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Abstract 
 

In this study, we assess the convergent validity of preferences and willingness-to-pay (WTP) values 

for beach quality improvements from a gender perspective by isolating opt-out forced-choice effect 

from the SP1 DCE data (that is a forced-choice situation when a respondent was asked to select 

among the competing labelled alternatives if they chose an opt-out). Following this approach, we 

combine the RP discrete choice model and SP1 DCE datasets by splitting them into female and male 

sub-samples and then investigate whether estimated preferences and WTP values are susceptible to 

this effect from a gender perspective. Using the multinomial logit (MNL) models, we find that female 

visitors‟ preferences are compatible across RP and SP1 data if the forced-choice effect is isolated 

from SP1 data, whereas this is not true for the male visitors. However, WTP values appear similar for 

both the female and male RP and SP1 sub-samples. Also, the sources of opt-out forced choices appear 

more promising for females than those of male counterparts in the estimated binary logit models. Our 

results, therefore, suggest that preferences‟ similarity is a gender-specific if the opt-out forced-choice 

effect is isolated, but WTP similarity is not.    

 

Keywords: Revealed preference; Discrete choice model, Discrete choice experiments; Opt-out forced-

choice effect; Gender perspective 

 
 

1.  Introduction 

 

Non-market valuation or more specifically environmental valuation involves both revealed preferences (RP) 

and stated preferences (SP) models. However, there are relatively a very limited number of studies on the 

valuation of coastal recreation that has combined RP and SP models (e.g. Cheng and Lupi, 2016; Cameron, 

1992). As compared to applying either revealed or stated preference discrete choice models for valuing 

coastal recreation, combining the RP and SP choice models have several advantages, which include an 

estimation of robust parameters, a decrease in the collinearity resulted from SP designs, an increase in 

information availability, the possibility of identifying potential „environmental goods and services‟, and the 

creation of „environmentally sustainable projects‟ (Birol, et al., 2006; Adamowicz et al., 1997).   

______________________ 
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It has been witnessed that RP and SP discrete choice models are successfully combined to assess preference 

equality using the same random utility modelling (RUM) framework (e.g. Birol, et al., 2006; Adamowicz, et 

al., 1994; 1997). In this context, the RP discrete choice models have been pooled with the SP discrete choice 

experiments (DCE), which include choice situations with multiple alternatives including an „opt-out‟, which 

depicts either „status-quo‟ or „neither‟ constant alternative, phrased as neither A or B home garden (e.g. 

Birol, et al., 2006) or „none of these‟ option framed as „stay at home or do other recreational activity (e.g. 

Talpur et al., 2018; Adamowicz et al., 1994). When combining RP and SP DCE data collected from the same 

respondents and analysed using the same RUM framework, one of the main issues (i.e. the inclusion of an 

opt-out alternative in DCE that makes the number of alternatives in both the RP and SP choice sets unequal) 

has always been overlooked (e.g. see Birol, et al., 2006; Adamowicz et al., 1994)1. Although non-inclusion 

of an „opt-out‟ would generate biased welfare estimates because of principally two reasons: first, it is not 

being consistent with the demand theory if an „opt-out is not included (Hanley, Mourato and Wright, 2001), 

and second, in real life there is always an „opt-out‟ situation (Veldwijk et al., 2014), it is nevertheless 

essential to have an equal number of alternatives, i.e. possibly excluding an „opt-out‟ or creating a forced 

choice, so that on one hand the respondents have the similar RP and SP utility circumstances, and on the 

other hand, this can furthermore minimize the choice task complexity and/or cognitive burden for the 

respondents (Veldwijk et al., 2014). Our research adopts this novel approach and combines the RP discrete 

choice model and SP1 DCE data while excluding an opt-out to have the equal number of alternatives and to 

possibly avoid any opt-out bias with this type of data enrichment.      

 

In the prior literature, substantial research work has emphasized the impact of alternative „opt-out‟ and 

forced-choice effects on preferences and welfare estimates (Pederson et al., 2011; Kontoleon and Yabe, 

2003; Banzhaf, Johnson, and Mathews, 2001), however, limited research exists on the impact of the 

inclusion or exclusion of an „opt-out‟ (Pederson et al., 2011). According to Boxall et al (2009), the number of 

respondents choosing „opt-out‟ or „status-quo‟ increases with more complex choices and consequently, this 

affects welfare measures. Dhar and Simonson (2003) observed that „attraction effect‟, i.e. the likelihood of 

choosing an opt-out as an easy exit from the complex choice situation, becomes stronger if an „opt-out‟ 

alternative is available, whereas simultaneously „compromise effect‟, i.e. the likelihood of choosing between 

competing alternatives other than an opt-out, becomes weaker. This means the compromise effect tends to 

                                                           
1
 For instance, under the RUM modelling framework, say there are two alternatives in the RP choice set, however, there 

is a common practice to include the third alternative as an „opt-out‟ or „status-quo‟ in a series of choice situations 
designed to create an unforced SP DCE because of several advantages as mentioned above. If the RP and SP data is not 
combined, then adding an „opt-out‟ has those advantages. Hence, combining RP and SP data under this situation with 
unequal number of alternatives in both data sets, and knowing that the respondents also have the least or most preferred 
utility for all alternatives, including an „opt-out, alternative, the objective to test preference equality across both data 
sets becomes a questionable.     
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become stronger in a forced-choice situation; however, this results in the systematic violation of the 

independence of irrelevant alternative (IIV) property (Dhar and Simonson, 2003). In contrast, following the 

similar experiments but using more than two attributes as compared to Dhar and Simonson (2003), Brazell et 

al. (2006) found that IIV property is not violated and concluded that when alternatives have more attributes 

there is no clear compromise alternative. This finding raises the question: Does a compromise or forced-

choice effect still exist if there are more alternatives with more than two attributes and simultaneously an 

„opt-out‟ is excluded as we adopted this novel approach our case study?           

 

In this study, we combine revealed preference (RP) discrete choice model and stated preference (SP1) DCE 

based on the non-market valuation of multiple site attributes of various beaches located along the coastal area 

of Sindh province in Karachi city, Pakistan. Using sub-samples of females and males in a forced-choice 

situation of SP1 DCE (i.e. when a respondent was asked to select among the competing labelled alternatives 

if they chose an opt-out), and simultaneously including and excluding respondents who selected these „opt-

out‟ forced choices, this study investigates „convergent validity‟ from a gender perspective  (i.e. isolating or 

opt-out forced-choice effect on public preferences and their welfare measures to assess whether convergent 

validity is a gender-specific or not). Putting differently, we included and excluded the female and male 

respondents from SP1 DCE sub-sample, who selected forced choices embodying their compromise effect, 

hereby called a forced-choice effect, because of having no „opt-out‟ alternative, and combined female and 

male RP and SP1 sub-samples, respectively, and then separately applied multinomial logit (MNL) models 

assess the convergent validity of the estimated preferences and WTP values from a gender perspective. This 

means we included and excluded these forced choices of the uncertain respondents who made less consistent, 

monotonic and random choices and chose frequently „opt-out‟ choice (Brouwer et al., 2017).  

 

In the subsequent sections, we review the literature and discuss how our study is different from previous 

studies by formulating and presenting hypotheses in section 3. The rest of the paper is structured as follows. 

Section 4 reports the case study area, whereas it is followed by Section 5 that elaborates a combined RP 

discrete choice and the SP1 DCE survey design approach. Section 6 represents a choice modeling framework 

followed by section 7 that demonstrates the model estimation results. Hypotheses testing results are briefly 

elaborated in Section 8. The paper is concluded with a brief discussion in Section 9.  

 

2.  Earlier literature 

 

Earlier literature comprises a considerable number of studies on using various „opt-out‟ or „status-quo‟2 

formats in DCE and analysing their impact on preferences and/or welfare estimates (e.g. Campbell and 

                                                           
2 In different DCE studies, various formats, including „opt-out‟, status-quo‟, „none of these‟, „no purchase‟ or „no 
choice‟ have been interchangeably used. In this paper, we also used these terms interchangeably where it was necessary.      
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Erdem, 2018; Boxall et al., 2009; Pederson et al., 2011; Kontoleon and Yabe, 2003; Banzhaf, Johnson, and 

Mathews, 2001; Dhar, 1997), however, differentiating specifically opt-out forced-choice effects from a 

gender perspective and analyzing their impact on preferences and welfare measures using female and male 

sub-samples derived from RP and SP discrete choice models make our study unique and, to our knowledge, 

has never been conducted in either the DCE or the combined RP-SP literature. Apart from knowing various 

advantages of including an „opt-out‟, it is nevertheless a fact that inclusion of an „opt-out‟ is not a realistic 

approach in some choice situations, for instance, preferences for alternative transport modes (e.g. Rose and 

Bliemer, 2009; Hensher and Rose, 2007), not adding an „opt-out‟ alternative to other hypothetical 

alternatives is not consistent with the theory of demand (Hanley, Mourato and Wright, 2001). Dhar (1997) 

concluded that the preferences for „no-choice‟ or an „opt-out‟ alternative can be decreased if an inferior (or 

non-dominant) alternative is added to a choice situation, whereas preferences for an „opt-out‟ can be 

increased if one more attractive (or dominant) alternative is added, that eventually put the consumer in a 

complex choice situation. According to Dhar and Simonson (2003), this complex choice situation makes the 

respondent indifferent to choose between two dominant alternatives and the availability of an „opt-out‟ 

alternative attracts him/her to decisively choose that alternative.   

 

Banzhaf, Johnson, and Mathews (2001) in their DCE study conducted on anglers‟ preferences for fishing 

sites used a split-sample approach with one sample included an „opt-out‟ alternative framed as „not to go 

fishing‟, whereas the other included „status-quo‟ alternative framed as „anglers‟ routine site‟. In their study, 

they concluded that some respondents because of being not usual or new anglers found even a „status-quo‟ 

situation as a forced-choice situation and recommended including both „status-quo‟ and „none of these‟ 

situations to avoid a forced-choice effect on preferences in such circumstances. Likewise, Kontoleon and 

Yabe (2003) assessed consumer preferences for genetically modified contents in food using two „opt-out‟ 

alternatives two identical DCE using a split-sample approach with one sample of the respondents received 

„no purchase‟ alternative and the other received „purchase my own brand‟. Using the mixed logit (MIXL) 

models, the authors demonstrated that with a comparison to „no purchase‟ choice situation, preferences 

heterogeneity, relative choice share and response consistency was higher with a lower respondents‟ fatigue in 

„purchase my own brand‟ opt-out situation and concluded that all model results varied because „no purchase‟ 

alternative was found to be a forced choice situation by most of the respondents. Authors thus recommended 

that a similar approach would have been adopted as implemented beforehand by Banzhaf, Johnson, and 

Mathews (2001).              

 

In the recent past, Pedersen and Gyrd-Hansen (2013) profoundly criticised the use of „status-quo‟ and „opt-

out‟ alternatives in the SP DCE with their applications in health economics followed by some 

recommendations. In this respect, they criticise a study conducted by Kiiskenen et al (2010) on patients‟ 

preferences for the private versus public dental services in Finland and recommended otherwise the use of 
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„status-quo‟ instead of using „no choice‟ alternative. They also criticise another similar DCE study conducted 

by Burge et al. (2004) on patients‟ choices for quicker treatment given under the London Patient Choice 

Project (LPCP) and once again recommended adding „status-quo‟ alternative instead of incorporating 

„neither‟ as an opt-out alternative. In both studies, according to Pedersen and Gyrd-Hansen (2013), giving 

„no choice and „neither‟ alternatives respectively means that patients are forced to choose „not to undergo an 

operation‟, which has „zero utility‟ and may bias the preference estimates.     

 

To further the discussion of an „opt-out‟ dilemma, as thoroughly reviewed above, there exist very few studies 

on the other hand that include both „opt-out‟ and „status-quo‟ alternatives. Lancsar et al. (2007) investigated 

preferences of asthma patients using DCE entailing hypothetical medication alternative, and current 

medication as a „status-quo‟ and no asthma medication as a „no choice‟ alternatives, respectively.  Another 

DCE study in sports economics conducted by Pedersen, Kiil and Kjær (2011) assessed preferences of soccer 

attendees in Fiona Park Stadium in Denmark for soccer club managers. The authors in their study used two 

hypothetical stadiums in addition to the current stadium as a „status-quo‟ and alternative activity as „opt-out‟ 

options, respectively, and demonstrated that using both „status-quo‟ and „opt-out‟ alternatives together 

capture preferences of both the current users and the future potential users of soccer. To this end,  we may, 

therefore, conclude that inclusion and exclusion of an opt-out, status-quo and/or their types, such as „none of 

these‟, „neither‟, „no choice‟ and so forth, largely depend on varying choice situations which suit the 

applicability of these different types of opt-outs. 

 

All the previous studies in the DCE literature used different types of „opt-out‟ formats employed generic (or 

unlabelled) DCE designs, however, not even a single DCE study exists which entailed labelled DCE design. 

By saying so, we mean that DCE if includes all hypothetical possible alternatives which exist in the reality, 

adding a „status-quo‟ and „opt-out‟ alternative, that no matters carry a zero-utility, does not portray a realistic 

scenario. In an SP DCE study, Talpur, et al. (2018) included only „none of these‟ alternative while 

simultaneously entailed a full set of eight beach alternatives. In their situation, including a „status-quo‟ was 

an impractical approach; specifically when their study also included a full set of eight alternatives to capture 

RP data, which elicited beach visitors‟ actual choices representing their perceived individual-specific „status-

quo‟ choices. Although Adamowicz et al. (1994; 1997) in environmental economics and Birol et al. (2006) 

used the same DCE designs, however, these authors used two unlabeled SP hypothetical scenarios in addition 

to „none of these ‟ opt-out situations. In the above studies, it was possible to include instead both „status-quo‟ 

and „none of these‟ alternatives, respectively, as both studies used unlabelled DCE designs.       

 

Apart from studies addressing the „opt-out‟ forced-choice effect, there are a few DCE studies that addressed 

gender issues from different perspectives. Using a split-sample approach, Ladenburg and Olsen (2008) 

studied the influence of price starting point bias (SPB) on both female and male preferences as well as 
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welfare estimates across both samples and found that price SPB affected only female preferences and their 

WTP values. Differently, another study conducted by Keane et al (2016) estimated and compared female and 

male cross preferences for community-based conservation (CBC) initiative in Kenya. The researchers found 

that females‟ preferences differed from those revealed by males in that females placed a higher value on 

conservancy membership attribute, but less value on cultivation, access to conservancy land for grazing, and 

wage-income for herding cattle, whereas the opposite was found in case of males.             

 

In comparison to all studies discussed above, our study adopts a disaggregated novel approach that assesses 

the influence of including and excluding „out-out‟ forced-choice effect on preferences and WTP values from 

a gender perspective and finds out whether the „convergent validity‟ is a gender-specific or not. Putting 

differently, we included and excluded the female and male respondents and compared their preferences and 

WTP values influenced by their random choice behaviour increasingly resulting from the choice of an „opt-

out‟ alternative (Brouwer et al., 2017). Besides, we analysed sources of forced-choice opt-out effect 

including various respondent and design characteristics that influence the selection of an opt-out forced-

choice using separate binary logit models for female and male sub-samples, respectively.   

 

3.   Hypotheses formulation    

 

To assess the convergent validity by isolating (or disentangling) opt-out forced-choice effects from a gender 

perspective, we test a series of the following hypotheses;  

 

3.1   Preference equality 

 

This first series of hypotheses    tests the convergent validity in terms of the equivalence of the estimated 

preference β and their scales μ parameters across RP and SP1 DCE sub-samples of females and males by 

disentangling opt-out forced-choice affects. These tests involve a two-step test procedure assessing the 

equality of preference and scale parameters across RP and SP1 models (Swait and Louviere, 1993).  The first 

step starts testing whether the preference parameters for the two samples are equal and can be combined 

while allowing the scale parameters to vary across both the samples: 

                                              (3) 

 

A grid-search procedure for the best-combined model fit is performed over a range of scale parameter values 

of one sample while keeping the value of the scale parameter of another sample constant (i.e. equal to 1). To 

test         hypothesis, a chi-square test using the log-likelihoods for the separate and combined best fit 

model is implemented and then, a standard Log-Likelihood Ratio (LR) test is performed to assess whether 

the preference parameters across the two samples are equal: 
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                     (                 )   with d.f.= |  |      

 

 where |  | refers to the restriction regarding the number of imposed parameters.   

 

If the LR test confirms that preference parameters are equal between the two samples, then we implement the 

second step involving equality imposed on both preference and scale parameters. 

                                              (4) 

 

To test         hypothesis, a chi-square test using the log-likelihoods for both the combined models (i.e. the 

one with the equal scale and the other with the varying scale) is implemented and then, as usual, a standard 

Log-Likelihood Ratio (LR) test statistic is performed to assess whether the scale parameters across the two 

samples are equal: 

   

                                                                   with d.f. = 1 

 

If both         and         hypotheses are accepted, then we conclude that preference parameters across 

RP and SP1 models are equal.  Using the above grid-search procedure, we test the following series of 

hypotheses from a gender perspective: 

                                and                        if isolating ‘opt-out’ forced-choice effects from a gender 

perspective 

                                  if we do not isolate ‘opt-out’ forced-choice effects   (Table 3)                                  if we isolate ‘opt-out’ forced-choice effects    (Table 4) 

                              if we do not isolate ‘opt-out’ forced-choice effects   (Table 5)                              if we isolate opt-out’ forced-choice effects    (Table 6) 

 

3.2   WTP equality 

 

This second series of hypotheses    tests the convergent validity in terms of the equivalence of WTP values 

across RP and SP1 DCE sub-samples of females and males by isolating (or disentangling) opt-out forced-

choice effects. These tests require the combinatorial test process assessing differences in mean WTP values 

(Poe, Giraud and Loomis, 2005).   
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                                     , and                            if isolating ‘opt-out’ forced-choice 

effects from a gender perspective 

                                      if we do not isolate ‘opt-out’ forced-choice effects  (Table 3)                                      if we isolate ‘opt-out’ forced-choice effects   (Table 4) 

                                  if we do not isolate ‘opt-out’ forced-choice effects  (Table 5)                                  if we isolate ‘opt-out’ forced-choice effects   (Table 6) 

 

3.3   Sources of opt-out forced-choice effect 

 

This third series of hypotheses    tests the sources of opt-out forced-choice effect such as respondents‟ and 

design characteristics influencing opt-out forced choices selected by the females and males.  To assess these 

hypotheses, we first applied binary logit models separately estimated from female and male SP1 sub-samples 

and then implemented both the Wald and Log-likelihood Ratio (LR) tests.  

                                             (Table 8)                                                                                          
 

4.   Study description  

 

With a population of over 16 million and its economy‟s capacity to account for 20 per cent of country‟s 

GDP, Karachi city, which is the capital city of Sindh province in Pakistan, is the major port, the most 

urbanised and industrialised city (KSDP, 2007), City‟s 70 km long coastline, which starts from the Mubarak 

Village beach in the west and ends at Korangi creek neighbouring the Indus Delta in the east (see Figure 1), 

provides a wealth of recreational and other opportunities to the residents of the city, including fisheries, 

mangrove forest products, seaside agriculture, coastal wildlife, marine resources, and shoreline stabilisation 

services (Khalil, 1999). However, the monetary importance of many of these environmental services, such as 

beach recreation, coastal water quality and its depending aquatic life, is not fairly recognised at policy and 

decision-making levels, due mainly to public good nature of these resources. As a result, coastal resource 

managers and policy-makers lack the information required at the stages of designing and implementing 

coastal zone development on a sustainable basis, particularly when the future welfare losses are associated 

with the degradation of recreational use values of beaches due to rapid population and industrial growth since 

last few decades. 
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Figure 1: Names, locations and directions main beaches in Karachi city, Sindh province of Pakistan 
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The residents of Karachi enjoy a variety of water and beach-related recreational opportunities (e.g. 

swimming, diving, and walking) provided by the city‟s several beaches. Stretching from east to west, we 

included eight of these beaches in our study (see Figure 1). These beaches include; Clifton/Sea View, 

Manora Island, Sandspit, Hawke‟s Bay, French, Paradise Point, Cape Mount, and Mubarak Village beach. 

We excluded three beaches: Russian beach, located within Korangi creek near the Indus Delta, is a distant 

beach, so it is only infrequently visited by some visitors, Nathiagali beach is managed by the Pakistan Naval 

forces, so only these militaries have access to it, and Sunehra beach is used for angling only.  

 

Over many decades, socio-economic activities in the city, such as housing and construction, fisheries, ports 

and shipping, power plants and industry, recreation and tourism, have increased massively with its resulting 

burden on coastal resources, particularly on the quality of shoreline, including beaches and its recreational 

waters. In the metropolitan area of Karachi, there are around 6,000 industries that release effluents directly or 

indirectly through the Layari and Malir rivers into the Arabian Sea. Likewise, some seaside power plants and 

industrial units are the principal sources of thermal pollution, jointly discharging around 1,500 million cubic 

meters of warm water yearly into the coastal waters, which consequently raise the temperature levels in the 

coastal waters that endanger aquatic life. Approximately 330 million gallons of urban sewage water flows to 

the Arabian Sea daily through these rivers, drainage and other waterways. According to KSDP (2007), only 

around 30 per cent of the metropolitan sewage water is treated and the remainder is disposed into the coastal 

waters as raw sewage and untreated manufacturing rubbish. Besides, coastal agricultural contaminants, such 

as fertilizers, pesticides and herbicides, as well as scrape from construction sites and waste from poultry 

farms, make their way into the coastal waters. 

 

Apart from declining coastal water quality, beach littering is another critical aspect adversely affecting 

resident‟s use benefits of their beach recreation in the city. According to SACEP (2007) report, the Karachi 

Municipal Corporation (KMC) regularly gathers and discards on average 25 per cent of the 8,000 –10,000 

tons of litter generated day after day, whereas the remaining litter is either left in the city or dumped near the 

river banks and waterways, where it is eventually blown away by the wind or washed down to the coastal 

waters. Regularly, only two urban beaches, Clifton/Sea View and Manora Island get cleaned by the 

authorities in Karachi, whereas the remaining beaches are cleaned only rarely, either by village organisations 

or local non-governmental organisations. Overcrowding is another crucial factor that causes beach littering 

as visitors usually leave behind their trash. Overcrowding is very difficult to control because the public has 

free access to the beaches.   
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Until recently, there is no specific legislation to control coastal water pollution, beach littering and seaside 

crowding in Pakistan, even though the country is a signatory to various international conventions, protocols 

and treaties on coastal environment-related issues, including MARPOL 73/78, the Convention on Marine 

Biological Diversity, and several others, and the Environmental Protection Act from 1997, that vaguely aims 

to protect the coastal and marine environment altogether (Talpur and Jariko, 2001). To deal with 

environmental problems, such as coastal water quality, beach litter and overcrowding, only a Marine 

Pollution Control Board exists (SACEP, 2007). Thus, on the whole, there is no clear policy planning, 

coordination and implementation among the concerned authorities. 

 

5.   Combined RP-SP survey design and implementation 

 

There are some advantages and disadvantages associated with both RP and SP designs. SP designs are 

usually criticised because they do not capture the observed behaviour (Birol et al., 2006; Carson and 

Mitchell, 1993), hence, they fail to obtain information on real market situations (Louviere et al., 2000). 

However, these designs help to estimate the value of non-marketed environmental goods and services 

without substitute market values. The SP methods, specifically DCE, depict a broad range of attribute levels 

associated with the varying quantity and quality improvements pertaining to the future benefits of public 

goods. In contrast, RP designs have an advantage of obtaining information on real or actual choice 

behaviour, however, attributes and their levels of non-marketed goods and services in these designs do not 

vary over time if we use a single cross-section survey, hence, the data on the varying quantity and quality 

improvements in the proposed future projects due to changing policies cannot be acquired (Louviere et al., 

2000). Besides, RP methods sometimes generate coefficients with unexpected signs or erroneous magnitudes 

due to collinearity (Hensher and Rose, 2007; Louviere et al., 2006).      

 

In the recent times, the number of research studies on combining both RP and SP methods, which is also 

known as „data enrichment paradigm‟, has considerably grown intending to flourish the strengths and lessen 

the weaknesses of each method (Birol et al., 2006; Adamowicz et al., 1994, 1997; Swait and Louviere, 

1993). This data fusion or „data enrichment‟, that combines both RP and SP discrete choice data using the 

same RUM framework, reduces the problem of collinearity because of combining RP method with the 

experimentally designed SP method, generates more robust and efficient estimates, improves the significance 

levels of the parameters, and produces more information (Louviere et al., 2000; Birol et al., 2006; 

Adamowicz et al., 1994, 1997). In this study, we followed the similar approach previously implemented by 

Swait and Louviere (1993) and Adamowicz et al. (1994, 1997), however, our approach is unique in terms of 

disentangling opt-out forced choice and estimating the determinants of this forced choice effect from a 

gender perspective using the MNL models.        
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Our combined RP-SP survey design has four sections. The first section collected revealed preferences (RP) 

data from the respondents relating to their past and current site choice and travel behaviour, such as distance 

from their residence to the different beaches they travelled during the current year, transportation costs, 

travelling time, on-site costs and time, trip type and purpose, and beach activities they undertake when 

visiting these beaches. In the second section, we recorded visitors‟ opinions regarding beach attributes, such 

as water quality, beach cleanliness, crowding (and noise), facilities and distance from their residence using a 

scale between 1 and 10, where 1 refers to „not important at all‟ and 10 „most important‟. In the third section, 

we recorded perceptions of the respondents and asked them to rate the conditions of all the site quality 

attributes, including water quality, beach cleanliness (or littering), crowding and noise, and facilities across 

all 8 beaches. Afterwards, respondents were asked to reveal their actual preferred beach out of a choice set of 

eight alternative beaches that they have visited during the current year (see Figure 2). Thus, we collected 

actual or RP discrete choice data that respondents revealed in terms of their perceived baseline quality levels 

for each attribute at each beach. For respondent‟s convenience, we used a city map illustrating the exact 

locations of the eight beaches in the Karachi metropolitan area to help respondents to assess the perceived 

distance as a proxy of travel cost from their residence to each of the eight beaches. Subsequently, we 

collected SP data concerning respondent‟s stated choices using discrete choice experiments (DCE). Finally, 

the fourth section collected information regarding the socio-economic characteristics of the respondents.  

 

We collected SP data using two separate versions of the DCE: SP1 and SP2. In SP1 version visitors are faced 

with a future increase in travel cost as an implicit payment vehicle, i.e. a future increase in fuel expenditures 

and the opportunity cost of travel time. In SP2 version visitors face the same increase in future travel costs, 

but this version also adds an entrance fee as an explicit payment vehicle to the implicit travel cost. For this 

study purpose, however, we used only the SP1 version. Like the RP version, the SP1 version includes the 

eight beaches located along the Karachi coast as labelled alternatives (see Figure 3). The labelled DCEs are 

designed to capture site selection behaviour of visitors, who were asked to choose their preferred beach out 

of a choice set of eight alternative beaches and an opt-out alternative (see Annex 1 for the full details of the 

design). Since RP choice set does not have an opt-out alternative, we designed a forced SP1 DCE that helped 

respondents to choose their preferred beach out of a choice set of eight alternative beaches, so that zero-

utility effect could be avoided and the respondents can face an equal number of alternatives in both RP and 

SP1 datasets. (e.g. see Figures 2 and 3). In both RP and SP1 data sets, choice situations are identical in their 

non-monetary site attributes, i.e., coastal water quality, beach cleanliness, crowding and site facilities, and 

one monetary attribute, i.e. travel cost (see Table 1).  

 

 

 

 



13 

 

Table 1: Discrete choice data sets: RP and SP1 versions, attributes and levels 

Attributes / variables Levels RP SP1 

Water quality Poor, Moderate, Good 

  

Beach cleanliness Very littered, Moderately littered, No litter / Clean 

Crowding Sparsely crowded, Moderately crowded, Very crowded 

Facilities Low, Medium, High 

Travel cost  

 

Travel cost  

(i.e. trip expenditures and the opportunity cost of time) 
 

 

For each site attribute, three levels were selected, which reflect and depict low, moderate and high site 

quality improvements. For the reason that coastal water regulation in Pakistan does not exist, we 

comprehensively outlined poor, moderate and good levels for coastal water quality along the beaches in 

Karachi, similar to the classification of water bodies in the European Water Framework Directive (WFD), 

and illustrated using the US-EPA water quality ladder (Carson and Mitchell, 1993). These water quality 

levels describe whether water is suitable for swimming, catching fish that are safe to eat and supporting 

plants, fish and other aquatic life. Throughout the focus groups and pre-tests, we observed that characterising 

water quality levels objectively or physically (e.g. turbidity, dissolved oxygen, etc.) was not easily 

recognised by the respondents. Following Schaafsma and Brouwer (2013), we, therefore, developed a colour-

coded water quality ladder, representing water clarity, colour, contamination, odour, chemical status as well 

as its suitability for recreational uses such as swimming, bathing, and wading in the water, and illustrated 

these levels using easily understandable pictograms (full descriptions of the attribute levels as shown to the 

survey respondents are exhibited in Annex 1). To avoid statistical insignificance of site attributes due to lack 

of public understanding, we applied the colour-coding and pictograms, and at the same time facilitate 

comparison of elicited WTP values in this study with WTP values found elsewhere in the literature using 

similar water quality ladders (e.g. Bateman et al., 2011). 

 

Likewise, we followed an approach first implemented by Smith et al. (1997) to estimate the use benefits of 

decreased beach littering, so we described three levels for the attribute beach cleanliness (very littered, 

moderately littered and a clean beach with no litter). Since there is no legislation addressing coastal litter 

control in Pakistan, we adopted the definition mentioned in the EU Marine Strategy Framework Directive 

(MSFD) for reductions in coastal or marine litter, specifically in terms of its visibility (e.g. 25 units of litter 

per 50 meters of beach length). We adopted this definition because it was observed during the focus groups 

and pre-tests that the general public found it easier to assess the impacts of beach cleanliness regarding 

human health hazards and beach suitability for recreational uses such as walking, playing beach sports, 

playing in the sand and other recreational activities.  
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For the recreational valuation of site quality improvement, crowding is usually selected as an essential 

attribute because an increase in the number of visitors may negatively affect the recreational experience of 

visitors regarding reduced movement, privacy, and noise (Talpur et al., 2018; Hanley et al., 2002; Brouwer, 

1999). In contrast, crowding may affect users‟ experiences also positively (Taylor and Longo, 2010). 

Crowding is mostly incorporated in the recreational site choice models as a dummy variable (e.g. Hanley et 

al., 2002). On the contrary, our study incorporates it as a categorical variable for the sake of testing likely 

non-linear effects (e.g. Taylor and Longo, 2010), and also combined an element of noise to it (Brouwer, 

1999). Along these lines, three levels were selected (sparsely crowded, moderately crowded and very 

crowded) and pictograms were also shown to the visitors imagine crowding, described as beach visitors‟ 

density. Subsequently, site facilities were chosen as the fourth non-monetary attribute based on feedback 

from focus groups and pre-tests. Once again, three levels were selected for this attribute in a cumulative 

manner (parking, parking and food stores, and parking, food stores, and washrooms).  

 

Finally, we need a monetary attribute that computes marginal WTP estimates, which demonstrates the rates 

at which beach visitors are willing to trade off-site attribute levels with income (Louviere et al., 2000). Both 

the RP version and SP1 DCE version includes only travel costs variable as a common implicit payment 

vehicle (SP1). For outdoor recreation, visitors mostly travel from their homes to the chosen beach by 

implicitly bearing travel costs. So during surveys, respondents were asked about their perceived distances 

and travel times for visiting the 8 selected beaches along the Karachi coast, which enabled us to calculate 

these travel costs. The travel cost calculation approach, where distance acts as a proxy for travel costs for 

each respondent (Hanley et al., 2002), is presented in Annex 2 of this paper. An example of an SP1 choice 

card is demonstrated in Figure 3. Each respondent faced six choice situations and asked to choose his or her 

preferred beach to visit in the next 12 months under different site quality improvements from the set of eight 

alternative beaches, or to choose an „opt-out‟ alternative, framed as „None of these, I prefer to stay at home 

or do other non-beach activities‟ (e.g. Talpur, et al., 2018). Those respondents who chose „none of these‟ 

alternatives, we further asked them about their forced-choice by asking them about the choice situation in 

which this „opt-out‟ alternative was not available, of course bearing in mind their trip expenditures and travel 

times to each of the beaches.  
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Figure 2. Choice card example (RP version) 
 

Water quality levels 
Good 

 
 

 

Moderate 

 

Poor 

 
What is your perception about the overall water quality at the following beaches during the last 12 months?  
(Put 0 = Poor water quality, 1 = Moderate water quality, 2 = Good water quality, if you do not know the answer or even 

if you have never been there, then provide with a better guess).  
Clifton & Sea 

View beaches 

Manora 

Island beach 

Sandspit 

Beach  

Hawke’s 
Bay beach  

French 

beach 

Paradise Point 

beach 

Cape Mount 

beach 

Mubarak 

Village beach 

        
 

 

Cleanliness Levels 
No Litter / 

Clean 

 

Moderately 
Littered  

 

Very 
Littered 

 
What is your perception about the overall cleanliness at the following beaches during the last 12 months?  

   (Put 0 = Very littered, 1 = Moderately littered, 2 = No litter/Clean, if you do not know the answer or even if you have 

never been there, then provide with a better guess). 
Clifton & Sea 

View beaches 

Manora 

Island beach 

Sandspit 

Beach  

Hawke’s 
Bay beach  

French 

beach 

Paradise Point 

beach 

Cape Mount 

beach 

Mubarak 

Village beach 

        
 

 

Crowding levels 

Sparsely 
Crowded 

 

Moderately 
Crowded 

 

Very 
Crowded 

 
What is your perception about the overall crowding at the following beaches during the last 12 months?  
(Put 0 = Sparsely Crowded & Quiet, 1 = Moderately crowded, 2 = Very crowded & Noisy, if you do not know the answer 

or even if you have never been there, then provide with a better guess).  

Clifton & Sea 

View beaches 

Manora 

Island beach 

Sandspit 

Beach  

Hawke’s Bay 
beach  

French 

beach 

Paradise Point 

beach 

Cape Mount 

beach 

Mubarak 

Village beach 

        
 

 

Facilities Levels 
Low 

 

Medium 

 

High 

 
What is your perception about the overall facilities at the following beaches during the last 12 months?  
(Put 0 = Low, 1 = Medium, 2 = High, if you do not know the answer or even if you have never been there, then provide 

with a better guess). 
Clifton & Sea 

View beaches 

Manora 

Island beach 

Sandspit 

Beach  

Hawke’s 
Bay beach  

French 

beach 

Paradise Point 

beach 

Cape Mount 

beach 

Mubarak 

Village beach 

        
 

Your Choice 

□ □ □ □ □ □ □ □  
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Figure 3. Unforced and Forced choice card example (SP1) capturing the out-out forced-choice effect 
 
 

Given the beach attributes described below, and bearing in mind future increase in your personal trip expenditures and travel times as 
well as entrance fee to each of the beaches in addition to the proposed entrance fees, which beach would you prefer to visit? 
 

            Beach 

 

 Attributes 

Clifton / Sea 

View 

Manora 

Island 

Sandspit / 

Turtle 

Hawke’s 
Bay 

French Paradise 

Point 

Cape  

Mount 

Mubarak 

Village 

None  

of these  

 

 

I 
 

prefer  
 

 to  stay 
 

 at 
 

 
 

home 

 

 

or 

 

 

Do  
 

other 
 

non-beach 
 

activities 

 

Water   

quality 

 

 
Poor 

 

 
Good 

 

 
Poor 

 

 
Good 

 

 
Moderate 

 

 
Moderate 

 

 
Good 

 

 
Moderate 

   

 Cleanliness 

 

 
No litter / 

Clean 

 

 
Moderately 

littered 

 

 
No litter / 

Clean 

 

 
Moderately 

littered 

 

 
Very littered 

 

 
Moderately 

littered 

 

 
Very littered 

 

 
No litter / 

Clean 

 

Crowding  

 

 

 

 
Very 

crowded 

 

 

 
Moderately 

crowded 

 

 

 
Sparsely 
crowded 

 

 

 
Very 

crowded 

 

 

 
Sparsely 
crowded 

 

 

 
Sparsely 
crowded 

 

 

 
Very  

crowded 

 

 

 
Moderately 

crowded 

 

Facilities 

 

 
Low 

 

 
Medium 

 

 
High 

 

 
Medium 

 

 
Low 

 

 
Low 

 

 
Low 

 

 
High 

Your   

Choice 
□ □ □ □ □ □ □ □ □ 

 

OK, you have selected „none of these beaches‟ opt-out. Imagine this opt-out alternative was not available in this choice set. 
Given this situation, and bearing in mind future increase in your personal trip expenditures and travel times to each of the 
beaches, which beach would you still prefer to visit? 

 

 
 

Your  

Choice 
□ □ □ □ □ □ □ □ 

 
 

We used only one choice card for our RP version, whereas we applied orthogonal designs for the SP1 version 

of the DCE to generate prior parameter values using a small sample (N = 48). For SP1 pilot datasets, we 

estimated separate multinomial logit (MNL) models. In the MNL model, all parameters had the expected 

signs (e.g., a negative sign for distance from a visitors‟ residence) and orders of magnitudes (e.g., higher 

levels being valued more than lower levels), and were statistically significant at the 1% and 5% levels, except 

for the moderately crowded coefficient, which was insignificant in the SP1 pilot version. Based on these 

prior values, two separate D-efficient designs of 36 choice tasks were generated, using the Ngene software 

(version 1.1.1; Choice Metrics, 2014). To reduce respondents‟ cognitive burden during the interview, these 

36 choice tasks were blocked into six versions of six choice tasks. Hence, each respondent was randomly 

assigned one of the six versions. 

 

Using an off-site random cluster sampling approach, we conducted in-person interviews with the residents of 

Karachi. We preferred the off-site residential survey to an on-site survey for ensuring high response rates 

from both (i) visitors and non-visitors to avoid endogenous stratification (Talpur et al., 2018), and (ii) men 

and women. Thus, only residents of the city were interviewed, not non-residents, who might visit the beaches 
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only occasionally from nearby cities. The survey was implemented by selecting different clusters of 

municipal neighbourhoods in Karachi city. Within each cluster, residential homes were selected for in-person 

interviews through a simple random sampling approach. Eventually, we conducted surveys to obtain the 

required information from 294 respondents for RP and 152 respondents for SP1, respectively. In this way, we 

finally obtained two datasets, including RP and SP1, respectively. Table 2 exhibits descriptive statistics for 

the RP and SP1 versions.  
 

Table 2: Descriptive statistics of beach visitors 
 

                                                      Data set   
 

 Visitors’ characteristics3
 

RP 

version 

SP1 

version  

Pakistan 

population 

Test  

applied 

Test-

statistic 

Gender (% Female =1) 35.1 35.5 48.0 Chi-squared    0.188      
Age (%)    Mann-Whitney -  1.436      
   18 – 39 years 66.9 76.3 31.1 Mann-Whitney -  2.806*** 
   40 – 59 years 31.4 21.7 13.5 Mann-Whitney    2.332**    
        ≥ 60 years 1.7 2.00 5.5 Mann-Whitney    0.000        
Marital status (% Married =1) 53.4 55.9 63.0 Chi-squared    4.568**    
Average household size (people) 6.4 6.7 6.4 Mann-Whitney -  4.740***  
Average number of children/household 1.8 1.8 2.9 Mann-Whitney -  1.163***  
Education distribution (%)    Mann-Whitney     2.261**    
   Primary and secondary education 26.2 22.4 74.9 Mann-Whitney -  3.725***   
   Higher (college / university) education 72.8 77.0 6.4 Mann-Whitney    2.004**     
   Informal education 1.0 0.6 0.4     + 
Employed (% Employed =1) 80.6 76.3 79.0 Chi-squared   18.748***  
Average one-way distance travelled (km) 38.1 36.5  Mann-Whitney -  2.969***   
Average household income (PKR/month) 61760.20 59491.07 209.1 Mann-Whitney    4.564***   
Average travel cost (PKR per person/day) 
   without opportunity cost of time 

1234.02 1112.81  Mann-Whitney -  3.224***   

Average travel cost (PKR per person/day) 
   with the opportunity cost of time 

1231.27 1348.34 ---- Mann-Whitney -  2.507**     

Sample respondents (N) 294 152 ---- ---- ---- 
Number of choice sets/respondent 1 6 ---- ---- ---- 
Observations 294 912 ---- ---- ---- 

 
 
6.  Modelling framework  

 

Following the random utility theory (RUT) and its basic modelling framework (McFadden, 1974), we 

applied the MNL (or conditional) logit model to estimate preferences elicited by the beach visitors using 

separate revealed preferences (RP) and stated preferences (SP) discrete choice models. Let‟s assume that a 

beach visitor i (i = 1, 2,  . . . , n) makes a single-day trip to beach alternative j out of k =1….K beach 

alternatives along the Karachi coast on a given day during the current and next years, his/her indirect 

                                                           
3 We applied Mann-Whitney (MW) test for contineous variables (e.g. age, education, etc.) and Chi-Squared (CS) test for dummy 
variables (e.g. female =1, married = 1, etc.) across the RP and SP1 datasets. Aestriks **,*** indicate statisitical significant 
differences at 5% and 1% levels. + Education groups do not match across both versions.  
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revealed and stated utility U for both the current and next years can be expressed as a linear function of the 

vector of beach attributes (or characteristics) X: 

 

                                                             (1) 

 

                                                                 

 

where       is the deterministic component of the linear additive utility function, and where      is the error 

term which is assumed to follow independently and identically distributed (IID) Gumbel extreme value type 

1 distribution. Given RP and SP1 utility functions, the observable deterministic component comprises a set 

of alternative-specific constants (ASC)   , the vector of site attributes     , and the vector of associated 

preference parameters or the marginal utilities   . In RP utility function, a visitor faces only one real or actual 

discrete choice set c = 1, whereas the same visitor faces six experimentally designed hypothetical discrete 

choice sets c = 1, 2, . . , 6 in the SP1 utility function. Now, the probability that a respondent i chooses to visit 

a beach alternative j out of k = 1, . ., K alternatives given RP or SP1 choice situation can be expressed as: 

 

                    ∑                                                         (2) 

 

The above expression is known as the MNL (or conditional) model specification. According to Lancaster 

(1966), the observable deterministic component of the indirect utility function      can be decomposed into 

the vector of site attributes (                                  for each alternative. So, we estimated preferences and 

WTP estimates using the MNL models.  

 

Using expression (2), we estimate preference parameters in both the RP and SP2 versions.  Using travel cost 

as a monetary parameter, we estimate marginal WTP values applying the Krinsky and Robb (1986) 

bootstrapping method. For modelling framework, we accommodate possible non-linear threshold effects and 

avoid confounding effects (Louviere et al., 2000) by applying effects coding instead of dummy coding.4 

Following the above model specification, we, therefore, test a series of hypotheses in terms of assessing the 

convergent validity from a gender perspective, and further estimate the determinants behind opt-out forced-

                                                           
4 Because the sum of the effects codes is equal to 0, the sum of the attribute with three levels is also equal to zero, that is 

β0 + β1 + β2 = 0, which can also be expressed as β0 = - β1 - β2. For calculating WTP for the medium and the higher site 

quality improvements, we applied the following formulas using the above definition of effects coding: WTP medium = (β1 

- β0 )/βpayment vehicle = (β1 - ( - β1 - β2))/ βpayment vehicle = (2*β1 + β2))/βpayment vehicle and WTP high = (β2 - β0 )/ βpayment vehicle = (β2 

- ( - β1 - β2))/ βpayment vehicle = (2*β2 + β1))/ βpayment vehicle. 
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choice effects from a gender perspective using binary logit models (see Figure 1 in Annex 3). This helped us 

to test hypotheses regarding the influence of both respondents‟ and design characteristics on opt-out forced 

choices made by both females and males, respectively. 

 

7.   Estimation results  

7.1 Descriptive statistics 

 

In total, 312 respondents were interviewed during the survey. After excluding incomplete questionnaires, 294 

respondents for the RP, 152 respondents for the SP1 and 156 respondents for the SP2 versions were ready for 

the analysis. The survey interviews on average took 20 minutes to obtain information from the respondents. 

To determine the similarities (or the differences) between RP and SP1 sample characteristics, we applied 

semi-parametric Mann-Whitney (MW) test to the continuous variables, like age, education, household size, 

household income, distance travelled and travel costs, whereas we applied Chi-Squared test to the dummy 

variables, like gender, employment and marital status. We found no significant differences in terms of gender 

and overall age groups at 1% significance level; however, there are significant differences among age-

groups. In both the samples, around 35% were female and 64% were male and, 80.6% and 76.3% of 

respondents were employed, whereas about 53% and 55% of the respondents were married. The average 

household size was 6.7 and 6.2 persons per household, which is nearly closed to the national average 

household size. The average monthly household income was PKR. 61760.20, and PKR. 59491.07 per month 

across both versions, respectively. Besides, there exist significant differences for marital status, household 

size, children per household, education, employment, average household income, the average distance 

travelled and average travel cost (both with and without the opportunity cost of time) across both samples at 

5% and 1% levels, respectively. However, some socio-economics characteristics of visitors, including 

gender, marital status, and average household size, are much comparable to the country‟s population, 

whereas some are not, indicating that the most of the beach visitors belong to the young generation with 

higher education. The average distance travelled by the visitors interviewed is 38.1 kilometres and 36.5 

kilometres in RP and SP1, respectively (see Table 2).  

 

7.2 Model results 

 

Multinomial logit (MNL) choice models are estimated using NLOGIT version 5.0. Both RP and SP1 MNL 

models for female and male sub-samples are presented in Tables 3, 4, 5 and 6. These models are identical in 

terms of their non-monetary and monetary parameters (i.e. travel cost). The RP discrete choice models for 

female sub-sample are the same as their single choice situation don not include an „opt-out‟, however, SP1 

DCE choice models are different since they include an „opt-out‟ alternative using six different choice 

situations, framed as „none of these: stay at home or do another non-beach activity‟ (see Tables 3 and 4). For 
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male sub-sample, we also adopted this similar approach combining both RP and SP1 versions (see Tables 5 

and 6).  

 

Overall, both RP and SP1 discrete choice models for female sub-sample perform better in terms of LR test 

and Pseudo R2, respectively, despite the similarities in statistical significances of parameters and, specifically 

alternative-specific constants (ASCs) in SP1 models estimated for male sub-sample. The magnitude of most 

of the coefficients in RP version of female sub-sample is higher than the same version of male sub-sample, 

indicating that female beach visitors have relatively higher preferences for site quality improvements than 

their male counterparts. Using Swait and Louviere (1993) approach, we estimated combined RP-SP1 MNL 

models and found that these joint models perform better than the single RP and SP1 models for both the 

female and male sub-samples, regardless of including and excluding female and male individuals from those 

sub-samples in SP1 versions who selected a forced choice in case of not having an „opt-out‟ alternative (see 

Figure 3). Although the combined MNL models for females perform better than that of male visitors, it is 

nonetheless that the significances of parameters have largely improved for all the combined models (see 

Tables 3, 4, 5 and 6), demonstrating that the joint estimation hence increases the precision and robustness of 

model coefficients (Swait and Louviere, 1993).      

 

In all the single and combined models, travel cost as a monetary parameter has the expected negative sign 

and is relatively highly significant in SP1 and combined models estimated from both female and male sub-

samples. This demonstrates that both female and male visitors would less likely to visit beaches in the 

present and future if their travel cost increases by living farther away from the beaches of their choice. 

Across both single and combined models for female and male beach visitors, all the coefficients have the 

expected positive signs, except sparsely crowded (or quiet) parameters with an unexpectedly negative sign in 

SP1 model and a joint RP-SP1 model for male counterparts, when „opt-out‟ forced-choice effects are 

excluded from SP1 data. This validates the results that the uncertain male beach visitors because of mostly 

choosing random choices, including „opt-out‟ choice, influence the stability of choice parameters (e.g. 

Brouwer et al., 2017). Besides, female visitors have higher WTP than male visitors across both RP and SP1 

versions regardless of opt-out forced-choice effects are taken into account.  

 

We also separately estimated binary logit models for females and males sub-samples drawn from SP1 data 

set to detect the sources, such as respondents‟ and design characteristics, behind the selection of opt-out 

forced choices. The respondents‟ characteristics, such as age, education, income, marital status, household 

size, travelling group size, family and weekdays visitors are all statistically significant at 1 % and 5% levels, 

respectively. Although some characteristics affect opt-out choice behaviour of female and male visitors in a 

similar way (e.g. age, income, beach activities affect negatively, and education, income-squared, household 

size, weekdays visitor affect positively), however, signs of some characteristics, such as marital status, 
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travelling group size and visiting with family members, appear differently indicating that these variables 

influence female and males visitors‟ opt-out forced-choice behaviour in the different ways (see Table 7). For 

instance, married females are more likely to choose an opt-out forced choice, whereas their male counterparts 

do the other way around. This reveals that married female visitors are more selective when deciding to 

choose from alternative beaches as compared to „none of the beach‟ opt-out alternative in SP1 choice 

situations. The same is the case of other variables, including the travelling group and visiting with family 

members, for female visitors.  Besides, travelling group size for female and beach activities for male visitors 

are insignificant indicating that travelling group size does not influence female visitors‟ opt-out choice 

behaviour, where the same is true about beach activities for male visitors.  

 

As discussed above, we further extended our binary logit model by incorporating design characteristics, 

including choice card number, chosen alternative beach, travel cost (a monetary attribute), self-reported 

certainty, choice consistency, choice monotonicity, and randomness in choice behaviour (see Table 7). The 

design variables, such as choice card number and chosen alternative beach, are statistically significant and 

have the expected negative signs. For instance, the more interested to choose a beach and the higher the 

travel cost, the less likely it becomes for both the female and male visitors to choose opt-out forced choice. 

Self-reported certainty, though insignificant for female visitors‟ opts-out forced-choice behaviour, have a 

counter-intuitive sign, however, choice consistency is highly significant at 1% level for both the females and 

males and have the expected negative sign. Choice monotonicity is highly significant across both sub-

samples but has an unexpected positive counter-intuitive sign for male visitors. The similar is the case of 

randomness in a choice variable which is highly significant at 1% level but has unexpectedly a negative for 

female visitors‟ opt-out forced-choice behaviour. Although binary logit model for males capturing the 

influence of the sources of opt-out forced-choice behaviour performs better than the same model for females, 

binary logit model for female visitors overall looks relatively more convincing in terms of both variable 

magnitudes and their signs. For instance, the magnitudes of variables, including marital status, visiting with 

family members, are relatively higher, and signs of variables, such as choice card number, choice consistency 

and choice monotonicity are expectedly valid for a binary logit model estimated from female SP1 sub-

sample.             
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Table 3: Estimated MNL models including respondents who selected forced choices (RP and SP1 sub-samples of female visitors)  
 

                                 Data sets 
 

Beach Attributes 

RP version SP1 version RP-SP1 Combined
2
            

RP-SP1 Combined            

RP  

version 

SP1 

version 

Poe et al 

test 

Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE) WTP WTP p-values 
        

Moderate water quality   0.694    (0.267)***   0.731    (0.165)***       0.749    (0.131)***       0.769    (0.135)*** 5260.68 4111.16 0.360 
Good water quality   1.528    (0.324)***   1.633    (0.160)***       1.548    (0.134)***       1.597    (0.138)*** 6759.06 5309.57 0.358 
Moderately littered   0.217    (0.238)   0.379    (0.126)***   0.434    (0.107)***   0.441    (0.110)*** 2333.71 2463.02 0.556 
No litter / Clean   0.861    (0.253)***   1.102    (0.133)***      1.076    (0.108)***      1.110    (0.113)*** 3493.24 3428.45 0.511 

Moderately crowded   0.175    (0.178)   0.278    (0.122)**       0.198    (0.093)**       0.187    (0.098)* 1732.57 1094.04 0.278 
Sparsely crowded / Quiet      0.612    (0.227)***     0.267    (0.176)        0.391    (0.125)***        0.428    (0.132)***   2519.33   1079.53   0.135 
Medium facilities   0.325    (0.188)*   0.140    (0.135)       0.286    (0.095)***       0.297    (0.099)*** 3475.91 1211.96 0.058 

High facilities   1.279    (0.292)***   0.632    (0.124)***      0.754    (0.104)***      0.768    (0.108)*** 5193.12 1865.14 0.056 

Travel cost - 0.0005 (0.0003)* - 0.0007 (0.0002)*** - 0.0007 (0.0001)*** - 0.0007 (0.0001)*** ----- ----- ----- 
        

Alternative-Specific Constants        
Sea View / Clifton beaches    1.601    (0.897)*       0.490    (0.376)       0.709    (0.320)**       0.706    (0.321)**    
Manora Island beach   1.413    (0.672)***     0.146    (0.367)       0.501    (0.306)   0.504    (0.306)*    
Sandspit / Turtle beach   0.930    (0.554)*      0.413    (0.341)       0.558    (0.279)*       0.556    (0.279)**    
Hawke‟s Bay beach   0.350    (0.686)     0.557    (0.342)       0.524    (0.285)*       0.517    (0.285)*    
French beach   0.631    (0.465)     0.515    (0.337)       0.494    (0.263)*       0.501    (0.263)*    
Paradise Point beach   0.772    (0.521)    - 0.047    (0.367)      0.219    (0.289)      0.221    (0.289)    
Cape Mount beach   0.478    (0.504)        0.488    (0.314)      0.453    (0.259)*      0.446    (0.259)*    
        

Log-Likelihood -149.200      -386.320  - 548.806 - 548.602    
Pseudo R

2 
  0.25  0.40   0.36   0.36    

AIC  3.208    2.483        2.645  2.644    
No. of choice sets (Individuals)  01 (103)  06 (54)  (157 = 103 +   54)  (157 = 103 +   54)    
No. of observations  103  324  427 (= 103 + 324)  427 (= 103 + 324)    
        

Hypothesis-1 

Swait & Louviere LR test 

                 Reject preferences 
equality? 

                Reject scale equality? Hypothesis-2                   
        

χ2 (RP-SP1 MNL models)
1
  26.15 Yes --- --- Do not reject equality for most 

of the WTP values 
        

 

1
 Critical values of 2 test with 10 and 1 degree(s) of freedom at 1% level of significance are 23.21 and 6.63, respectively. Asterisks *,**,*** indicate statistical significance at 10%, 5% and 1% levels. 

2
 LR (μRP = μSP1) = – 2 [– 548.602 – (– 149.200 + – 386.320)] = 26.15 
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Table 4: Estimated MNL models excluding respondents who selected forced choices (RP and SP1 sub-samples of female visitors)  
 

                                 Data sets 
 

Beach Attributes 

RP version SP1 version RP-SP1 Combined            

RP-SP1 Combined            

RP  

version 

SP1 

version 

Poe et al 

test 

Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE) WTP WTP p-values 
        

Moderate water quality   0.694    (0.267)***   0.720    (0.199)***       0.752    (0.146)***       0.778    (0.152)*** 5260.68 3897.44 0.334 
Good water quality   1.528    (0.324)***   1.795    (0.199)***       1.642    (0.152)***       1.706    (0.159)*** 6759.06 5192.25 0.350 
Moderately littered   0.217    (0.238)   0.198    (0.142)   0.308    (0.115)***   0.311    (0.119)*** 2333.71 1805.80 0.408 
No litter / Clean   0.861    (0.253)***   1.103    (0.155)***      1.025    (0.117)***      1.067    (0.122)*** 3493.24 2894.84 0.416 

Moderately crowded   0.175    (0.178)   0.206    (0.139)       0.159    (0.100)**       0.144    (0.105) 1732.57   704.93 0.163 
Sparsely crowded / Quiet     0.612    (0.227)***     0.172    (0.194)        0.340    (0.133)***        0.378    (0.141)***   2519.33     664.33   0.080 

Medium facilities   0.325    (0.188)*   0.049    (0.153)       0.267    (0.101)***       0.276    (0.107)*** 3475.91 1081.55 0.053 
High facilities   1.279    (0.292)***   0.801    (0.147)***      0.897    (0.117)***      0.919    (0.121)*** 5193.12 1968.87 0.070 

Travel cost - 0.0005 (0.0003)* - 0.0008 (0.0002)*** - 0.0007 (0.0002)*** - 0.0007 (0.0002)*** ----- ----- ----- 
        

Alternative-Specific Constants        
Sea View / Clifton beaches    1.601    (0.897)*       0.568    (0.429)       0.782    (0.353)**       0.781    (0.354)**    
Manora Island beach   1.413    (0.672)***     0.214    (0.419)       0.596    (0.337)*   0.602    (0.337)*    
Sandspit / Turtle beach   0.930    (0.554)*      0.523    (0.392)       0.654    (0.308)**       0.655    (0.308)**    
Hawke‟s Bay beach   0.350    (0.686)     0.627    (0.391)       0.563    (0.315)*     0.557    (0.315)*    
French beach   0.631    (0.465)     0.503    (0.389)       0.486    (0.289)*       0.496    (0.289)*    
Paradise Point beach   0.772    (0.521)      0.184    (0.409)      0.391    (0.311)    0.395    (0.311)    
Cape Mount beach   0.478    (0.504)        0.787    (0.349)      0.652    (0.279)**      0.645    (0.279)**    
        

Log-Likelihood -149.200      - 305.100 - 465.666 - 465.641    
Pseudo R

2 
   0.25   0.41   0.36   0.36    

AIC   3.208     2.488        2.668   2.668    
No. of choice sets (Individuals)   01 (103)   06 (43)   (146 = 103 +   43)   (146 = 103 +   43)    
No. of observations   103   258   361(= 103  + 258)   361(= 103  + 258)    
Individuals excluded who 
selected opt-outs 

  ---   11 (= 54 – 43)     11 (= 157 – 146)     11 (= 157 – 146)    

        

Hypothesis-1 
Swait & Louviere LR test 

                 Reject preferences 
equality? 

                 Reject scale equality? Hypothesis-2                   
        

χ2 (RP-SP1 MNL models)
1
  22.68 No 0.05 No Do not reject equality for most 

of the WTP values 
        

 

1
 Critical values of 2 test with 10 and 1 degree(s) of freedom at 1% level of significance are 23.21 and 6.63, respectively.   

2
 LR (μRP = μSP1) = – 2 [– 465.641 – (– 149.200 + – 305.100)] = 22.68, whereas LR (μRP ≠ μSP1) = – 2 [– 465.666 – (– 465.641)] = 0.05 
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Table 5: Estimated MNL models including respondents who selected forced choices (RP and SP1 sub-samples of male visitors)  
 

                                  Data sets 
 

 

Beach Attributes 

RP version SP1 version RP-SP1 Combined           

RP-SP1 Combined            

RP  

version 

SP1 

version 

Poe et al 

test 

Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE) WTP WTP p-values 
        

Moderate water quality   0.286    (0.164)*   0.607    (0.115)***       0.456    (0.085)***       0.475    (0.088)***     2868.85 2610.83 0.461 
Good water quality   1.135    (0.212)***   1.578    (0.113)***       1.381    (0.086)***       1.430    (0.089)***     4295.44 3518.69 0.357 
Moderately littered   0.464    (0.163)***   0.209    (0.089)**   0.256    (0.073)***   0.253    (0.075)*** 2633.59 1280.07 0.089 

No litter / Clean   0.638    (0.197)***   0.951    (0.094)***      0.881    (0.074)***      0.912    (0.077)***    2925.33 1974.24 0.227 

Moderately crowded   0.039    (0.120)   0.385    (0.088)***       0.260    (0.065)***       0.262    (0.068)***       710.18   683.03 0.512 
Sparsely crowded / Quiet      0.343    (0.164)**   - 0.039    (0.112)        0.011    (0.083)**        0.024    (0.087)      1219.51    285.60   0.071 

Medium facilities   0.138    (0.123)   0.118    (0.093)       0.163    (0.067)***       0.165    (0.074)**     2289.28  676.34 0.012 
High facilities   1.087    (0.182)***   0.488    (0.089)***      0.634    (0.071)***      0.639    (0.071)***    3884.52 1022.29 0.007 

Travel cost - 0.0006 (0.0002)** - 0.0011 (0.0002)*** - 0.0009 (0.0001)*** - 0.0009 (0.0001)*** ----- ----- ----- 
        

Alternative-Specific Constants        
Sea View / Clifton beaches    1.530    (0.619)**       0.652    (0.279)**       0.884    (0.230)***       0.886    (0.231)***        
Manora Island beach   0.486    (0.465)     0.114    (0.268)   0.274    (0.221)   0.275    (0.222)    
Sandspit / Turtle beach   1.078    (0.357)***      0.493    (0.245)**       0.642    (0.193)***   0.642    (0.193)***    
Hawke‟s Bay beach   0.430    (0.412)     0.496    (0.250)**   0.448    (0.200)**       0.446    (0.201)**        
French beach   0.234    (0.232)     0.308    (0.247)       0.211    (0.189)    0.221    (0.190)     
Paradise Point beach   0.027    (0.388)      0.229    (0.248)      0.172    (0.199)    0.175    (0.199)     
Cape Mount beach   0.117    (0.375)      - 0.185    (0.253)    - 0.106    (0.202)  - 0.118    (0.203)     
        

Log-Likelihood - 312.779      - 709.778  - 1050.601  - 1047.556    
Pseudo R

2 
   0.17   0.39   0.33    0.33    

AIC   3.443     2.468        2.738    2.730    
No. of choice sets (Individuals)   01 (191)   06 (98)   (289 = 191 +   98)   (289 = 191 +   98)    
No. of observations   191   588   779 (= 191 + 588)   779 (= 191 + 588)    
        

Hypothesis-1 
Swait & Louviere LR test 

                  Reject preferences 
equality? 

                 Reject scale equality? Hypothesis-2                   
        

χ2 (RP-SP1 MNL models)
1
  49.99 Yes --- --- Do not reject equality for half of 

the WTP values 
        

 

1
 Critical values of 2 test with 10 and 1 degree(s) of freedom at 1% level of significance are 23.21 and 6.63, respectively.   

2
 LR (μRP = μSP1) = – 2 [– 1047.556 – (– 312.779 + – 709.778)] = 49.99  
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Table 6: Estimated MNL models excluding respondents who selected forced choices (RP and SP1 sub-samples of male visitors)  
 

                                Data sets 
 

Beach Attributes 

RP version SP1 version RP-SP1 Combined            

RP-SP1 Combined            

RP  

version 

SP1 

version 

Poe et al 

test 

Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE) WTP WTP p-values 
        

Moderate water quality   0.286    (0.164)*   0.603    (0.125)***       0.456    (0.085)***       0.484    (0.092)***     2868.85 2671.42 0.485 
Good water quality   1.135    (0.212)***   1.627    (0.126)***       1.381    (0.086)***       1.465    (0.094)***     4295.44 3636.56 0.394 
Moderately littered   0.464    (0.163)***   0.096    (0.095)   0.256    (0.073)***   0.184    (0.078)** 2633.59 1105.26 0.062 

No litter / Clean   0.638    (0.197)***   0.979    (0.102)***      0.881    (0.074)***      0.913    (0.080)***    2925.33 1936.63 0.226 

Moderately crowded   0.039    (0.120)   0.373    (0.094)***       0.260    (0.065)***       0.255    (0.071)***       710.18   570.79 0.430 
Sparsely crowded (and Quiet)      0.343    (0.164)**   - 0.140    (0.118)        0.011    (0.083)**      - 0.031    (0.091)      1219.51       87.32   0.034 

Medium facilities   0.138    (0.123)   0.069    (0.094)       0.163    (0.067)***       0.158    (0.073)**     2289.28   690.66 0.015 
High facilities   1.087    (0.182)***   0.593    (0.096)***      0.634    (0.071)***      0.719    (0.077)***    3884.52 1184.74 0.013 

Travel cost - 0.0006 (0.0002)** - 0.0011 (0.0002)*** - 0.0009 (0.0001)*** - 0.0009 (0.0001)*** ----- ----- ----- 
        

Alternative-Specific Constants        
Sea View / Clifton beaches    1.530    (0.619)**       0.848    (0.302)** *      0.884    (0.230)***       1.034    (0.243)***        
Manora Island beach   0.486    (0.465)     0.227    (0.288)   0.274    (0.221)   0.359    (0.233)    
Sandspit / Turtle beach   1.078    (0.357)***      0.562    (0.265)**       0.642    (0.193)***   0.689    (0.203)***    
Hawke‟s Bay beach   0.430    (0.412)     0.589    (0.269)**   0.448    (0.200)**       0.494    (0.211)**        
French beach   0.234    (0.232)     0.416    (0.263)       0.211    (0.189)    0.272    (0.198)     
Paradise Point beach   0.027    (0.388)      0.343    (0.262)      0.172    (0.199)    0.233    (0.207)     
Cape Mount beach   0.117    (0.375)      - 0.151    (0.268)    - 0.106    (0.202)  - 0.095    (0.211)     
        

Log-Likelihood - 312.779      - 632.328  - 970.492  - 967.691    
Pseudo R

2 
   0.17   0.39   0.33    0.33    

AIC   3.443     2.456   2.744    2.736    
No. of choice sets (Individuals)   01 (191)   06 (88)   (279 = 191 +   88)   (279 = 191 +   88)    
No. of observations   191   528   719 (= 191 + 528)   719 (= 191 + 528)    
Individuals excluded who 
selected opt-outs 

  ---   10 (= 98 – 88)     10 (= 289 – 279)     10 (= 289 – 279)    

        

Hypothesis-1 
Swait & Louviere LR test 

                 Reject preferences 
equality? 

                Reject scale equality? Hypothesis-2                   
        

χ2 (RP-SP1 MNL models)
1
  45.17 Yes --- --- Do not reject equality for half of 

the WTP values 
        

 

1
 Critical values of 2 test with 10 and 1 degree(s) of freedom at 1% level of significance are 23.21 and 6.63, respectively.    

2
 LR (μRP = μSP1) = – 2 [– 967.691 – (– 312.779 + – 632.328)] = 45.17 
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8.   Hypotheses testing results 

 

8.1 Preferences equality: Isolating opt-out forced-choice effects from a gender perspective 

 

To test our first series of hypotheses, we apply Swait and Louviere (1993) LR test procedure using MNL 

models to assess the equivalence of the estimated preference β and their scales μ parameters across RP and 

SP1 DCE estimated from sub-samples of females and males by isolating (or disentangling) opt-out forced-

choice affects. We reject the null hypothesis of equality of preference and scale parameters at 1% 

significance level if forced-choice effects are not excluded from the female sub-sample (see Tables 3), 

however, we cannot reject the same hypothesis if forced-choice effects are excluded from female sub-sample 

at 1% level of significance (see Table 4). This validates that the respondent‟s choice uncertainty that leads to 

their random choice behaviour and thus their frequent selection of „opt-out‟ alternative (Brouwer et al., 2017) 

in a forced-choice situation. No matter with a little evidence this study provides, we can still overcome this 

problem by asking the respondents about their forced-choice by not giving them „opt-out‟ choice. On the 

contrary, we reject the hypotheses of equality of preference and scale parameters at 1% levels of significance 

if forced-choice effects are first included and then excluded from the male sub-sample (see Tables 5 and 6). 

This once again validates that male visitor‟ preferences are more stable than their female counterparts. By 

isolating this forced choice effect, we only witnessed the equality of preference and scale parameters for 

female sub-sample (see Table 4).  

 

8.2 WTP equality: Isolating opt-out forced-choice effect from a gender perspective 

 

To test our second series of hypotheses, we apply Poe, Giraud and Loomis (2005) combinatorial test to 

assess the differences in average WTP estimates across RP and SP1 MNL discrete choice models estimated 

from sub-samples of females and males by disentangling opt-out forced-choice effects. If forced-choice opt-

out effects are taken into account, we cannot reject the hypothesis of equality of WTP values for site quality 

improvements in the most of the attributes for female sub-sample (see Tables 3 and 4), however, the same is 

not true for male sub-sample, i.e. we reject WTP equality for half of the beach attributes (see Tables 5 and 6).   

 

8.3 Sources of opt-out forced choices influencing preference equality of female and male visitors  

 

Although numerous studies have addressed the impact of including (and excluding) an opt-out alternative on 

preferences (e.g. Pederson et al., 2011; Kontoleon and Yabe, 2003; Banzhaf, Johnson, and Mathews, 2001; 

Veldwijk et al., 2014), however, according to our knowledge, modelling the sources (or determinants) of opt-

outs has never been studied before. We selected each respondent from a gender perspective selecting either 

eight beaches or opt-out as a binary random variable when facing six different choice situations for SP1 
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version and then applied a binary logit 5 with explanatory variables, including the visitor and design 

characteristics. The rationale behind this novel approach is to determine the impact of visitor and design 

characteristics influencing the selection of opt-out choices, which eventually influences preferences equality 

across RP and SP1 versions. The results of binary logit models derived from both female and male SP1 sub-

samples are demonstrated in Table 7.        

 

A binary logit model for female sub-sample exhibits that the female visitors‟ selection of an opt-out 

alternative followed by forced-choice is significantly affected by gender (female visitors tend to choose more 

opt-outs than their male counterparts), age (the older visitors tend to choose fewer opt-outs), education 

(educated visitors are likely more opt-outs, income (visitors with the higher income tend to choose more opt-

outs than beach alternatives), and marital status (married couples are likely to choose more opt-outs). Both 

household size and travelling group size significantly but negatively affect neither beach (or opt-out) choice 

(respondents with an increase in the number of persons per households and the number of persons in their 

travelling group tend to choose less number of opt-outs), whereas respondents with the increased number of 

children in the travelling group are likely to select more number opt-outs (Table 7). The visitors travelling to 

beaches either with their family or friends tend to choose less number of opt-outs, which indicates their 

liking for coastal recreation. Besides, the visitors who engage in water activities, such as swimming and 

bathing, are less likely to choose an opt-out alternative, however, visitors who visit beaches during weekdays 

are more likely to choose opt-outs as compared to weekend visitors.       

 

Also, our analysis has included design characteristics which significantly but differently influence the opt-out 

choice behaviour of both female and male visitors. As expected, the female respondent facing varying choice 

cards and varying beach alternative sites as compared to neither beach (or opt-out) alternative tend to choose 

the less number of opt-outs as compared to their male counterparts, who choose the more number of opt-outs. 

Travel cost (monetary attribute) influences negatively visitor‟s likelihood of choosing neither beach 

alternative, which indicates that the higher travel cost is borne by the female and male visitors the higher the 

likelihood not to choose an opt-out alternative.  Self-reported certainty of the respondents does not adversely 

affect their choice of an opt-out alternative. Furthermore, we included three unique variables, including 

consistency, monotonicity and randomness, in our analysis. Choice consistency is usually defined as 

choosing an identical choice repeatedly when facing the varying choice situations with the similar 

alternative, choice monotonicity is described as the selection of the dominant alternative by the same 

respondent (Mattmann et al., 2019; Determann et al., 2011), and choice randomness can be defined as the 

                                                           
5
 We also applied Poison model because the choice of opt-out as a count variable was highly skewed. Besides, we also 

applied Zero-Inflated Poisson model because of observing too many zeros for the count variable, but it did not perform 
better than Poisson model. Also, we tested for over-dispersion to better apply the Negative Binomial model; however, 
we found that there was no such problem. The results are available with the author upon request. Overall, Binary Logit 
model performed better.  



28 

 

non-existence of neither choice consistency nor choice monotonicity (i.e. all choice alternatives are 

differently chosen when going from the first to the last choice situation). Whether it is consistent, monotonic 

or even random choices made by the visitors, these all variables significantly and negatively influence the 

selection of neither beach alternatives for the female visitors only. Putting differently, a respondent, who 

makes consistent, monotonic and random choices, tends to choose the less number of opt-out alternatives. 

However, this is only true for male respondents in terms of their consistent choice. Finally, Table 8 

demonstrates that the design characteristics in addition to visitors‟ (or respondents‟) characteristics are much 

more important. Both the Wald and Log-Likelihood Ratio (LR) tests confirm that the null hypothesis of 

indicating that the design characteristics are not significant is rejected at 5% level of significance.    
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Table 7: Sources of opt-out forced choices from a gender perspective in the SP1 version (Binary logit model results) 
 

                               

Visitors characteristics 

 

Variable coding / range  
Expected 

sign 

  SP1 version females 
  Coefficient (SE) 

  SP1 version males 
  Coefficient (SE) 

     

Constant  Intercept Minus /Plus   0.397          (1.015) - 8.919           (1.168)*** 
Age 18 – 63 years Minus - 0.145          (0.015)*** - 0.039           (0.009)***     
Education 0 – 18 years Plus   0.177          (0.060)***    0.285          (0.057)*** 
Income  5 – 175 x 10

3 
PKR / month Minus - 00017        (0.00002)*** - 0.00004       (0.130)***     

Income
2
 Income-squared Plus  1.35x10

-09
 (1.37x10

-10
)***   3.39x10 

-10
 (3.46x10 

-10
)*** 

Marital status 1 = Married Minus /Plus   3.805          (0.256)*** - 0.796           (0.205)***     

Household size 1 – 22 persons/household Plus   0.084          (0.026)***   0.075           (0.020)***    

Travelling group size   1 – 48 persons / visit Plus   0.109          (0.017)*** - 0.253           (0.018)***     
Children in the travelling group    0 – 25 children / group Plus   0.016          (0.030)   0.639           (0.037)*** 
Family members   1 = Visiting with family members Plus   1.439          (0.252)*** - 0.574           (0.153)***     
Beach  activities   1 = Yes Minus - 0.386          (0.160)**   - 0.189           (0.131)    
Weekdays visitor 1 = Yes Plus   2.322          (0.213)***   2.716           (0.178)***     
     

Design characteristics     
Choice card  number 36 choice cards in total = 6 sets/ respondent x 6 blocks  Minus - 0.039          (0.007)***    0.076          (0.008)***    
Chosen alternative beach 0 = Opt-out (base), 1 – 8 alternative beaches Minus - 0.271          (0.033)*** -  0.147          (0.031)***     
Travel cost (monetary attribute) 0 – 1854.95 PKR / visitor Minus - 0.0004        (0.0003)* -  0.0037        (0.0005)*** 
Self-reported certainty 0 = Not important at all, . . . , 10 = Most important Minus   0.076          (0.061)    0.417          (0.066)*** 
Choice consistency 1 = Chosen the same alternative twice or more times Minus - 0.912          (0.213)*** -  2.515          (0.189)***    
Choice monotonicity 1 = Dominant alternative chosen in the choice set Minus - 0.540          (0.208)***    1.420          (0.324)***    
Randomness in choice 1 = Neither consistent nor monotonic choice Minus - 1.629          (0.335)***    1.515          (0.372)***    
     

Log-Likelihood (df = 10) Model with respondents‟ characteristics only  - 894.613 - 1333.764 
Log-Likelihood (df = 17) Model with respondents‟ and design characteristics  - 820.485 - 1058.446 

LR test (2
) (df =10)     1005.27***   1049.390*** 

LR test (2
) (df =17)     1153.52***   1600.030*** 

Pseudo R
2 
     0.41   0.43 

AIC     1676.97   2152.89 
No. of observations (N) 912 (8,208) (152 respondents)    2916 (324)   5292 (588) 

 

Asterisks *,**,*** indicate statistical significance at 10%, 5% and 1% levels. 
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Table 8: Hypothesis testing results (Visitor and design characteristics form a gender perspective) 
 

Hypothesis-3 Wald test (p-value) 
βi = 0        i = 1, 2, 3, . . . , n 

LR test (p-value) 
LR = – 2 (LL Model d. f = 10) – (– LL Model d. f = 17) 

   

H
3A

:               Wald = 127.88 (0.000)1 LR = – 2 [– 894.613 – (– 820.485)] 
LR =  148.26 (0.0000)2 

H
3B:                Wald = 346.34 (0.000)1 LR = – 2 [–1333.764 – (–1058.446)] 

LR =   550.64 (0.0000)2 
 

1
 Chi-square critical value with degrees of freedom = 7 at 5% significance level is 14.067   

2
 As compared to Wald test, which is one model test, LR test is based on two models, so we used the restricted and unrestricted log-likelihood ratios to test our third series of hypotheses 

(see Table 7).  
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9.  Conclusions and discussion 

 

By taking into account of opt-out forced-choice effects from a gender perspective, this paper implemented a 

novel approach based on assessing the convergent validity of preferences and WTP values of beach visitors 

estimated from female and male sub-samples of revealed preference (RP) discrete choice model and stated 

preference (SP1) DCE. We carried out this study for non-market valuation of beaches in Karachi, highly 

populated and industrialised city in Sindh province of Pakistan, along the Arabian Sea. We isolated (or 

disentangled) forced-choice effects using first an unforced choice situation followed by a forced-choice 

situation in SP1 DCE by excluding (and including) the female and male respondents. Later, we combined 

SP1 DCE data with RP data by creating sub-samples of female and male visitors and finally assessed the 

convergent validity of preferences and WTP values from gender perspective using the MNL models. The 

results demonstrate that when opt-out forced choices are not excluded, preferences of both the female and 

male visitors do not remain equivalent, however, preferences of the female visitors remain equivalent or 

similar once opt-out forced-choice effects are excluded from SP1 DCE version. This indicates that 

preferences estimates could be biased if forced-choice effects are not taken into account.  

 

Empirically, our results are different from previous studies conducted by Birol, et al. (2006) and Adamowicz, 

et al (1994; 1997) which found that combined RP and SP data are overall compatible. To this end, one can 

reasonably agree to a larger extent, but knowing that preference parameters and WTP measures are 

susceptible to various design and individual-specific factors, for instance, choice task complexity (Hanley et 

al., 2002), labelled versus unlabeled choice sets and spatial heterogeneity (e.g. Logar and Brouwer et al., 

2018), framing and substitution effects (Schaafsma and Brouwer, 2013), single and multiple monetary 

parameters (e.g. Talpur et al., 2018), starting point bias (Ladenburg and Olsen, 2008), and so on so forth, our 

study suggests that preferences stability if affected by the different factors as some mentioned above can be 

further investigated by disaggregating and isolating various design and individual-specific characteristics. 

For example, Landenburg and Olsen (2013) found in their study that that preferences and welfare measures 

are influenced by starting point bias that is a gender-specific. By adopting such an approach, we envisage 

that it is by and large possible that preference similarity can be achieved. Parallel to this, our study suggests 

that preference equality is a gender-specific if out-out forced-choice effects are isolated and demonstrate that 

various individual and design characteristics as further discussed below are the factors influencing the 

selection of opt-out alternative that eventually effect preferences equality of at least female respondents.         

 

Estimating two separate binary logit models from the female and male SP1 sub-samples, our paper further 

analysed the influence of respondent and design characteristics of female and male visitors on their choice 

behaviour of selecting more or less number of opt-out alternatives. Although the binary logit model for the 
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males performed relatively better, however, the same model for the female respondents makes much more 

sense so far as the design characteristics are concerned. For instance, choice consistency, monotonicity and 

randomness in choosing beach site alternatives have a negative impact on selecting a forced-choice opt-out 

alternative in case of female visitors as compared to male visitors, which means the higher is a consistent, 

monotonic and random choice, the less will be the likelihood to select an opt-out forced choice that 

eventually deviates preference equality, in our case of female visitors. Besides, respondent (or visitor) 

characteristics, including age, education, income, household size, children in the travelling group, beach 

activities and weekdays visitor, affect both female and male visitors‟ selection of opt-out forced-choices 

similarly, whereas marital status, travelling group size, and travelling with family members affect both types 

of visitors differently. These results, therefore, conclude that an opt-out forced-choice behaviour of female 

and male visitors is partially analogous (and partially different), and so there is a need to further investigate 

this research by using an approach based on varying alternatives in SP1 choice set with and without opt-outs 

and then combine these samples with the same RP version to finally assess the convergent validity from a 

gender perspective.         
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ANNEXURES 
 

Annex 1. Detailed definitions and illustrations of the attribute levels used in the survey 
 

 
 

Water quality levels 
 

Good 

 

 

Moderate 

 

 

 

Poor 

 

 

 

 

 
 

 
Water has high clarity, so it is clean and clear, looks 
blue. Suitable for swimming, bathing, wading and 
playing in the water. Water does not smell, so it does 
not affect walking and other beach-related activities. 
(Almost) No visible signs of pollution and a large 
number of diverse finfish and shellfish species. Fish is 
definitely safe to eat. 

Water is slightly clear, so it is less dirty and looks 
moderately blue. Only suitable for wading & playing 
in the water. Water has a slightly bad odour (it smells 
now and again), so it moderately adversely affects 
walking and other beach-related activities. Few 
visible signs of pollution and reasonable numbers of 
finfish and shellfish species. Fish is probably safe to 
eat. 
 

Water has low clarity, so it is dirty and cloudy, 
looks dark, not blue. Not suitable for swimming, 
bathing, wading and playing in the water. Water has 
a bad odour (it is smelly), so it highly adversely 
affects walking and other beach-related activities. 
Visible signs of pollution and little finfish & little 
variety of shellfish. Fish is not definitely safe to eat. 
 

 

Cleanliness levels 
 

No Liter 

 

 

 

Moderately 

Littered 

 

 

 

Very 

Littered 

 

 

 

 

 
The beach is clean, (almost) without litter. At first 
glance no visible litter, only sometimes if you look 
closer, which means 0 – 5 units of litter per 50 meters 
of beach length. There are almost no chances of 
getting injured, so the beach is highly suitable for 
walking, and other beach activities. 
 

The beach is moderately littered.  A significant part 
of the beach contains litter, which means 5 – 25 units 
of litter per 50 meters of beach length. The chances 
of getting injured are moderate so the beach is 
moderately suitable for walking and beach other 
activities.  

The beach is very littered. Litter is visible nearly 
everywhere in all shapes and sizes, which means 
more than 25 units of litter per 50 meters of beach 
length. The chances of getting injured are high, so 
the beach is not suitable for walking and other 
beach activities. 
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Crowding levels 
 

Sparsely 

Crowded 

 

 

Moderately 

Crowded 

 

 

Very 

Crowded 

 

 

 

 

 

 
Very few visitors, so the beach is generally quiet. 
Suitable for walking,   playing sports, getting relaxed 
and having privacy. Crowd occupancy is less than 10 
people per 50 meters of beach length.  

A substantial number of visitors, leading most of the 
times to some crowding. Moderately suitable for 
walking, playing sports, relaxing and having some 
privacy. Crowd occupancy is between 10 – 20 people 
per 50 meters of beach length. 

A lot of visitors, leading most of the times to 
overcrowding and noise. Not suitable for walking, 
playing sports, relaxing and having some privacy. 
Crowd occupancy is more than 25 people per 50 
meters of beach length. 
 

 

Facilities levels 
 

Low 

 

 

Medium 

 

 

High 

 

 
The beach has parking facilities. 

 

 
The beach has parking facilities and food 
stores/restaurants  
 

 
The beach has parking facilities, food 
stores/restaurants and toilets 
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Annex 2. Travel cost calculation approach 
 

Since distance acts as a proxy for travel cost (Hanley et al., 2002; Adamowicz et al., 1997), we converted the 

distance into travel cost (TC) using the standard formula:  

                                                       (A2.1) 

 

Travel costs are measured as the sum of a visitor‟s round distance (fuel) cost and the opportunity cost of 

travelling time to a beach. As people in Pakistan customarily bear the fuel cost or transport fares for their 

family members and relatives when travelling with them, we measured distance cost as the two-way fuel 

costs borne by the head of the household and, where applicable, shared by the total number of adults in the 

travelling group.  

  

The opportunity cost of time (OCT) is calculated as the benefits forgone of a visitor‟s time and fixed at 30 

per cent of his annual income, as is common practice in the travel cost literature (e.g. Talpur et al., 2018). 

Since working hours differ widely in both the private and public sector in Pakistan due to the lack of labour 

law enforcement, we included an estimate of each visitor‟s varying working hours (if employed) instead of a 

fixed number of working hours (e.g. 40 hours per week) and multiplied these varying working hours with 52 

weeks to arrive at a visitor‟s total annual working hours. Thus, the opportunity cost of travelling time is 

calculated as:   

                                (A2.2)  

 

where MI is a visitor‟s monthly income, EM indicates whether a visitor is employed or not, RTT is the 

round-trip travel time and WHrs is the varying annual number of working hours. EM equals 1 if a visitor is 

employed and 0 if he is unemployed. In the latter case, OCT is zero (Adamowicz et al., 1997; Talpur et al., 

2018) and the travel cost only depends on distance-based transportation costs. RTT is calculated by dividing 

each respondent‟s perceived travel distance by an average travelling speed of 60 km/hour based on own 

observations whilst travelling to the different beaches during the survey. For SP1 data, travel cost was not 

converted into the future increase in travel cost, so, therefore, travel cost definition remained the same in 

both RP and SP1 versions. The purpose behind this approach was based on comparing WTP values more 

rationally across RP and SP1 choice models using the same travel cost formula with an assumption that 

travel cost does no increase at least in very near future, i.e. the next year in case of SP1 data.
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Annex 3.  
 

Figure 1: Sources of opt-out forced-choice effects influencing SP1 female and male preferences  
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