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Abstract: 

This article performs simulations with different small samples considering the regression techniques of OLS, Jackknife, 
Bootstrap, Lasso and Robust Regression in order to establish the best approach in terms of lower bias and statistical 
significance with a pre-specified data generating process (DGP). The methodology consists of a DGP with 5 variables and 1 
constant parameter which was regressed among the simulations with a set of random normally distributed variables 
considering sample sizes of 6, 10, 20 and 500. Using the expected values discriminated by each sample size, the accuracy 
of the estimators was calculated in terms of the relative bias for each technique. The results indicate that Jackknife approach 
is more suitable for lower sample sizes while the Bootstrap approach reported to be sensitive for the lower sample sizes 
indicating that it might not be suitable for establishing statistically significant relationships in the regressions. The Monte Carlo 
simulations also reflected that when a significant relationship is found in small samples, this relationship will also tend to remain 
significant when the sample size is increased. 

Keywords: small sample size; statistical significance; regression; simulations; bias. 

JEL Classification: C15; C19; C63. 

Introduction 

One situation that might happen while we’re trying to analyze different types of data and make empirical inferences 

over a phenomenon is that we may have a low (or reduced) number of observations. This is usually associated 
with the lack of confidence in the estimations, especially when we’re opting for the regression analysis in the 

multivariate framework. A possible answer to avoid this problem is to perform descriptive statistics and proceed 

with the deduction patterns, however, it could be asked: Are we really sure that our estimations are unreliable? Do 
they really lack of confidence? These are usual questions in the context of quantitative analysis when we’re 

regressing a model in the presence of low observations. Naturally, the literature supports this idea from different 
perspectives, as an example Bujang, Sa’at, and Tg Abu Bakar Sidik (2017) studies state that in order to obtain 

coefficients closer to the population parameters we need around 300 observations to be sure they’re reliable.  

But if our phenomenon has not been studied (or documented) properly in order to obtain a significant number 
of observations, should we discard immediately the multiple regression technique to analyze it? The aim of this 

paper is to provide evidence that regression can have consistent estimates of the coefficients even when we’re 
dealing with a low number of observations. The methodology consists mainly of the use of Monte Carlo simulations 

derived from a linear data generating process (DGP) to perform conclusions about the bias of the estimated 

coefficients in the regression framework with a different number of observations. The estimation techniques involve 
ordinary least squares (OLS), Jackknife, Bootstrap, Robust Regression, and Lasso approaches. 

1. Research background

The sample size can be classified in general terms depending on the number of observations, as it can be found 

in the study of Mason and Perreault (1991), a sample size of 30 observations or lesser is considerate small, samples 

around 150 observations can be considered as moderate and finally, samples bigger than 250 or 300 are tagged 
as large. One interesting problem that arises in small samples is relative to the statistical inferences, in fact, “using 

a sample smaller than the ideal increases the chance of assuming as true a false premise” (Faber and Fonseca 
2014). This implies considering the two types of errors in statistical hypothesis testing, the type I and II errors. In 

simple words, the first type of error refers that our null hypothesis 𝐻" (relative to a specific proposition) is true but 

we reject it, while the second type of error refers when our 𝐻" is false but we don’t reject it.  
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Small sample size and incorrect inferences in the parameters’ significance tests are studied by Colquhoun 

(2014) indicating that a p-value lesser than 5% might not be statistically significant since the results are derived 

from “underpowered statistical inferences”. From this, the risk of using a small size would be the possible type I 
error in the regression framework.  

More from this idea can be found in another study of Forstmeier, Wagenmakers, and Parker (2017) where 
the problem of false-positive findings can be derived from a decreased sample size and incorrect p-values. Also, 

the problem of statistical inferences is correlated with the replication procedure, in other words, the last two types 

of errors seem to be sensitive to the number of replications in a way that the results derived from one inference 
might not match the result of a similar exercise concerning a similar set of data. This is a fair point in the analysis, 

the number of replications might affect the statistical inference and the overall converge rate to the population 
parameters of the estimations, therefore it should be taken into account. This idea leads to a basic statement: as 

we increase the number of replications of an experiment, we’re getting closer and closer to the expected behavior 

of the population parameters in the inference. These authors also make a valid point regarding some underlying 
assumptions of the estimations, for example, autocorrelation, correct specifications, no omitted variables in general. 

In this case, small sample size inferences can be harmful where also the ordinary least squares assumptions are 
not satisfied.  

A remarkable study performed by Holmes Finch and Hernandez Finch (2017) starts by analyzing tools like 
Lasso, Elastic net, Ridge regression and the Bayesian approach regarding the situation when we got high 

dimensional multivariate data relative to an even bigger number of variables. In this case, the number of 

independent variables may be close or equal to the sample size, yielding in unstable coefficients and standard 
errors (these ones are needed to the formulation of the hypothesis testing procedure) (Bühlmann, Van De Geer 

2011). The result of these experiments tends to demonstrate that the regularization methods, in particular, the 
Ridge regression approach were more accurate in terms to control bias and type I errors produced in the 

estimations with low sample data for multiple regression analysis. Speed (1994) establishes a contribution to the 

solution of the problem of low sample size in the regression framework, considering sample reuse validation 
techniques. These techniques refer to the Jackknife and Bootstrap approaches related to the multiple regression 

estimation.  
An important statement of this author is: Researchers should note that the overwhelming case is that 

reduction in sample size is far more likely to reduce the likelihood of finding any significant relationships than to 

increase it. This is due to the way that sample size affects test power. The researcher sets the level of type I error 
(the probability of accepting a hypothesis when false in reality) in any test, normally at 0-05, and critical values 

calculated for the given size of sample. Small sample sizes are no more likely to result in wrongfully claiming a 
relationship exists than is the case for larger samples. (Speed 1994, 91) 

This interpretation is indeed useful since it states that low sample relationships are more likely to be found 

when the sample size increases over the experiments. In fact, there is some literature that also critiques the role of 
large samples in the estimations, arguing that anything becomes significant. Within this idea, we can find the study 

of Lin, Lucas Jr. and Shmueli (2013) where they affirm that as the sample size is increasing, the p-value starts to 
decrease drastically to 0, which could lead to statistically significant results which are not sensitive over the 

regression analysis. Meanwhile, a low sample size is more sensitive to the correlation between the variables (this 

implies sensibilization to the changes too) leading to think that large sample sizes might find significant results 
when it’s just an overwhelming product of the power of the sample without accurately indicating real (or strong) 

relationships among the variables. In fact, Faber and Fonseca (2014) appoints that samples cannot be either too 
big or too small in order to perform statistical inferences.  

Up to this point, we’re facing problems on both sides of the sample size, too much can be misleading and 
insensitive to true relationships among the variables (which can be especially the case of the regression analysis) 

and on the opposite when we got a little sample size, we might have results that are inconsistent across replications 

driving to errors of type 1.  

2. Methodology

The main idea of the methodology is to perform Monte Carlo approximations across different types of estimations 
which involves OLS, Jackknife, Bootstrap, Lasso and Robust Regression, assuming a multivariate data generating 

process in a linear form as it follows:  

𝑦$ = 𝛼 + 𝛾𝑥*,$ + 𝛿𝑥-,$ + 𝜃𝑥/,$	 + 𝜗𝑥2,$ + 𝜑𝑥4,$ + 𝑢$  (1) 
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Equation (1) is calibrated setting the population parameters 𝛼, 𝛾, 𝛿, 𝜃, 𝜗, 𝜑 as all equal to 10 for the i 

observations. The independent variables are 𝑥6  with 𝑗 = {1,2,3,4, 5} and the residuals are expressed in 𝑢$ .The 

objective is to identify which of the estimation types suits better in terms of accuracy of the estimators. In this case, 
across the simulations it is assumed that:  

𝑥6~𝑁 0,1 	 

𝑢$~𝑁(0,1)	

(2)	

From (1) we’re setting the number of replications to 10, 100 and 500 while the number of observations would 
be set at first to 6 in order to induce on purpose the micronumerosity phenomenon and see how the estimators 

react to this problem, the next size of observations across replications are set to 10, 20 and 500. There’s no need 

to test for a higher number of observations since empirical literature has established that the overall significance 
and unbiasedness are influenced by a large sample size. The relative bias of the estimators among the coefficients 

would be expressed as a relative difference from the population parameter, following a general idea that:  

𝐵𝑖𝑎𝑠 = |	
IJKIL

IJ
| (3) 

where: 𝛽6  represents the true parameter associated to the 𝑥6  variable contained in equation (1) and 𝛽N represents 

the estimated parameters in the regressions. 

The overall bias 𝑂. 𝐵. can be expressed in terms of expected values as it follows: 

𝑂. 𝐵. = |	
QKR(IL)

Q
 (4) 

where: the mean value of the estimated parameters would be our expected value 𝐸(𝛽N) of the coefficients by each 

type of regression; 𝑘 represents the expected value of the true parameters considering that all of the 

population parameters in the DGP are set to 10 therefore 𝑘 = 10.  

In equation (4), the bias would be expressed in terms of percentage comparing the true parameters with the 

mean of the estimated parameters by the regressions as a relative difference, indicating that 0 would be closer to 
a perfect match with the absence of bias.  

In order to see the changes in the statistical significance of the coefficients, single Monte Carlo simulations 
would be presented in the usual regression output for each type of estimation (OLS, Jackknife, Bootstrap, Lasso 

and Robust Regression) with the different sizes in the observations as mentioned before, then the bias results are 

presented for each type of estimation discriminated by the size of the sample and the number of replications. For 
the overall calculus, simulations and results, the statistical software Stata 16 was used (StataCorp, 2019). 

3. Results

3.1. Statistical significance 

The OLS simulation practiced, establish that the pattern of statistical significance for all estimators will remain as 

long as the sample size is increasing, the special case of micronumerosity tend to disrupt the statistical significance 
as expected, but the yielding estimators seems to be closer to the DGP.  

Table 1. OLS Monte Carlo simulation with different sizes 

VARIABLES 
(1) (2) (3) (4) 

Y Y Y Y 

x1 
9.549 9.288*** 9.915*** 9.991*** 

(0) (0.440) (0.208) (0.0468) 

x2 
10.36 9.915*** 10.01*** 9.961*** 

(0) (0.491) (0.200) (0.0499) 

x3 
8.952 9.709*** 10.27*** 9.979*** 

(0) (0.362) (0.211) (0.0457) 

x4 
10.66 10.44*** 9.977*** 10.04*** 

(0) (0.295) (0.207) (0.0453) 

x5 
10.70 9.233*** 10.59*** 10.02*** 

(0) (0.530) (0.289) (0.0506) 

Constant 8.902 9.979*** 10.10*** 9.997*** 
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VARIABLES 
(1) (2) (3) (4) 

Y Y Y Y 

(0) (0.394) (0.225) (0.0463) 

Observations 6 10 20 500 

R-squared 1.000 0.999 0.999 0.998 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Source: Own construction 

As an interesting thing to consider, the 𝑅- values changes when we estimate the DGP with 20 observations, 
to a lower accuracy (but still closer to 1) in the context of 500 observations, this is proof that the property of 

consistency among the OLS estimator is achievable (and of course all classical assumptions of the linear regression 

model are also satisfied). This tends to indicate that the affirmation of Speed (1994) regarding to the relationships 
found in small sample sizes tend to remain as the size of the sample increases.  

Going further with the jackknife estimation, it can be observed that it cannot be computed in the presence of perfect 
micronumerosity, leading to the impossibility to even approach to get a result from observed coefficients, among 

the statistical significance it also remains across the different sample sizes, suggesting the same result from OLS. 

Table 2 Jackknife estimation with different sample size 

VARIABLES 
(1) (2) (3) (4) 

Y Y Y Y 

x1 
- 9.733*** 10.25*** 10.00*** 

- (0.470) (0.358) (0.0445) 

x2 
- 9.892*** 9.891*** 9.926*** 

- (0.296) (0.380) (0.0454) 

x3 
- 10.42*** 10.33*** 10.02*** 

- (0.667) (0.296) (0.0445) 

x4 
- 11.04*** 10.09*** 9.977*** 

- (0.523) (0.403) (0.0476) 

x5 
- 10.29*** 9.627*** 10.03*** 

- (0.784) (0.401) (0.0434) 

Constant 
- 9.454*** 9.830*** 10.04*** 

- (0.433) (0.282) (0.0462) 

Observations 6 10 20 500 

R-squared - 0.999 0.998 0.998 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Source: Own construction 

The goodness of fit of the model tends to be reduced as the sample size is increased considering this type 

of estimation, we can also see that the coefficients vary from the ones estimated via OLS. The bootstrap estimation 
is presented in the Table 3 and display results a little bit different from the OLS and the jackknife, in the induced 

model with micronumerosity the coefficients can be computed, however, standard errors cannot be estimated.   

Table 3. Bootstrap estimation with different sizes 

VARIABLES 
(1) (2) (3) (4) 

Y Y Y Y 

x1 
10.06 10.26** 9.651*** 10.01*** 

(0) (4.026) (0.214) (0.0512) 

x2 
9.375 10.67** 10.23*** 9.958*** 

(0) (4.408) (0.264) (0.0359) 

x3 
10.85 9.744*** 10.40*** 10.02*** 

(0) (2.750) (0.200) (0.0379) 

x4 
10.24 10.27 9.718*** 10.05*** 

(0) (8.483) (0.177) (0.0422) 

x5 
10.68 10.15*** 9.959*** 10.01*** 

(0) (3.871) (0.238) (0.0479) 

Constant 11.34 10.50*** 10.04*** 9.993*** 
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VARIABLES 
(1) (2) (3) (4) 

Y Y Y Y 

(0) (2.564) (0.286) (0.0396) 

Observations 6 10 20 500 

R-squared 1.000 0.993 0.999 0.998 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Source: Own construction 

According to the Monte Carlo experiment with the bootstrap technique, it can be seen that as the sample 

size is increasing, the statistical significance will also be increased. The variables 𝑥*, 𝑥- and 𝑥2 demonstrate this 

situation, where for example with n = 10, for 𝑥2 there wasn’t a statistically significant relationship with 𝑦 in the 

regression model. Then as soon as we increased the sample size to n = 20 the variable turned to be significant, 

the similar case can be observed with 𝑥* and 𝑥- where they only were significant at a 5% with n = 10. Then with 

n = 20 they become significant at 1%, indicating that the bootstrap approach is sensitive to the number of 

observations regarding the coefficient hypothesis testing. This might suggest is not a good idea to perform this 
technique with a low sample size since it might discard a real relationship among the variables.  

Following with the Lasso regression, micronumerosity doesn’t allow the estimation of the coefficients. And the 
overall statistical significance remains equal across regressions with different sample sizes. This result indicates 

that estimations are consistent across models using the right variables with the specific function formal equally to 

the DGP.  
Table 4. Lasso estimations with different sizes 

VARIABLES 
(1) (2) (3) (4) 

Y Y Y Y 

x1 
- 11.18*** 10.09*** 10.03*** 

- (0.832) (0.242) (0.0453) 

x2 
- 9.605*** 9.785*** 9.913*** 

- (0.376) (0.272) (0.0452) 

x3 
- 10.70*** 9.866*** 10.07*** 

- (0.551) (0.264) (0.0442) 

x4 
- 9.441*** 9.585*** 9.873*** 

- (0.355) (0.235) (0.0421) 

x5 
- 10.17*** 9.861*** 9.984*** 

- (0.397) (0.336) (0.0433) 

Observations 6 10 20 500 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Source: Own construction 

It can be noted that Lasso regression omits the constant parameter in this single exercise, but the highest 

possible goodness of fit has been selected according to the variables. Thus, the statistical significance of the 
estimators prevails across the models with different sample sizes. However, it is necessary to appoint that Lasso 

regression doesn’t look directly at the p-values or the standard errors since its sole objective is to isolate a model 

where the predictions become more suitable according to the data (StataCorp, 2019). 
The robust regression estimates are similar to the ones done with Lasso and jackknife in terms that the 

model cannot be estimated when micronumerosity is present. The other results related to the statistical significance 
of the estimators indicate that when we’re in the context of short samples, the relationships remain significant as 

the number of observations increase.  



Journal of Applied Economic Sciences  

 27 

Table 5 Robust regression with different sizes 

VARIABLES 
(1) (2) (3) (4) 

Y Y Y Y 

x1 
- 9.866*** 9.883*** 10.02*** 

- (0.443) (0.282) (0.0442) 

x2 
- 11.04*** 9.560*** 9.978*** 

- (0.618) (0.255) (0.0460) 

x3 
- 10.15*** 10.35*** 10.02*** 

- (0.611) (0.290) (0.0415) 

x4 
- 9.315*** 10.16*** 9.972*** 

- (1.361) (0.333) (0.0441) 

x5 
- 10.88*** 10.25*** 9.963*** 

- (0.649) (0.215) (0.0430) 

Constant 

- 10.58*** 9.949*** 10.02*** 

- (0.935) (0.226) (0.0444) 

Observations 6 9 20 500 

R-squared - 1.000 0.999 0.998 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Source: Own construction 

An interesting thing to appoint is that as long as we’re having a large sample regarding our regressions, the 

goodness of fit tends to be somewhat reduced across estimations. This led to confirm the conclusion that 𝑅- is 

sensitive to the number of observations among the sample. 

3.2. Bias behavior of the parameters 

This section consists of the results for each type of estimation (OLS, jackknife, bootstrap, lasso and robust 
regression) referring to the distributions across replications for the coefficients, kernel densities were used for each 

coefficient of the different 𝑥 variables in order to provide analysis regarding the importance of the number of 

replications. 

3.2.1. Ordinary Least Squares 

Considering a number of 6 observations, the coefficients for each variable tend to be somewhat unstable when the 
number of replications is low, meaning that in the presence of micronumerosity, the estimators are less likely to be 

trustable. As replications are increased to 100 and 500, the estimators seem to converge to their true value of 10, 

the situation clearly implies that across regressions with normally distributed data, as long as we replicate enough 
times the experiments, the expected value seems to be close to our DGP, it should be noted that OLS estimators 

stills covers some extreme values which could be affecting the consistency across replications, as we can see it in 
the graphical pattern in Figure1.  

Figure 1. OLS - Distributions of the coefficients with n=6 
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Source: Own construction 

These results proofs evidence that under micronumerosity, OLS estimates are unstable so it should be 
avoided at all cost. Considering the 500 replications for the 6 observations regression with OLS, the descriptive 

statistics for each coefficient reflects an undeniable reality. The minimum and maximum values are out of scale 

regarding to our DPG where each coefficient is equal to 10, even when the mean value is somewhat closer, the 
results yield unstable. 

Table 6. OLS Descriptive Statistics with n=6 

Estimated 
Parameter 

Replications Mean 
Standard 
Deviation. 

Minimum Value of 
the Parameter 

Maximum Value 
of the Parameter 

 _b_x1 500 9.78 13.529 -86.594 243.693 

 _b_x2 500 13.807 102.362 -588.518 2199.746 

 _b_x3 500 7.444 49.54 -1044.307 199.705 

 _b_x4 500 10.553 28.372 -306.405 526.281 

 _b_x5 500 4.668 62.136 -1043.826 62.116 

 _b_cons 500 5.83 92.71 -2015.365 188.439 

Source: Own construction. 

Now considering the number of observations as 10, the following pattern of distributions can be found in 
Figure 2. 

Figure 2. OLS - Distributions of the coefficients with n = 10 

 

 
Source: Own construction. 
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There is a quick and stable rate of convergence relative to the distributions of the estimators for each variable 

which is depicted across replications. The distributions tend to be normal as the simulation number increase, 

leading to the true value of the estimators for all 𝑥 variables and the constant term. The descriptive statistics are 
shown ahead in Table 7 considering 500 hundred replications of the Monte Carlo simulations with n=10 

observations.  

Table 7. OLS Descriptive Statistics n=10 

Estimated 
Parameter 

Replications Mean Standard 
Deviation. 

Minimum Value of 
the Parameter 

Maximum Value 
of the Parameter 

 _b_x1 500 9.937 .575 5.552 11.942 

 _b_x2 500 9.994 .599 7.56 12.789 

 _b_x3 500 9.957 .688 2.325 12.944 

 _b_x4 500 10.007 .583 8.089 14.52 

 _b_x5 500 9.999 .582 5.572 12.208 

 _b_cons 500 10.002 .535 7.253 12.053 

Source: Own construction. 

We can see that the minimum and maximum values for the 500 hundred replications with n = 10 tends to 

be more stable than when n = 6 which is the micronumerosity simulation. In this case the mean values are also 
more accurate in terms to approach to the data generating process of equation (1).  

Now considering the number of observations to 20, the pattern of the distributions for each parameter is 

shown ahead in Figure 3, indicating a possibly significant difference from the n = 10 exercise because the shape 
of the curves for each distribution are different.  

Figure 3. OLS - Distributions of the coefficients with n = 20 

 

 
Source: Own construction 

The range of the distribution is more accurate (from 9 to 11 in the x axis) for all replications with 20 
observations, this tends to indicate that the precision of the estimates is increasing as expected. However, the 

shape of the curve is somewhat different but stills relies over 10. Which is a sign of the consistency and 

unbiasedness property of the estimator.  The descriptive statistics in Table 8 from the 500-replication exercise 
within this number of observations reflects a good precision of the estimators. 
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Table 8. OLS Descriptive statistics with n = 20 

Estimated 
Parameter 

Replications Mean 
Standard 
Deviation. 

Minimum Value 
of the Parameter 

Maximum Value 
of the Parameter 

 _b_x1 500 9.979 .274 8.95 10.736 

 _b_x2 500 10.018 .269 9.145 11.104 

 _b_x3 500 10.003 .284 9.126 11.082 

 _b_x4 500 10.007 .268 8.834 11.139 

 _b_x5 500 10.002 .275 8.8 10.889 

 _b_cons 500 9.998 .271 9.262 10.837 

Source: Own construction 

Finally, as a comparing exercise, we’re setting the number of observations to 500 in order to understand the 

behavior of the coefficients’ distribution as it is shown in Figure 4.  

Figure 4. OLS - Distributions of the coefficients with n = 500 

 

 
Source: Own construction 

As expected, the higher number of observations tend to have a faster converging rate to the true value of 

the parameters than the other simulations with lesser observations, the accuracy of the regressions are shown in 

the descriptive statistics ahead in Table 9.  

Table 9 OLS Descriptive Statistics n= 500 

Estimated 
Parameter 

Replications Mean 
Standard 
Deviation. 

Minimum Value of 
the Parameter 

Maximum Value 
of the Parameter 

 _b_x1 500 10.002 .043 9.883 10.149 

 _b_x2 500 9.999 .044 9.857 10.112 

 _b_x3 500 9.998 .043 9.878 10.115 

 _b_x4 500 10.001 .044 9.86 10.13 

 _b_x5 500 10.001 .044 9.807 10.132 

 _b_cons 500 10.001 .044 9.873 10.134 

Source: Own construction. 
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3.2.2. Jackknife 

This type of estimation cannot be performed in the presence of perfect micronumerosity, so distribution analysis 

cannot be done with the case of 6 observations. Moving ahead with 10 observations, the behavior of the 
distributions of the parameters according to different replications are shown in Figure 5.  

Figure 5. Jackknife - Distributions of the coefficients with n = 10 

 

 
Source: Own construction. 

It appears that the range of the different parameters’ distributions in the case of 100 replications is higher 
than the rest of the simulations considering 10 observations, something particular but yet over the long-run not 

important since the mean value of all replications stills converge to the true value. The shape of the distributions 
cannot be established as better from the OLS, since the range varies widely. From this, descriptive statistics in 

Table 10 would be useful.  

Table 10 Jackknife descriptive statistics n = 10 

Estimated 
Parameter 

Replications Mean 
Standard 
Deviation. 

Minimum Value of 
the Parameter 

Maximum Value 
of the Parameter 

 _b_x1 500 9.999 .554 8.398 12.178 

 _b_x2 500 10.024 .594 8.152 12.835 

 _b_x3 500 9.987 .554 7.092 12.61 

 _b_x4 500 10.009 .63 7.176 12.303 

 _b_x5 500 10.001 .577 7.451 12.494 

 _b_cons 500 9.997 .565 7.9 13.709 

Source: Own construction. 
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The expected value of the parameters is more accurate in the jackknife simulations than it is with the OLS, 

also the standard deviation tends to be lower for the jackknife approach. Considering now a sample size of 20 

observations, the following pattern can be observed in Figure 6. 

Figure 6. Jackknife - distributions of the coefficients with n = 20 

 

 
Source: Own construction. 

Jackknife estimation seems to be more unstable with a lower number of replications considering n=20, 

however we’re not sure yet if it’s more suitable than OLS by the graphic interpretation, looking at the descriptive 

statistics in Table 11 we can have a better approximation. 

Table 11 Jackknife descriptive statistics n=20 

Estimated 
Parameter 

Replications Mean 
Standard 
Deviation. 

Minimum Value 
of the Parameter 

Maximum Value 
of the Parameter 

 _b_x1 500 9.985 .284 8.913 10.834 

 _b_x2 500 9.986 .272 8.936 10.74 

 _b_x3 500 9.988 .273 9.249 10.867 

 _b_x4 500 9.978 .274 9.097 10.769 

 _b_x5 500 9.99 .276 9.181 10.766 

 _b_cons 500 10.006 .274 9.219 10.895 

Source: Own construction 

The estimations with jackknife seem to be pretty close to the ones performed with OLS at this number of 

observations, however OLS seems to have the advantage to be more stable with lesser replications than Jackknife 
does and the expected value with n = 20 of the estimators is closer to the DGP for OLS than it is for jackknife.  

Finally, with 500 observations the pattern is shown in Figure 7, it is noted that jackknife has the counterpart 
to require a higher and significant time of computing during the estimations.  
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Figure 7. Jackknife - distributions of the coefficients with n = 500 

 

 
Source: Own construction. 

The jackknife distribution with n=500 seems to converge somewhat equal to the OLS estimations. If we 

analyze the statistics relative to the OLS for the same number of observations, we’ll find that the OLS performs 
better in terms of the standard deviation and minimum and maximum values closer to 10.  

Table 12 Jackknife Descriptive Statistics n=500 

Estimated 
Parameter 

Replications Mean Standard 
Deviation. 

Minimum Value of 
the Parameter 

Maximum Value 
of the Parameter 

 _b_x1 500 10.002 .045 9.865 10.126 

 _b_x2 500 10.001 .044 9.814 10.128 

 _b_x3 500 9.999 .046 9.848 10.133 

 _b_x4 500 10 .043 9.879 10.154 

 _b_x5 500 10 .045 9.875 10.154 

 _b_cons 500 10 .043 9.875 10.106 

Source: Own construction. 

3.2.3. Bootstrap 

Similar to the Jackknife approach, bootstrap estimation cannot be performed if the number of observations is 6, so 

it is not allowed perfect micronumerosity. Moving to the analysis with n = 10 we can observe the following patterns 

of the parameters via bootstrap in Figure 8. 
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Figure 8. Bootstrap - Distributions of the Coefficients with n = 10 

 

 
Source: Own construction. 

The pattern related to the lowest replications (10) tends to be unstable with the bootstrap technique with 

n=10, but as it gets more replications the parameters converge to their true value. The descriptive statistics are 

presented ahead in Table 13 indicating a similar behavior to the Jackknife technique. 

Table 13. Bootstrap Descriptive Statistics n=10 

Estimated 
Parameter 

Replications Mean 
Standard 
Deviation. 

Minimum Value of 
the Parameter 

Maximum Value 
of the Parameter 

 _b_x1 500 9.955 .588 7.653 13.115 

 _b_x2 500 9.968 .552 7.915 12.409 

 _b_x3 500 9.995 .633 6.682 13.314 

 _b_x4 500 10.014 .558 7.865 12.28 

 _b_x5 500 10.015 .556 7.969 13.482 

 _b_cons 500 9.98 .532 7.794 12.132 

Source: Own construction. 

Moving to n=20, the patterns relative to the lesser replications tend to be more stable than with n=10, 

indicating a sensitive behavior of the bootstrap with lower samples, however stills yielding results similar to OLS 
and Jackknife.  

Figure 9. Bootstrap - Distributions of the Coefficients with n=20 
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Source: Own construction. 

As happens with the jackknife, the bootstrap in Figure 9 seems to have variations for each distribution of 
each variable when the replication number is set to 100, however the distributions converge as OLS and jackknife 

in the case of bootstrap when replications are set to 500.  

Table 14 Bootstrap Descriptive Statistics n=20 

Estimated 
Parameter 

Replications Mean 
Standard 
Deviation 

Minimum Value 
of the Parameter 

Maximum Value 
of the Parameter 

 _b_x1 500 9.977 .288 8.93 11.161 

 _b_x2 500 9.986 .288 9.015 10.734 

 _b_x3 500 9.998 .277 9.019 10.957 

 _b_x4 500 10.013 .279 9.185 11.261 

 _b_x5 500 10.009 .275 8.953 10.988 

 _b_cons 500 9.988 .273 8.885 10.678 

Source: Own construction 

Going further with the bootstrap technique and using n=500 observations, the graphical pattern in Figure 10 

indicates some better adjustment regarding the lower replications compared to n=10 and n=20.  

Figure 10. Bootstrap - Distributions of the Coefficients with n=500 

 

 
Source: Own construction. 
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The pattern of the distributions among the coefficients when the number of replications is set to 500 tends 

to be more different from the OLS and the Jackknife estimations, which might suggest that bootstrap performs 

different distributions for each estimator even when the OLS and jackknife tend to converge the distribution for all 
estimators with the same number of n=500 observations. According to the descriptive statistics in Table 15, 

bootstraps seems to be as efficient as OLS and Jackknife specially because of the mean value of the coefficients, 
it’s stills as accurate relative to the expected value of the estimators in comparison. 

Table 15 Bootstrap Descriptive Statistics n=500 

Estimated 
Parameter 

Replications Mean 
Standard 
Deviation. 

Minimum Value of 
the Parameter 

Maximum Value 
of the Parameter 

 _b_x1 500 9.998 .044 9.881 10.099 

 _b_x2 500 10.003 .044 9.847 10.128 

 _b_x3 500 9.997 .045 9.866 10.14 

 _b_x4 500 9.996 .042 9.875 10.112 

 _b_x5 500 10.005 .045 9.861 10.141 

 _b_cons 500 10.002 .045 9.878 10.163 

Source: Own construction. 

3.2.4. Lasso regression  

As mentioned before, lasso cannot compute the model when the number of observations is equal to 6, so 

we’re going straight to the analysis with 10 observations, the graphical pattern is shown ahead in Figure 11.  

Figure 11. Lasso - Distributions of the Coefficients with n=10 

 

 

Source: Own construction. 

The figure suggest that the distributions are different for each variable across replications, in that case the 
constant coefficient remains with difference ranges when its converging to the true parameter. The descriptive 

statistics in Table 16 suggest that from the 500 simulations some of them failed and were just covering up to 307, 
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317, 318 replications, the constant term was the only one which remained across the simulations, however even 

when the mean value it’s somewhat accurate, the minimum and maximum values are varying more in the 

coefficients associated with the 𝑥 variables. 

Table 16 Lasso Descriptive Statistics n=10 

Estimated 
Parameter 

Replications Mean 
Standard 
Deviation. 

Minimum Value of 
the Parameter 

Maximum Value 
of the Parameter 

 _b_x1 317 9.484 1.963 .287 20.51 

 _b_x2 317 9.444 2.142 .014 23.37 

 _b_x3 314 9.371 1.921 .657 17.363 

 _b_x4 318 9.382 2.063 .29 19.233 

 _b_x5 307 9.457 1.841 .894 12.664 

 _b_cons 500 10.108 4.509 -11.102 27.153 

Source: Own construction. 

Proceeding with lasso estimations with n=20 we watch the graphical pattern associated to the distribution 

of the parameters as it follows in Figure 12. 

Figure 12. Lasso - Distributions of the Coefficients with n=20 

 

 
Source: Own construction 

According to the distributions, the estimators associated to the different variables seem to behave over a 
wide range during the simulations with n=20 observations. Relying in the descriptive statistics in Table 17, we can 

find a significant range regarding the 𝑥* variable and the constant term in the regression. Also, some simulations 
failed to accomplish the main total of 500, which tends to indicate that lasso approach is sensitive to the number of 

replications and therefore, the overall range of the estimators differs across replications.  

Table 17 Lasso Descriptive Statistics n=20 

Estimated 
Parameter 

Replications Mean 
Standard 
Deviation. 

Minimum Value of 
the Parameter 

Maximum Value 
of the Parameter 

 _b_x1 476 9.889 .635 1.037 10.743 

 _b_x2 474 9.908 .296 8.608 10.746 

 _b_x3 474 9.904 .276 8.965 10.901 

 _b_x4 474 9.903 .31 8.986 10.962 

 _b_x5 474 9.917 .272 8.957 10.609 

 _b_cons 500 9.98 1.002 2.243 19.351 

Source: Own construction. 
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The descriptive statistics tend to indicate some instability of the lasso regression with n=10 and 20, which 

would be judge in overall with the 500 observations simulations. Proceeding with the analysis with n=500 

simulations, the graphical pattern is shown ahead in Figure 13.  

Figure 13. Lasso - Distributions of the Coefficients with n=500 

 

 
Source: Own construction. 

The distribution seems not to converge to the exact value of the DGP, lasso regression also seems to 

perform a different distribution relative to the other 𝑥 variables and the constant coefficient. This doesn’t mean 
Lasso regression is inconsistent, since it’s close to 10, however is not as consistent as other estimations are. The 

descriptive statistics in Table 18 of the estimated parameters, tends to confirm this idea since the expected value 

of the estimators is not as close to the other types of estimations, also it tends to have a standard deviation a little 
bit higher than the others.  

Table 18 Lasso Descriptive Statistics n=500 

Estimated 
Parameter 

Replications Mean 
Standard 
Deviation. 

Minimum Value of 
the Parameter 

Maximum Value 
of the Parameter 

_b_x1 500 9.934 .043 9.81 10.075 

_b_x2 500 9.934 .047 9.791 10.097 

_b_x3 500 9.936 .046 9.795 10.067 

_b_x4 500 9.934 .044 9.784 10.059 

_b_x5 500 9.935 .044 9.807 10.054 

_b_cons 500 9.999 .046 9.873 10.14 

Source: Own construction. 

3.2.5. Robust regression  

The last type of estimation we’re analyzing is the robust regression, this one cannot be estimated with n=6 

observations (the perfect micronumerosity case) so we’re going straight forward to set n=10 observations and 
perform the graphical distribution patterns.  
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Figure 14. Robust Regression - Distributions of the Coefficients with n=10 

 

 
Source: Own construction 

With 500 simulations and n=10, Stata calculated 484 replications, the rest of the remaining replications failed 

in the maximization process. There are some appoints to make here, first: the range of the distribution with n=10 

observations across replications is way too high in comparison OLS, Jackknife, Bootstrap or Lasso types of 
estimations, second: some of the distributions of some variables tend to have spikes closer to the value of 0 

indicating that a significant number of times, the robust regression adjusted some coefficients as 0. According to 
the descriptive statistics in Table 19, the mean value of the coefficients tends to converge better than Lasso, 

however Jackknife and Bootstrap perform better with this set of observations. 

Table 19 Robust Regression Descriptive Statistics n=10 

Estimated 
Parameter 

Replications Mean 
Standard 
Deviation. 

Minimum Value of 
the Parameter 

Maximum Value 
of the Parameter 

 _b_x1 484 9.704 2.682 -7.252 20.553 

 _b_x2 484 9.732 2.689 -2.542 21.981 

 _b_x3 484 9.494 2.57 0 19.703 

 _b_x4 484 9.794 2.661 -.849 23.795 

 _b_x5 484 9.694 2.949 -1.525 24.251 

 _b_cons 484 9.898 2.408 -4.489 23.887 

Source: Own construction. 

Moving forward and setting n=20 observations, we can observe that the graphical pattern of the distributions 

for each estimator of each variable is going more accurate with the robust regression technique, however no 
significant changes can be concluded from the other types of estimations. 
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Figure 15. Robust Regression - Distributions of the Coefficients with n=20 

 

 
Source: Own construction. 

The behavior with n=20 observations is far better than with n=10, also these results are consistent with a 

lesser range over the estimators. The mean value of the estimators is getting closer to 10 as we increased the 
number of replications.  

Table 20 Robust Regression Descriptive Statistics n=20 

Estimated 
Parameter 

 Replications  Mean  Standard 
Deviation. 

 Minimum Value 
of the Parameter 

 Maximum Value 
of the Parameter 

 _b_x1 500 9.989 .313 8.915 11.808 

 _b_x2 500 9.981 .324 8.613 11.054 

 _b_x3 500 9.998 .32 8.888 11.283 

 _b_x4 500 9.974 .3 8.499 11.044 

 _b_x5 500 10.003 .317 8.958 10.864 

 _b_cons 500 9.972 .3 8.808 11.054 

Source: Own construction. 

Setting the final simulations with n=500, the results of the distributions with kernel densities are shown ahead 
in Figure 16. The pattern tends to indicate a convergence to the true value of the parameter as the number of 

replications are increased, also with the descriptive statistics in Table 21, the mean value is closer to 10, leading 
to think that robust regression is also a good option in large samples. 
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Figure 16. Robust Regression - Distributions of the Coefficients with n=500 

  

 
Source: Own construction. 

Table 21 Robust Regression Descriptive Statistics n=500 

Estimated 
Parameter 

 Replications  Mean  Standard 
Deviation. 

 Minimum Value of 
the Parameter 

 Maximum Value 
of the Parameter 

 _b_x1 500 9.998 .046 9.802 10.106 

 _b_x2 500 9.997 .043 9.851 10.129 

 _b_x3 500 10.002 .048 9.856 10.17 

 _b_x4 500 10.002 .046 9.872 10.132 

 _b_x5 500 10.002 .047 9.864 10.154 

 _b_cons 500 10.002 .048 9.83 10.183 

Source: Own construction 

3.3. Comparing the estimations  

In order to synthesize the previous part, we can discriminate the results by the number of observations (from the 
lowest) and the descriptive statistics for the coefficients, in this order of ideas the mean value of the whole 

estimators across simulations would be our reference point, standard deviation as lower it is the better, and the 

minimum and maximum values closer to 10 would be ranked.  

Table 22 Comparison between Estimations, n=10 

Estimation Type n=10 
Expected Value of 

the Estimators 
Expected Std. 

Deviation 
Expected Minimum 

Value 
Expected Maximum 

Value 

OLS 9,98266667 0,59366667 6,0585 12,7426667 

Jackknife 10,0028333 0,579 7,69483333 12,6881667 

Bootstrap 9,98783333 0,56983333 7,64633333 12,7886667 

Lasso 9,541 2,4065 -1,49333333 20,0488333 

Robust Regression 9,71933333 2,65983333 -2,77616667 22,3616667 

Best Option Jackknife Bootstrap Jackknife Jackknife 

Source: Own construction 

According to Table 22, when we’re considering a sample size with n=10 observations in the context of a 6-
coefficient estimation in the regression models, the best option is the jackknife estimation technique. It should be 
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noted that the number of freedom degrees in the residuals for this case is equal to 4. It is expected that when this 

number gets higher, we might have more accurate estimators from the other techniques. 

Table 23 Comparison between Estimations, n=20 

Estimation Type 
n=20 

Expected Value of 
the Estimators 

Expected Std. 
Deviation 

Expected Minimum 
Value 

Expected Maximum 
Value 

OLS 10,0011667 0,2735 9,0195 10,9645 

Jackknife 9,98883333 0,2755 9,09916667 10,8118333 

Bootstrap 9,99516667 0,28 8,99783333 10,9631667 

Lasso 9,91683333 0,46516667 6,466 12,2186667 

Robust Regression 9,98616667 0,31233333 8,78016667 11,1845 

Best Option OLS OLS/Jackknife Jackknife Bootstrap 

Source: Own construction. 

When the number of observations is increased to n=20 and the degrees of freedom is higher to a value of 

14, the OLS performs quite better in the expected value of the coefficients according to Table 23, meanwhile we 

got a draw with OLS and jackknife in the case for the lesser expected value of the standard deviation. It is noted 
that the jackknife approach has better performance regarding the minimum expected value of the estimator.  

Table 24 Comparison between Estimations, n=500 

Estimation Type 
n=500 

Expected Value of 
the Estimators 

Expected Std. 
Deviation 

Expected Minimum 
Value 

Expected Maximum 
Value 

OLS 10,0003333 0,04366667 9,85966667 10,1286667 

Jackknife 10,0003333 0,04433333 9,85933333 10,1335 

Bootstrap 10,0001667 0,04416667 9,868 10,1305 

Lasso 9,94533333 0,045 9,81 10,082 

Robust Regression 10,0005 0,04633333 9,84583333 10,1456667 

Best Option Bootstrap OLS Bootstrap Lasso 

Source: Own construction. 

In Table 24, when our sample size is sufficiently large (n=500), the bootstrap technique performs better than 
OLS, Jackknife, Lasso or Robust regression, although OLS tends to have a lesser expected deviation than the rest. 

Over this stage, since samples sizes are large, there are sufficient arguments to prefer one method over another 
but this selection needs to be accounted for specific contexts, for example, robust regression wasn’t scored as the 

best in any of these statistics but it would be extremely useful when we got outliers in the sample, where in such 
case the OLS estimator fails to account for them (Adepoju & Olaomi, 2012). In fact, a new development performed 

by Mishra (2008) of the robust approach can be more useful in the presence of outliers. 

We need to remember that this analysis was performed with random variables that followed a distribution of 

𝑁~(0,1) and the main interest was to analyze the estimations for low samples (the perfect micronumerosity case 

n=6 and the others with n=10, n=20, n=500 with replications of 10, 100 and 500 simulations). The DGP in equation 

(1) was also established to be a cross-sectional type of data, so no autoregressive problems or incorrect 
specifications were assumed for the types of estimations.  

The relative bias analysis in Figure 17, with n=10 observations, suggest that Lasso regression performs the 
worse bias value, reaching a score of deviation of 4.59% calculated from the expected value of the estimators 

compared with the true parameter, followed by the robust regression with a value of 2.807%. Bootstrap and OLS 

perform far better than these types of regressions with respective scores of 0.173% and 0.122%, the lower bias 
was obtained with the jackknife approach with a bias of 0.028%.  

Moving to the sample size of n=20 observations, Lasso and robust regression performs also the worse value 
of the relative bias, respectively with values of 0.832% and 0.138%. Jackknife now turns to be in third place with a 

relative bias of 0.112% while bootstrap has a value of 0.048% and the OLS with a score of 0.012% indicating a 
lesser bias.  

Finally, when the sample size is large (n=500), Lasso remains with the worse score in the relative bias with 

a value of 0.547%, meanwhile robust regression has a score of 0.005% of relative bias against the DGP. OLS and 
Jackknife have the same relative bias with a score of 0.003%. The best performance in terms of relative bias in this 

case was obtained with Bootstrap with a score of 0.002% of relative bias among the simulations, the proceeding 
graph summarizes this result.  
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Figure 17. Relative Bias for each estimation type by sample size 

 
Source: Own construction. 

Conclusion 

This paper performed over 1500 simulations distributed among different sample sizes (n=6, n=10, n=20 and n=500) 

with a linear Data Generating Process in order to regress a model with six coefficients and five variables, these 
variables were normally distributed with zero mean and variance of one, the estimations types for the regressions 

across simulations were the approaches of OLS, Jackknife, Bootstrap, Lasso and Robust Regression.  
The statistical significance of the coefficients across the models tends to follow the pattern described by 

Speed (1994) where a significant relationship is found in a small sample also will prevail when the sample size gets 

bigger. However, the Bootstrap approach seems to be sensitive to the sample size, since with n=10 observations 
it didn’t present a significant relationship for one variable which was part of the DGP, suggesting that Bootstrap 

might discard significant relationships of certain variables during the regressions with a small sample size. As soon 
as the sample size increased to n=20, the bootstrap approach presented significant relationships with a 5% 

significance level, and with a larger sample size, the statistical significance was of 1%. On the other hand, OLS, 

Jackknife, Lasso and Robust regression performed well in terms of the statistical significance of the coefficients for 
all the variables in the DGP across the Monte Carlo simulations with different sample size. 

Comparing the results with n=10 observations, the best estimation type was performed with the Jackknife 
approach, since the expected value of the coefficients was the best in terms to be closer to the true value of the 

DGP, also this approach suggests a lesser relative bias across the replications for the coefficients with this sample 
size. Bootstrap on the other hand with this sample size had the lowest expected standard deviation. In this case, it 

is confirmed that Speed (1994) was right in affirming that Jackknife and Bootstrap techniques are more suitable in 

small samples, however the drawback of the bootstrap approach is the sensitiveness in the statistical significance 
of the coefficients. According to these results, the jackknife approach seems to be more suitable for lower sample 

analysis.  
In the case of n=20 observations, OLS obtained the best score regarding the accuracy of the estimators 

across simulations, as a reference for this, the relative bias was the lowest among the other types of estimations. 

In terms of the expected standard deviation, OLS matched the jackknife approach, but the minimum expected value 
of the estimators across replications of the jackknife was closer to the true value instead of the OLS regressions.  

In the final simulations with n=500 observations, Bootstrap approach performed better than the rest of the 
estimation’s types in terms of the accuracy of the estimator, a relative bias of 0.002% regarding from the true 

parameter was calculated with this approach. Also, the minimum expected value of the estimators was closer from 

this approach than the others, suggesting that bootstrap might be more appropriate for large samples.  
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According to the last results and as it is suggested by Speed (1994), researchers should perform also 

jackknife and bootstrap approaches when they’re analyzing relationships from a set of variables in the multivariate 

regression framework, this in order to obtain more accurate estimations. However, the statistical significance might 
not be a good idea to be checked with the bootstrap approach since from this study, it was proved that its sensitive 

to the size of the samples and might induce to errors of type 1 more easily. Jackknife approach seems to be the 
most reliable method to perform correct inferences when the sample size is small.  
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