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Multivariate GARCH Approaches: 

 case of major sectorial Tunisian stock markets 

 

 

Abstract 
 

The objectif in this paper is to proposes multivariate GARCH volatility models to 
assess the dynamic interdependence among volatility of returns for 5 tunisian 
sectorial stock index series (namely :  Bank, FINancial service, AUTOmobile, 
INDustry, and Materials (MATB)) and TUNindex series. The Monthly returns of 
stock indices have been considered from 2010M02 to 2019M07. Two systems are 
considered. The first System, with Constant Conditional (C) mean, allows for 
market interaction. Results from DVECH model reveals that some sectorial stock 
markets are interdependent, the presence of a significance and positive effect of 
cross shock of Finance and Bank stock returns on Tunindex return, and volatility 
is predictable. C Correlation,   𝑖𝑗 , have decreasing evolution for full period or 

for recent years for almost all i and j except CC  between Tunindex return and 
R_FIN (and R_BANK) and CC between R_FIN and R_IND (and R_MATB). The 
tests for volatility spillovers effects suggests significant volatility spillovers from 
MATB and AUTO sectors to IND sector and from AUTO sector to MATB sector. 
The second system, with macroeconomic factor instability effects as Conditional 
mean, examine the CCC and DCC between different sectors. The main result 
supports the hypotheses of DCC. The DCC provides evidence of cross border 
relationship between sectors and macro economic instability factors have 
significant effect on the mean of returns evolutions (at 5% or 10% level). 
Volatility of exchange rate has significant positive effect on R, R_FIN, and 
R_MATB, while volatility of inflation has significant negative effect on R_Fin 
and volatility of oil price has significant negative effect on R_AUTO. 
 
Keywords: Sectorial stock return, MGARCH model, DVECH and DBEKK models, 

Conditional Correlations (CC), Dynamic CC (DCC) and Constant CC  models (CCC). 

 

JEL classification: C32, G11, G14. 
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I. Introduction 
 

The first two moments respectively called mean and variance of return series have 
been investigated extensively in the univariate finance literature to understand the 
trading dynamics of risk and returns in the financial asset markets.  
 
In developing dynamic volatility models, there are two strands of modelling 
conditional volatility : the univariate and multivariate volatility modelling. (Engle 
R. , 1982) first introduced univariate autoregressive conditional heteroskedasticity 
(ARCH) model for predicting asset return volatility. This model is useful because 
it captures some stylized facts such as volatility clustering and thick-tail 
distribution of return series.1  
 
In recent years, the information technology revolution has had a tremendous 
impact on the structure of financial markets. The dynamic dependence of 
multivariate financial assets provides rich sources of volatility transmission that 
helps the investors to play active role in financial transactions. This leads to 
spillovers from one market to other markets and causes the linkages between stock 
markets. There are extensive literatures on volatility spillover between financial 
markets. Indeed, the multivariate GARCH and its various extensions have been 
widely used to examine the co-movement and the transmission of the volatility 
between index financial sectorial markets. There is a large body of literature 
which focuses on the volatility spillover of different markets over time, using a 
multivariate GARCH model. Table 1 (a) gives a selected review (see Appendice 
I). 
 
The multivariate extension to univariate model was first introduced by (Engle & 
Granger, 1987) in the ARCH context, and (Bollerslev, Engle, & Wooldridge, 
1988) in the GARCH context. This multivariate GARCH is known as VECH 
model because of its form.  The general MGARCH model is so flexible that not 
all the parameters can be estimated. For this reason, we consider 4 MGARCH 
models that reparameterize the model to be more parsimonious: the diagonal 
VECH model (DVECH), the BEKK model [proposed by  (Baba, 1992) and (Engle 
& Kroner, 1995)],2  the constant  conditional correlation (CCC) model [proposed 
by (Bollerslev, 1990)], and the dynamic conditional correlation (DCC) model 
                                                 
1 ARCH models were introduced by (Engle R. , 1982) in a study of inflation rates. Overviews 
of the literature can found in (Bollerslev, Engle, & Nelson, ARCH Models, 1994) and 
(Bollerslev, Chou, & Kroner, 1992). Introductions to basic ARCH models appear in many 
general econometrics texts, including (Davidson & MacKinnon, 1993), (Greene, 2018), (Stock 
& Watson, 2015), and (Wooldridge, 2016). In the larger context of econometric time-series 
modeling, (Harvey A. C., 1989) and (Enders, 2004) provide introductions to ARCH, and 
considerably more detail in the same context are given in (Hamilton, 1994).  
2 BEKK is from Baba-Engle-Kraft-Kroner. 
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[proposed by (Engle R. F., 2002)] or the time-varying conditional correlation 
(VCC)  model [proposed by (Tse & Tsui, 2002)]. 
 
Up to this point, not much attention has been given on the detection of the 
volatility spillover between sector indexes among Tunisian sectorial stock 
markets. This paper aims at examining the volatility experiences of multivariate 
framework for 5 major sectorial (namely: Bank, Financial service, Automobile, 
Industry, and Materials) and TUNindex Tunisian stock markets. Within this 
framework the shocks to volatility from one market is allowed to affect both the 
risk and return of the other markets. The Monthly stock indices of 5 major 
sectorial Tunisian stock markets and TUNindex have been considered from 
2010M02 to 2019M07. 
 
Since, within multivariate framework the shocks to volatility from one market is 
allowed to affect both the risk and return of the other markets, the volatility 
modelling is emerged from modelling volatilities of returns within the six-
dimensional volatility model in 2 systems. System (I) is with a constant as 
conditional mean and with different conditional covariance specifications given 
by DVECH, DBEKK, and CCC. And, System (II) is with expected mean 
depending on several macroeconomic variables reflecting instability effect as 
volatility of oil price in log, volatility of consumer price index in log (LCPI), and 
volatolity of excghange rate in log and with conditional correlation specifications 
given by DCC and CCC.  
 

Because the normality assumption of unconditional volatility of innovation do not 
hold, one might not want to perform a maximum likelihood estimation using 
normal distribution. Joint estimation of the Multivariate mean-variance models in 
this paper uses then t-distribution. Finally, model checking will be performed in 
each case to ensure the adequacy of the fitted models.  
 
This paper is organized as follows. Section II describes the sources and  statistical 
properties of the data. In section III, model and methodology in multivariate 
framework is discussed [subsection A for conditional covariance analysiqs and 
subsection B for conditional correlation study]. Real application of the proposed 
models is reported in section IV [subsection C for system (I) and subsection D for 
system (II)]. Five tunisian major sectorial stock market returns are considered 
(namely:  Bank, FINancial service, AUTOmobile, INDustry, and Materials 
(MATB)) with Tunindex stock return as benchmark.  Finally, section V concludes 
the paper. 
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II. Data Analysis : Properties and Preliminary Results 
 

This study covers a total of k = 5 sectoral tunisian stock index series (Finance, 

Bank, Automobile, Indutrie, and Material) and TUNindex as benchmark. The 

monthly data are collected from investing.com for the period from 2010M02 to 

2019M07 (T = 114 observations). All observations are monthly. The data are 

expressed in Logarithms and then taken in first difference. Retuns of stock indices 

are calculated ;3 𝑅𝑖𝑡 = log ( 𝑆𝑃𝑖𝑡𝑆𝑃𝑖𝑡−1) 𝑆𝑃𝑖𝑡: stock price for Market i = 1, … , k = 6 at time t = 1, … , T = 114.  
Figure 1 illustrates the development of 5 Tunisian stock index and TUNindex. We 

could see from the graph that there is strong similarity between TUNindex, and 

Finance, Bank stock index series evolution from 2010M02 to 2019M07. While an 

other ressemblance is present between Automobile, Indutrie, and Material stock 

index series trend. 

In inspecting the returns series how they evolved from 2010M02 to 2019M07 
Period,  Figure 2 (a) exposes that at most of the time there are large swings in all 
returns. Figure 2 (a) show also that the movement of stock returns is both positive 
and negative. It can be noted that the returns fluctuate around the mean value, but 
close to zero. Larger fluctuations tend to cluster together followed by periods of 
calmness.4 The volatility seems to be larger during Yesamin  2011 revolution and 
at the end for 2017 for all returns except Auto’ one. Therefore, the six Tunisian 
stock markets are affected simultaneously with some variation. 
 

6.8

7.2

7.6

8.0

8.4

8.8

9.2

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

LSP LSP_AUTO LSP_BANK

LSP_FIN LSP_IND LSP_MATB  
Figure 1: The movements of TUNindex (LSP) and 5 sectors’ stock indices. 

                                                 
3 The software used for the analysis is Eviews 10 and Stata 15. 
4 (Fama, 1990 ) noted that stock returns tend to fluctuate thereby exhibiting volatility clustering, 
where large returns are usually complimented by small returns. 
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Table1  presents some sample distributional statistics for the stock market indices 
included in this paper. Statistics consist of the Monthly sample mean returns, 
standard deviation, minimum returns and maximum returns, and Normality JB 
test results. It presents also ARCH-LM test results as well as test BDS  (Brock, 
Dechert, Scheinkman, & LeBaron, 1996) independance results.5 
 

Mean returns are positive (except R_AUTO and R_IND) and apparently the 

higher is for R_MATB. But the standard deviations of these returns have the 

higher value for R_AUTO. While R and R_FIN have the smaller volatility of 

returns.  

 

To test the normality of sample data, we practice two methods. In the first stage, 

the skewness and kurtosis were utilized to test by Jaque Bera (JB) test null 

hypothesis H0 : The sample data are normally distributed. The result is presented 

at Table1. We reject the null hypothesis that the sample is normally distributed at 

5% significant level except for R_MATB. In the second stage, we get quantiles 

of normal distribution plot. Figure A 1 (see Appendice) presents the quantiles of 

normal distribution plot.6 Apparently, all six Tunisian indices do follow normal 

distribution in the long run. There are more points falling on the 45 degree lines, 

implying that they are perhaps more close to normal distributions. The skewness 

parameters are negative for R and R_Bank, indicating that these stock market 

returns were not symmetrically distributed and the distribution has a long left tail. 

In addition,  coefficients of kurtosis (are way over 3) are almost equal to 5 for R, 

R_Bank, and (R_Fin), referring that for these stock market return volatility exist 

suggesting that the underlying time series data are heavily tailed (not) and sharply 

peaked when compared to a normal distribution.7  

 

                                                 
5 The BDS test, named after the three authors who first developed it, is a portmanteau test for time based 

dependence in a series. It can be used for testing against a variety of possible deviations from 
independence including linear dependence, non-linear dependence, or chaos. 
6 If the sample is perfectly normally distributed the points should all fall on the 45 degree line. The more 
the points diverge from this line, the less data will be approximate to a Normal Distribution.  
7 The reason for standardized returns have excess of kurtosis could be that returns would be not necessary 
conditionally Gaussian. 
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Figure 2 (a): Monthly stock retuns on Tunisian stock markets from 2010M02 to 2019M07; 

Tunindex and 5 sectoriel stock returns. 

Results of LM test for various ARCH order (q = 1 and 2) provide strong evidence 
of rejecting the null hypothesis of constant variance [of no ARCH(1) or no 
ARCH(2) effects] for R, R_BANK, and R_FIN (the LM test show a p-value below 
0.05) ; see  Table1.8 This is in accordance with results of DBS test given also at 
Table1. The squares series, however exhibits serial dependence in the second 
moment of TUNindex returns series 𝑅𝑡, Bank and Finance Retuns series. 
Rejecting H0 (of independance) indicates the presence of ARCH effect in the 
TUNindex returns 𝑅𝑡, Bank and Finance Retuns series, therefore we can conclude 
that the variance of these returns is no-constant for all periods specified. BDS test 
do not supports for nonlinearity in all of consedered series.9 
 

Table B 1 (and Table B 3, see Appendice I) reports the pair wise correlation 

coefficient estimations of stock returns (and Squared returns) for period from 

2010M02 to 2019M07. We applied the Tunindex index return R (Squared R) to 

analyze its correlation with sectorial stock Returns (Squared returns). It is clear to 

see from the Table B 1 that the coefficients of all sectorial stock return are 

significant related to TUNindex with much lower correlations with TUNindex 

                                                 
8 We assume a constant mean model and the LM test is applied to compute the test statistic value TR2, 
where T is the number of observations and R2 is the coefficient of multiple correlation obtained from 
regressing the squared residuals on q own lagged values. 
9 Once the volatility is confirmed in data (for R, R_BANK, and R_FIN), we can proceed our analysis 

further to estimate the parameters of both conditional mean and conditional variance equations for 

univarite specifications for these series. This can be done in subsequent paper. 
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compared to R_AUTO, R_IND, and R_MATB return index. This indicates that 

the sectorial stock markets are relatively non separated market with overall 

markets in Tunisia economic during this period. Bank and Finance get positive 

correlation with TUNindex, although the correlation between R_bank and R is 

higher than the correlation between R_FIN and R. From Table B 3, It is clear that 

TUNindex Squared return is related to R_BANK, R_FIN, and R_IND Squared 

return. R_AUTO squared return is related to R_IND squared return. And 

R_BANK squared return is related to R_FIN, and R_IND squared return. 

 
In order to identify if the index return is integrated or stationary, we conduct the 
unit root test. In accordance with Figure 2 (a), in  Table B 3 (see Appendice I), 
traditional ADF and PP (and KPSS) tests results, show that for all return series, 
the null hypothesis of the presence of a unit root (stationarity) is rejected (not 
rejected) at the 5% level of significance.10 

Table1 Basic statistics of Tunisian monthly stock returns from 2010M02 to 

2019M07. 

 R R_AUTO R_BANK R_FIN R_IND R_MATB 

 Mean  0.003793 -0.003588  0.003427  0.001009 -0.002636  0.005721 

Test of 
Hypothesis: 
Mean =  0. 

(0.2586) (0.5672) (0.7581) (0.3630) (0.5663) (0.1559) 

 Median  0.006093 -0.005278  0.004195 -0.000205 -0.001546  0.004245 

 Maximum  0.077494  0.242752  0.098027  0.115497  0.164319  0.133561 

 Minimum -0.142611 -0.159740 -0.149215 -0.119671 -0.136387 -0.098913 

 Std. Dev.  0.035507  0.067629  0.040595  0.035375  0.049587  0.043320 

 Skewness -0.802058  0.546170 -0.714985  0.054336  0.357373  0.412705 

 Kurtosis  5.179202  4.431049  4.953860  5.381032  4.323355  3.35290 

 Jarque-Bera  34.4749*  15.80040*  28.57912*  27.69548*  11.02788*  3.92847 

 P-value  0.000000  0.000371  0.000001  0.000001  0.004030  0.14026 

Ljung-Box test (LB) 

LB(10) 14.487 6.2343 16.466 18.983  12.28  33.926 

P-value 0.152 0.795 0.087 0.040  0.267  0.000 

LB2(10) 30.409 4.4216 36.942 27.239  7.485  11.255 

 P-value 0.001 0.926 0.000 0.002  0.679  0.338 
 

 

ARCH-LM test 

 q=1 9.588454 0.879670 15.58506 6.244880 0.018135 0.586420 

p-value 0.0020 0.3483 0.0001 0.0125 0.8929 0.4438 

                                                 
10 In all cases : when only a constant term was included in the model and when neither constant 

nor trend is included in the regression.  
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 q=2 9.841302 1.174099 15.47718 6.449704 0.091164 0.718403 

p-value 0.0073 0.5560 0.0004 0.0398 0.9554 0.6982 
 

 

 R2  R2_AUTO  R2_BANK  R2_FIN  R2_IND  R2_MATB  

BDS 
Statistic  0.066290  0.001329  0.056433  0.114171  0.025751  0.016328 

z-Statistic  2.652494  0.056034  2.034179  4.432052  0.956560  0.657919 

p-value  0.0080  0.9553  0.0419  0.0000  0.3388  0.5106 
 

Note : p-value is reported for Test of Hypothesis: Mean = 0. 

 

However, the existence of a possible structural break in the series, a common 

feature among the selected sectors during the period of analysis, may compromise 

the power of these tests or result in spurious stationarity. Therefore, to avoid these 

potential problems, we use the unit root test with endogenous structural breaks as 

proposed by (Zivot & Andrews, 1992).11 Results give the previous conclusion. To 

test the null hypothesis of independance against the alternative of linear or non-

linearity dependance, we employ the BDS independent test as described in 

(Brock, Dechert, Scheinkman, & LeBaron, 1996).
12 Results are given at Table1. 

Null hypothesis of independance is rejected for R, R_BANK, and R_FIN. This 

mean that significant dependance present in these series may be linear dependence 

or non-linear dependence. Hence, we may conclude that R_AUTO, R_IND, and 

R_MATB follow a white noise processes. To see if multivariate specification can 

be proposed for sectorial returns, we applied granger causality test to squared 

values of return series.  From Table 2, we conclude that VECH models are to be 

determed for (R_BANK, R_FIN, R_MATB, R_IND). Figure 2 (b) shows some 

dependence in the individual asset returns with high peaks of volatility. This is 

further confirmed by the Ljung-Box (LB) test  reported in summary (Table1). The 

jumps are particularly associated with Yesamin 2011 revolution periods for all of 

the series as the jumps are around 2010-2011 and later between 2016 and 2017. 

The spikes and the LB-Q statistics on the squared series suggests that the 

                                                 
11 Results are illustrated at this Table. Structural breaks unit root test (One break) : 

Variable 

Date of breack 

Minimize Dickey-Fuller t-statistic 

Conclusion 

R R_BANK R_FIN 

2011M01 2011M01 2010M07 

-10.29009* -9.822557* -10.22082* 

SL2 SL2 SL2 
 

Note : Citical values at 5% level is -4.443649. 
 12 The BDS test is a portmanteau test for time based dependence in a series. It can be used for testing 
against a variety of possible deviations from independence including linear dependence, non-linear 
dependence, or chaos.  
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percentage changes of the series have some ARCH effects. All these test results 

reveal that we jointly model the observed facts of the first and second moments 

of the data generating process to investigate dependence structure of the variables 

within the multivariate framework, which will be discussed below. 

 

Macro economic instability as volatility of consumer price index (Vol_LCPI), 

volatility of exchange rate (Vol_exrate) and volatility of Oil Price (Vol_LOP) can 

have effect on stock returns.13 Table B 4 illustrates OLS results of effect of these 

factor on each of considered stock return mean. It is clear that Vol_LCPI has 

significant effect on R_FIN, R_BANK, and on R_MATB. Vol_lop has significant 

effect only on  R_FIN, while Vol_exrate has significant effect on R_IND. 
 

Table 2: Significant Granger Causality test results for squared sectorial returns. 

Null Hypothesis: Obs F-Statistic p-value  

 R2_BANK  does not Granger Cause R2_FIN 
 

 8.80967 0.0003 

 R2_MATB does not Granger Cause R2_FIN 115  2.85537 0.0618 

 R2_IND does not Granger Cause R2_MATB 
 

 2.63690 0.0761 
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Figure 2 (b) : Squared returns for the Monthly time series (A : Automobile, Bank, F : 

finance, M :Matb, and I : Industry) 

                                                 
13 The monthly Macro economic variable CPI, is collected from INS for the period from 2010M02 to 
2019M07 (T = 114 observations). Source for variable OP : oil price [Europe Brent Spot Price FOB 
(Dollars per Barrel)] is  EIA. 
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III.  Volatility Modeling  
 

Consider a multivariate return series 𝑅𝑡= (𝑅1𝑡, 𝑅2𝑡, … , 𝑅𝑘𝑡) be a vector of returns 

of k number of assets at time index t ( t = 1, 2, 3, …, T ). The set of information 

available at time t is denoted by 𝛹𝑡−1. We adopt the same approach as the 

univariate case by rewriting the series as :14 𝑅𝑡 = 𝜇𝑡 + 𝜀𝑡 (1) 

where 𝜇𝑡 = 𝐸[𝑅𝑡/𝛹𝑡−1] is the conditional expectation of 𝑅𝑡 given the past 

information 𝛹𝑡−1, and 𝜀𝑡 = [𝜀1𝑡,  𝜀2𝑡,  𝜀3𝑡,   …, 𝜀𝑘𝑡]   is the shock, or innovation, 

of the series at time t. The 𝜀𝑡 process is assumed to follow the conditional 

expectation of a multivariate time series model 𝜀𝑡 / 𝛹𝑡−1 = 𝐻𝑡0.5𝑣𝑡, (2) 

where  𝑣𝑡  = [𝑣1𝑡,  𝑣2𝑡,  𝑣3𝑡,   …, 𝑣𝑘𝑡] is the independent and identically  distributed 

(i.i.d.) random vectors of order k ×1 with E[𝑣𝑡] = 0  and E[𝑣𝑡𝑣𝑡’] = I , where I is 

the Identity matrix. The conditional covariance matrix of 𝜀𝑡 given 𝛹𝑡−1  is a k × k  

positive-definite matrix 𝐻𝑡 defined by 𝐻𝑡 = Cov(εt |Ψt−1).15 

 

Model (1) with (2) can be written more compactly as 𝑅𝑡 / 𝛹𝑡−1~ D(𝜇𝑡 , 𝐻𝑡), where 

D(., .) is some specified probability distribution.  

 

Multivariate GARCH models are in spirit very similar to their univariate 
counterparts, except that the former also specify equations for how the 
covariances (or correlations) move over time. For general introductions to 
MGARCH models, reader can see (Bollerslev, Engle, & Wooldridge, 1988),  
(Bollerslev, Engle, & Nelson, 1994), (Bauwens, Laurent, & Rombouts, 
2006),  (Silvennoinen & Terasvirta), and (Engle R. F., 2009). 
 
Several different multivariate GARCH (MGARCH) formulations have been 
proposed in the literature, including the basic VECH, the diagonal VECH, the 
BEKK models, the CCC, and the DCC specifications. Each of these is discussed 
in turn below.16 These models are classified on 2 groups : one for conditional 
covariance presentation and the other for conditional correlation presentation.  
 

                                                 
14 The mean equations for returns i is the following: 𝑅𝑖𝑡 = 𝜇𝑖𝑡 + 𝜀𝑖𝑡,  i = 1 ≡ BANK, 2 ≡ FIN, …. 
15 Multivariate volatility modeling is concerned with the time evolution of 𝐻𝑡 . We refer to a 
model for the {𝐻𝑡} process as a volatility model for the return series 𝑅𝑡 . 
16 For an excellent survey of MGARCH models, see (Bauwens, Laurent, & Rombouts, 2004). 
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A. Conditional covariance presentation 
 

Allowing the news  and GARCH effects on volatility, various parameterizations 

for 𝐻𝑡 have been proposed in the literature specifying (2) as given in the following 

subsections. 
1. VECH model 

 

A common specification of the VECH model is :17  

VECH(Ht ) = Ω + A VECH(𝜀t−1𝜀′t−1) + B VECH(Ht−1), (3) 𝜀𝑡−1|Ψt−1 ∼ D(0, 𝐻𝑡 ), 

where the coefficient matrices are Ω(𝛼𝑖𝑗,0), 𝐴 (𝛼𝑖𝑗), and 𝐵 (𝛽𝑖𝑗). For the bivariate 

case (k = 2):18 𝜀𝑡 = (𝜀1𝑡𝜀2𝑡), VECH(𝐻𝑡 ) =[𝜎11,𝑡𝜎22,𝑡𝜎12,𝑡] ≡ [σ21,𝑡σ22,𝑡𝜎12,𝑡], and VECH(𝜀𝑡𝜀′𝑡) =[ 𝜀1𝑡2𝜀2𝑡2𝜀1𝑡𝜀2𝑡]. 
The VECH(1, 1) model in full is then given by the following system: 

 

{σ21,𝑡 = 𝛼11,0 + 𝛼11𝜀21,𝑡−1 + 𝛼12𝜀22,𝑡−1 + 𝛼13𝜀1,𝑡−1𝜀2,𝑡−1 + 𝛽11σ21,𝑡−1 + 𝛽12σ22,𝑡−1 + 𝛽13𝜎12,𝑡−1σ22,𝑡 = 𝛼21,0 + 𝛼21𝜀21,𝑡−1 + 𝛼22𝜀22,𝑡−1 + 𝛼23𝜀1,𝑡−1𝜀2,𝑡−1 + 𝛽21σ21,𝑡−1  + 𝛽22σ22,𝑡−1  + 𝛽23𝜎12,𝑡−1𝜎12,𝑡 = 𝛼31,0 + 𝛼31𝜀21,𝑡−1 + 𝛼32𝜀22,𝑡−1 + 𝛼33𝜀1,𝑡−1𝜀2,𝑡−1 + 𝛽31σ21,𝑡−1 + 𝛽32σ22,𝑡−1 + 𝛽33𝜎12,𝑡−1.  
 

As the number of assets employed in the model increases, the estimation of the 

VECH model can quickly become infeasible.  

 

2. Diagonal VECH model 
 

(Bollerslev, Engle, & Wooldridge, 1988) introduce a restricted version of the 
general MVECH model of the conditional covariance. If A and B are assumed to 
be diagonal, the model will be known as a diagonal VECH as follow :19 

 𝜎𝑖𝑗,𝑡 = 𝛼𝑖𝑗,0 + 𝛼𝑖𝑗𝜀𝑖,𝑡−1𝜀𝑗,𝑡−1 + 𝛽𝑖𝑗𝜎𝑖𝑗,𝑡−1, 𝑓𝑜𝑟 𝑖, 𝑗 = 1, 2.  (4) 

Specifically, the bivariate DVECH(1, 1) satisfy the following system : 

                                                 
17 The VECH operator takes the ‘upper triangular’ portion of a matrix, and stacks each element 
into a vector with a single column. 

18 VECH(𝜀𝑡𝜀′𝑡) = VECH(𝜀1𝑡𝜀2𝑡) (𝜀1𝑡 𝜀2𝑡)=VECH[ 𝜀1𝑡2 𝜀1𝑡𝜀2𝑡𝜀1𝑡𝜀2𝑡 𝜀2𝑡2 ]=[ 𝜀1𝑡2𝜀2𝑡2𝜀1𝑡𝜀2𝑡]. 
19 For an algebric form see Annexe F.  
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{ σ21,𝑡 = 𝛼11,0 + 𝛼11,1𝜀21,𝑡−1 + 𝛽11,1σ21,𝑡−1σ22,𝑡 = 𝛼22,0 + 𝛼22,1𝜀22,𝑡−1 + 𝛽22,1σ22,𝑡−1𝜎21,𝑡 = 𝛼21,0 + 𝛼21,1𝜀1,𝑡−1𝜀2,𝑡−1 + 𝛽21,1𝜎21,𝑡−1,
 

 

where each element of 𝐻𝑡 depends only on its own past value and the  
corresponding product term in 𝜀𝑡−1𝜀′𝑡−1. That is, each element of a DVEC model 
follows a GARCH(1, 1) type model. Furthermore, this simple model does not allow 
for dynamic dependence between volatility series.20 However, the model may 

not produce a positive semi-definite (PSD) covariance matrix. 21 
 

3. BEKK model 
 

(Engle & Kroner, 1995) proposed a BEKK model that can be viewed also as a 

restricted version of the VECH model. The BEKK (q, p) model has the following 

form :22 𝐻𝑡 = AA′ + ∑ 𝐴ℎ𝑞
ℎ=1 (𝜀𝑡−ℎ𝜀′𝑡−ℎ)𝐴′ℎ + ∑ 𝐵ℎ𝑝

ℎ=1 𝐻𝑡−ℎ𝐵′ℎ 

Where AA′ is k× 𝑘, lower triangular matrix of constants (containing the intercept 

parameters of the volatility model), 𝐴ℎ and 𝐵ℎ are 𝑘 × 𝑘. The diagonal parameters 

in matrices 𝐴ℎ and 𝐵ℎ measure the effect of own past shocks and past volatility of 

market i on its conditional volatility. The off-diagonal elements in matrix 𝐴ℎ  

(𝛼𝑖𝑗,ℎ) and 𝐵ℎ (𝛽𝑖𝑗,ℎ) i, j = 1, 2, 3, …, k measure respectively the cross-market 

effects of shock spillover and the cross effect of volatility spillover.   

 

Based on the symmetric parameterization of the model, 𝐻𝑡 is almost surely 

positive definite provided that AA′ is positive definite. This model also allows for 

dynamic dependence between the volatility series.23 

 

                                                 
20 As summarized in (Ding & Engle, 2001), there are several approaches for specifying 
coefficient matrices that restrict 𝐻𝑡  to be PSD, possibly by reducing the number of 

parameters (for more details see Annexe G).  
21 To guarantee the positive-definite constraint, (Engle & Kroner, 1995) propose the BEKK 
model. 
22 This model allows for dynamic dependence between the volatility series. This model is 
statistically sound but the interpretation of the model parameters is not straight forward. 
23 EViews does not estimate the general form of BEKK in which A and B are unrestricted. 
However, a common and popular form, diagonal BEKK, may be specified that restricts A and 
B to be diagonals. This Diagonal BEKK model is identical to the Diagonal VECH model where 
the coefficient matrices are rank one matrices.  
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On the other hand, the model has several disadvantages. First, the parameters in 𝐴ℎ and 𝐵ℎ do not have direct interpretations concerning lagged values of 

volatilities or shocks. Second, the number of parameters employed is k2(p + q) + 

k(k + 1)/2, which increases rapidly with p and q.24  

 

B. Conditional Correlation MGARCH Models 
 
Since 𝐻𝑡 is a symmetric matrix, it can be take the following form 𝐻𝑡 = (𝜎𝑖𝑗,𝑡) = Γ𝑡Λ𝑡Γ𝑡      (5) 

where Λ𝑡 is the conditional correlation matrix of 𝜀𝑡 and Γ𝑡 is k× 𝑘 diagonal 
matrix consisting of the conditional standard deviations of elements of 𝜀𝑡; Γ𝑡 = 𝑑𝑖𝑎𝑔(√σ21,𝑡, √ σ22,𝑡 , … , √σ2𝑘𝑘,𝑡). 
In CC models, 𝐻𝑡 is decomposed into a matrix of conditional correlations Λ𝑡 and 
a diagonal matrix of conditional variances Γ𝑡 where each conditional variance 
follows a univariate GARCH process and the parameterizations of Λ𝑡 vary 
across models. 
 
Because Λ𝑡 is symmetric with unit diagonal elements, the time evolution of 𝐻𝑡 is 
governed by that of the conditional variances σ2𝑖𝑖,𝑡 and the elements 𝜌𝑖𝑗,𝑡 of Λ𝑡, 

where j < i and 1 ≤ i ≤ k. Therefore, to model the volatility of 𝜀𝑡, it suffices to 
consider the conditional variances and correlation coefficients of 𝜀𝑖𝑡 .  
Bollerslev (1990) specifies the elements of the conditional covariance matrix as 
given by the following system :  𝜎𝑖𝑗,𝑡 = 𝒊𝒋,𝒕   σ𝑖,𝑡σ𝑗,𝑡  (6) 

Where σ2𝑖,𝑡 is modeled by the following univariate GARCH process σ2𝑖,𝑡 = 𝛼𝑖𝑖,0 + 𝛼𝑖𝑖,1𝜀2𝑖,𝑡−1 + 𝛽𝑖𝑖,1σ2𝑖,𝑡−1. 

Equation (6) indicates that CC models use nonlinear combinations of univariate 
GARCH models to represent the conditional covariances and that the parameters 
in the model for 𝒊𝒋,𝒕 describe the extent to which the errors from equations i and 

j move together. We can define then the k(k + 1)/2-dimensional vector Ξ𝑡 = (σ21,𝑡, , … , σ2𝑘,𝑡 , 𝜌𝑡′)′, 
to be estimated, where 𝜌𝑡 is k(k-1) /2-dimentional vector obtained by stacking 
column of the correlation matrix Λ𝑡 , where,25 

                                                 
24 Some applications show that many of the estimated parameters are statistically insignificant, 

introducing additional complications in modeling. 
25 Restrictions may be imposed on the constant term using variance targeting so that : 𝛼𝑖𝑖,0 = σ2(1 − 𝛼𝑖𝑖,1 − 𝛽𝑖𝑖,1) 

Where σ2 is the unconditional variance. Exogenous variables can be included in the 
mean/variance specification, with individual coefficients or common coefficients. For common 
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𝒊𝒋,𝒕  = 𝜎𝑖𝑗,𝑡√σ2𝑖,𝑡σ2𝑗,𝑡    (7) 

The following three CC models differ in how they parameterize Λ𝑡. 
 

1. Constant Conditional Correlation (CCC) 
 

To keep the number of volatility equations low, (Bollerslev, 1990) considers the 
special case in which the correlation coefficient 

𝑖𝑗,𝑡 = 𝑖𝑗 

is time-invariant, with |𝑖𝑗| < 1. 26 Under such an assumption, 𝑖𝑗  is a constant 

parameter and the volatility model consists of k equations for  Ξ𝑡∗ = (σ21,𝑡, … , σ2𝑘,𝑡). 
A GARCH(1, 1) model for Ξ𝑡∗ becomes Ξ𝑡∗ = 𝛼0 + 𝛼1𝜀2𝑡−1 + 𝛽1Ξ𝑡−1∗ , 

where 𝜀2𝑡−1 = (𝜀21,𝑡−1, 𝜀22,𝑡−1, … , 𝜀2𝑘,𝑡−1)′, 𝛼0 is k-dimensional positive 
vector, and 𝛼1 and  𝛽1 are k × k non-negative definite matrices. 
 
Volatility forecasts of the model can be obtained by using forecasting methods 
similar to those of a vector ARMA(1, 1) model. The 1-step ahead volatility 
forecast at the forecast origin h is   Ξℎ∗ (1) = 𝛼0 + 𝛼1𝜀2ℎ + 𝛽1Ξℎ.∗  

For the l-step ahead forecast for the marginal volatilities of 𝜀𝑖𝑡, we have  Ξℎ∗ (𝑙) = 𝛼0 + (𝛼1 + 𝛽1)Ξℎ∗ (𝑙 − 1), 𝑙 > 1. 
The l-step ahead forecast of the covariance between 𝜀𝑖𝑡 and 𝜀𝑗𝑡 is   ̂𝒊𝒋√σ2𝑖,ℎ(𝑙)σ2𝑗,ℎ(𝑙) 

where  ̂𝒊𝒋 is the estimate of 𝒊𝒋 and σ2𝑖,ℎ(𝑙) are the elements of  Ξℎ∗ (𝑙). 

 
2. Non constant conditional correlation 

 
Using Equation (5), several authors have proposed parsimonious models for Λ𝑡 to 
describe the time-varying correlations. We discuss two such developments for k-
dimensional returns. 

                                                 
coefficients, exogenous variables are assumed to have the same slope, 𝜆, for every equation. 
Individual coefficients allow each exogenous variable effect 𝑖 to differ across equations ; 𝜇𝑖𝑡 = 𝑖 𝑋1𝑖,𝑡+ 𝜆𝑋2𝑖,𝑡 σ2𝑖,𝑡 = 𝛼𝑖𝑖,0 + 𝛼𝑖𝑖,1𝜀2𝑖,𝑡−1 + 𝛽𝑖𝑖,1σ2𝑖,𝑡−1+𝑖 𝑍1𝑖,𝑡+ 𝜆𝑍2𝑖,𝑡 . (8) 

26 It is for this reason that the model is known as a constant conditional correlation (CCC) 
MGARCH model. Restricting Λ𝑡 to a constant matrix reduces the number of parameters and 
simplifies the estimation but may be too strict in many empirical applications. 
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a) Dynamic conditional correlation (DCC) 

 
 (Engle R. F., 2002) introduced a dynamic conditional correlation (DCC) 
MGARCH model in which the conditional quasicorrelations Λ𝑡 follow a 
GARCH(1, 1)-like process. (Engle R. F., 2002) propose the model Λ𝑡 = Υ𝑡Q𝑡Υ𝑡, 
where Q𝑡=(q𝑖𝑗,𝑡) is a k× 𝑘 positive-definite matrix, Υ𝑡 = 𝑑𝑖𝑎𝑔(𝑞11,𝑡−1/2, … , 𝑞,𝑡−1/2) 

and  Q𝑡 = (1 − 𝜃1 − 𝜃2)Q + 𝜃1𝑎𝑡−1𝑎′𝑡−1 + 𝜃2Q𝑡−1  (9) 
where 𝑎𝑡 is the standardized innovation vector with elements 𝑎𝑖𝑡 = 𝜀𝑖𝑡/√σ2𝑖,𝑡, 

Q is the unconditional covariance matrix of 𝑎𝑡, 𝜃1 and 𝜃2 are non-negative  scalar 
parameters satisfying 0 < 𝜃1 + 𝜃2< 1, and Υ𝑡 is a normalization matrix to guarantee 
that Λ𝑡 is a correlation matrix. 

b) Varying conditional correlation (VCC) 
 
(Tse & Tsui, 2002) derived the varying conditional correlation (VCC)  MGARCH 
model in which the conditional correlations at each period are a weighted sum of 
a time-invariant component, a measure of recent correlations among the residuals, 
and last period’s conditional correlations. 
 
(Tse & Tsui, 2002) assume that the conditional correlation matrix Λ𝑡 follows the 
model : Λ𝑡 = (1 − 𝜃1 − 𝜃2)Λ + 𝜃1Λ𝑡−1 + 𝜃2Ψ𝑡−1  (10) 
where 𝜃1 and 𝜃2 are scalar parameters (0 ≤ 𝜃1 + 𝜃2  1), Λ is k× 𝑘 positive-
definite matrix with unit diagonal elements, and Ψ𝑡−1 is the  k× 𝑘 sample 

correlation matrix using shocks from t −m, . . . , t − 1 for a prespecified m. 
 

3. Test for volatility spillovers Effects 
 

Refer to the multivariate volatility model of Section III.A.2 (DVECH), the 
following  hypotheses are of interest to test for volatility spillovers effects across 
assets. Considering six stock market returns, covariances take the following 
system : 
 

σ1,2 =  𝛼+ 𝛼 (1,2)*ε1(-1)* ε2(-1) + 𝛽 (1,2)* σ1,2(-1)  

σ1,3 = 𝛼 + 𝛼 (1,3)* ε1(-1)* ε3(-1) + 𝛽 (1,3)* σ1,3(-1)  

σ1,4 = 𝛼 + 𝛼 (1,4)* ε1(-1)* ε4(-1) + 𝛽 (1,4)* σ1,4(-1)  

σ1,5 = 𝛼 + 𝛼 (1,5)* ε1(-1)* ε5(-1) + 𝛽 (1,5)* σ1,5(-1)  
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σ1,6 = 𝛼 + 𝛼 (1,6)* ε1(-1)* ε6(-1) + 𝛽 (1,6)* σ1,6(-1)  

σ 2,3 = 𝛼 + 𝛼 (2,3)* ε2(-1)* ε3(-1) + 𝛽 (2,3)* σ2,3(-1)  

σ2,4 = 𝛼 + 𝛼 (2,4)* ε2(-1)* ε4(-1) + 𝛽 (2,4)* σ2,4(-1)  

σ2,5 = 𝛼 + 𝛼 (2,5)* ε2(-1)* ε5(-1) + 𝛽 (2,5)* σ2,5(-1)  

σ2,6 = 𝛼 + 𝛼 (2,6)* ε2(-1)* ε6(-1) + 𝛽 (2,6)* σ2,6(-1)  

σ3,4 = 𝛼 + 𝛼 (3,4)* ε3(-1)* ε4(-1) + 𝛽 (3,4)* σ3,4(-1)  

σ3,5 = 𝛼 + 𝛼 (3,5)* ε3(-1)* ε 5(-1) + 𝛽 (3,5)* σ3,5(-1)  

σ3,6 = 𝛼 + 𝛼 (3,6)* ε3(-1)* ε6(-1) + 𝛽 (3,6)* σ3,6(-1)  

σ4,5 = 𝛼 + 𝛼 (4,5)* ε4(-1)* ε5(-1) + 𝛽 (4,5)* σ4,5(-1)  

σ4,6 = 𝛼 + 𝛼 (4,6)* ε4(-1)* ε6(-1) + 𝛽 (4,6)* σ4,6(-1)  

σ5,6 = 𝛼 + 𝛼 (5,6)* ε5(-1)* ε6(-1) + 𝛽 (5,6)* σ5,6(-1)  

 
Volatility Spillovers from stock j to each stock i ≠ j can then be tested in the 
following null hypotheses: 
 𝐻0,1:  𝛼1𝑗 =    𝛽1𝑗= 0,  for j = 2, 3, 4, 5, 6,  

against 𝐻1,1: 𝛼1𝑗 ≠ 0,    𝛽1𝑗≠ 0, 𝐻0,2:  𝛼2𝑗 =    𝛽2𝑗= 0,  for j = 3, 4, 5,  6  

against 𝐻1,2: 𝛼2𝑗 ≠ 0,    𝛽2𝑗≠ 0, 𝐻0,3:  𝛼3𝑗 =    𝛽3𝑗= 0, for  j = 4, 5,  6  

against 𝐻1,3: 𝛼3𝑗 ≠ 0,    𝛽3𝑗≠ 0, 𝐻0,4:  𝛼4𝑗 =    𝛽4𝑗= 0,  for j = 5,  6  

against 𝐻1,4: 𝛼4𝑗 ≠ 0,    𝛽4𝑗≠ 0, 𝐻0,5:  𝛼5𝑗 =    𝛽5𝑗= 0, for j = 6  

against 𝐻1,5: 𝛼5𝑗 ≠ 0,    𝛽5𝑗≠ 0, 

by applying Chi-square tests. 

IV.Results and discussion 
 
We have Monthly data on the stock returns of five sectors—Bank, Finance, 
Industry, Material, and Automobil, from 2010M02 to 2019M07—in the variables 
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R_Bank, R_Fin, R_Ind, R_Matb, and R_Auto respectively. We model the 
conditional means of the returns as a constant or a function of some explicative 
variables and the conditional covariances as a MGARCH- DVECH, -DBEKK, -
DCC, and -CCC process in which the variance of each disturbance term follows 
a GARCH(1, 1) process. ARCH estimation uses maximum likelihood to jointly 
estimate the parameters of the mean and the variance equations. Given a 
specification for the mean equation and a distributional assumption, all that we 
require is a specification for the conditional covariance (correlation) matrix. 
In first stage, we consider the first system { 𝑅𝑡 = 𝜇 + 𝜀𝑡                  𝐻𝑡  =  Cov(εt |Ψt−1)    (𝐼) 

with only 𝜇 as a constant conditional mean. Then, we consider the second system {𝑅𝑡 = λ1 𝑋1,𝑡 + λ2𝑋2,𝑡 +  λ3𝑋3,𝑡 + 𝜀𝑡                  𝐻𝑡  =  Cov(εt |Ψt−1)    (𝐼𝐼) 

where expected mean depends on several macroeconomic variables reflecting 
macro economic instability effect ; 𝑋1,𝑡, 𝑋2,𝑡 , and 𝑋3,𝑡 are respectively volatility 
of oil price in log, volatility of  consumer price index in log, (LCPI), and volatility 
of excghange rate in log. 
 

We can estimate the parameters of MGARCH models by maximum likelihood 
(ML), assuming that the errors come from a multivariate normal distribution or 
Student's t-distribution.27 Both the ML estimator and the quasi–maximum 
likelihood (QML) estimator, which drops the normality assumption, are assumed 
to be consistent and normally distributed in large samples; see (Jeantheau, 1998), 
(Berkes & Horvath, 2003), (Comte & Lieberman, 2003), (Ling & McAleer, 2003), 
and (Fiorentini & Sentana, 2007). The QML parameter estimates are the same as 
the ML estimates, but the VCEs are different.28 

                                                 
27 Assuming multivariate normality, the log likelihood contributions for GARCH models are 
given by 𝑙𝑡 = − 12 𝑘. 𝑙𝑜𝑔(2𝜋) − 12 log (|𝐻𝑡|) − 12 𝜀′𝑡𝐻𝑡𝜀𝑡 
where k is the number of mean equations, and 𝜀𝑡 the k vector of mean equation residuals. 
For Student's t-distribution, the contributions are of the form 𝑙𝑡 ∝ 𝐶 − 12 log (|𝐻𝑡|) − 12 (𝜂 + 𝑘)𝑙𝑜𝑔 (1 + 𝜀′𝑡𝐻𝑡−1𝜀𝑡𝜂 − 2 ) 

where 𝜂 is the estimated degree of freedom.  
28 The choice between the multivariate normal and the multivariate t distributions is one 
between robustness and efficiency. If the disturbances come from a multivariate Student t, then 
the ML estimates will be consistent and efficient, while the QML estimates based on the 
multivariate normal assumption will be consistent but not efficient. In contrast, if the 
disturbances come from a well-behaved distribution that is neither multivariate Student t nor 
multivariate normal, then the ML estimates based on the multivariate Student t assumption will 
not be consistent, while the QML estimates based on the multivariate normal assumption will 
be consistent but not efficient (see STATA documentation ts.pdf pp 353-4). 
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For both system, QML estimator is obtained under Student distribution. This 
result is based on the assumption that the multivariate t-distribution has common 
but unknown degrees of freedom. The shapeparameter 𝜂  is estimated to 10 
(approximately). Matrix of the ARCH and GARCH parameters are 𝐴 (𝛼𝑖𝑗), and 𝐵 (𝛽𝑖𝑗). 

 
C. System (I) 

 
In This section, we consider the first system { 𝑅𝑡 = 𝜇 + 𝜀𝑡                  𝐻𝑡  =  Cov(εt |Ψt−1)     
with 𝜇 is a constant as conditional mean. System (I) is estimated with different 
conditional covariance specifications given by DVECH, DBEKK, and CCC. 
Results are illustrated at Table B 5. 
 
From Figure A 5 and Figure A 6 (see Appendice II), the correlation looks to be 
time varying, which is a general characteristic of DVECH and DBEKK models. 
For instance, the time-varying correlations of the DBEKK(1, 1) model appear to 
be less volatile. That from CCC model (see Table B 5, Appendice II), all the 
estimated constant conditional correlation 𝑖𝑗  parameters are positive and 

significant indicates that the returns on these stocks rise or fall together. Theses 
correlations reflect the agent’s behavior in the sector depending on the state of the 
economy. 𝑖𝑗  parameters have decreasing evolution for full period or for recent 

year for almost all i and j. From Figure A 6 (for DBEKK model), only correlation 
between TUNindex return and R_Fin (or R_BANK) and correlation between 
R_FIN and R_IND (or R_MATB) which have recent encreasing evolution after 
a decreasing pattern till 2016 or 2018.  
 
While the log likelihood value is lower for DVECH and DBEKK, we may 
compare the three models by looking at model selection criterion. The Akaike, 
(Schwarz) and Hannan-Quinn all show lower (higher) information criterion 
values for the CCC specification than VECH and DBEKK model, suggesting that 
the time-varying Diagonal specifications are not preferred. CCC model is then 
the best. From Table B 5 (see Appendice II), not all parameter estimates are 
significant at the 5% level, and the fitted conditional mean and volatility model 
are 
 𝑅1𝑡 = −0.000359 + 𝜀1𝑡 σ21,𝑡 = 0.000515 + 0.063777𝜀21,𝑡−1 + 0.477957σ21,𝑡−1, 1 ≡ Return 
 𝑅2𝑡 = −0.004210 + 𝜀2𝑡 
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σ22,𝑡 = 26.38E − 07−0.090209 𝜀22,𝑡−1 + 𝟏. 𝟎𝟖𝟒𝟒𝟓𝟑σ22,𝑡−1, 2 ≡ Fin 

 𝑅3𝑡 = 0.000590 + 𝜀3𝑡 σ23,𝑡 = 0.000942 + 0.117784 𝜀23,𝑡−1 + 0.239348σ23,𝑡−1, 3 ≡ Bank 

 𝑅4𝑡 = −0.009345 + 𝜀4𝑡 σ24,𝑡 = 0.000296 + 0.155613𝜀24,𝑡−1 + 𝟎. 𝟕𝟏𝟗𝟖𝟗𝟑σ24,𝑡−1, 4 ≡ 𝐈𝐧𝐝 

 𝑅5𝑡 = −0.002443 + 𝜀5𝑡 σ25,𝑡 = 0.000189 + 0.158480𝜀25,𝑡−1 + 𝟎. 𝟕𝟔𝟎𝟑𝟕𝟔σ25,𝑡−1, 5 ≡ Matb 

and 
 𝑅6𝑡 = −0.014398 + 𝜀6𝑡 σ26,𝑡 = 0.000323−𝟎. 𝟏𝟓𝟖𝟒𝟒𝟑𝜀26,𝑡−1 + 𝟏. 𝟏𝟏𝟔𝟏𝟒σ26,𝑡−1, 6 ≡ Auto. 

 
Only coefficients in bold are significant (in 5% or 10% level). System (I) in CCC 
specification implies no dynamic volatility dependence between different 
markets. As expected all Constant Conditional Correlations (CCC) are positive 
(Table B 5). This reflects a simultaneous growth between different sector. The 
estimated correlation 𝑖𝑗 are between 0.295445 and 0.933575, reflecting some 

higher integration within Tunisian stock markets.  
 
The Ljung–Box statistics as model checking approach is to apply the multivariate 
Q-statistics to the sixth standardized residual series. For this particular CCC(1, 1) 

model, we have Q2(10) = 361.4224 (0.4690), where the number in parentheses 
denotes p-value. Based on this statistic, the mean equation is then adequate at the 
5% significance level.  
 
Figure A 7, Figure A 8, and Figure A 9 (see Appendice II) show repectively the 
fitted volatilities of the CCC, DVECH, and DBEKK(1, 1) models. Comparing 
these Figures, there are some differences between the three fitted volatility 
models. However, it is clear that for Bank, Financial sectors, and TUNindex 
return volatility are decreasing while for Auto sector and MATB sector, volatility 
is increasing.  
 
Since Schwarz critiria is minimum for DBEKK specification, this model may be 
the best but we can not analyse Volatility Spillover for each return with this 
diagonal model. So, with DVECH model, the existence of any causal relation 
among variance and covariance included in 𝐻𝑡 (implying that the off-diagonal 
coefficients of 𝐴(𝛼𝑖𝑗) and 𝐵(𝛽𝑖𝑗) are statistically significant) will be 

investigated.29  

                                                 
29 In fact, 𝛼𝑖𝑗 and 𝛽𝑖𝑗 respectively measure the effect of the own and cross past shock and past 

conditional volatility of the other markets. 
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Looking to DVECH model results (Table B 5, Appendice II), almost all 𝛼1(𝑖,𝑗) are 

not significant except 𝛼1(1,2) ≈ 0.23 and 𝛼1(1,3)≈ 0.3. Hence that, we can conclude 

the presence of a significance and positive effect only of cross shock  (news) of 
Finance and Bank stock returns on Tunindex return. And there is unidirectional 
effect between Tunindex and financial and Bank stock market. 
 
The  fitted conditional mean,  volatility, and covariance of DVECH model is 
summed as follow : 30 
 

R = 0.0014923+ ε1 σ21 = 0.000309 + 0.310962 𝜀21 (-1) + 0.525732 σ21(-1) 

R_FIN = -0.00353+ ε2 σ22 = 0.0003099 + 0.27796 𝜀22(-1) + 0.7021 σ22(-1) 

R_BANK = 0.0031458+ ε3 σ23 = 0.0003099 + 0.29646 𝜀23(-1) + 0.5353 σ23(-1) 

R_IND = -0.010267+ ε4 σ24 = 0.0003099+ 0.151388 𝜀24(-1) + 0.743438 σ24(-1) 

R_MATB = -0.0031543+ ε5 σ25 = 0.0003099 + 0.16156 𝜀25(-1) + 0.784216 σ25(-1) 

R_AUTO = -0.015434+ ε6 σ26 = 0.0003099 -0.07314984 𝜀26(-1) + 1.02114 σ26(-1) 

 

With 
 

σ1,2 = 0.0003099 + 0.2284 ε1(-1) ε2(-1) + 0.5959 σ 1,2(-1)  

σ 1,3 = 0.0003099+ 0.29271 ε1(-1) ε3(-1) + 0.517866 σ 1,3(-1)  

σ 1,4 = 0.000309 + 0.12962 ε1(-1) ε4(-1) + 0.62094 σ 1,4(-1)  

σ 1,5 = 0.000309  + 0.125595 ε1(-1) ε5(-1) + 0.64067 σ 1,5(-1)  

σ 1,6 = 0.0003099  -0.027536 ε1(-1) ε6(-1) + 0.7508  σ 1,6(-1)  

σ 2,3 = 0.00030991  + 0.208801 ε2(-1) ε3(-1) + 0.59174 σ 2,3(-1)  

σ 2,4 = 0.0003099  + 0.0538 ε2(-1) RESID4(-1) + 0.70460 σ 2,4(-1)  

σ 2,5 = 0.0003099  + 0.02198 ε2(-1) ε5(-1) + 0.725672 σ 2,5(-1)  

σ 2,6 = 0.0003099 + 0.006479 ε2(-1) ε6(-1) + 0.75882 σ 2,6(-1)  

σ 3,4 = 0.000309  + 0.07271 ε3(-1) ε4(-1) + 0.6152 σ 3,4(-1)  

σ 3,5 = 0.0003099  + 0.07441 ε3(-1) ε5(-1) + 0.630839 σ 3,5(-1)  

σ 3,6 = 0.0003099  -0.00923 ε3(-1) ε6(-1) + 0.660136  σ 3,6(-1)  

σ 4,5 = 0.0003099  + 0.03062 ε4(-1) ε5(-1) + 0.75712 σ 4,5(-1)  

σ 4,6 = 0.000309  -0.00152 ε4(-1) ε6(-1) + 0.78651 σ 4,6(-1)  

σ 5,6 = 0.0003099 -0.12678  ε5(-1) ε6(-1) + 0.83521  σ 5,6(-1)  

 
                                                 
 
30 Only coefficient in bold are significant (in 1%, 5% or 10% level). 
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The results also demonstrate spillover effects in the volatility models since all β1(i,j) are significant at the 0.01 level. The test results at Table 3 suggest 

significant volatility spillovers from BANK, FIN, IND, MATB, and AUTO 
sectors to TUNindex stock, from BANK, IND, MATB, and AUTO sectors to FIN 
sector, from IND, MATB, and AUTO sectors to BANK sector. The test result also 
suggests significant volatility spillovers from MATB sector, and AUTO sector 
to IND sector and from AUTO sector to MATB sector. These observations 
suggest that these Tunisian’s sectorial asset markets are interlinked and transmit 
volatility spillovers across sectorial asset markets. This information is useful in 
planning for future investment decisions both by individuals and financial 
institutions to minimize risk.  

Table 4 reveals that ML estimation based on Student t distribution is adequate 
with data analysis results since all residuals (except from TUNindex equation) are 
not Normally distributed. 

Table 3 : Volatility spillover effect from 2010M02 to 2019M07. 

Hypothesis 

spillover From j =  To i = 

Chi-

square p-Value 𝐇𝟎,𝟏 BANK, FIN, IND, MATB, and AUTO R≡1  219.1257  0.0000 𝐇𝟎,𝟐 BANK, IND, MATB, and AUTO FIN≡2 165.9716  0.0000 𝐇𝟎,𝟑  IND, MATB, and AUTO  BANK≡3 106.1206  0.0000 𝐇𝟎,𝟒  MATB, and AUTO  IND≡4 183.0273  0.0000 𝐇𝟎,𝟓 AUTO   MATB≡5 163.6256  0.0000 
 

 
Table 4 : Normality hypothesis results for residuals of DVECH Model . 

Component Jarque-Bera df p-Value 

    
TUNindex≡1  1.423358 2  0.4908 

BANK≡2  249.9431 2  0.0000 

FIN ≡3  15.06615 2  0.0005 

IND≡ 4  17.21621 2  0.0002 

MATB ≡5  2168.750 2  0.0000 

AUTO ≡6  107.7597 2  0.0000 

Joint  2560.159 12  0.0000 
 

 
D. System (II) 

 

Then, we consider the second system {𝑅𝑡 = λ1 𝑋1,𝑡 +  λ2𝑋2,𝑡 +  λ3𝑋3,𝑡 + 𝜀𝑡                  𝐻𝑡  =  Cov(εt |Ψt−1),     
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where expected mean depend on several macroeconomic variables reflecting 
instability effect ; 𝑋1,𝑡, 𝑋2,𝑡 , and 𝑋3,𝑡 are respectively volatility of oil price in log, 
volatility of  consumer price index in log (LCPI), and volatolity of excghange rate 
in log. System (II) is estimated with only DCC and CCC conditional correlation. 
Results for the second system are illustrated at Table B 6. 
 
The MGARCH- DCC model reduces to the MGARCH - CCC model when 𝜃1 = 𝜃2= 0. The output shows that a Wald test rejects the null hypothesis that 𝜃1 = 𝜃2= 
0 at all conventional levels since chi2( 2) = 86.69 with  p-value =  0.0000. These 
results indicate that the assumption of time-invariant conditional correlations 
maintained in the MGARCH-CCC model is too restrictive for these data. 
Moreover the log likelihood value is lower for CCC specification, and AIC  show 
lower information criteria values for DCC model (see Table B 6 Appendice II), 
suggesting that the dynamic  MGARCH-DCC is the preferred model. Only results 
of DCC specification will be then discussed. 
 
Table B 6 (see Appendice II) first presents results for the mean or variance 
parameters used to model each dependent variable. Subsequently, the output table 
presents results for the conditional correlation parameters. For example, the 
conditional correlation between the standardized residuals for Bank and Finance 
is estimated to be 0.57.  The higher conditional correlation, 0.92, is between the 
standardized residuals for TUNindex return and Bank, and is followed by 
conditional correlation of 0.66 between the standardized residuals for TUNindex 
return and Finance market. 
  

Again, all the estimated conditional correlation parameters are positive and 
significant indicates that the returns on these stocks rise or fall together. 
 
Table B 6 (see Appendice II) reports Wald test against the null hypothesis that 
all the coefficients on the independent variables in the mean equations are zero 
[Wald = 55.82 (p-value = 0.0000)]. Here the null hypothesis is rejected at the 5% 
level. This mean that macro economic instability factors (as oil price volatility, 
consumer price index volatility, and exchange rate volatility) have significant 
effect on the mean of returns evolutions (at 5% or 10% level). Moreover, 
VOL_exrate has significant positive effect on R, R_FIN, and on R_MATB, while 
VOL_LCPI has significant negative effect on R_FIN and VOL_LOP has 
significant negative effect on R_AUTO. 
 
Table B 6 indicates also that each of the univariate ARCH and univariate 
GARCH are statistically significant for both TUNindex return and AUTO 
sectorial returns. While for Bank sector only univariate ARCH is statistically 
significant. And for FINance, INDustry and MATB sectorial returns, only 
univariate GARCH are statistically significant. The shot-run volatility 
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parameters 𝛼𝑖,1 are significant between 0.01 and 0.1 level while the long-run 

parameters 𝛽i,1 are significant at the 0.01 level. The value of R2 is not reported in 
the table because the model is highly non-linear therefore R2 is not a meaningful 
measure of goodness of fit. Further, the multivariate model is tested for model 
adequacy using the Ljung-Box (LB) statistics [Portmanteau test for white noise 
(test for model adequacy)] on the residuals and squared residuals of the model.  

 
Table 5 provides the Ljung-Box test results. The LB test results fail to suggest 
any model inadequacy of serial dependence of the model errors. 
 
We plot the dynamic correlations across sectorial markets (Figure 3). Theses 
correlations reflect the agent’s behavior in the sector depending on the state of the 
economy. In fact, there is a dynamic correlation over the period and across sectors.  
First, we find the 𝜃2 coefficient is positively significant (see Table B 6 in 
Appendice II). Most series show an effect of the Yesameen 2011 Revolution in 
Tunisia 2011. Second, in the following, we look at Figure 3 to analyse evolution 
of these correlations.  
 
Table 5 : Univariate and multivariate Ljung-Box test for model adequacy. 

 Return R_FIN R_BANK R_IND R_MATB R_AUTO Multivar 

 Portmanteau (LB-Q) 

statistic      26.694 26.6762 30.9286  44.1172 47.2282 32.0311 26.6943 

 Prob > chi2(40)                 0.9471   0.9474   0.8477  0.3017   0.2011 0.8112 0.9471  

        
 Portmanteau (LB-Q

2) 

statistic      35.974  26.8140  40.9574 26.3955  34.6251  23.5288 35.9747 

 Prob > chi2(40)                0.6520   0.9452  0.4283   0.9517  0.7104  0.9823 0.6520 
 

 
The correlation of the TUNindex return and all considered sector is dynamic and 
positive throughout the sample period. The positive relationship became strong 
during the Yesameen 2011 Revolution with BANK and FINance sectors. The 
correlation reached the peak level  about 0.97.  
 
The correlation of the FINance sector and all other considered sector is also 
dynamic and positive throughout the sample period. The positive relationship 
vary between 0.17 and 0.82, and became strong during the Yesameen 2011 
Revolution with BANK sector. The correlation reached the peak level of 0.82 
between Financial sector and bank sector.  
 
However, the correlation between sector MATB market and sector AUTO market 
wasn’t affected at the beginning by the revolution. In fact, the correlation is still 
low and  approximately equal to 0.21. This correlation has a stationnary evolution 
around 0.2. 
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At the beginning of 2010, we note independence between Bank and Matb 

markets, as the correlation is near zero (equal 0.057). Followed by an increase, 
the correlation reached the peak level of 0.74 at the end of 2017 and is decreased 
later to reach level less than 0.2.  
 
For all the others (except correlation between IND and Bank and correlation 
between IND and AUTO), the correlation, during revolution have a peak around 
0.5 - 0.6, showing that integration has been increased by the revolution to get 
decreasing and very low value throughout the rest of sample period. 
 
Correlation between IND and Bank and between IND and AUTO have rather a 
stationary puttern with some outliers for the latter at the end of 2016 (low value 
near .02) and the begening of 2017 and 2019 (high values less than 0.6).  
 
From Figure 4, the graph show that the in-sample predictions are quite similar for 
the conditional variances except for AUTO sector and that the dynamic forecasts 
converge to similar levels. It also shows that the ARCH and GARCH parameters 
cause substantial time-varying volatility for AUTO sector. 
 
In addition, the results indicate that increases in the futures oil prices lead to lower 

returns on the AUTO stock, and increased input prices (via exchange rate 

volatility) lead to lower returns on the MATB stock. Increases in LCPI volatility 

(and in exchange rate volatility) lead to lower (higher) return on the Finance stock. 

In addition, increases in exchange rate volatility (a depreciation of local money) 

lead to higher return on the TUNindex stock. Two sectors, Bank and INDustry, 

have no significant effect of considered volatility of macro economic variables : 

oil price, CPI (consumer price index) and exchange rate in log. 
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Figure 3: Evolution of D C correlation from MGARCH(1, 1)-DCC model for 
System (II). 

 

 
Figure 4: C Variance prediction from MGARCH(1, 1)-DCC model for System 

(II) 

V. Conclusion 
 

This paper aims at examining the volatility experiences in 5 tunisian sectorial 

stock index series and TUNindex series. The Monthly returns of stock indices of 

5 sectors (namely :  BANK, FINancial service, AUTOmobile, INDdustry, and 

MATerials (MATB)) have been considered from 2010M02 to 2019M07. The 

objectif in this paper is to proposes multivariate GARCH volatility models to 

assess the dynamic interdependence among volatility of returns. Two system are 

considered. 

 

The first System, with conditional (C) constant (C) mean, allows for market 
interaction. Results from the DVECH model reveals that some sectorial stock 
markets are interdependent, the presence of a significance and positive effect of 
cross shock of TUNindex return on FINance and BANK stock returns, and 
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volatility is predictable. C corroletation (C),  𝑖𝑗  , have decreasing evolution for 

full period or for recent years for almost all i and j except CC between Tunindex 
return and R_FIN (or R_BANK) and CC between R_FIN and R_IND (or 
R_MATB). The asymptotic chi-square tests for volatility spillovers effects 
suggests significant volatility spillovers From MATB sector, and AUTO sector 
to IND sector and from AUTO sector to MATB sector. And there is unidirectional 
effect between TUNindex and financial and Bank stock market. 
 

The second system, with macroeconomic factor instability effects as conditional 

mean, examine the CCC and dynamic (D) CC between different sectors. Three 

macroeconomic factor are considered ; oil price volatility, consumer price index 

volatility, and exchange rate volatility. 

 
The conditional correlations are time invariant is a restrictive assumption. The 

MGARCH-DCC model nest the MGARCH-CCC model. When we test the time-

invariance assumption with Wald tests on the parameters of this more general 

model, we reject the null hypothesis that these conditional correlations are time 

invariant. We examine then the estimated result of time-varying variance- 

covariance by the DCC (1, 1) model. The main result supports the hypotheses of 

DCC. The DCC provides evidence of cross border relationship within sectors. We 

do find evidence of integration of some sectors through the volatility.  

 

Moreover, Macro economic instability factors  have significant effect on the mean 
of returns evolutions (at 5% or 10% level). Hence, VOL_exrate has significant 
positive effect on TUNindex return  R, on R_FIN, and on R_MATB, while 
VOL_LCPI has significant negative effect on R_FIN, and VOL_LOP has 
significant negative effect on R_AUTO. 
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VII.Appendice I : Selected review and data Analysis  

A. Table of Selected Review 
 
Table 1 (a): Selected review 
 

Author Problem/technic Data Results 
(Harris & 
Pisedtasalasai, 
2006) 
 

Return and spillover effects FTSE100, FTSE250 and 
FTSE Small Cap equity 

Volatility transmission mechanism between large and 
small stocks in the UK is asymmetric 

(Wongswan, 2006) 
 

Information transmission U.S. Japan Korean and Thai 
equity markets 

There is a large and significant association between 
developed market and emerging market equity volatility 
at short time horizons 

(Christiansen, 2007) 
 

Mean and volatility spillover US and Europ Negligible mean-spillover but volatility spillover effects 
was substantial. 
 

(Hassan & Malik, 
2007) 

Mean and conditional 
variance 

US sector indexes Transmission of shocks and volatility among different 
sectors 

(Malik F. and 
Hammoudeh, 2007) 

Volatility and shock 
transmission ; MGARCH 

US equity, Gulf equity and 
global crude oil 

Significant transmission among second moments 
Gulf equity markets are the recipients of volatility from 
the oil market. 

 
Zarour and 
Siriopoulos (2008) 

Univariate CGARCH  Existence of volatility composition into short run and 
long run components                                                                       

(Hammoudeh & Li, 
2008) 

Univariate GARCH, 
persistence of volatility, 
(ICSS) algorithm31 

For 5 Gulf Cooperation 
Council (GCC) stock markets  

These stock markets are more sensitive to major global 
events than to local and regional factors 

                                                 
31 Iterated cumulative sums of squares algorithm 
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(Li & Majerowska, 
2008) 
 

 Emerging stock markets and 
the developed markets 

Evidence of returns and volatility spillovers from the 
developed to the emerging markets implying that 
foreign investors may benefit from risk reduction by 
adding emerging markets' stocks to their portfolio 

(Hammoudeh, 
Yuan, & McAleer, 
2009) 
 

VAR(1)–GARCH(1,1) 
model 

3 major sectors (Service, 
Banking and Industrial/or 
Insurance) in 4 GCC’s 
economies (Kuwait, Qatar, 
Saudi Arabia and UAE) 

Past own volatilities matter more than past shocks and 
there are moderate volatility Spillovers between the 
sectors within the  individual countries, with the 
exception of Qatar 

(Koulakiotis, 
Dasilas, & 
Papasyriopoulos, 
2009) 

Multivariate GARCH-
BEKK, examine the 
transmission of news (both 
volatility and error) between 
portfolios of cross-listed 
equities 

Three European financial 
regions. 

Finnish and Danish portfolios of cross-listed equities are 
the main transmitters of volatility relative to the 
Swedish and Norwegian portfolios of cross-listed 
equities.  
 

(Kouki, Harrathi, & 
Haque, 2011) 

Volatility Spillover among 
Sector,  VAR-BEKK model, 
dynamic conditional 
correlation (DCC) 
 

5 sectors (banking, financial 
service, industrial, real estate 
and oil) in International Stock 
Markets (two zones) 

Evidence of cross border relationship within sectors. 
Evidence of integration of some sectors through the 
volatility. 
 

(Aftab, Beg, Sun, & 
Zhou, 2019) 
 

Multivariate VAR-BEKK-
GJR-GARCH 

Australia’s domestic stock, 
bond, and money markets 

Domestic financial markets are interdependent and  
volatility is predictable. Volatility spillovers from stock 
market to bond and to money markets due to  common 
news. 

(MALLIKARJUNA 
& RAO, 2019) 

GARCH 
EGARCH 
TGARCH 

Australia (ASX 200), Canada 
(TSX), France (CAC 40), 
Germany (DAX), Japan 
(NIKKEI 225) South Korea 
(KOSPI), Switzerland (SMI), 
United Kingdom (FTSE 100), 
and the United States of 
America (S&P 500). The 

The volatility is highly persistent in all the markets, 
informational asymmetries and leverage effects exist in 
the developed and emerging markets, whereas the 
frontier markets do not exhibit any tendencies of 
informational asymmetries and leverage effects except 
the stock market of Argentina. 
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markets in the emerging 
group are Brazil 
(BOVESPA), China (SSEC), 
Egypt (EGX 30), India 
(SENSEX), Indonesia (IDX), 
Mexico (BMV IPC), Russia 
(MOEX), South Africa (JSE 
40), Thailand (SET), and 
Turkey (BIST 100). The 
markets in the frontier 
category are Argentina (S&P 
MERVAL), Estonia (TSEG), 
Kenya (NSE 20), Sri Lanka 
(CSE AS), and Tunisia 

(TUNINDEX). 



34 
 

 

B. Figures 

 

 
Figure A 1: The quantiles of normal distribution plot. 

 

 
Figure A 2: Correlograms of autocorrelation function for Monthly Return data. 
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Figure A 3 : Histogram of Monthly Stock return by sector. 

 

Figure A 4: Correlograms of autocorrelation function for Squared Monthly 

Return data. 
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C. Tables 

 

Table B 1: Correlations between Different stock Markets returns in level for period 

2010M02-2019M07. 

Correlation       
Probability R  R_AUTO  R_BANK  R_FIN  R_IND  R_MATB  

R  1.000000      

 
-----       

R_AUTO  0.468642 1.000000     

 
0.0000 -----      

R_BANK  0.941535 0.352801 1.000000    

 
0.0000 0.0001 -----     

R_FIN  0.716654 0.323154 0.661598 1.000000   

 
0.0000 0.0005 0.0000 -----    

R_IND  0.554835 0.409363 0.413083 0.384554 1.000000  

 
0.0000 0.0000 0.0000 0.0000 -----   

R_MATB  0.425288 0.234617 0.306709 0.342560 0.394976 1.000000 

 0.0000 0.0124 0.0010 0.0002 0.0000 -----  
 

 

 

 

Table B 2: Correlations between Different stock Markets returns in squared level for period 

2010M02-2019M07. 

Correlation       
Probability R2  R2_AUTO  R2_BANK  R2_FIN  R2_IND  R2_MATB  

R2  1.000000      
R2_AUTO  0.070701 1.000000     

 0.4568 -----      
R2_BANK  0.935731 -0.000404 1.000000    

 0.0000 0.9966 -----     
R2_FIN  0.634896 -0.026941 0.575420 1.000000   

 
0.0000 0.7770 0.0000 -----    

R2_IND  0.268240 0.391530 0.228190 0.144112 1.000000  

 0.0041 0.0000 0.0151 0.1278 -----   
R2_MATB 0.118294 -0.032910 0.102424 0.079996 0.085265 1.000000 

 0.2121 0.7293 0.2804 0.3996 0.3692 -----  
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Table B 3: Unit root test results for Monthly data stock returns (PP, ADF, and 

KPSS). 

    PP test    

  R R_AUTO R_BANK R_FIN R_IND R_MATB 

With 

Constant t-Statistic -9.3188 -11.1033 -9.0822 -9.2381 -11.6389 -9.4411 

 Prob.  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 

  *** *** *** *** *** *** 

Without 

Constant & 

Trend  t-Statistic -9.2551 -11.1175 -9.0730 -9.2753 -11.6094 -9.3915 

 Prob.  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 

  *** *** *** *** *** *** 

    ADF test    

  R R,AUTO R,BANK R,FIN R,IND R,MATB 

With 

Constant t-Statistic -9.2491 -11.1032 -9.0052 -9.1885 -11.5025 -5.4089 

 Prob.  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 

  *** *** *** *** *** *** 

Without 

Constant & 

Trend  t-Statistic -9.1985 -11.1174 -8.9900 -9.2278 -11.4972 -5.3539 

 Prob.  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 

  *** *** *** *** *** *** 

    KPSS test    

  R R,AUTO R,BANK R,FIN R,IND R,MATB 

With 

Constant t-Statistic  0.0888  0.0560  0.1007  0.0846  0.1481  0.2044 

 Prob. n0 n0 n0 n0 n0 n0 
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Table B 4: Macroeconomic instability effect on Mean returns. 

Dependent Variable: R_FIN  R_BANK   R_IND   R_MATB   R_AUTO   

Variable Coefficient Std. Error P-value Coefficient Std. Error P-value Coefficient Std. Error P-value. Coefficient Std. Error P-value Coefficient Std. Error P-value 

VOL_LCPI -4054.315 1192.628 0.0009 -2475.148 1439.858 0.0884 -2743.753 1753.538 0.1206 -6054.396 1408.371 0.0000 -8.594226 2451.429 0.9972 

VOL_LEXRATE 32.63307 15.35449 0.0358 25.48829 18.53745 0.1720 38.59145 22.57592 0.0902 -22.92594 18.13207 0.2088 34.28737 31.56092 0.2797 

VOL_LOP 0.733387 0.434920 0.0946 0.438497 0.525079 0.4055 -0.774829 0.639470 0.2283 -0.063327 0.513596 0.9021 -1.106129 0.893972 0.2186 

C 0.025378 0.013898 0.0706 0.015960 0.016779 0.3436 0.015591 0.020435 0.4471 0.079724 0.016412 0.0000 -0.010025 0.028567 0.7263 

                

Adjusted R-squared   0.117819   0.021000   0.041766   0.144814   -0.004286 

Log likelihood   225.3908   204.1033   181.8320   206.6018   143.9730 

F-statistic   5.986040   1.800815   2.627242   7.321904   0.840670 

Prob(F-statistic)   0.000815   0.151309   0.053963   0.000162   0.474452 

Mean dependent var   0.001474   0.003570   -0.002448   0.007040   -0.003625 

S.D. dependent var   0.035691   0.040904   0.050352   0.042808   0.068759 

Akaike info criterion   -3.918422   -3.541652   -3.147470   -3.585873   -2.477398 

Schwarz criterion   -3.821877   -3.445107   -3.050925   -3.489328   -2.380853 

Hannan-Quinn criter.   -3.879245   -3.502475   -3.108293   -3.546696   -2.438221 

Durbin-Watson stat   1.858202   1.675200   2.192646   1.956068   2.089861 
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VIII.Appendice II : Econometric results 
 

D. Figures 
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Figure A 5: Time-varying correlations from DVECH model (system I). 
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Figure A 6: Time-varying correlations from DBEKK model (system I). 
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Figure A 7: Conditional variances from CCC model (system I). 
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Figure A 8: Conditional variances from DVECH model (system I). 
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Figure A 9: Conditional variances from DBEKK model (system I). 
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Figure A 10: C Variance prediction by sector from MGARCH(1, 1)-DCC 

model for System (II). 

 

E. Tables 
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Table B 5: DVECH, DBEKK, and CCC results of system (I) for sectorial index returns and Tunindex return.32 

 Diagonal VECH  Diagonal BEKK   CCC   

 Coefficient SdError P-value   Coefficient Sd. Error P-value    Coefficient Sd Error P-value     

           𝛼0 0.000303 9.38E-05 0.0012 6.18E-06 6.74E-06 0.3593 𝛼Return,1 0.063777 0.081389 0.4333 𝛼 1(1,1) 0.311209 0.12449 0.0124 0.253148 0.029773 0.0000 𝛽Return,1 0.477957 0.401852 0.2343 𝛼 1(1,2) 0.229111 0.12968 0.0773    𝛼Return,0 0.000515 0.000435 0.2368 𝛼 1(1,3) 0.292378 0.11475 0.0108    𝛼FIN,1 -0.090209 0.031026 0.0036 𝛼 1(1,4) 0.127848 0.08957 0.1535    𝛽FIN,1 1.084453 0.043225 0.0000 𝛼 1(1,5) 0.129830 0.09940 0.1915    𝛼FIN,0 6.38E-07 2.50E-05 0.9796 𝛼 1(1,6) 0.026771 0.03988 0.5021    𝛼BANK,1 0.117784 0.096963 0.2245 𝛼 1(2,2) 0.339504 0.23187 0.1431 0.158303 0.04217 0.0002 𝛽BANK,1 0.239348 0.384733 0.5339 𝛼 1(2,3) 0.215427 0.13267 0.1044    𝛼BANK,0 0.000942 0.000577 0.1025 𝛼 1(2,4) 0.026376 0.11757 0.8225    𝛼IND,1 0.155613 0.090986 0.0872 𝛼 1(2,5) 0.000155 0.13713 0.9991    𝛽IND,1 0.719893 0.127193 0.0000 𝛼 1(2,6) 0.036459 0.06080 0.5488    𝛼IND,0 0.000296 0.000281 0.2927 𝛼 1(3,3) 0.294752 0.11519 0.0105 0.245108 0.03193 0.0000 𝛼MATB,1 0.158480 0.114324 0.1657 𝛼 1(3,4) 0.072864 0.08942 0.4152    𝛽MATB,1 0.760376 0.170529 0.0000 𝛼 1(3,5) 0.096394 0.10286 0.3487    𝛼MATB,0 0.000189 0.000198 0.3379 𝛼 1(3,6) 0.036947 0.05027 0.4624    𝛼AUTO,1 -0.158443 0.052037 0.0023 𝛼 1(4,4) 0.147592 0.07042 0.0361 0.456899 0.04915 0.0000 𝛽AUTO,1 1.116145 0.058491 0.0000 𝛼 1(4,5) 0.022063 0.09918 0.8240    𝛼AUTO,0 0.000323 0.000212 0.1283 𝛼 1(4,6) 0.001727 0.05454 0.9747    
Return,R,FIN 0.652363 0.078558 0.0000 𝛼 1(5,5) 0.176369 0.11623 0.1292 0.231210 0.04541 0.0000 Return,R,BANK  0.933575 0.016861 0.0000 𝛼 1(5,6) -0.088360 0.06232 0.1562    
Return,R,IND 0.589572 0.080966 0.0000 𝛼 1(6,6) -0.063860 0.02430 0.0086 0.083730 0.02749 0.0023 Return,R,MATB 0.472450 0.110125 0.0000 

                                                 
32  This is done by Eviews 10. 
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β1(1,1) 0.524912 0.07886 0.0000 0.971839 0.00506 0.0000 Return,R,AUTO  0.494502 0.104651 0.0000 

β 1(1,2) 0.592141 0.08480 0.0000    
FIN,BANK 0.585304 0.096327 0.0000 

β 1(1,3) 0.518898 0.07546 0.0000    
FIN,IND 0.429432 0.099233 0.0000 

β 1(1,4) 0.619171 0.09084 0.0000    
FIN,MATB 0.349484 0.118202 0.0031 

β 1(1,5) 0.634235 0.09620 0.0000    
FIN,AUTO 0.398441 0.120265 0.0009 

β 1(1,6) 0.718966 0.06607 0.0000    
BANK,IND 0.428228 0.102199 0.0000 

β 1(2,2) 0.698777 0.08905 0.0000 0.978662 0.00354 0.0000 BANK,MATB 0.342241 0.119776 0.0043 

β 1(2,3) 0.592962 0.08962 0.0000    
BANK,AUTO 0.380455 0.120631 0.0016 

β 1(2,4) 0.702059 0.09835 0.0000    
IND,MATB 0.489588 0.093238 0.0000 

β 1(2,5) 0.717366 0.09548 0.0000    
IND,AUTO 0.388151 0.113787 0.0006 

β 1(2,6) 0.753731 0.08101 0.0000    
MATB,AUTO 0.295445 0.122144 0.0156 

β 1(3,3) 0.532757 0.07382 0.0000 0.976728 0.00486 0.0000 
 

   
β 1(3,4) 0.618670 0.09801 0.0000        
β 1(3,5) 0.628313 0.10168 0.0000        
β 1(3,6) 0.645872 0.09882 0.0000        
β 1(4,4) 0.742161 0.06503 0.0000 0.915972 0.01691 0.0000     
β 1(4,5) 0.749839 0.09405 0.0000        
β 1(4,6) 0.781695 0.08089 0.0000        
β 1(5,5) 0.771773 0.08905 0.0000 0.983463 0.00729 0.0000     
β 1(5,6) 0.828525 0.06667 0.0000        
β 1(6,6) 1.011419 0.01823 0.0000 1.003728 0.00301 0.0000     

          

Log likelihood  1385.65   1383.284    1424.161 

Akaike info criterion  -23.6398   -24.12891    -24.49843 

Schwarz criterion  -22.4330   -23.64619    -23.53298 

Hannan-Quinn criter.  -23.1501   -23.93303    -24.10666 
 

Note : Return = (1), FIN = (2), BANK = (3), IND = (4), MATB = (5), AUTO = (6)
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Table B 6: Macro economic effects in DCC and CCC models for 5 sectorial 
index returns and TUNindex return.33 

Method  DCC     CCC   

          
Variable    Robust     

 
  Robust     

  Coef. Std. Err. z P-value   
 

Coef. Std. Err. z P-value   

Return     
 

    

VOL_lcpi -678.79 510.97 -1.33 0.18  -741.11 492.26 -1.51 0.13 

VOL_lop 0.14 0.52 0.28 0.78  0.09 0.58 0.15 0.88 

VOL_lexrate 21.36 10.34 2.07 0.04  22.49 9.98 2.25 0.02 𝛼Return,1 0.07 0.04 1.93 0.05 
 

0.06 0.04 1.60 0.11 𝛽Return,1 0.51 0.10 5.06 0.00 
 

0.50 0.11 4.64 0.00 𝛼Return,0 0.00 0.00 3.53 0.00 
 

0.00 0.00 3.56 0.00 

R_FIN     
 

    

VOL_lcpi -1560.04 579.4 -2.69 0.01  -1614.85 590.5 -2.73 0.01 

VOL_lop 0.29 0.39 0.74 0.46 
 

0.24 0.39 0.60 0.55 

VOL_lexrate 36.46 14.37 2.54 0.01 
 

36.94 14.11 2.62 0.01 𝛼FIN,1 0.08 0.08 0.94 0.35 
 

0.06 0.08 0.85 0.40 𝛽FIN,1 0.69 0.16 4.40 0.00  0.70 0.16 4.36 0.00 𝛼FIN,0 0.00 0.00 1.39 0.16  0.00 0.00 1.32 0.19 

R_BANK     
 

    

VOL_lcpi -510.78 574.98 -0.89 0.37  -585.79 557.08 -1.05 0.29 

VOL_lop 0.19 0.47 0.39 0.69  0.12 0.56 0.22 0.83 

VOL_lexrate 19.29 12.00 1.61 0.11 
 

20.81 11.55 1.80 0.07 𝛼BANK,1 0.12 0.06 1.95 0.05 
 

0.11 0.06 1.68 0.09 𝛽BANK,1 0.24 0.16 1.46 0.14  0.21 0.22 0.97 0.33 𝛼BANK,0 0.00 0.00 2.73 0.01  0.00 0.00 2.37 0.02 

R_IND     
 

    

VOL_lcpi -1061.66 804.09 -1.32 0.19  -1181.45 802.29 -1.47 0.14 

VOL_lop -0.70 0.61 -1.14 0.25 
 

-0.75 0.64 -1.16 0.24 

VOL_lexrate 23.17 21.47 1.08 0.28 
 

25.59 21.65 1.18 0.24 𝛼IND,1 0.12 0.12 0.99 0.32 
 

0.12 0.11 1.06 0.29 𝛽IND,1 0.70 0.15 4.55 0.00  0.70 0.14 5.04 0.00 𝛼IND,0 0.00 0.00 1.37 0.17 
 

0.00 0.00 1.41 0.16 

R_MATB     
 

    

VOL_lcpi -475.61 675.79 -0.70 0.48  -581.07 674.33 -0.86 0.39 

VOL_lop -0.68 0.45 -1.51 0.13  -0.68 0.42 -1.64 0.10 

VOL_lexrate 15.75 8.61 1.83 0.07 
 

16.73 8.46 1.98 0.05 𝛼MATB,1 0.23 0.16 1.44 0.15 
 

0.23 0.16 1.46 0.14 𝛽MATB,1 0.70 0.13 5.40 0.00 
 

0.70 0.12 5.81 0.00 𝛼MATB,0 0.00 0.00 1.22 0.22 
 

0.00 0.00 1.21 0.22 

R_AUTO     
 

    

                                                 
33 This is done by Stata 15. 
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VOL_lcpi -480.01 1189.26 -0.40 0.69  -439.60 1187.24 -0.37 0.71 

VOL_lop -1.26 0.65 -1.92 0.05  -1.25 0.68 -1.85 0.06 

VOL_lexrate 18.94 21.90 0.86 0.39 
 

16.17 22.22 0.73 0.47 𝛼AUTO,1 0.08 0.02 4.04 0.00  0.08 0.02 4.37 0.00 𝛽AUTO,1 -0.85 0.07 -12.89 0.00  -0.84 0.07 -12.82 0.00 𝛼AUTO,0 0.01 0.00 5.38 0.00 
 

0.01 0.00 5.36 0.00 
 

 

Table B 6 (suite): DCC and CCC results for 5 sectorial index return and TUNindex return. 

  DCC     CCC   

          

    Robust        Robust     

  Coef. Std. Err. z P-value    Coef. Std. Err. z P-value   

Return,R,FIN 0.66 0.08 8.04 0.00  0.67 0.06 10.67 0.00 

Return,R,BANK 0.92 0.02 44.88 0.00  0.93 0.02 59.93 0.00 

Return,R,IND 0.58 0.09 6.68 0.00  0.58 0.07 7.92 0.00 

Return,R,MATB 0.45 0.09 4.95 0.00  0.47 0.08 6.07 0.00 

Return,R,AUTO 0.47 0.07 6.33 0.00  0.49 0.06 8.00 0.00 

FIN,BANK 0.57 0.09 6.66 0.00  0.59 0.07 8.48 0.00 

FIN,IND 0.41 0.11 3.68 0.00  0.41 0.10 4.33 0.00 

FIN,MATB 0.35 0.11 3.20 0.00  0.37 0.09 4.26 0.00 

FIN,AUTO 0.41 0.11 3.93 0.00  0.39 0.08 4.58 0.00 

BANK,IND 0.39 0.11 3.45 0.00  0.42 0.09 4.47 0.00 

BANK,MATB 0.31 0.11 2.85 0.00  0.34 0.09 3.67 0.00 

BANK,AUTO 0.34 0.09 3.89 0.00  0.37 0.07 5.01 0.00 

IND,MATB 0.49 0.09 5.43 0.00  0.47 0.09 5.32 0.00 

IND,AUTO 0.35 0.11 3.23 0.00  0.37 0.09 4.22 0.00 

MATB,AUTO 0.26 0.09 2.74 0.01  0.26 0.09 3.06 0.00 

Adjustment     
     𝜃1 0.04 0.03 1.36 0.17      𝜃2 0.71 0.14 5.16 0.00      

df     
 

    𝜂 9.57 2.51 3.81 0.00  10.10 2.84 3.56 0.00 

Wald 

(p-value) 

55.82 

(0.0000)     

46.27 

(0.0003)    

AIC -2738.522     -2737.802    
BIC -2604.88     -2609.615    
LL 1418.261     1415.901    
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IX. Annexe : Some algebra  
F. DVECH model in Algebric form 

(Bollerslev, Engle, & Wooldridge, 1988) introduce a restricted version of the 

general MVECH model of the conditional covariance with the following 

formulation: 𝐻𝑡 = Ω + ∑ 𝐴ℎ𝑞ℎ=1 • 𝜀𝑡−1𝜀′𝑡−1 + ∑ 𝐵ℎ𝑝ℎ=1 • 𝐻𝑡−1, 

where the coefficient matrices Ω(𝛼𝑖𝑗,0), 𝐴ℎ (𝛼𝑖𝑗,ℎ), and 𝐵ℎ (𝛽𝑖𝑗,ℎ) are symmetric 

matrices, and the operator “•” is the element by element (Hadamard) product. 

“Ω” is the constant matrix coefficient, 𝐴ℎ is the coefficient matrix for the ARCH 

term and 𝐵ℎ is the coefficient matrix for the GARCH term. Each matrix contains 

k(k+1)/2 parameters.34 
 

For q = p =1, this is referred to as the diagonal VECH(1, 1) model or DVECH(1, 

1) model : 𝐻𝑡 = Ω + 𝐴 • 𝜀𝑡−1𝜀′𝑡−1 + 𝐵 • 𝐻𝑡−1, 

where Ω , A, and B are k × k symmetric matrices of parameters (k=2 for the 
bivariate case). The coefficient matrices may be parametrized in several ways. 
The most general way is to allow the parameters in the matrices to vary without 
any restriction.35 In that case the model may be written in single equation format 
as: 𝜎𝑖𝑗,𝑡 = 𝛼𝑖𝑗,0 + 𝛼𝑖𝑗𝜀𝑖,𝑡−1𝜀𝑗,𝑡−1 + 𝛽𝑖𝑗𝜎𝑖𝑗,𝑡−1, 𝑓𝑜𝑟 𝑖, 𝑗 = 1, 2,   . .. 
 

G. : Several approaches for reducing  parameters number 
 

For example, one may use the rank Cholesky factorized matrix of the coefficient 
matrix. This method is labeled the Full Rank Matrix in the coefficient 
Restriction selection option of the system ARCH dialog in Eviews.36  
 
A second method, which is term Rank One (in Eviews), reduces the number of 
parameter estimated to k and guarantees that the conditional covariance is PSD. 
In this case, the estimated raw matrix is restricted, with all but the first column of  
coefficients equal to zero. There are two other covariance specifications that we 
may employ. First, the values in the k×k matrix may be a constant, so that: 

B = β ι ι’ 

                                                 
34 This method is labeled the Full Rank Matrix in the coefficient Restriction selection option 
with Eviews. 
35 i.e. parameterize them as indefinite matrices. 
36 While this method contains the same number of parameters as the indefinite version, it does 
ensure that the conditional covariance is PSD.  
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Where β is a scalar ι and is a vector of ones. This Scalar specification implies that 
for a particular term, the parameters of the variance and covariance equations are 
restricted to be the same. Alternately, the matrix coefficients may be 
parameterized as Diagonal so that all off diagonal elements are restricted to be 
zero. In both of these parameterizations, the coefficients are not restricted to be 
positive, so that is not guaranteed to be PSD. Lastly, for the constant matrix Ω, 
we may also impose a Variance Target on the coefficients which restricts the 
values of the coefficient matrix so that: Ω = Ω0 • (ι ι’ − A − B) 
Where Ω0 is the unconditional sample variance of the residuals. When using this 
option, the constant matrix is not estimated, reducing the number of estimated 
parameters. 
 

 


