similar to that presented above. We summarize

these regressions in Table 11.

26See Table A10 for the summary statistics involving the longest line and the second longest line choices.
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Table 11: Logistic regressions of the Selected longest line variable

(1) (2) (3) (4)
Longest line normalized − −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗

(0.0007) (0.0007) (0.0007)
Easy treatment dummy 2.208∗∗∗ 2.224∗∗∗ 2.224∗∗∗ 2.259∗∗∗

(0.125) (0.125) (0.125) (0.126)
Difficult treatment dummy −1.388∗∗∗ −1.386∗∗∗ −1.387∗∗∗ −1.437∗∗∗

(0.065) (0.065) (0.065) (0.067)
Trial − − −0.001 −0.001

(0.001) (0.001)
Number of lines Wald statistic 4.77 4.32 4.31 4.84

p-value of Wald statistic 0.31 0.36 0.37 0.30
Letter dummies No No No No

Fixed effects No No No No

Demographics+ No No No Y es

AIC 6634.3 6606.9 6607.5 6429.7

We only consider trials with a unique second longest line and those in which
either the longest line or the second longest line was selected. We provide the
coefficient estimates and the standard errors in parentheses. We do not provide
the estimates of the intercepts, the Number of lines dummy estimates, or the de-
mographics estimates. We report the Wald statistic and its corresponding p-value
for the Number of lines dummy estimates. AIC refers to the Akaike informa-
tion criterion (Akaike, 1974). Each regression has 8, 628 observations. ∗∗∗ denotes
p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

In every specification, the size of the choice set is not significantly related to the relative

choice of the longest and the second longest lines. We interpret this as consistent with the IIA

property. The other results in Table 11, are largely consistent with the analyses summarized

above. The relative choice of the longest and second longest lines are decreasing in the difficulty

treatments and decreasing in the length of the longest line. However, we note that the Trial

coefficient estimate is not significant.

The results in Table 11 seem to suggest that the well-documented violations of IIA stem

from details in a specific choice setting (for instance, a particular profile of multiple attributes)

rather than being a general feature across all choice settings.
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5 Conclusion

We conduct an idealized choice experiment where the choice set is populated with objects that

are valued according to only a single, static attribute with a continuous measure and we can

observe the true preferences of subjects. Subjects have an imperfect perception of the choice

objects but can improve the precision of their perception with cognitive effort. Subjects are

given a choice set involving several lines of various lengths and are told to select one of them.

Subjects are paid an amount that increases with the length of their choice and they therefore

strive to select the longest line. This design allows us to make unambiguous conclusions about

the optimality of choices. We find a negative relationship between the optimality of choice

and the number of lines in the choice set, the lengths of the lines in the choice set, and the

similarity of the lengths of the lines in the choice set. We note that this apparent random

choice emerges from a setting without a preference for randomization, without a preference

for flexibility, without private information, without multiple attributes that could possibly

interact, and is not the result of consideration set effects.

Our design allows us to observe the search history and the response times. We also find

a positive relationship between response times and the number of lines in the choice set, the

lengths of the lines in the choice set, and the similarity of the lengths of the lines in the choice

set. However, we find evidence that suboptimal choices are associated with longer response

times than are optimal choices. This result is consistent with the predictions of Fudenberg,

Strack, and Strzalecki (2018), who study a model where an agent faces a choice with uncertain

utility and there is a constant cost of gathering information about the choice problem. The

authors show that suboptimal decisions will tend to take, on average, a longer time. We note

that their theoretical model seems to closely resemble our experimental setup. We also note

that our statistical results do not appear to suffer from an endogeneity bias.

Since we know the objective value of each object in the choice set, our experiment produces

choice data that can investigate the statistical distribution of the errors. When we conduct

a multinomial discrete choice analysis, we find that the errors are better described as having

a Gumbel distribution rather than a normal distribution. We also observe effects that are
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consistent with (possibly endogenous) memory decay and attention.

Finally, we find evidence that our dataset is consistent with the independence from irrele-

vant alternatives (IIA) property. Given the general nature of our choice setting, we interpret

this as suggesting that IIA could be a general feature of choice, and that violations of IIA

only occur in specific choice settings, such as those with certain profiles of multiple attributes.

We admit that our results related to memory decay and attention possibly suffer from

an endogeneity bias. In the future we are interested in studying memory decay effects by

manipulating the time between the last line viewed and the response. We are also interested

in studying attention effects, by manipulating the time that the subject is permitted to view

the lines. These exogenous interventions should facilitate the investigation of memory decay

and attention.

We are also interested to learn whether the effects that we find, also appear in settings

with other objectively measurable quantities. For instance, paying subjects as a function of

tones, color shade, temporal duration, or weight. We are further interested to learn the affect

of various other payment schemes. We leave these questions for future research.
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Appendix

Summary statistics of the Selected longest variable and response times

Table A1 characterizes the Selected longest variable and response times in the difficulty treat-

ments.

Table A1: Selected longest variable and response times

Easy Medium Difficult Pooled

96.36% 74.84% 38.50% 69.65%
9.984s 13.834s 16.070s 13.306s

The observations within the difficulty treatments range from 3553 to 3751.
There are 10, 989 observations in the pooled analysis.

It appears to be the case that the difficulty treatments were successful in that the longest

line is more likely to be selected in the easy treatment. Table A2 characterizes the Selected

longest variable and response time in the number of lines treatments.

Table A2: Selected longest variable and response times

2 Lines 3 Lines 4 Lines 5 Lines 6 Lines

78.11% 72.67% 69.21% 64.85% 62.91%
8.469s 11.282s 13.356s 15.704s 18.042s

The observations within the number of lines treatments range from 2181 to
2284.

It also appears that the probability that the longest line is selected is decreasing in the

number of available lines. This appears to be suggestive of choice overload, even from a

choice set of only a few simple objects. This also suggests that subjects take more time on

trials where the choice set is larger. Table A3 characterizes the Selected longest variable and

response times in the longest line length treatments.

Table A3: Selected longest variable and response times

160 176 192 208 224 240 256 272 288 304

76.4% 71.9% 72.1% 71.3% 67.9% 68.4% 69.4% 66.7% 68.6% 63.7%
12.73s 13.18s 12.36s 13.22s 12.76s 13.33s 13.09s 13.63s 13.90s 14.88s
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The observations within the longest line length treatments range from 1093 to
1102.

There appears to be a relationship between the length of the longest line in a trial and

the likelihood that the longest line was selected in that trial. Further, is also appears to be

a relationship between response time and the length of the longest line. This suggest to us a

positive relationship between the effort spent and the length of the longest line in that trial.

In Table A4 we characterize the Selected longest variable and the response times according to

the number of lines and the letter label of the longest line.

Table A4: Selected longest variable and response
times by number of lines and letter label of the longest

A B C D E F
2 Lines 77.84% 78.39% − − − −

8.546s 8.389s

3 Lines 72.39% 72.56% 73.08% − − −
11.272s 11.411s 11.165s

4 Lines 66.48% 61.90% 75.41% 72.48% − −
13.509s 13.930s 13.015s 13.020s

5 Lines 59.86% 60.47% 63.82% 70.27% 69.54% −
16.087s 16.502s 15.010s 15.974s 15.011s

6 Lines 54.97% 56.89% 62.43% 73.24% 61.58% 67.79%
18.461s 17.957s 17.556s 17.712s 19.059s 17.543s

The observations range from 1115 to 1166 within the 2 line treatment, from 707
to 757 in the 3 line treatment, from 525 to 585 in the 4 line treatment, from 430
to 456 in the 5 line treatment, from 341 to 370 in the 6 line treatment.

There appears to be a relationship between both the Selected longest variable and response

times with the letter label of the longest line.

Summary statistics for the quality of choice and response times

Response times of the trials in which the longest line was selected is smaller than the response

times in trials in which the longest line was not selected is robust across the longest line
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treatments, the number of line treatments, and the difficulty treatments.

Table A5: Response times

Easy Medium Difficult
Longest 9.936 13.498 15.645
Not 11.272 14.833 16.337
Z-stat 2.61 3.50 2.91
p-value 0.009 < 0.001 0.004

The mean response times in seconds within each difficulty treatment, conditional
on whether the longest line was selected or not. The results of a Wilcoxon Two-
Sample Test (Z-statistic and p-value) are reported.

Table A6: Response times

2 Lines 3 Lines 4 Lines 5 Lines 6 Lines
Longest 8.063 10.722 12.468 14.742 16.735
Not 9.920 12.772 15.353 17.478 20.258
Z-stat 7.832 6.431 7.452 6.224 6.838
p-value every test < 0.001

The mean response times in seconds within each number of lines treatment,
conditional on whether the longest line was selected or not. The results of a
Wilcoxon Two-Sample Test (Z-statistic and p-value) are reported.

Table A7: Response times

160 176 192 208 224 240 256 272 288 304
Longest 11.73 12.07 11.52 12.53 11.89 12.11 12.30 12.55 12.52 13.48
Not 15.95 16.03 14.54 14.92 14.60 15.96 14.89 15.80 16.90 17.35
Z-stat 5.58 8.16 5.74 4.23 5.63 6.12 5.81 5.40 6.52 5.70
p-value every test <0.001

The mean response times in seconds within each longest line treatment, condi-
tional on whether the longest line was selected or not. The results of a Wilcoxon
Two-Sample Test (Z-statistic and p-value) are reported.

In every treatment, we see that suboptimal choices in the line selection task are associated

with a larger response time than are optimal choices.

44



Robustness of the optimality of choices

In order to investigate the optimality of choices, in Table 1 we summarized logistic regressions

of the Selected longest variable. Here we perform the analogous exercise but we analyze the

Longest minus selected variable, defined to be the length of the longest line in the trial menus

the length of the line selected in that trial. As this variable is bounded below by 0, we perform

tobit regressions. The regressions are otherwise identical to those in Table 1. We summarize

these regressions in Table A8.

Table A8: Tobit regressions of Longest minus selected variable

(1) (2) (3) (4)
Longest line normalized 0.027∗∗∗ 0.027∗∗∗ 0.027∗∗∗ 0.027∗∗∗

(0.003) (0.003) (0.003) (0.003)
Number of lines normalized 1.621∗∗∗ − 1.606∗∗∗ −

(0.107) (0.110)
Easy treatment dummy −11.571∗∗∗ −11.520∗∗∗ −11.617∗∗∗ −11.591∗∗∗

(0.481) (0.480) (0.490) (0.489)
Difficult treatment dummy 3.437∗∗∗ 3.395∗∗∗ 3.407∗∗∗ 3.354∗∗∗

(0.341) (0.340) (0.350) (0.349)
Trial 0.015∗∗ 0.015∗∗ 0.014∗∗ 0.015∗∗∗

(0.005) (0.005) (0.005) (0.005)
Letter dummies No Y es No Y es

Fixed effects Y es Y es No No

Demographics No No Y es Y es

AIC 31441 31400 31758 31715

We provide the coefficient estimates and the standard errors in parentheses. We
do not provide the estimates of the intercepts, the Letter dummies, the subject-
specific dummies in the fixed effects regressions or the demographics estimates.
AIC refers to the Akaike information criterion (Akaike, 1974). Each regression
has 10, 989 observations. ∗∗∗ denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes
p < 0.05, and † denotes p < 0.1.

Similar to Table 1, the accuracy of choice decreases when there is a larger number of lines

in the choice set, decreases in the length of the longest line, and decreases in the difficult

treatments. We also observe a decrease in accuracy across trial. It seems as if the results

presented in Table 1 are robust to the specification of the optimality of the choose.
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Robustness of the relationship between quality of choice and response times

In order to test the robustness of Table 5, we conduct a similar analysis, but we perform an

estimate of the treatment variables for every subject. In addition to estimating the standard

fixed effects dummies, we estimate an Easy treatment dummy coefficient, a Difficult treatment

dummy coefficient, a Number of lines coefficient estimate, and a Longest line coefficient esti-

mate for every subject. Below, we refer to these as the Subject-specific treatment estimates.

We also employ a specification where we estimate the Trial coefficient for every subject. We

refer to this as Subject-specific Trial estimates. We summarize this analysis in Table A9.

Table A9: Regressions of the log of Response time variable

(1) (2)
Trial −0.002∗∗∗ −

(0.0001)
Select Longest −0.015∗∗∗ −0.017∗∗∗

(0.004) (0.004)
Subject-specific treatment estimates Y es Y es

Subject-specific Trial estimates No Y es

Letter dummies No No

Fixed effects Y es Y es

Demographics No No

AIC −4087.2 −3558.4

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts or the subject-specific estimates.
AIC refers to the Akaike information criterion (Akaike, 1974). Each regression
has 10, 989 observations. ∗∗∗ denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes
p < 0.05, and † denotes p < 0.1.

In the regressions where we estimate a unique treatment coefficient for every subject, we

see that the Select longest variable remains significant. This suggests a negative relationship

between the optimal choice in the line selection task and Response time. Further, we note that

when we conduct Spearman correlations between the unstandardized residuals and the Select

longest variable in specifications (1) and (2), the p-values respectively are 0.630 and 0.628.

When we conduct Pearson correlations, the qualitative results are not changed. Further, our

qualitative results are not changed when we use the standardized Pearson residuals rather
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than the unstandardized residuals. We interpret this as suggesting that our specifications are

not suffering from an endogeneity bias caused by the inclusion of the Selected longest variable.

The results summarized in Table A9 provide additional evidence that the relationship between

response times and the optimality of the choice is not driven by a possible negative subject-

level relationship between skill at the task and the speed by which it is accomplished.

Summary statistics of the IIA analysis

Table A10 lists the number of instances where the longest line and the second longest line was

selected in trials with a unique second longest line, by difficulty treatment and the number of

lines in the choice set.

Table A10: Longest and Second longest choices by
difficulty treatment and number of lines in the choice set

Easy treatment
2 3 4 5 6

Longest 801 703 671 615 538
Second longest 23 11 12 14 24
Ratio 34.83 63.91 55.92 43.93 22.42

Medium treatment
2 3 4 5 6

Longest 575 528 467 444 397
Second longest 121 120 83 94 92
Ratio 4.75 4.40 5.70 4.72 4.32

Difficult treatment
2 3 4 5 6

Longest 414 287 235 203 125
Second longest 356 240 193 164 108
Ratio 1.16 1.20 1.22 1.24 1.16

Only trials with a unique second longest line are included. The upper panel
summarizes data from the easy treatment, the middle panel summarizes data from
the medium treatment, and the lower panel summarizes data from the difficult
treatment. Easier treatments and treatments with smaller choice sets are more
likely to have a unique second longest line.

In the easy treatment, there is a relationship between the longest and second longest

choices across sizes of the choice set according to a χ2 test (χ2(4) = 12.11, p = 0.02) and a
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Kruskal-Wallis test (H(4) = 12.77, p = 0.01). However, the in the medium treatment, this

relationship is not significant according to a χ2 test (χ2(4) = 3.27, p = 0.51) or a Kruskal-

Wallis test (H(4) = 3.19, p = 0.53). Likewise, in the difficult treatment, this relationship

is not significant according to a χ2 test (χ2(4) = 0.35, p = 0.99) or a Kruskal-Wallis test

(H(4) = 0.38, p = 0.98).
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