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Abstract:    In this study, we analyze the threshold effects of income changes on CO2 

emissions in a large sample of 95 countries, over the period 1980-2017. Our estimation uses a 

Panel Smooth Transition Regression (PSTR) and controls for urbanization, energy 

consumption and population.   Results of the point estimates show that income-pollution 

relation is captured by three continuums of regimes, and smooth transitions from one regime 

to another. In the first transition, the income-pollution elasticity is positive, meaning that a rise 

in income leads to more pollution. In the second transition, the coefficient tends to zero and is 

insignificant. This second transition represents an intermediate stage matching with the peak 

of EKC U-inverted curve, where the rise in income does not necessary lead to more pollution. 

The third transition corresponds to the highest living standard and is characterized by a negative 

parameter. Any additional income leads to lesser pollution. For low income countries the 

turning point occurs at 1017$, for middle income at 1890$ and for high income at 12397$. 

These suggestive values, estimated inside the model, rather than pre-determined provide 

evidence that low and middle income countries will not reach developed countries’ living 

standard to have their depollution at a sustainable level. Also, there is neither a single income 

threshold nor income-pollution path through which all countries should go through. Besides, 

developed countries’ income-pollution path appears to be more stable and resilient to external 

shocks as opposed to low- and middle-income countries.  The major undermining factor for 

the atmosphere among the control variables is primary energy consumption. The impact of 

primary energy consumption remains high at all stages, with an average impact rate on CO2 

emissions of 0.65% for any additional consumption. Population growth has a more positive 

impact on CO2, on average, than urbanization.  
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1. Introduction 

 
The rapid deterioration in environmental quality, the rise in global warming and climate change 

over recent years has attracted great attention among researchers and policymakers. With 

increased urbanization, surging population and industrialization, the demand for industrial and 

primary energy is likely to increase with consequences on CO2 and GHG emissions (see: Shi, 

2003; Cole and Newmayer, 2004; Martínez-Zarzoso, 2008).  Although developing countries 

are the least polluters and emitters of greenhouse gasses and CO2, they will most severely be 

affected by the effects of global warming and climate change. The IPCC (2007), for example 

projects that if the current level of pollution from greenhouse gases, CO2 emissions and 

primary energy consumption persists unabated, the impact on global warming and climate 

change would reduce GDP growth in developing countries by 2–4% by 2040, and 10% by 

2100.  Other studies including (Hettige et al. 1992, 1997; Shafik 1994; Selden and Song 1994; 

Grossman and Krueger 1995; Stern 2008) also show that the increased demand for commercial 

and industrial energy with consequences on GHG, CO2 emissions global warming, climate 

change and environmental pollution will negatively affect output growth. The World 

Development Report (1992) also indicates that urban and indoor air pollution is responsible for 

2 million deaths and between 300,000-700,000 premature deaths annually and gross national 

productivity (GNP) losses of 0.5-1.5 due to Soil degradation. The World Health Organization 

((WHO), 2016)), further indicates that ambient and indoor air pollution is responsible for 4.2 

million deaths and 7.0 million premature deaths annually. 

A fascinating aspect about this relationship, “the Environmental Kuznets Curve (EKC) 

hypothesis” is the determination of a potential threshold along the income-pollution path of 

countries where rise in income does not necessary lead to more pollution. Since the initial 

studies of, (Selden and Song, 1992; World Development Report 1992; Shafik and 

Bandyopadhay 1992; Beckerman, 1992; Panayotou 1993; Grossman and Krueger 1995; Agras 

and Chapman 1999; Dinda 2004)   an active literature has emerged with no explicit consensus 

particularly for developing countries.  In this study, we analyse the income threshold effects of 

CO2 emissions on growth and the underlying mechanisms through which these interactions 

propagate. 

While several studies have shown that, there is a trade-off between environmental 

quality and economic growth (see for example, Shafik & Bandyopadhyay (1992), Beckerman 

(1992), Panayotou (1993, 1995, 1997), Selden and Song (1994), Grossman and Krueger 
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(1995), Dinda (2004) and Stern, (2008)).   (1992), Panayotou (1993, 1995, 1997), Selden and 

Song (1994), Grossman and Krueger (1995), Arrow et al. (1995), Stern, Common and Barbier 

(1996), Stokey (1998), Stern (1998; 2004), have investigated this relationship. However, 

despite the extant literature, there’s no consensus on the income threshold as most studies 

provide conflicting outcomes, which may lead to misleading policy inferences. For example, 

while some studies show that there’s a negative relationship between income growth and 

pollution, other studies find no relationship. The inconsistency in empirical outcomes could be 

due to the application of varying methodological approaches and testing procedures in 

estimating results without taking into account other important features, time-varying factors 

and country heterogeneities, as well as the choice of variables.  

In order to overcome these inconsistencies, we adopt a newly proposed logistic Panel 

Smooth Transition Regression analysis (thereafter PSTR) (Gonzalez et al, 2005), an extension 

of Hansen (1999) Panel Threshold Regression (PTR), which allows for coefficients to vary 

across time as the country transitions from one regime or level of development to another. The 

model splits parameters into clusters based on a threshold value with sharp borders, without 

pre-determining the level or stage of development of a country, which may not be feasible in 

practice under conventional analysis. Moreover, contrary to previous models, the (PSTR) has 

intuitive properties that allow for cross-country heterogeneity even under extreme regime 

fluctuation. The (PSTR) also provides efficient outcomes robust to parameter instabilities even 

in small samples. 

This study is an extension of the existing literature on pollution. However, it differs 

considerably from other studies on pollution, and income growth in three significant ways. 

First, we analyse a large sample of countries (95) with a Panel Smooth Transition Regression 

for the first time unlike in earlier studies.  Secondly, unlike previous studies that classify 

countries according to income groups or pollution category which is only feasible under Panel 

Threshold Regression (PTR), (see: for example, Hansen (1999)), we follow a Panel Smooth 

Transition Regression analysis Gonzalez et al (2005), which does not classify countries by 

income group (or pollution category) prior to the estimation, but allows countries to switch to 

different income groups overtime as they develop which may not be feasible under PTR. 

Finally, our model allows for the computation of country or region specific elasticity of 

pollution with respect to income at a given time. 
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The impact of population growth remains positive on average, and appears more 

important than urbanization in terms of implication for global warming. In the quadratic linear 

estimation implemented for robustness check, the coefficients on per capita income and per 

capita income squared are positive and negative, respectively, for the 95 countries put together, 

and for middle and high income countries. This means that the marginal pollution increases as 

income grows, and later reduces after reaching a peak level (turning point). For low income 

countries however, the shape of the income-pollution path is upward, implying continuous 

pollution. 

The rest of the paper is organized as follows. Section two describes the methods and 

data. Section three presents the result and interpretations while section four provides the 

conclusions.  

2. Data and methodology 

 

Data are compiled from World Development Indicators, the International Monetary Fund 

Financial Statistics and the United States Energy Information and Administration (EIA). The 

list of variables includes per capita CO2 emissions (in metric tons), per capita GDP (constant 

$, 2010), urbanization rate captured by the share of urban population in total population, per 

capita primary energy consumption (kg of oil equivalent) and population size (in millions). All 

variables are expressed in logarithm.  The original sample covers the period 1980-2017 with 

some variations to accommodate data quality. A total of 95 countries compose the sample. 

Except in the Panel Smooth Transition Regression where no distinction between income groups 

is made, the remaining part of the analysis uses the 2018 World Bank income classification 

and identifies 15 low income, 44 middle income and 36 high income countries. A lot of efforts 

have been made to incorporate more countries especially low income economies, but the 

estimations faced several spurious results and convergence issues. Countries with better quality 

data have therefore been selected.  

To have a general picture of the income-pollution relation, we plot the fractional 

polynomial graph of the two variables, as depicted in figure 1. Irrespective of the sample, all 

plots show little linearity evidence of the nexus income-pollution. Each graph has a turning 

point, confirming the existence of a threshold. However, the Environmental Kuznets Curve 

prediction seems not apparent for low income countries as the plot has a U-shape. For high and 

middle income countries the graphs have a shape between an inverted U and a tilted S. This 
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preliminary investigation serves as an indication of the relation between income and pollution 

and needs further investigations in a more robust approach. 

 
Figure 1. Income-pollution path 

 
 

The empirical approach uses a logistic Panel Smooth Transition Regression (thereafter PSTR). 

PSTR was first developed by González et al. (2005) as an extension of Hansen (1999)’ Panel 

Threshold Regression (PTR).  The model has been applied in spectrum of areas including 

market capital and investment (González et al. 2005), inflation and growth (Omay and Öznur 

Kan, 2010), finance (Chang and Chiang, 2011) and environment (Duarte et al. 2013; Aslanidis 

and Xepapadeas, 2006; Chiu, 2012; Lee and Chiu, 2011).  PSTR belongs to the family of 

threshold regression models where the slope parameters depend on a switching regime of a 

threshold variable. The transition from one regime to another is governed by a transition 

function and is assumed smooth. As in regime switching models, in PSTR each regime is 

characterized by a specific equation. PSTR in our context has several advantages. First, it offers 

an easy way to compute the impact of income on CO2 emissions as income enters the model 

specification as an explanatory variable. Second, unlike most threshold regressions, the value 

of the threshold is not given a priori, but rather estimated inside the model, which makes the 

results and interpretations more reasonable. Third, the switching from one regime to another 

follows a heterogenous and smooth path and the elasticities are functions of an unstable time. 
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Thus, PSTR gives the possibility to compute time-specific elasticities of pollution with respect 

to income, for any country or region. 

 

Our baseline framework starts with a Cobb-Douglass production function. We assume that 

pollution is the result of a combination of “inputs” denoted by !!. The general specification of 

the pollution “production” function takes the form of:  "!" = !#$!!%$" …!&$#%! (1)   where &! = (( = 1, +,,,,,) is the marginal production of !! and %! a 

constant.  

A simple specification with only income as “input” is "!" = !#"$!%! or .+"!" = &#.+!#" +.+%! 							(2) 

The corresponding PSTR with one transition function, individual fixed effects and two extreme 

regimes can be derived as follows:  1!" = 2! + &#3!" + &%3!"4(5!"; 7, 8) + 9!" (3) 

 

Where 2! is the country-specific effect, 9!" an error term 4(5!"; 7, 8) the transition function from 

one regime to another, 5!" a threshold variable, c a location parameter determining the turning 

point between two regimes and 7 the slope of the transition function. 4(5!"; 7, 8) is assumed 

continuous and bounded between 0 and 1 (0 ≤ 4(5!"; 7, 8) ≤ 1) . Following González et al. 

(2005) and Granger and Teräsvirta (1993) the logistic transition function from one regime to 

another is given by: 

4(5!"; 7, 8) = <1 + exp<−7(5!" − 8)AA'#, 7 > 0  (4)  

The following two plots of the logistic transition function can be derived based on the extreme 

values of 7	 in (4): 

When 7 approaches zero (flatter slope), lim(→*4(5!"; 7, 8) = lim(→*<1 + exp<−7(5!" − 8)AA'# = #
% 

for any  5!", the transition function tends to an indicator function and the PSTR turns into a 

linear model: 1!" = 2! + F3!" + 9!" (5) 

 

When 7	tends to infinity (sharper slope), 

lim(→+4(5!"; 7, 8) = lim(→+<1 + exp<−7(5!" − 8)AA'# = G("$%-.) HG("$%-.) = I1	(J	5!" ≥ 8	0	(J	5!" < 8M, the 

transition function tends to an indicator function and the PSTR corresponds to a Panel 

Transition Regression suggested by Hansen (1999). 
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1!" = 2! + &#3!" + &%3!"G("$%-.) + 9!"  (6) 

 

The elasticity of pollution with respect to income has the advantage of being country-specific 

and having time-varying parameters. In other words, it is possible to compute the elasticity for 

a specific country or region at a given time.  It is obtained by weight-averaging &# and &% in 

extreme regimes. 

 

N!"0 12 = 30$%
31$% = &# + &%4(5!"; 7, 8)   (7) 

Recall that (0 ≤ 4(5!"; 7, 8) ≤ 1)	for any  5!". As a result,  

O&# ≤ N!"0 12 ≤ &# + &%	, PℎN+	&% > 0
&# + &% ≤ N!"0 12 ≤ 0,PℎN+	&% < 0	    (8) 

 

Given (7) and (8), the values of  &# and &% are not directly interpreted. Only the signs of these 

parameters are interpretable, with respects to changes in the threshold variable. The signs are 

indications of increases or decreases in pollution-income elasticity, and can help tracing the 

elasticities path overtime.  

 

An important aspect of the analysis is that countries are not classified by low, medium or high 

income prior to the estimation. Such classification would assume that countries are not allowed 

to switch to different income groups (or pollution category) overtime and would therefore 

represent a caveat in the PSTR. For example, China, or Korea switched to different income 

category over the past 20 years.  Besides, as noted by González et al. (2005) such classification 

is feasible in a Panel Threshold Regression (PTR) developed by Hansen (1999) where 

individuals can be grouped into homogenous classes based on a classification parameter.   In a 

linear approach too, it is custom to analyze countries with similar income category or 

development level. Except for the PSTR, this classification will be explored in other aspects of 

the study.   

 

The estimation follows several steps. We first test the stationarity of the series using Levin-

Lin-Chu (LLC), Im-Pesaran-Shin (IPS) and Phillips-Perron (PP) panel unit root tests, to avoid 

spurious estimates caused by possible biased correlation between variables overtime. We next 

proceed to test the regime-switching effect of equation (3). This test is also known as linearity 
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test. The test represents the foundation of the PSTR, since evidence of linearity will simply 

invalidate the PSTR, and the traditional panel linear model will suffice to capture pollution-

income nexus. We test R*:	7 = 0	or R*: &# = &% = 0  against R#:	7 > 0. To overcome the 

issue of non-existence of standard distribution and unidentified nuisance parameters in the tests 

(as the model is identified under R# but not under R*. This problem refers to as “Davies” 

problem; see Davies, 1977, 1987), following Luukkonen et al. (1988) the solution is to replace 

the transition function g(5!"; 7, 8) in equation (4) by its first-order Taylor and use the null 

hypothesis 7 = 0 as expansion point. The auxiliary regression is given by: 

 1!" = 2! + ∅#3!" + ∅%3!"% + 9′!"     (9)  

 

Where ∅# ≡ &# + W*&%, ∅% ≡ W#&%, 9′!" = 9!" + (&%5!")X(5!"; 7, 8); R is the remainder of the 

Taylor expansion: Y = W* + W#5!" + X(5!"; 7, 8); W* and W# two constants. 

 

As can be observed in equation (9), the auxiliary regression is similar to a quadratic polynomial 

regression often applied in Environmental Kuznets Curve analyses (zoundi, 2017, Iwata et 

al.2012, Bilgili et al., 2016 among others). Thus, quadratic polynomial models can be seen as 

particular cases of PSTR. Testing for linearity turns out to testing R*: ∅% = 0 against R#: ∅% ≠0  in equation (9). The test can be performed using standard asymptotic inferences. Assuming 

SSR0 the panel sum of squared residuals under fixed-effect panel linearity ( R*: ∅% = 0 ) and 

SSR1 the panel sum of squared residuals under PSTR with two extreme regimes (R#: ∅% ≠ 0 ) 

three statistics can be computed:  

 

Wald LM statistic:  	[\ = Y] − Y] ∗ __X#/__X*                                  (10)  

 

LM fisher statistic:  	[\a = (1 − __X#/__X*)(Y] − ] − 1)                (11) 

 

Likelihood ratio statistic:	[X = −2[.d4(__X#) − .d4(__X*)]                (12) 

 

Although a single statistic suffices to conclude on the linearity of the model, our approach 

combines all three statistics. A significant level of the majority of statistics above implies that 

the model is not linear and PSTR feasible. If the null hypothesis of linearity is rejected, the 

next step is to test the number of extreme regimes or transition functions. This test refers to as 
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remaining non-linearity test. The test is based on a sequential analysis.  If r represents the 

number of transitions functions, the linearity test above is equivalent to testing 	R*: f = 0 . 

When R* is rejected, we test the hypothesis of one transition function R*: f = 1 versus at least 

two transition functions R*: f = 2 and so forth, until the first acceptance of R*. The auxiliary 

regression derived from the first-order Taylor expansion around 7 = 0 can be generalized as 

follows: 

1!" = 2! + ∅#3!" + ∅%3!"4(5!"; 7, 8) + ∑ ∅4&456 3!"4'# + 9′!"     (13) 
 
And the corresponding test of the remaining non-linearity is equivalent to: 	R*:	∅6 = ∅7 = ⋯ = ∅& = 0  
 

After determining the number of transition functions, we next estimate the parameters in the 

PSTR. The estimation consists of applying a Non-Linear Least Squares regression (NLS) after 

removing individual specific-effects, by demeaning equation (3). To this end, we first test the 

cross-sectional dependency of the sample and sub-samples, as the existence of dependency is 

the condition for demeaning the panels. We apply Pesaran (2004), Friedman (1937) and Frees 

(1995, 2005) cross sectional dependency tests. The convergence probability of the PSTR 

estimation depends on the starting point of 7 and 8. Therefore, a bi-dimensional grid search is 

applied to select an initial value for 7 and 8. The number of grid points is set at 30 for 8  and 

15 for 7 (results remain robust when we change the number of grid points). As several vectors 

are derived from the grid search, &# and &%	 are estimated (by OLS) using the vector that 

minimizes the most the residual sum of squares, among all possible (84 , 74) combinations.  

 

Our threshold variable (3!") is per capita income, to match with the Environmental Kuznets 

Curve hypothesis.  Since per capita income also enters equation (3), keeping it as both threshold 

and regressor can lead to spurious results. We therefore use its lagged value, similar with 

González et al., (2005) for public capital productivity. In addition, we go beyond the bivariate 

pollution-income analysis and include three additional variables that can help properly fit the 

model and avoid the issue of the omission of relevant variables. The first variable is primary 

energy consumption. Primary energy is a fossil-fuel and represents one of the chief CO2 

emitters.  The second variable is population size. Increasing population size can trigger 

resources scarcity and higher consumption of polluters. This argument is corroborated by 

authors like Shi (2003), and Menz and Welsch (2012) among many others, who posit that 

population growth has a positive effect on pollution. While Begum at al. (2015) finds no impact 
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of population for Malaysia, Lantz and Feng (2006) and Apergis and Ozturk (2015) finds an 

inverted U-shape for 5 regions in Canada and 14 Asian economies, respectively. This mixed 

finding implies that population growth or size cannot solely determine the level of pollution. 

The number of people living in urban areas can be another parameter to take into consideration. 

This justifies our choice of a third variable. We use urbanization rate. Higher urbanization can 

imply higher consumption of fossil-fueled energy (thereby higher pollution, if the country has 

no comprehensive clean energy policy) and higher income, education and living standard 

(thereby cleaner consumption).   

Our new specification takes the form of: 1!" = 2! + &#3!" + &%3!"4(5!"; 7, 8) + &6N!" + &7i!"8&9j!" + 9!"  (14) 

Where N is per capita primary energy consumption;  i population size and j urbanization rate. 

For robustness and consistency check purposes, we use the traditional quadratic function which 

can be specified as: 

 	1!" = 2! + &#3!" + &%3!"% + &6N!" + &7i!"8&9j!" + 9!"    (15) 

 

EKC hypothesis is captured by the first 3 terms on the right-hand side of the equation. The 

equation is estimated by a simple OLS and a panel fixed-effect. We also add the finite sample 

correction version of the two-step system generalized method of moments (GMM) suggested 

by Windmeijer (2005). Windmeijer (2005) posits that the traditional two-step GMM 

estimations preforms well in large samples but can be severely downward biased in small 

samples. The author provides a Monte Carlo evidence that correcting the variance of the finite 

sample estimate significantly improves the model. We use this corrected version given the 

small sample size we are analyzing, and also the GMM as it has the advantage of accounting 

for possible endogeneity in the series.  

 
 
3.  Results and interpretations 

 

The description of the series presented in table 1 shows that developed countries have their 

carbon emissions, energy consumption, and urbanization rate higher than the sample average. 

Around 58% of people in the 95 countries analyzed live in urban areas. However, the large 

standard deviation in urbanization rate series (22.67) depicts a large disparity between 

countries. In low income countries, only 30% of people live in urban areas, while in middle 
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and higher income economies, the rate goes up to around 51% and 78%, respectively. The 

distribution of CO2 emissions presents a skewed pattern. The skewness is positive for the full 

sample average as well as for each sub-sample. The distribution is more asymmetrical in low 

income countries than in other income groups. As for the variable income per capita, developed 

countries have a more symmetrical distribution. The skewness is close to zero. In other words, 

the majority of people have their income per capita close to the average. For middle income 

and low income, the positive skewness implies that most people have their revenue lower than 

the average.  

 

Table 1. Descriptive statistics 

Full sample 

 

Per capita  

CO2 emissions  

Per capita 

income 

Per capita energy 

consumption 

Population 

(millions) 

Urbanization 

rate 

Obs 3,297 3,518 3,236 3,594 3,604 

Mean 1.63 51.76 5.85 46.51 58.08 

Std. Dev. 0.96 34.03 1.49 166.22 22.67 

Min 0.17 7.87 1.24 0.01 6.09 

Max 4.75 156.91 7.39 1386.40 100.00 

Skewness 0.64 0.77 -1.06 6.27 -0.20 

Kurtosis  2.71 2.44 3.18 43.53 2.06 

  Low income   

 

Per capita  

CO2 emissions 

Per capita 

income 

Per capita energy 

consumption 

Population 

(millions) 

Urbanization 

rate 

Obs 508 478 456 554 564 

Mean 0.59 15.57 3.82 14.20 30.18% 

Std. Dev. 0.35 3.57 1.83 20.27 12.26 

Min 0.17 7.87 1.24 0.01 6.09 

Max 1.70 23.68 7.37 104.96 58.00 

Skewness 1.5709 0.1138 0.7603 2.183 0.1403 

Kurtosis  4.893 2.262 2.42 7.58 2.077 

Middle income 

 

Per capita  

CO2 emissions 

Per capita 

income 

Per capita energy 

consumption 

Population 

(millions)  

Urbanization 

rate 

Obs 1,540 1,672 1,535 1,672 1,672 

Mean 1.19 32.15 5.75 79.75 50.91 

Std. Dev. 0.51 10.64 1.23 235.49 16.99 

Min 0.35 9.78 2.89 0.10 14.85 

Max 2.74 64.98 7.39 1386.40 90.75 

Skewness 0.838 0.441 -0.472 4.29 -0.085 
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Kurtosis  3.38 2.72 2.009 20.67 2.29 

High income 

 

Per capita  

CO2 emissions 

Per capita 

income 

Per capita energy 

consumption 

Population 

(millions)  

Urbanization 

rate  

Obs 1,249 1,368 1,245 1,368 1,368 

Mean 2.59 88.38 6.73 18.98 78.35 

Std. Dev. 0.70 23.80 0.64 46.23 12 

Min 1.02 35.45 4.17 0.01 42.79 

Max 4.75 156.91 7.39 325.72 100 

Skewness 0.463 0.009 -1.24 5 -0.38 

Kurtosis   3.409 2.91 4.17 29 2.812 
 
 

Prior to estimating our PSTR, two preliminary tests are implemented. A unit root and a cross 

sectional dependency test. The unit root test is based on the hypothesis that series are not 

stationary. A presence of unit root in the series can lead to spurious estimates as trended series 

can be highly correlated. Of the existing battery of panel unit root tests, we select Levin et al. 

(or LLC, 2002), Im et al.(or IPS, 2003) and Phillips and Perron (or PP, 1988)’ tests. PP tests 

statistics is an extension of Dickey-fuller statistics and accounts for possible serial correlation. 

The test is based on Newey–West (1987) heteroskedasticity and autocorrelation covariance 

matrix estimator. LLC is an extension of the Augmented Dickey-Fuller (ADF) test. The test 

includes individual deterministic components (such as fixed effects, trend, or a mixture of fixed 

effects and trend). Since the autoregressive coefficient is assumed constant across panels in an 

LLC test, IPS extended the test by allowing the autoregressive coefficient to vary across 

individuals. All of the tests are based on the null hypothesis that series are not stationary or 

have a unit root. In the results presented in table, we find no evidence of non-stationarity. We 

relax the tests assumptions and allow the presence of intercept or trend. Except for urbanization 

in LLC, all results remain robust and reject the null hypothesis at 1% level. 

Table 2. Unit roots 

Intercept 

 LLC IPS PP 

CO2 emissions -23.296*** -30.409*** 2253.27*** 

Energy consumption -22.182*** -27.722*** 1984.35*** 

Per capita GDP -17.752*** -22.084*** 1226.73*** 

Population -16.22*** -22.901*** 202.313*** 

Urbanization -6.099*** -5.654*** 399.705*** 

Intercept and trend 

 LLC IPS PP 
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CO2 emissions -20.572*** -27.497*** 4470.07*** 

Energy consumption -20.303*** -25.672*** 4498.12*** 

Per capita GDP -16.696*** -20.736*** 1713.24*** 

Population -31.411*** -32.160*** 146.53*** 

Urbanization -1.919** -2.450*** 393.407*** 
*** p<0.01, ** p<0.05, * p<0.1 

 
 

 
Cross-sectional dependency (CD) tests are implemented to ensure the worthiness of series 

demeaning prior to obtaining the PSTR point estimates. We use Pesaran (2004), Friedman 

(1937) and Frees (1995, 2005) cross sectional dependency tests.  

Pesaran (2004) CD test fits well with unbalanced, homogenous and heterogenous dynamic 

panels as well as non-stationary models, when disturbances are symmetrically distributed. The 

test is an extension and alternative to Breusch and Pagan (1980) CD tests. The later suffers 

biases in large samples. The statistic is computed as follows: 

%k:;<=>=& = l %?
@(@'#) <∑ ∑ mn!4@45!8#@'#!5# A    (16) 

Where N is the cross-sectional dimension, T the panel’s time dimension and  

mn!4 = mn4! = ∑ BC$%BC&%'
%(!

DE∑ BC$%"'
%(! FG∑ BC&%"'

%(! H
    (17)  the pairwise residual correlation ( 2n!" being the 

estimated residual from the panel regression). 

Friedman (1937) statistic is non-parametric and built on the average Spearman’s rank 

correlation coefficient. The statistic uses the ranks of variates in order of size, instead of the 

analysis of variance to capture the variation in the series, as the analysis of variance is based 

on normality assumption (which is an exception more than a rule in economic and social 

studies). 

 

The statistic is obtained as follows:  

 

X=I; = %
@(@'#) <∑ ∑ f̂!4@45!8#@'#!5# A	 (18) 

Where f̂!4 is the sample estimate of Spearman rank correlation coefficient of residuals. 
 
Frees (1995, 2004) statistics uses the sum of the squared Spearman rank correlation coefficients 

rather than the pairwise coefficients. The reason is that CD and X=I; are using pairwise 

correlations, and therefore lack enough power when capturing cross-sectional dependency in 
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circumstances where the sign of the correlation coefficient alternates (as the average value 

cancels out). The statistics is computed in the following way: 

X=I;% = %
@(@'#) <∑ ∑ f̂!4%@45!8#@'#!5# A	  (19) 

 

All tests are based on the null hypothesis of no cross-sectional dependency. We apply the tests 

in all three sub-samples. Table 3 provides evidence of rejection of the null hypothesis for the 

majority of the tests and confirms the presence of cross-sectional dependency in each sample. 

CD test rejects the hull hypothesis of cross-sectional independency for the full sample, for low, 

and high income countries; X=I; rejects for high income countries; and X=I;%  for the full sample 

and all three sub-samples. This evidence of cross-sectional dependency is justified by the 

interlinkage between countries due to factors such as migration, global partnerships, 

international capital movement, foreign direct investment, economic integration, ICT, trade 

etc. which instigate spillovers effects of shocks as well as economic events between countries. 

As cross-sectional dependency has been detected, prior to estimating our PSTR, demeaning the 

panel is necessary to circumvent spurious estimates.  

 

Table 3. Cross Sectional dependency tests 

 Full sample Low income Middle income High income 

Pesaran (CD) 5.043 5.779 1.25 13.735 

prob (0.000) (0.000) (0.211) (0.000) 
 
Friedman (X=I;) 46.667 14.286 31.025 132.389 

prob (0.99) (0.2828) (0.913) (0.000) 
 
Frees (X=I;% ) 19.905 1.868 7.109 12.133 

      alpla=0.10 0.316 0.213 0.0924 0.213 

      alpla=0.05 0.432 0.283 0.12 0.283 

      alpla 0.01 0.661 0.425 0.172 0.425 
 
 
Table 4 tests the linearity of the model. Results show high values for the three statistics and a 

pvalue equal to zero. This leads to a rejection of the null hypothesis that equation (3) is linear, 

and a possible confirmation of EKC prediction. These results corroborate the conclusion 

derived from figure1 and several related studies (Apergis and Payne 2009; Wesseh and Lin, 

2016; Bilgili et al., 2016; zoundi, 2017; Robalino-López, 2015; Apergis and 

Ozturk,2015; Atici, 2009).  
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Table 4. Linearity tests 

 Wald (LM) Fisher (LMF) LR Tests (LRT) 

H0: r = 0 vs H1: r = 1 
W stat=181.429 F stat=46.632 LR stat=186.929 

pvalue=0.000 pvalue=0.000 pvalue=0.000 
 

As no evidence of linearity has been found, we next proceed to determine the number of 

transition functions. We test H0: r = 1 against H1: r = 2; H0: r = 2 against H1: r = 3; H0: r = 

3 against H1: r = 4 and so forth. The test stops when H0 is not rejected. The corresponding 

value of r derived from H0 is the number of transition functions. Table 6 shows that the test 

stops at H0: r = 3 vs H1: r = 4. This means that the nexus income-pollution can be captured by 

three transition functions. Each transition function is specified by an equation estimated inside 

the PSTR.   

 
Table 5. Remaining non-linearity tests 

 
Wald (LM) Fisher (LMF) 

Likelihood 
Ratio (LR) 

H0: r = 1 vs H1: r = 2 W stat=51.216 F stat=12.571 LR stat=51.642 
 pvalue=0.000 pvalue=0.000 pvalue=0.000 
 
H0: r = 2 vs H1: r = 3 W stat=39.102 F stat=9.547 

LRT 
stat=39.349 

 pvalue=0.000 pvalue=0.000 pvalue=0.000 
 
H0: r = 3 vs H1: r = 4 W stat=6.860 F stat=1.655 LRT stat=6.867 
 pvalue=0.143 pvalue=0.158 pvalue=0.143 

 
 
We now turn to our PSTR that controls for energy consumption, population and urbanization. 

Table 6 reports the point estimates of the 3 three transition functions identified in previous 

section. These functions can bear several interpretations. One of them can be explained as a 

shift from a high to an upper intermediate pollution (first transition function), from an upper 

intermediate to a lower intermediate pollution (second transition) and from a lower 

intermediate to a low pollution (third transition function). Each transition is governed by the 

level of income per capita.  Recall that in PSTR the coefficient on income cannot be directly 

interpreted as pollution-income elasticity. But the sign can serve as an indication of increase or 

decrease in the elasticity. For example, in a model with one transition function, a positive 

coefficient on the parameter income implies that when income increases, the elasticity of 

pollution to income becomes positive. In an EKC context, it is expected as a negative point 

estimates for the variable income. In case of three transition functions, the interpretation is 

different. When all point estimates have a similar sign, the interpretation is straightforward. 
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However, if the sign of the coefficients alternates from one regime to another, the general 

conclusion depends on the values of the location parameters (8!)	as well as the slope parameters 

(7!). With the classification of regimes (see Aslanidis and Xepapadeas, 2006), it is possible to 

obtain the estimates of income-pollution nexus at extreme regimes (table 7).  

 

Results of the PSTR point estimates in table 6 show that in the first transition the income-

pollution elasticity is positive, this means that rise in income leads to more pollution. In the 

second transition, the coefficient tends to zero and is insignificant. This second transition 

represents an intermediate stage matching with the peak of EKC U-inverted curve, where rise 

in income does not necessary lead to more pollution. In the third transition, the coefficient 

becomes negative. This stage represents the highest living standard. Any additional income 

leads to lesser pollution. Regarding the slope of each transition function (captured by 	7!), the highest the value, the sharper and lesser smooth the transition. The first and second 

transition functions appear to be smoother than the last one as the value of their slope 

parameters is small (1.564 and 6.117) and less than that of the third transition function (47.897). 

The location parameters (ci ) of each transition function gives an estimation of turning points. 

The actual value can be obtained by taking the anti-log of each value presented in the table. 

These ci  and 7! consider all countries in the sample irrespective of their development stage. To 

have a closer look at each income group path and turning point, we plot their transition function 

in figure 2 to 4. The transition appears sharper for low and middle income, and smoother for 

high income. The three plots provide some indications of non-linearity of the relation income-

pollution irrespective of the income category. The turning points do not occur at the same 

income level. For low income countries the turning point is located at 1017$, for middle income 

at 1890$ and for high income at 12397$. These values do not strictly reflect the reality but 

provide evidence that low and middle income countries will reach a low pollution stage earlier 

than high income countries. Also, there is no single threshold and single income-pollution path 

through which all counties in the world should go through. The increasing number of 

environmental conferences, summits and agreements, the rise in renewable policies and the 

incentivization of green investments, in a period where low and middle income countries have 

not caught up with developed countries yet is an indication that lower and middle income 

countries will not necessarily reach high income countries’ turning point to see their pollution 

reduced with their income.  
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The major undermining factor for the atmosphere among the control variables is primary 

energy consumption. The impact of primary energy consumption remains high at all stages, 

with an average impact rate on CO2 emissions of 0.65% for any additional consumption. While 

the impact of population growth remains positive on average, urbanization does not present 

any major impact on CO2. The non-significance of urbanization in the result, can partially be 

explained by the possible non-linearity between urbanization and pollution, as authors like 

Moomaw and  Shatter (1996) found that urbanization is directly proportional to GDP. 

Consequently, a nonlinearity between growth and pollution can infer possible similar pattern 

for urbanization. Also, authors like Du and Xia (2018) found a nonlinearity between 

urbanization and pollution. Zhang etal.(2017), Bekhet and Othman(2017) and York et al (2003) 

found an inverted U-shape of the relation urbanization-pollution. Hence, incorporating 

urbanization as a threshold variable in a PSTR should be explored in further research.  

 
 
 

Table 6. Points estimates of the parameters in the Panel Smooth Transition model 

 
Initial  

First transition 
function 

Second transition 
function 

Third transition 
function 

Per capita income -0.065 0.99*** 0.038 -0.203*** 

 (0.071) (0.11) (0.092) (0.045) 

Per capita energy consumption 0.919*** 0.88*** 0.368 0.434*** 

 (0.05) (0.12) (0.180) (0.064) 

Population 0.036*** 0.068*** 0.014 -0.001 

 (0.012) (0.014) (0.021) (0.005) 

Urbanization 0.119*** -0.194 -0.361 -0.007 

 (0.05) (0.118) (0.132) (0.042) 

Location parameter c  c1 c2 c3 

  3.256 3.309 4.682 

Slope parameter of the 
transition function 

 7# 7% 76 

 1.564 6.117 47.897 

AIC:   -5.425                                                  BIC:  -5.387                                        No. iteration: 201 
 
 
 

Table 7. Income-pollution path/ classification of regimes 
Transition function Equation  

First transition function 

CO2= -0.065*income+(0.99*income) *F(income) 

          (-0.92)  '(8.93)  
CO2= -0.065*income at F(income)=0  
CO2= 0.93*income at F(income)=1   

 CO2= -0.065* income+(0.038*income) *F(income) 
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Second transition function           (-0.92)     '(0.42)  
CO2= -0.065*income at F(income)=0  
CO2= -0.033*income at F(income)=1   

Third transition function 

CO2= -0.065*income+(-0.203*income) *F(income) 

          (-0.92)    '(-4.51)  
CO2= -0.065*income at F(income)=0  
CO2= -0.27*income at F(income)=1  

 
 
 

 
 

Figure 2. Transition function: low income 
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 Figure 3. Transition function: middle income 

 
 

 
 

Figure 4. Transition function: high income 
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for each country. After obtaining the individual elasticities in each point of time we plot the 
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configuration. From 2015, the elasticity has been decreasing, whereas, the level has remained 

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

Per capita income (log)

0

0.2

0.4

0.6

0.8

1
Transition function (middle income)

c=2.94

antilog(c)=18.90

per capita GDP/ turning point=1890$

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2

Per capita income (log)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Transition function (high income)

c=4.82

antilog(c)=123.97

per capita GDP/ turning point= 12397$



 20 

the highest in the period of study. While the elasticity path is upward for low and middle 

income, high income counties have been experiencing significant decrease in their path. Hence, 

the constant-like trend depicted in the full sample plot is caused by the opposite elasticity trends 

between higher income on one hand, and low and middle income on the other hand. This 

implies that higher income countries have a larger contribution in global depollution. To 

capture the magnitude of the change in income-pollution elasticity, we compute the standard 

deviation (1-SD) of the elasticities around their mean and present the path in figure 6. The plots 

reveal that, higher income countries are becoming more resilient to external shocks on their 

income-pollution elasticities, as the path has been stabilizing since 2000s. On the opposite, low 

and middle income countries have been experiencing high variability in their path.  

 

The quadradic estimations implemented for robustness check (table 9) confirm the inverted U-

shape of income-pollution path for the full sample and all subsamples, except for low income 

countries. The coefficients on per capita income and per capita income squared are positive 

and negative, respectively, for the 95 countries put together, and for middle and high income 

countries. This means that the marginal pollution increases as income grows, and later reduces 

after reaching a peak level (turning point). For low income countries however, the shape of the 

income-pollution path is upward, implying continuous pollution. Results are also robust to 

different estimators. As for the control variables, energy consumption has maintained its high 

impact on pollution, population has a mixed impact depending on the estimators (generally 

positive with the OLS and GMM and negative with the panel fixed effect). Urbanization 

generally has a positive impact on CO2 for the full sample for low and middle income 

countries, and a negative impact for high income countries.  

 

Some of the differences between these quadratic estimations and the PSTR include the 

incapacity of the formers to determine the threshold, the transition functions from one state to 

another, and the individual elasticities. Also, they do not take into consideration possible 

continuums of regimes or the variabilities of income-pollution elasticities overtime. As a result, 

and as can be noticed from the estimations, the quadratic specifications tend to overestimate 

all parameters.  
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Figure 5. Income-pollution elasticity overtime 

 
 
 

Figure 6. Income-pollution elasticity: deviation overtime 
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Table 8. Average and deviation of income-pollution elasticity per country (1980-2017) 
 

Countries Income-pollution  

(average elasticity) 

Income-pollution  

 (elasticity deviation) 

Albania 0.29 0.05 

Algeria 0.33 0.02 

Angola 0.29 0.05 

Argentina 0.44 0.03 

Australia 0.62 0.02 

Austria 0.43 0.11 

Bangladesh 0.52 0.08 

Belgium 0.57 0.13 

Benin 0.41 0.05 

Bolivia 0.59 0.06 

Botswana 0.47 0.15 

Brazil 0.46 0.06 

Brunei Darussalam 0.62 0.02 

Bulgaria 0.41 0.10 

Cameroon 0.54 0.08 

Canada 0.53 0.15 

Chile 0.43 0.03 

China 0.61 0.04 

Colombia 0.45 0.13 

Congo, Dem. Rep. 0.48 0.07 

Congo, Rep. 0.62 0.02 

Costa Rica 0.39 0.08 

Cote d'Ivoire 0.56 0.07 

Cyprus 0.51 0.16 

Denmark 0.44 0.02 

Dominican Republic 0.62 0.02 

Ecuador 0.43 0.12 

Egypt, Arab Rep. 0.51 0.07 

El Salvador 0.59 0.11 

Eritrea 0.40 0.05 

Ethiopia 0.58 0.06 

Finland 0.49 0.15 

France 0.45 0.05 

Gabon 0.62 0.02 

Germany 0.42 0.11 

Ghana 0.53 0.08 

Greece 0.55 0.14 

Guatemala 0.42 0.04 

Haiti 0.60 0.05 

Honduras 0.46 0.14 
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Hong Kong SAR, 
China 

0.47 0.06 

India 0.62 0.02 

Indonesia 0.40 0.09 

Iran, Islamic Rep. 0.55 0.08 

Iraq 0.52 0.15 

Ireland 0.44 0.02 

Israel 0.62 0.02 

Italy 0.43 0.12 

Jamaica 0.49 0.07 

Japan 0.61 0.06 

Jordan 0.39 0.06 

Kenya 0.57 0.07 

Korea, Rep. 0.50 0.16 

Liberia 0.44 0.03 

Luxembourg 0.62 0.02 

Malta 0.43 0.11 

Mauritius 0.52 0.08 

Mexico 0.57 0.13 

Morocco 0.41 0.05 

Mozambique 0.59 0.06 

Myanmar 0.47 0.15 

Nepal 0.46 0.06 

Netherlands 0.62 0.02 

New Zealand 0.41 0.10 

Nicaragua 0.54 0.08 

Niger 0.53 0.15 

Nigeria 0.43 0.03 

Norway 0.61 0.04 

Pakistan 0.45 0.13 

Panama 0.48 0.07 

Paraguay 0.62 0.02 

Peru 0.39 0.08 

Philippines 0.56 0.07 

Portugal 0.51 0.16 

Saudi Arabia 0.44 0.02 

Senegal 0.62 0.02 

Singapore 0.43 0.12 

South Africa 0.51 0.07 

Spain 0.59 0.11 

Sri Lanka 0.40 0.05 

Sweden 0.58 0.06 

Switzerland 0.49 0.15 
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Syrian Arab Republic 0.45 0.05 

Tanzania 0.62 0.02 

Thailand 0.42 0.11 

Togo 0.53 0.08 

Trinidad and Tobago 0.55 0.14 

Tunisia 0.42 0.04 

Turkey 0.60 0.05 

United Arab Emirates 0.46 0.14 

United Kingdom 0.47 0.06 

United States 0.62 0.02 

Uruguay 0.40 0.09 

Yemen, Rep. 0.55 0.08 

Zimbabwe 0.55 0.15 
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Table 9.  Robustness 

Standard errors in parenthese 

*** p<0.01, ** p<0.05, * p<0.1

VARIABLES 

Full sample Low income Middle income High income  

OLS FE 
GMM 

(Windmeijer) 
OLS FE 

GMM 

(Windmeijer) 
OLS FE 

GMM 

(Windmeijer) 
OLS FE 

GMM 

(Windmeijer) 

CO2  CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 

L.CO2     0.819***     0.563     0.720***     0.662*** 

    (0.0735)    (0.390)    (0.0781)   (0.135) 

 

Per capita income  0.645*** 0.596*** 0.404*** 2.442*** 1.694*** 1.840 0.202*** 0.430*** 0.128* 0.428*** 0.753*** 0.492 

 (0.0164) (0.0158) (0.107) (0.127) (0.114) (1.950) (0.0231) (0.0192) (0.0681) (0.0748) (0.0573) (0.304) 

(Per capita  

income) ^2 -0.124*** -0.0835*** -0.0965*** 0.780*** 0.406*** 0.765 -0.00964 -0.0347*** -0.0384* -0.0597*** -0.0921*** -0.0840* 

 (0.00344) (0.00367) (0.0232) (0.0858) (0.0643) (1.057) (0.00928) (0.00788) (0.0208) (0.0122) (0.00919) (0.0443) 

Per capita energy 

consumption 0.943*** 0.573*** 0.244** 0.664*** 1.171*** 0.247 1.127*** 0.793*** 0.326*** 0.825*** 0.497*** 0.370*** 

 (0.0140) (0.0148) (0.107) (0.0749) (0.105) (0.915) (0.0184) (0.0223) (0.110) (0.0160) (0.0206) (0.105) 

Population 0.0154*** -0.121*** 0.0629 -0.0587*** 0.0196 0.296 

0.0221**

* -0.143*** 0.0416 0.00462 -0.126*** -0.0432 

 (0.00306) (0.0163) (0.0476) (0.0144) (0.0665) (1.189) 
(0.00433

) (0.0239) (0.0357) (0.00341) (0.0188) (0.102) 

Urbanization 0.227*** 0.236*** -0.292** 0.608*** 0.501*** 0.0614 0.346*** 0.185*** -0.0494 -0.403*** -0.479*** -0.954** 

 (0.0272) (0.0298) (0.121) (0.0828) (0.0915) (1.318) (0.0343) (0.0379) (0.0880) (0.0471) (0.0802) (0.450) 

Constant 0.299*** 0.483*** -0.375* 0.872*** 0.917*** -0.184 0.702*** 0.647*** 0.0203 0.263** 0.0853 -0.646 

 (0.0324) (0.0429) (0.195) (0.149) (0.200) (2.648) (0.0399) (0.0725) (0.110) (0.111) (0.0977) (0.540) 

Observations 4,819 4,819 4,782 443 443 441 2,569 2,569 2,557 1,807 1,807 1,784 

R-squared 0.899 0.603   0.774 0.693   0.835 0.681   0.769 0.549  

AR(1)   -4.874   -1.382   -3.733   -2.568 

AR(1/p)   0.000   0.167   0.000   0.01 

AR(2)   -0.584   0.440   -0.731   -1.145 

AR(2/p)   0.559   0.660   0.465   0.252 
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4. Conclusion 

 

This study is an extension of the existing literature on pollution. It analyses the nexus income-pollution 

for over 95 countries composed of low, middle and high income economies, over 38 years. The study 

uses a Panel Smooth Transition Regression methodology and selects per capita income as threshold 

variable. The PSTR allows us to determine the linearity of the model, the smoothness of the transition 

from one regime to another, the turning point between two regimes, the measurement of regressors’ 

impacts, and the individual income-pollution elasticities.  In addition, a series of additional quadradic 

estimations have been added to the analysis. To circumvent the biases caused by the exclusion of 

relevant variables, the analysis goes beyond the traditional bivariate approaches in PSTR and includes 

additional variables likely to affect pollution. These variables are population, primary energy 

consumption and urbanization. Results show and strongly confirm the non-linearity of income-pollution 

nexus. The relation is captured by 3 transition functions, the first and second being less smooth than the 

last. This finding, combined with the analyses of the point estimates in the PSTR and the regime 

classification confirm that the income-pollution average path of the 95 countries follows EKC 

predictions (inverted U-shape). Pollution rises with income, reaches a peak where any additional 

income does not necessarily lead to more pollution, before dropping with income. The transition from 

the lowest level to the peak appears smoother than the latest stage of the shape. Besides, there is no 

single depollution path throughout the world. Low income countries have their turning point earlier 

than that of middle and higher income countries. And middle income countries have theirs earlier than 

that of higher income. Thus, low and middle income countries will not necessarily reach high incomes 

countries’ income per capita to have their depollution at a sustainable level.  

Besides, high income countries have maintained a stability of their income-pollution path over the past 

20 years, while low and middle income are experiencing high instability and vulnerability.  Primary 

energy consumption remains a serious threat for global warming, and is more alarming than population 

growth and urbanization. Decoupling from primary energy consumption to green and renewable energy 

could significantly reduce pollution and the threat of global warming and climate change.  
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