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Abstract 

What can be done to slow contagion when unidentified healthy carriers are contagious, total isolation 

is impossible, cleaning capacities are constrained, contamination parameters and even contamination 

channels are uncertain? Short answer: reduce variance.  

I study mathematical properties of contagion when people may be contaminated by using successively 

devices, such as restrooms, which have been identified as a potential contamination channel for 

COVID19. The expected number of exposures (at least one previous user was already contaminated 

and is thus a “spreader”) and new contaminations (which may increase with the number of spreaders 

among previous users and may also decrease with time) are always convex functions of the number n 

of users. As a direct application of Jensen inequality, contamination can be reduced at no cost by 

limiting the variance of n.  

The gains from optimal use and cleaning of the devices can be substantial in this baseline framework: 

with a 1% proportion of (unknown) contaminated people, cleaning one device after 5 uses and the 

other after 15 uses increases contamination by 26 % with respect to the optimal organization, which 

is cleaning each device after 10 uses. The relative gains decrease when the proportion of spreaders 

increases. Thus, optimal organization is more beneficial at the beginning of an epidemic, providing 

additional reason for early action during an epidemic (the traditional reason, which is first-order, is 

that contamination is approximately exponential over the expansion phase of an epidemic). 

These convexity results extend only partially to simultaneous use situations, since the exposure 

function becomes concave above a threshold which decreases with the proportion of spreaders: once 

again, this calls for early action. Simultaneous use is the framework most often analyzed in the network 

literature, which may explain why the above convexity results have been overlooked. 

When multiple spreaders increase the probability of contamination, the degree of convexity depend 

on the precise effects of each additional spreader. With linear probabilities, the expected 

contamination curves are semi-parabolas, both for successive and simultaneous use. For other inverse 

link functions, convexity is always ensured in the successive use case but must be determined case by 

case for simultaneous use. 
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1. Introduction 

Even during deadly epidemics, the functioning of vital institutions (hospitals, systemic public 

administrations, private firms providing food or medicines and medical devices, NGOs…) require many 

people to work on-site together.  

Some of these people may be sick and likely to contaminate their healthy colleagues without 

presenting any noticeable symptom: they are unknown spreaders2. To what extent healthy carriers 

spread a disease is an epidemic-specific question (cf. § 2.1).  

I contribute to analyzing the contamination issue from an organizational perspective: how to use 

limited resources (“devices” used by many people, and cleaning capacities) optimally? I focus on the 

case where people may be contaminated if they use successively the same device. Typical devices are 

restrooms, which have been identified as a potential contamination channel for COVID19 (cf. § 2.1), 

but also access hatches, elevators, etc. 

An interesting literature analyzes the steady-state. I rather focus on slowing contagion, which may be 

a priority when facing deadly epidemics. Encompassing slowing contagion techniques into a wider 

framework to analyze steady-state consequences is left for future research.  

I consider the speed of contagion for given parameters such as the proportion of spreaders and I do 

not consider dynamic loop effects. More precisely, I focus on the limited framework of single use and 

I disregard more dynamic interactions. Thus, the focus of the present paper is static; encompassing 

the results provided here would be an interesting and useful extension. 

The optimization techniques identified here contribute to slow contamination with existing means, 

which is crucial since epidemics often induce a shortage of required equipment3. They rely on the 

convexity of exposures with respect to the number of successive users. This convexity stems from two 

simple facts. First, when more people use a device, the probability that at least one of them is a 

spreader increases4. Second, the expected number of healthy people exposed if a spreader has used 

the device also increases.  

As a result of this convexity, Jensen inequality induces the simple and general recommendation of 

minimizing the variance of the number of users, when the average number cannot be reduced. For 

instance, if it is impossible to clean toilets more often than once every ten users on average, one can 

at least organize the use and cleaning of restrooms so that each one is cleaned indeed after ten users, 

rather than one restroom after five users and another after fifteen users. Indeed, due to convexity, the 

gains from cleaning one restroom sooner (after five rather than ten users) are limited, while the losses 

from waiting to clean the other restroom (after fifteen rather than ten users) are much higher.  

I find that the effects of better organization can be substantial for proportions of spreaders below 2% 

to 5%, that is over the expansion phase of a major epidemic: the simple measures recommended here 

must be implemented accordingly.  

The convexity results do not generalize to the simultaneous case. Indeed, local concavity happens 

above a number of users which decreases when the proportion of spreaders increase. Still, convexity 

is verified when the proportion of spreaders is low, and therefore better organization is beneficial. This 

provides additional argument for early action. 

If the number of spreaders to which a healthy user is exposed affects her probability of contamination, 

convexity depends on the inverse link function which relates the number of spreader to the conditional 

                                                           
2 Unknown spreaders are untested contaminated people who do not present and did not present symptoms 

beforehand. Indeed, for SARS-CoV-2, Chang et al (March 27, 2020) find viral load 1 to 8 days after the end of 

symptoms. Rothe et al. (March 5, 2020) present similar observation on one patient.  
3 World Health Organization (Feb. 27, 2020), Centers for Disease Control and Prevention (Feb. 29, 2020) 
4 Note that the expected number of spreaders also increases (see sections 5.2 and 6). 
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probability of contamination. With linear probabilities, relative effects of better organization are much 

larger than with the single spreader baseline model.  

Quite often, people’s individual behavior may naturally implement optimal use. For instance, subway 

and train users may avoid overcrowded coaches since they would be more likely to be infected there. 

When they try to limit their individual probability of being infected, they may also limit the number of 

people that they are likely to contaminate. Overall, this limits the variance of the number of travelers 

by coach and may limit new contaminations5. Unfortunately, for successive use, individuals usually 

ignore how many people have already used each device, so that they are unable to make optimal 

individual choices and therefore to reduce overall variance.  

Also, quite surprisingly, major organizations seem to disregard convexity issues and the resulting need 

to prevent crowding, as shown by transportation industry examples during the COVID19 epidemic. For 

instance, in the United States, the borders closure was announced with short notice and arrivals limited 

to 13 airports, inducing massive crowdings. In France, the repatriation of more than 240 000 nationals 

by the major airline in March 2020 was implemented with the objective of filling planes. The 70 % 

reduction in the number of trains in the Parisian subway by the end of March 2020 made it impossible 

to maintain the minimal recommended distance between passengers.  

The rest of the paper is as follows. Section 2 reviews the literature. Section 3 describes the framework. 

Section 4 shows that the expected numbers of exposures and new contaminations are always and 

everywhere convex functions of the number of people using a device successively. Section 5 quantifies 

the potential gains from convexity for successive use when contamination depends on exposure to (at 

least) a single spreader. Section 6 provides a similar analysis for simultaneous use and shows local 

concavity, typically for a high proportion of spreaders and a lot of users. The latter two sections provide 

a polar case where the potential for concavity is maximal. Conversely, section 7 analyze the linear 

probability model in which each additional spreader increases linearly the probability of 

contamination, which is the opposite polar case with the highest potential for convexity. In this 

framework, convexity holds of course for the successive framework (as is clear from the general results 

presented in section 4), but also for the simultaneous framework. Section 8 introduce alternative 

inverse link functions and analyzes the corresponding framework, which may be considered as 

intermediate between the two polar cases examined just before. Section 9 analyzes robustness and 

limitations of the results. Section 10 concludes and suggests extensions. A simple extension to a two-

types of device framework is provided in an appendix.  

2. Previous Literature 

2.1 Medical literature 

The relevance of the present analysis relates to the transmission of a disease by asymptomatic, 

presymptomatic, subclinical or only mildly sick patients6. In the rest of this article, I use “asymptomatic 
transmission” to cover all these particular cases. Lipsitch et al. (2003) underline that asymptomatic 

transmission hamper usual control measures. The measures proposed here may therefore be crucial. 

Asymptomatic transmission is epidemic-specific and may induce lasting scientific debates (Leung, 

N. H. L., C. Xu, D. K. M. Ip, and B. J. Cowlin, 2015). Asymptomatic forms of SARS-CoV-1 are documented 

by Wilders-Smith et al. (2005). The potential for asymptomatic transmission is documented for MERS 

(Omrani A. S. et al., 2013) and SARS-CoV-2 (Bai Y, L. Yao, T. Wei et al., February 21, 2020, Rothe et al., 

March 5, 2020, and Zou L, F. Ruan, M. Huang et al., March 19, 2020, Santarpia et al., March 26, 2020).  

                                                           
5 As noted before, in the simultaneous case, convexity is not general so that reducing variance is not always 

beneficial. However, I show in sections 6, 7 and 9 that convexity overcomes local concavity for low proportions 

of spreaders, as well as for many frameworks in which the probability of contaminations depend on the number 

of spreaders to which an individual is exposed. 
6 Human-to-human transmission of SARS-CoV-2 is identified by Q. Li, X. Guan, P. Wu, X. Wang, B. Cowling, B. 

Yang, M. Leung, Z. Feng et al. (January 31, 2020). 
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If viruses survive long enough, people can get contaminated by using successively the same device. 

Doremalen, Bushmaker, Morris et al. (March 17, 2020) find that SARS-CoV-1 and SARS-CoV-2 can 

remain on plastic and steel up to days. The presence of SARS-CoV-2 in toilets (typically used 

successively) is found by Ong et al. (March 4, 2020) and Santarpia et al. (March 26, 2020). 

Long-range airborne contamination, as opposed to short-range droplets contamination (Tellier et al. 

(2019) changes the meaning and scope of the convexity results presented here: the simultaneous case 

becomes very relevant and “cleaning” may correspond to a given period without use, such as night. 
The potential for airborne contamination is reviewed by Tellier et al. (2019) and has been found for 

MERS (Kim S. H., S. Y. Chang, M. Sung et al., 2016), SARS-CoV-1 (Booth T. F., B Kournikakis, N. Bastien, 

J. Ho, J Kobasa, L. Stadnyk et al., 2005) and SARS-CoV-2 (Doremalen et al. and Santarpia et al., op. cit.). 

2.2 Public health and mathematical literature 

Public health decisions have sometimes proven to be effective in slowing contamination, in 

combination with medical treatments and testing. For instance, during the COVID19 epidemic, the 

Chinese lockdown (World Health Organization, February 28, 2020, and Kupferschmidt and Cohen, 

March 2, 2020) and the South Korean test and trace policy (Normile, March 17, 2020) seem to have 

been successful at curbing COVID19 contamination by the end of March 2020.Non-phamaceutical 

interventions may have prevented 21 000 to 120 000 deaths in 11 European countries (Flaxman, S., S. 

Mishra, A. Gandy, S. Bhatt, N. M. Ferguson et al., March 30, 2020). 

Mathematical tools have been used to analyze epidemics since the 18th century (Bernouilli, D., 1766), 

Dietz K. and J. Heesterbeek, 2002). The literature is based either on probability and combinatory 

computation (the present analysis is an example), on diffusion processes using for instance partial 

differential equations, of on the more recent theory of graphs/networks7. 

In the network literature, M. O. Jackson and B. W. Rogers (2007) analyze the effects of mean-

preserving spreads degrees distributions, and show that an mean-preserving increase in the dispersion 

of degrees (similar to the increase in the variance of the number of users in the present paper) increase 

the average neighbor infection rate8. However, the sign of effect of higher dispersion on the average 

infection rate may depend on the form of the network and, in a family of structures including scale-

free and random networks, depends on the speed of contamination.  

M. O. Jackson and D. Lopez-Pintado (2013) analyze the effects of homophily, which is the structure 

where nodes (people) with common characteristics are more likely to have connections. They show 

that all things being equal, higher homophily allows initial spreading of a disease.  

A more specific mathematical literature on curbing epidemics focuses on the optimal use of limited 

equipment. For instance, sequential dynamic resource allocation can be used to allocate limited 

medical resources to identified patients and limit contagion under constrained information (Fekom, 

M., N. Vayatis and A. Kalogeratos, September 9, 2019). The present analysis considers a case where 

even less information is available since spreaders are unknown.  

Although the convexity results are rather robust to changes in the proportion of unknown 

contaminated people, this proportion is relevant to assess the quantitative effect of the organizational 

improvements proposed in the present paper, and is crucial to implement the optimal cleaning 

allocation over different types of devices. The literature has rather focused on forecasting the number 

of symptomatic patients, since this information is directly relevant for the health system in an epidemic 

(Alvarez, L., March 28, 2020, and Flaxman, S., S. Mishra, A. Gandy, S. Bhatt, N. M. Ferguson et al., March 

30, 2020)9. Still, using basic assumptions, it is possible to derive the number of asymptomatic patients. 

                                                           
7 ‘graph’ is used by mathematicians, ‘network’ is used by social scientists and computer scientists 
8 Note that Jackson and Rogers use “contamination rate” for the speed of contamination, while I use this 
expression for the proportion of contaminated people in the whole population.  
9. Websites providing forecasts include Alvarez: https://sites.google.com/site/luisalvarezsite/covid-19-italy-

france and Verrardi : http://homepages.ulb.ac.be/~vverardi/COVID_19.html 

https://sites.google.com/site/luisalvarezsite/covid-19-italy-france
https://sites.google.com/site/luisalvarezsite/covid-19-italy-france
http://homepages.ulb.ac.be/~vverardi/COVID_19.html
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3. Framework 

I consider all healthy people to be susceptible to infection. Extension to the SIR case where healed 

patients are immune is straightforward and is detailed in section 9.2.  

Contamination happens through the successive use of a device (a “device” can be a restroom, a coffee 
machine, an access hatch…) by both unidentified sick and healthy people. A large number of people 

use a limited number of devices. This large number of people makes sampling with replacement offers 

a decent modelling approximation.  n is the average number of people using a device between two full 

cleanings of the device. I neglect integer part problems. If n=1, the contamination risk is null, so I focus 

on cases with n>1. Cleaning constraints, measured by n, decrease with cleaning capacities and increase 

with the number of people using the device.  

Full cleaning is the cleaning intervention that breaks with probability one any chain of contamination 

from a spreader to a healthy person. If the device can be fully cleaned between each use, no 

contamination happens. I focus on the realistic case where such systematic full cleaning is not possible. 

If full cleaning is impossible, convexity results may remain relevant but their interpretation is modified. 

For instance, in case of aerosol contamination, many institutions are unable to clean the air in closed 

rooms. Still, if the virus aerosol half-life is low enough, so that one night may constitute a natural full 

cleaning of the air, then the convexity results may apply to the number of people entering a room over 

one day10.  

The population is divided between spreaders and healthy users. Spreaders are all people who are 

already contaminated; they are unknown, because otherwise, they would be isolated and cured for 

their own protection and the protection of their colleagues. Healthy users are susceptible to infection. 

Extension to the SIR-like case where healed people are immune is straightforward and is discussed in 

section 9.  

α is the exogenous proportion of unknown spreaders in the population using a device. α can vary over 

time, but I neglect dynamic aspects.  

β is the conditional probability for a healthy person to get contaminated, provided that a contaminated 

person has used the device since the last cleaning: [1]     𝛽 = 𝑃( 𝑥 𝑔𝑒𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑 ∣∣ 𝑥 𝑖𝑠 ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 1 𝑠𝑝𝑟𝑒𝑎𝑑𝑒𝑟 ℎ𝑎𝑠 𝑢𝑠𝑒𝑑 𝑡ℎ𝑒 𝑑𝑒𝑣𝑖𝑐𝑒 )       
In many cases, β can be reduced by individual and collective hygienic behaviors. However, in the case 

of aerosol contamination, reducing β is more difficult. In section 5.1, I analyze the simultaneous use of 

a room (office, production line…). Then the definition of β is modified accordingly: [2]   𝛽 = 𝑃( 𝑥 𝑔𝑒𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑 ∣∣ 𝑥 𝑖𝑠 ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 1 𝑠𝑝𝑟𝑒𝑎𝑑𝑒𝑟 𝑠ℎ𝑎𝑟𝑒𝑠 𝑡ℎ𝑒 𝑟𝑜𝑜𝑚 )                
In sections 5 and 6, I assume that the number of spreaders has no effect on the conditional probability 

of contamination. Still, in sections 7 to 9, I consider alternative processes in which each additional 

spreader increases linearly the probability of contamination, in line with the literature. Then, β is : [3]   𝛽 = 𝑃( 𝑥 𝑔𝑒𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑 ∣∣ 𝑥 𝑖𝑠 ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 1 𝑚𝑜𝑟𝑒 𝑠𝑝𝑟𝑒𝑎𝑑𝑒𝑟 ℎ𝑎𝑠 𝑢𝑠𝑒𝑑 𝑡ℎ𝑒 𝑑𝑒𝑣𝑖𝑐𝑒 )              [4]   𝛽 = 𝑃( 𝑥 𝑔𝑒𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑 ∣∣ 𝑥 𝑖𝑠 ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 1 𝑚𝑜𝑟𝑒 𝑠𝑝𝑟𝑒𝑎𝑑𝑒𝑟 𝑠ℎ𝑎𝑟𝑒𝑠 𝑡ℎ𝑒 𝑟𝑜𝑜𝑚 )                     
I consider here the static case where each user uses a device only once, which extends simply to the 

simultaneous case. I neglect the effect of time between users. In the real world, an increase in the 

time-span between the contamination of a device and its use by a healthy person is likely to affect the 

probability of contamination of this person. The different assumptions in my framework corresponds 

                                                           
10 Reminder: half-life on plastic or stainless steel is higher than aerosol half-life for SARS-CoV-2 so that a natural 

cleaning of the air does not ensure a similar cleaning of these surfaces. 
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to intensive use of a device, so that this assumption is a decent approximation in the case of a long or 

infinitesimal half-life, but is unrealistic otherwise11. 

This framework can be interpreted in network models as follows. Graph 1 illustrates the successive use 

case. First step is the exogenous stochastic contamination of all users outside of the process analyzed 

here. For instance, workers can get contaminated at home (children, friends) or in the transportation 

system when coming to work, and so on. Each worker gets contaminated with probability α.  

Second step is the potential contamination analyzed in the present study. In the left panel, workers 1 

to 4 use the same device, and workers 5 and 6 use another device. Worker 1 can contaminate users 2 

to 4, user 2 can contaminate user 3 and 4, and user 3 can contaminate user 4, who cannot contaminate 

anyone because she is the last user. User 5 can contaminate user 6, who cannot contaminate anyone. 

The main result of the present study is that the network displayed in the right panel will always 

decrease expected exposure and contamination  

.

 

Graph 1: network representation of successive use - unequal use (left) and equal use (right) 

Graph 2 displays the simultaneous case, which is analyzed in most of the literature. General theoretical 

results presented in section 4 do not generalize to this framework, which may explain why they have 

been overlooked. Still, in many practical case, “better organization” described by the right panel is 

beneficial. 

 

Graph 2: network representation of simultaneous use - unequal use (left) and equal use (right) 

I use “exposure” or “single-spreader” for frameworks where contamination depends on at least one 

(previous or simultaneous) spreader (sections 5 and 6). I allow for additional effects of additional 

spreaders in sections 7 to 9. 

                                                           
11 A simple example may clarify these points. Assume a device is used by many people so that the no-use time 

between two people is 10 minutes. If the half-time is one minute, the number of viruses will have been divided 

by 1024 when the next person comes in. And if the half-time is very long, waiting a bit will make negligible 

difference. Conversely, if the half-time is similar to the no-use time, then waiting may make a big difference. 

According to Doremalen, Bushmaker, Morris et al. (op. cit.), the aerosol half-life of SARS-CoV-2 is 1.1 to 1.2 hours 

and the time between two users may matter. Whether in normal conditions, the virus will stay aerosol in a closed 

room or fall rapidly to the round is, to the best of my knowledge, an open question at the time of writing. 
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4. General convexity results for successive use 

Theorem 1: 

In the successive use framework, if the ex ante probability of contamination is the same for all users, 

the exposure function, which measures the number of healthy (susceptible) users exposed to 

contamination by at least one contaminated person, is convex. 

Proof:  

(1) In the successive use framework, additional exposure due to an additional user is the probability of 

exposure of this user if she is healthy. This probability is the probability that at least one previous user 

was already contaminated.  

(2) The probability that a given user is already contaminated is strictly positive but strictly lower than 

one, thus the probability that at least one previous user is contaminated is strictly increasing in the 

number of previous users.  

Combining (1) and (2), and given that the probability that the new user is healthy is constant, the 

additional exposure due to an additional user is strictly increasing with the number of previous users, 

i.e. the exposure function is convex. □ 

Theorem 2: 

In the successive use framework, if the ex ante probability of contamination is the same for all users, 

the expected contamination function, which measures the expected number of newly contaminated 

people depending on the number of already contaminated users, is convex. 

Proof: 

(1) In the successive use framework, the expected contamination due to an additional user is the 

probability of contamination of this user if she is healthy. This probability is an increasing function of 

the number of previous users that were already contaminated.  

(2) Since the ex ante probability that each user is sick is strictly positive, the expected number of 

spreaders among previous users is a strictly increasing function of the number of previous users. 

Combining (1) and (2), and given that the probability that the new user is healthy is constant, the 

additional probability of contamination due to an additional user is strictly increasing with the number 

of previous users, i.e. the expected contamination function is convex. □ 

Theorem 3: In the successive use framework, if the ex ante probability of contamination is the same 

for all users, if the effect of a spreader on the probability of contamination of a subsequent user 

decrease with the time between them in a way that is consistent over time, then the probability of 

contamination function is convex.  

Note that an effect that is decreasing in the time interval between a spreader and a healthy user in a 

way that is consistent over time typically covers any exponential decay framework. 

Proof: 

(1) In the successive use framework, the expected contamination due to an additional user is the 

probability of contamination of this user if she is healthy. This probability is an increasing function of 

the number of previous users that were already contaminated. 

(2) Since the decreasing effect due to the time interval between a spreader and a healthy user is 

consistent over time, then in expectation, the cumulated effects of potential spreaders 1 to n-1 on user 

n is the same as the cumulated effect of potential spreaders 2 to n on user n+1. However, user n+1 is 

also affected by the potential additional effect of user 1 in case user 1 is a spreader. 
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Combining (1) and (2), and given that the probabilities that users n and n+1 are healthy are equal, the 

additional probability of contamination of user n+1 is higher than the additional probability of 

contamination of user n, i.e. the expected contamination function is convex. □ 

Convexity of expected exposures and new contaminations with respect to n reflects two facts: (1) if 

many people use the same device, the probability that at least one of them is contaminated increases, 

(2) additionally, the number of people exposed to contamination obviously increases with the number 

of people using the device.  

Corollary 1:  

In successive use frameworks with identical devices, if the same number of people uses each device 

between to full cleanings, then expected exposures and contamination are reduced with respect to 

cases of heterogeneous use with the same average number of users. 

Proof: 

Let 𝐸[𝑐𝑛] be the expected number of exposures or new contaminations when n people use a device 

between two full cleanings. We can write 𝑓(𝑛) = 𝐸[𝑐𝑛]. Since, 𝑓(𝑛) is convex, Jensen inequality writes: 𝑓(𝐸(𝑛)) < 𝐸((𝑓(𝑛)). We define as n* the average number of people that use a device between two 

cleanings. n* derives directly from exogenous parameters such as the number of users and the cleaning 

capacities; thus, n* can be considered as fixed exogenously. We get: [5]                              𝑓(𝑛∗) < 𝐸[𝑓(𝑛)] = 𝐸[𝐸[𝑐𝑛]] = 𝐸[𝑐𝑛] □                                                                             
That is, we can minimize the expected number of contaminated people by ensuring that each device 

is used by exactly n* people between two cleanings (no more and no less), where n* is the average 

number of people using each device between two cleanings. Empirically, the effect of small deviations 

(e.g. +/- 1) is small except if n* is also very small. Conversely, larger deviations have substantial effects.  

Theorems 1 to 3 and corollary 1 do not generalize to the simultaneous use framework, and I provide 

counterexamples in sections 6 (contamination by a single spreader case) and 7.2 (multiple spreaders 

with increasing probability of contamination), although in practice convexity matters in many cases 

also for simultaneous sue so that “better organization” reducing the variance of the number of users 
makes it possible to slow contamination down. Successive use corresponds to the directed network 

framework, while simultaneous use corresponds to the undirected network framework which is 

analyzed in most of the literature. This may explain why, to the best of my knowledge, the general 

convexity results detailed in theorems 1 to 3 have not been identified yet. 

5. Successive use with contamination by a single spreader 

Convexity is a general feature of exposures and expected contamination function in the successive use 

case. Still, the relevance of organizational measures aimed at reducing the variance of the number of 

users depends on the degree of convexity. In the present section, I tackle this issue for contamination 

by (at least) one spreader, i.e. when additional spreaders do not increase the probability of 

contamination. I show that the gains from better organization can be substantial, especially when the 

proportion of spreaders in the population is low. 

5.1 The convexity of the exposure function 

The first person who uses the device after a full cleaning cannot be contaminated. Provided that this 

person is sick, which happens with probability α, and the second user is healthy, which happens with 

probability (1-α), this second user can be contaminated with probability β. Thus the unconditional 

probability of contamination of the second user is β(1-α)α. Similarly, the probability that the third user 

is contaminated is β(1-α)(1-(1-α)²), and so on. The expected number of contaminated people when 

exactly n people use the same device between two full cleanings is: 
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[6]                                                   𝐸[𝑐𝑛] = 𝛽(1 − 𝛼) ∑(1 − (1 − 𝛼)𝑖−1)       𝑛
𝑖=2                                                    

where β is defined by [1]. With 𝑟 = 1 − 𝛼, [5] simplifies to: 

[7]                                                  𝐸[𝑐𝑛] = 𝛽𝑟 (𝑛 − 1 + 𝑟 𝑟𝑛−1 − 1𝛼 )                                                                    
which is clearly increasing in n12. For n>=2, [5] induces:  [8]                               𝐸[𝑐𝑛] − 𝐸[𝑐𝑛−1] = 𝛽(1 − 𝛼)(1 − (1 − 𝛼)𝑛−1)                                                                
which is also increasing in n so that 𝐸[𝑐𝑛] is a strictly convex function of n.  

In [6], the sum over n is the average number of people exposed to contamination because they use a 

device after at least one spreader. Graph 3 displays this component, which depends only on 𝛼 and n. 𝛽(1 − 𝛼) is merely a scaling constant determining the conditional probability that a person using a 

contaminated device gets contaminated indeed.  

Convexity is clear for the lowest values of α (upper graph). It is less visible for higher values (lower 

graph), partially as an effect of the change in scale, but also and more fundamentally because for higher 

values of α, the probability that at least one user is a spreader increases very fast. As soon as it is close 

to one, the number of exposures increases almost one-to-one (and thus linearly) with the number of 

users, so that there is less to gain locally over convexity. For α=0.3, it takes only 5 first users for the 

probability of device contamination to exceed 0.8, and it takes only seven users for α=0.2.  

 

                                                           
12 I define static use as the single use of a device by each person. Given the assumptions, the fact that a spreader 

uses a device repeatedly between two cleanings is not relevant. Conversely, if a healthy person uses a device 

between two cleanings, she may be contaminated the first time and thus cannot be “re-contaminated” 
afterwards. However, if 𝛼 and 𝛽 are small, the probability that the individual is contaminated the first time is 

small, especially because if she has time to use the device twice between two cleanings, then it is likely that the 

first time happens “at the beginning of the queue”, i.e. just after a cleaning, when the probability of 

contamination is low. Thus I can neglect this aspect by approximation. 
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Graph 3: expected number of exposures to a contaminated device, depending on the number of uses 

between two full cleanings and the proportion of unknown contaminated users (successive use) 

Thus, the gains from better organization of the use and cleaning of a device are greater when the 

proportion of spreaders α is low, which is typically the case at the beginning of an epidemic.  

5.2 Relative and absolute gains from optimal use and cleaning 

Table 1: relative increase in exposure  

due to a mean-preserving deviation of n/2 

α          n 6 10 20 

0.001 29,9% 27,6% 26,0% 

0.002 29,8% 27,4% 25,6% 

0.005 29,5% 26,9% 24,7% 

0.01 28,9% 26,1% 23,1% 

0.02 27,9% 24,4% 20,2% 

0.05 24,8% 20,1% 13,4% 

0.1 20,4% 14,2% 6,6% 
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0.2 13,2% 6,7% 1,4% 

0.3 8,1% 2,9% 0,3% 

Table 1 displays the relative increase in exposures due to suboptimal organization for different values 

of α for three examples. The idea is to get the increase in contamination for exogenously given number 

of people, number of devices, and cleaning capacities. I compare the optimal case (n users use the 

device between two cleanings) to a mean-preserving deviation in which one device is cleaned after 

n/2 and another device is cleaned after 3n/2 uses. I present the increase in exposures due to this 

deviation. The overall picture is that the decrease in exposure from better organization is high for small 

α. When α exceeds 2%, the relative effect decreases strongly. 

 
Graph 4: absolute increase in exposure due to a mean-preserving deviation of n/2, depending on α 

Graph 4 displays the absolute additional exposures due to mean-preserving deviations. The x-axis is 

the proportion of unknown spreaders in the population (α). The y-axis is the absolute increase in the 

number of contamination due to bad organization. Each curve corresponds to the absolute additional 

exposure induced by a mean-preserving deviation of +/- n/2. For instance, the solid yellow line 

corresponds to the case n*=20; for a proportion of unknown spreader equal to 0.01, cleaning one 

restroom after ten users and the other after thirty users increases the expected number of healthy 

users by 0.4, when compared to cleaning both restrooms after twenty users. 

The effect of optimal organization reaches a peak for low values of α, especially if the cleaning capacity 

is limited (high n). For n=20, the mean-preserving deviation has maximal effect (0.964 exposure) for 

α=0.0513. 

Such threshold is well below any “collective immunity” threshold. Second, α can only be estimated 

with a large confidence interval, using for instance large-scale tests, or using the number of deaths, 

severe cases or symptomatic cases combined with assumptions of the speed of propagation. Third, the 

rate of contamination during the expansion phase of an epidemic is approximately exponential. 

Fourth, the peak happens for lower values of α when n is higher. High n corresponds to stringent 

constraints on cleaning and may correspond to many realistic cases.  

Finally, these results are encouraging and show the possibility of slowing contamination down at no 

cost (except administrative costs) over the first phase of an epidemic. Still, whenever possible, cleaning 

constraints must also be reduced, e.g. by reducing the number of workers, by increasing cleaning 

                                                           
13 At the time of completing this article, a study published by Imperial College (Flaxman, S., S. Mishra, A. Gandy, 

S. Bhatt, N. M. Ferguson et al., March 30, 2020)) evaluates α=0.03 by end March 2020 in France.  
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capacities14, or, if the cleaning calendar is fixed by nature (e.g. every night for aerosol contamination) 

by increasing the number of available devices15.  

6. Simultaneous use 

The baseline case (uniform exposure if at least one user is a spreader) can be extended to the case of 

simultaneous use. If n people work in the same office, the expected number of new contaminations is: 

[14]                                                  𝐸[𝑐𝑛] = 𝛽 ∑ 𝑖. 𝐶𝑛𝑖 (1 − 𝛼)𝑖𝑛−1
𝑖=1 𝛼𝑛−𝑖                                                                    

where β is defined by equation [2], 𝐶𝑛𝑖 = 𝑛!𝑖!(𝑛−𝑖)!, and for each piece of the sum, i is the number of 

healthy people susceptible to contamination, and n-i is the number of spreaders. Note that for ease of 

computation, the number of spreaders and healthy users (i and n-i in section 5) are inverted in the 

present section.α is the same as before (proportion of unknown spreaders) while β is now the 

probability of contamination of a healthy person sharing a room, over a given time interval, as defined 

by equation [2].  

The sum over i is, modulo the last missing term in n, the computation of the expected value of the 

binomial distribution Β(n,1-α), which is equal to n(1- α). Thus [15]                                                    𝐸[𝑐𝑛] = 𝛽[𝑛(1 − 𝛼) − 𝑛(1 − 𝛼)𝑛]                                                               𝐸[𝑐𝑛] − 𝐸[𝑐𝑛−1] can be computed from [15]. Another method is to use direct combinatory reasoning. 

When an additional person n works in a room, additional contamination may happen either if person 

n is a spreader while none of the other users is, or if at least one of the other user is a spreader and 

person n is not. Thus: [16]                𝐸[𝑐𝑛] − 𝐸[𝑐𝑛−1] = 𝛽. [∝ (𝑛 − 1). (1−∝)𝑛−1 + (1−∝). (1 − (1−∝)𝑛−1)]                            
[16] is not always increasing in n and is actually decreasing for high values of α and n Thus, [14] is not 

convex. The intuition is the following, from equation [16]: when α is high enough, the probability that 

none of the first n-1 users is a spreader (i.e. (1-α)n-1) decreases exponentionally with the number of 

users, which eventually more than counteracts the increasing potential effect of an infected newcomer 

on n-1 incumbents. Mathematically, (𝑛 − 1). (1−∝)𝑛−1 decreases with respect to n when α and n are 

large enough. Since the other part of the bracket converge to 1-α (if 0<α<1), we get: 

Theorem 4: 𝐹𝑜𝑟 𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑢𝑠𝑒 , ∀𝛼, ∃𝑛 ̂(𝛼) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀𝑛 ≥ 𝑛 ̂(𝛼), 𝐸[𝑐𝑛] 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥 𝑖𝑛 𝑛  
Graph 5 displays the value of α as a function of 𝑛 ̂ (2 ≤ 𝑛 ̂ ≤ 30). When α is higher, E(cn) becomes 

concave for lower n. Note that E(cn) cannot be concave for n<3. Indeed, E(cn) is null for n=0 or 1, and 

strictly positive for n=2. For α=2/3, concavity of the number of exposure is verified for all n higher than 

3. For α =0.1, concavity is verified for all n higher than 10.  

                                                           
14 For instance, for α=0.05, the absolute gain due to the optimal organization is 0.96. but for the same value of 

α, the gain from loosening the cleaning constraint and reducing n from 20 to 18 reduces absolute exposure by 

1.23. Once again, it is not always possible to reduce cleaning constraints. 
15 Unfortunately, the latter result is not trivial and is disregarded in many occasions. For instance, during the 

COVID19 epidemic, many anecdotal examples in large organizations show a concentration of cleanings on a 

reduced number of still available restrooms (while many restrooms are closed). This organization is innocuous if 

contamination happens through fomites, but very detrimental in case of airborne contamination.  
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Graph 5: values of α determining the concavity threshold 𝒏 ̂ 

Thus, in this framework, reducing variance is only efficient for low values of α and n. Whether reducing 

variance can be detrimental (rather than only inefficient) depends on the degree of concavity.  

Graph 6 displays the exposure curves for the simultaneous case.  
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Graph 6: expected number of exposures to a contaminated device, depending on the number of 

users and the proportion of unknown contaminated users (simultaneous use) 
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Graph 6 (continued) 

The curves crossing in the graph for α equal to 0.1, 0.2 and 0.5 reflects that as α increases, a higher 

proportion of people are already sick and thus cannot be contaminated.  

Even for high values of α, concavity remains limited, and for large n, the curves converge to affine 

functions so that there is not much to lose or gain locally from concavity. This is why the negative 

values in Table 3 are low in absolute terms, especially for intermediate values of n (that is, for the same 

deviations as those presented in Table 1). 

Table 3: relative increase in the number of expected exposures due to mean-preserving deviations 

α 

Small n Intermediate n global 

3 +/- 1 3 +/- 2 4 +/- 1 4 +/- 2 6 +/- 3 10 +/- 5 20 +/- 10 10 +/- 9 

0.001 16.6% 66.5% 8.3% 33.2% 29.8% 27.5% 25.8% 89.1% 

0.002 16.6% 66.3% 8.3% 33.1% 29.7% 27.3% 25.3% 88.3% 

0.005 16.5% 65.8% 8.2% 32.8% 29.2% 26.5% 23.8% 85.8% 

0.01 16.3% 65.0% 8.0% 32.2% 28.4% 25.2% 21.5% 81.8% 

0.02 15.8% 63.4% 7.8% 31.0% 26.8% 22.8% 17.4% 74.2% 

0.05 14.6% 58.5% 6.9% 27.7% 22.4% 16.5% 8.1% 54.9% 

0.1 12.6% 50.8% 5.6% 22.6% 15.9% 8.5% 0.3% 31.8% 

0.2 8.9% 36.7% 3.3% 13.6% 6.2% -0.1% -2.1% 7.8% 

0.3 5.5% 24.2% 1.4% 6.4% 0.3% -2.6% -0.9% -1.2% 

0.4 2.5% 13.3% 0.0% 1.0% -2.7% -2.3% -0.2% -4.0% 

0.5 0.0% 4.2% -0.9% -2.7% -3.5% -1.4% 0.0% -4.8% 

2/3 -2.8% -7.4% -1.3% -5.1% -2.4% -0.3% 0.0% -5.0% 

Closer examination of the exposures formulas and curves reveals two facts. First, for high α, concavity 

occurs mainly for very small n, since for larger n the exposure curves converge very fast toward affine 

functions. Second, for high α, the slope of the latter affine functions is rather flat. The combination of 

initial concavity and subsequent flat slope provides scope for global concavity. 

As regards initial concavity, I compute small deviations for small n (left panel of table 3). For very high 

α, local concavity can be meaningful. For instance, having one person in a room and five in another 

reduces exposures by 7.4% with respect to the three/three organization. Still, the reverse holds, and 

with much larger difference, when α is lower than 0.4.  

As regards global concavity, I compute large deviations presented in the last column of table 3. 

Concavity can be meaningful: having one person in a room and 19 in another reduces exposure by 5% 

if α=2/3. Note that this result only means that all people in the “big” room are exposed for sure, while 
the lonely one is not. Still, the reverse holds for α lower than 0.2, with larger benefits for equal 

distribution. Gains can be substantial for small n and small changes in n. Note that in the simultaneous 

use case, implementing precise small changes in n is realistic in many settings. 

As a conclusion, although local and global concavity exists for simultaneous use with high values of α, 

this concavity is much less meaningful than the convexity observed for lower α. Overall, and except if 

α is known to be very high, reducing the variance of simultaneous occupation of offices and other 

rooms is beneficial. Still, concavity above a threshold which decreases with α provides further 

argument for early organizational action during an epidemic. 

7. Additional effect of multiple spreaders: the linear probability case 

The exposure framework (one spreader suffices and additional spreaders do not increase the 

probability of contamination) provides a simple mathematical polar case. Still, the literature often links 

exposure to many spreaders with a higher probability of contamination.  
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7.1 Successive use when the probability of contamination increases with the number of spreaders 

I have considered the case where the probability of contagion depends only on the fact that at least 

one previous user is already contaminated. But the number of users may also have an effect. If 𝛽 ≤1 𝑛 − 1⁄ , the conditional contamination rate can be approximated with the linear probability model in 

which each spreader increases linearly the probability of contamination. In this case, for 1<=i<n, user 

i+1 is exposed to a number of previous spreaders which is: 

[11]                                                𝐸[# 𝑠𝑝𝑟𝑒𝑎𝑑𝑒𝑟𝑠(𝑖)] = ∑ 𝑗. 𝐶𝑖𝑗𝛼𝑗(1 − 𝛼)𝑖−𝑗𝑖
𝑗=1                                                  

Where 𝐶𝑖𝑗 = 𝑖!𝑗!(𝑖−𝑗)!. Thus, the expected number of new contaminations when n users use successively 

a device is: 

[12]                                                𝐸[𝑐𝑛] = 𝛽(1 − 𝛼) ∑ ∑ 𝑗. 𝐶𝑖𝑗𝛼𝑗(1 − 𝛼)𝑖−𝑗𝑖
𝑗=1

𝑛−1
𝑖=1                                                  

Where β is defined by equation [3]. The sum over j is the computation of the expected value of the 

binomial distribution В(i,α), which is equal to iα, so that: 

[13]                                                 𝐸[𝑐𝑛] = 𝛽(1 − 𝛼) ∑ 𝑖𝛼𝑛−1
𝑖=1                                                                                     

       =  𝛽𝛼(1 − 𝛼) (𝑛 − 1)(𝑛 − 2)2  

Thus [13] is a parabola, is convex and actually more convex than [5] for large realistic values of n. This 

provides additional argument to decrease the variance of n. Of course, decreasing the expected n 

remains a first best, whenever possible. 

Table 4: relative increase in exposure  

due to a mean-preserving deviation of n/2 

n 6 10 20 

 45.0% 34.7% 29.2% 

Note that with linear probabilities, the relative gains do not depend upon α. However, linear 

probabilities are considered here for tractability. If α is high, the number of spreaders increases quickly 

with n so that, unless β is arbitrarily low, linear probabilities quickly sum above one. With logit or probit 

probabilities, which may be more realistic in many setups, the relative effects may be slightly lower, 

but are likely to depend on α, as in the baseline case presented above. 

7.2 Simultaneous use with linear probability 

The risk of contamination is likely to increase with the simultaneous number of spreaders in a room. If 𝛽 ≤ 1 𝑛 − 1⁄ , the risk of contamination can be approximated with the linear probability model in which 

each spreader increases linearly the probability of contamination: 

[17]                                     𝐸[𝑐𝑛] = 𝛽 ∑ 𝑖. (𝑛 − 𝑖)𝐶𝑛𝑖 (1 − 𝛼)𝑖𝑛−1
𝑖=1 𝛼𝑛−𝑖                                                                    

                   = 𝛽 ∑ 𝑖. (𝑛 − 𝑖)𝐶𝑛𝑖 (1 − 𝛼)𝑖𝑛
𝑖=1 𝛼𝑛−𝑖                                
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                                                        = 𝛽𝑛 ∑ 𝑖. 𝐶𝑛𝑖 (1 − 𝛼)𝑖𝛼𝑛−𝑖𝑛
𝑖=1 − 𝛽 ∑ 𝑖2𝐶𝑛𝑖 (1 − 𝛼)𝑖𝛼𝑛−𝑖𝑛

𝑖=1                                
where β is defined by equation [4]. The two sums correspond to the first and second moments of a 

binomial distribution Β(n, 1-α). Thus:  𝐸[𝑐𝑛] = 𝛽𝑛2(1 − 𝛼) − 𝛽[𝑛𝛼(1 − 𝛼) + 𝑛2(1 − 𝛼)2] 
which, after a series of simplifications, gives [18]                                     𝐸[𝑐𝑛] =  𝛽𝛼(1 − 𝛼)𝑛(𝑛 − 1)                                                                                        
and therefore: [19]                 𝐸[𝑐𝑛] − 𝐸[𝑐𝑛−1] = 2𝛽𝛼(1 − 𝛼)(𝑛 − 1)                                                                                         
[19] is increasing in n so that [18] is convex (which is also directly noticeable). Note that [19] can be 

obtained by direct combinatory reasoning. Over a sample of n-1 users, on average there are (n-1)(1-α) 

healthy people, and the nth user is a spreader with probability α, so that with the linear probability 

model, the increase in contamination over the n-1 first users due to the arrival of user n is 𝛽𝛼(1 − 𝛼)(𝑛 − 1). Furthermore, over the first n-1 users, the expected number of spreaders is (n-1)α 

and the nth is healthy with probability (1-α) so that he gets contaminated with probability 𝛽𝛼(1 − 𝛼)(𝑛 − 1). The addition of both effects provides equation [19].  

8. Multiple spreaders with alternative inverse link functions 

8.1 Inverse link functions 

The linear probability model is valid at best only locally. An obvious limitation of this model is that for 

high values of α, β and n¸ the “probability” of contamination provided by this model is higher than one. 
This problem is common and in order to solve these limitations, “inverse link functions” also called 
“mean functions” can be defined. I suggest two inverse link functions, which define the conditional 

probability of contamination when i spreaders have used a device (successive use) or share the room 

(simultaneous use). The first inverse link function is: [20]                                                             𝛽(𝜇, 𝑖) = 𝑖𝑖 + 𝜇                                                                                          
For any μ in R+, 𝛽(𝜇, 𝑖) is increasing in i, 𝛽(𝜇, 0) = 0 (provided that 𝛽(0,0) is defined to be 0) and 𝑙𝑖𝑚𝑖→+∞𝛽(𝜇, 𝑖) = 1, thus 𝛽(𝜇, 𝑖) is a good candidate for an inverse link function (which is sometimes 

called a mean function). An interesting property of this family of functions is: [21]                                              ∀ 𝜇 ∈ (0, +∞), 𝛽(𝜇, 𝜇) = 12                                                                                   
that is, 𝜇 defines the number of spreaders for which conditional contamination is equal to one half. 

Thus, μ can be called the half-contamination parameter, and by extension, 𝛽(𝜇, 𝑖) is called the half-

contamination function and noted 𝛽ℎ𝑐(𝜇, 𝑖). Graph 5 displays the half-contamination function for 

μ=1/3 (which corresponds to a probability of contamination of 0.75 for one spreader), μ=1, μ=2, μ=5 

and μ=10. 



Harpedanne - Act Now or Forever Hold Your Peace - April 20, 2020 

18 

 
Graph 7: half-contamination inverse link function  

Another natural inverse link function is: [22]                                           𝛽𝑒𝑥𝑝(𝜈, 𝑖) = 1 − ( 11 + 𝜈)𝑖                                                                                    
Which can be called the exponential inverse link function. For any ν in R+, 𝛽𝑒𝑥𝑝(𝜈, 𝑖) is increasing in i, 𝛽𝑒𝑥𝑝(𝜈, 0) = 0 and 𝑙𝑖𝑚𝑖→+∞𝛽𝑒𝑥𝑝(𝜈, 𝑖) = 1.  𝛽𝑒𝑥𝑝(𝜈, 𝑖) is increasing with respect to ν; thus ν is a speed 

of contamination parameter.  

Graph 8 displays the exponential inverse link function for parameters calibrated so that one spreader 

induces a probability of contamination of 0.75 (ν=2), one spreaders induces a probability of 0.5 (ν=1), 
and the probability of contamination is one-half for contacts with  2, 5 and 10 spreaders (respectively, ν ≈ 0.631, 𝜈 ≈ 0.387 and 𝜈 ≈ 0.289), in order to compare with the curves displayed in Graph 7. 

 
Graph 8: exponential inverse link function  

8.2 Successive use, effects of multiple spreaders with inverse link functions 

With successive use, the expected number of new contaminations when n people use the same device 

is (using the half-contamination inverse link function with parameter μ): 
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[23]                                                              𝐸[𝑐𝑛] = (1 − 𝛼) ∑ ∑ 𝛽ℎ𝑐(𝜇, 𝑗)𝐶𝑖𝑗𝛼𝑗(1 − 𝛼)𝑖−𝑗𝑖
𝑗=1

𝑛−1
𝑖=1                         

                                                       = (1 − 𝛼) ∑ ∑ 𝑗𝑗 + 𝜇 𝐶𝑖𝑗𝛼𝑗(1 − 𝛼)𝑖−𝑗𝑖
𝑗=1

𝑛−1
𝑖=1   

Table 5 displays the relative increases in the expected number of contaminations when the conditional 

probability of contamination is determined by a half-contamination inverse link function with 

parameter μ=1 (left panel) and μ=5 (right panel). As with contamination by a single spreader (section 

5, table 1), the relative gains from better organization decreases when the proportion α of 

contaminated people (spreaders) increases.  

However, the effect of higher α is less noticeable than in the single spreader case. This confirms 

empirically that the inverse link frameworks are in-between the single-spreader case, where α has a 

strong effect, and the linear probability case, where α has no effect. Economically, this means that the 

effect of better organization decreases more slowly when additional spreaders have an effect than 

when only the first spreader affects the probability of contamination of subsequent users. 

Accordingly, the effect of better organization is lower than in the single spreader case when α is low, 

and higher when α is high. In table 5, bolded cells correspond to cases where local convexity is higher 

than in the single spreader case, so that the effect of better organization are higher.  

Table 5:  

relative increase in expected contaminations due to a mean-preserving  

deviation of n/2 – half-contamination inverse link function 

 

α          n 

μ=1 μ=5 

6 10 20 6 10 20 

0.001 21,4% 22,6% 23,6%  21,4% 22,7% 23,7% 

0.002 21,3% 22,5% 23,4% 21,4% 22,6% 23,6% 

0.005 21,1% 22,2% 22,8% 21,3% 22,5% 23,4% 

0.01 20,8% 21,7% 21,7% 21,2% 22,3% 22,9% 

0.02 20,2% 20,7% 19,9% 20,9% 21,8% 22,1% 

0.05 18,5% 18,0% 15,3% 20,1% 20,6% 19,8% 

0.1 16,0% 14,3% 10,2% 19,0% 18,7% 16,7% 

0.2 11,9% 9,2% 5,2% 16,8% 15,7% 12,4% 

0.3 8,9% 6,2% 3,1% 15,0% 13,3% 9,6% 

Using the exponential inverse link function with parameter ν, the expected number of contamination 

is: [24]                                                               𝐸[𝑐𝑛] = (1 − 𝛼) ∑ ∑ 𝛽𝑒𝑥𝑝(𝜇, 𝑗)𝐶𝑖𝑗𝛼𝑗(1 − 𝛼)𝑖−𝑗𝑖
𝑗=1                   𝑛−1

𝑖=1     
                                                                                  = (1 − 𝛼) ∑ ∑ (1 − ( 11 + 𝜈)𝑗) 𝐶𝑖𝑗𝛼𝑗(1 − 𝛼)𝑖−𝑗𝑖

𝑗=1     𝑛−1
𝑖=1     

Table 6 displays the relative increases in the expected number of contaminations when the conditional 

probability of contamination is determined by a exponential inverse link function with parameter ν=1 

(left panel) and ν=0.387 (right panel). These two cases correspond respectively to the cases where 

contamination happens with probability one-half if a healthy user follows one spreader (μ=1 with the 

half-contamination inverse link function) and after five spreaders (μ=5 with the half-contamination 

inverse link function). Results are qualitatively similar to the half-contamination inverse link function.  



Harpedanne - Act Now or Forever Hold Your Peace - April 20, 2020 

20 

Table 6:  

relative increase in expected contaminations due to a mean-preserving  

deviation of n/2 – exponential inverse link function 

 

α          n 

ν=1 ν =0.387 

6 10 20 6 10 20 

0.001 21,3% 22,6% 23,5% 21,4% 22,6% 23,6% 

0.002 21,3% 22,4% 23,2% 21,3% 22,5% 23,4% 

0.005 21,0% 22,0% 22,4% 21,2% 22,3% 22,9% 

0.01 20,6% 21,4% 21,2% 20,9% 21,8% 22,2% 

0.02 19,9% 20,2% 19,1% 20,4% 21,1% 21,1% 

0.05 17,8% 17,2% 15,0% 19,2% 19,6% 19,9% 

0.1 15,1% 14,0% 12,0% 18,0% 18,8% 19,5% 

0.2 11,9% 11,2% 8,2% 17,5% 18,7% 13,7% 

0.3 10,5% 9,5% 4,3% 17,9% 16,7% 6,7% 

 

8.3 Simultaneous use, multiple spreaders with inverse link functions 

In the single-spreader simultaneous use framework, concavity happens above a number of users that 

decreases when the proportion of spreaders increase (section 6). Conversely, in the linear-probability 

simultaneous use framework, the proportion of spreaders does not matter (section 7).  

As already noticed, the frameworks with the half-contamination or exponential inverse link functions 

are in-between these two polar cases. With a low half-contamination parameter μ or a high speed of 

contamination parameter ν, the probability of contamination can be arbitrarily close to that of the 

single-spreader framework. Conversely, with high μ or low ν, this probability can be arbitrarily close to 

the linear probability framework. Thus, whether the contamination function is convex or not is a 

parameter-dependent issue. 

When users share a room simultaneously, and the conditional probability of contamination is 

determined by a half-contamination inverse link function, the expected number of new 

contaminations is: 

[25]                                                                 𝐸[𝑐𝑛] = ∑ 𝛽ℎ𝑐(𝜇, 𝑖)(𝑛 − 𝑖)𝐶𝑛𝑖𝑛−1
𝑖=1 𝛼𝑖(1 − 𝛼)𝑛−𝑖                               

                                                                                     = ∑ 𝑖𝑖 + 𝜇 (𝑛 − 𝑖)𝐶𝑛𝑖𝑛
𝑖=1 𝛼𝑖(1 − 𝛼)𝑛−𝑖                                    

For this framework Table 7 displays the relative increase in the expected number of contaminations 

due to non-optimal organization, as defined in section 6, Table 3. Each panel of table 7 corresponds to 

a value of the half-contamination parameter: μ=1/3 in the upper panel (one spreader induces a 0.75 

probability of contamination), μ=1 in the central panel, and μ=5 in the lower panel.  

As in the single-spreader case of section 6, the benefits of better organization are higher for low 

proportions of spreaders in the population. For low values of the half-contamination parameter, the 

results are rather similar to those of the single-spreader model, and “better organization” is 

detrimental when the proportion of spreaders is high. For high values of the half-contamination 

parameter, the effect of the proportion of spreader is less noticeable and remains positive even for 

high proportions of spreaders, which gets closer to the linear probability case where this parameter is 

fully irrelevant.  
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Table 7: relative increase in the number of expected contaminations 

due to mean-preserving deviations – half-contamination inverse link function 

μ=1/3 

α 

Small n Intermediate n global 

3 +/- 1 3 +/- 2 4 +/- 1 4 +/- 2 6 +/- 3 10 +/- 5 20 +/- 10 10 +/- 9 

0.001 16,6% 66,5% 8,3% 33,2% 29,9% 27,6% 25,9% 89,3% 

0.002 16,6% 66,4% 8,3% 33,1% 29,7% 27,3% 25,4% 88,5% 

0.005 16,5% 66,0% 8,2% 32,8% 29,3% 26,7% 24,2% 86,4% 

0.01 16,3% 65,2% 8,1% 32,3% 28,6% 25,6% 22,2% 82,9% 

0.02 16,0% 63,8% 7,8% 31,4% 27,3% 23,5% 18,6% 76,4% 

0.05 14,9% 59,7% 7,1% 28,5% 23,4% 18,0% 10,4% 59,5% 

0.1 13,2% 53,1% 6,0% 24,1% 17,8% 10,9% 2,9% 38,9% 

0.2 10,0% 40,8% 4,0% 16,2% 9,2% 2,7% -0,8% 15,8% 

0.3 7,0% 29,8% 2,3% 9,8% 3,5% -0,5% -0,7% 5,7% 

0.4 4,4% 20,2% 1,0% 4,8% 0,3% -1,2% -0,3% 1,3% 

0.5 2,1% 11,9% 0,1% 1,2% -1,3% -1,0% -0,2% -0,7% 

2/3 -0,7% 1,0% -0,6% -2,2% -1,6% -0,5% -0,1% -2,2% 

μ=1 

α 

Small n Intermediate n global 

3 +/- 1 3 +/- 2 4 +/- 1 4 +/- 2 6 +/- 3 10 +/- 5 20 +/- 10 10 +/- 9 

0.001 16,6% 66,6% 8,3% 33,3% 29,9% 27,6% 26,0% 89,4% 

0.002 16,6% 66,4% 8,3% 33,2% 29,8% 27,4% 25,6% 88,9% 

0.005 16,5% 66,1% 8,2% 32,9% 29,5% 26,9% 24,7% 87,2% 

0.01 16,4% 65,6% 8,1% 32,6% 28,9% 26,1% 23,1% 84,5% 

0.02 16,1% 64,5% 7,9% 31,8% 27,9% 24,4% 20,2% 79,3% 

0.05 15,3% 61,2% 7,4% 29,6% 24,8% 20,1% 13,4% 65,8% 

0.1 14,0% 56,0% 6,5% 26,1% 20,4% 14,2% 6,6% 48,4% 

0.2 11,4% 46,3% 4,9% 19,8% 13,2% 6,7% 1,4% 27,1% 

0.3 9,1% 37,5% 3,5% 14,5% 8,1% 2,9% 0,3% 15,9% 

0.4 6,9% 29,5% 2,4% 10,1% 4,6% 1,1% 0,0% 9,8% 

0.5 5,0% 22,5% 1,5% 6,6% 2,4% 0,4% 0,0% 6,2% 

2/3 2,4% 12,7% 0,5% 2,6% 0,6% 0,0% 0,0% 2,9% 

μ=5 

α 

Small n Intermediate n global 

3 +/- 1 3 +/- 2 4 +/- 1 4 +/- 2 6 +/- 3 10 +/- 5 20 +/- 10 10 +/- 9 

0.001 16,7% 66,6% 8,3% 33,3% 30,0% 27,7% 26,2% 89,8% 

0.002 16,6% 66,6% 8,3% 33,3% 29,9% 27,6% 26,0% 89,5% 

0.005 16,6% 66,4% 8,3% 33,2% 29,8% 27,4% 25,6% 88,8% 

0.01 16,5% 66,2% 8,3% 33,0% 29,5% 27,0% 24,9% 87,6% 

0.02 16,4% 65,7% 8,2% 32,7% 29,1% 26,3% 23,6% 85,3% 

0.05 16,1% 64,3% 7,9% 31,7% 27,7% 24,3% 20,1% 78,8% 

0.1 15,5% 62,0% 7,5% 30,1% 25,6% 21,3% 15,6% 69,5% 

0.2 14,4% 57,6% 6,8% 27,2% 21,9% 16,4% 9,8% 55,1% 

0.3 13,3% 53,4% 6,1% 24,4% 18,7% 12,8% 6,5% 44,7% 

0.4 12,2% 49,4% 5,4% 21,9% 16,0% 10,1% 4,6% 36,9% 

0.5 11,2% 45,6% 4,8% 19,6% 13,7% 8,1% 3,4% 31,1% 

2/3 9,6% 39,7% 4,0% 16,3% 10,6% 5,8% 2,2% 24,0% 
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Using the exponential inverse link function with parameter ν, this expected number of new 

contaminations is: 

[26]                                                                  𝐸[𝑐𝑛] = ∑ 𝛽𝑒𝑥𝑝(𝜇, 𝑖)(𝑛 − 𝑖)𝐶𝑛𝑖𝑛−1
𝑖=1 𝛼𝑖(1 − 𝛼)𝑛−𝑖                            

                                                                                      = ∑ 𝛽𝑒𝑥𝑝(𝜇, 𝑖)(𝑛 − 𝑖)𝐶𝑛𝑖𝑛
𝑖=1 𝛼𝑖(1 − 𝛼)𝑛−𝑖                            

Table 8 displays the same results as table 7, but for the case with exponential rather than half-

contamination inverse link function. Results are similar for both types of inverse link functions, 

except that in the “exponential” case, “better organization” is always beneficial for small n but is 

detrimental for high n event when the speed of contamination parameter is low.  

9. Robustness and limitations 

9.1 Robustness and misspecification 

The convexity results presented here are quite general. In particular, they must be taken into account 

in the dynamic case: even with repeated uses, at each time the cross-section variance of n must be 

kept low.  

The framework used in the present paper assumes that all non-spreaders are susceptible to 

contamination. The extension to a SIR-like model where healed people are immune is straightforward: 

either immune people are known, and they must be excluded from computation, or only their 

proportion is known. In the latter case, let h be the proportion of immune (healed) people in the 

population of non-spreaders. Then [5] becomes: 

[27] 𝐸[𝑐𝑛] = 𝛽(1 − 𝛼)(1 − ℎ) ∑(1 − (1 − 𝛼)𝑖−1)𝑛
𝑖=2  

Other equatiosare modified accordingly. Note that for the sake of simplicity, I have defined h as a 

proportion of non-spreaders, not as a proportion of the total population. Conversely, if h affects the 

proportion of spreaders, all equations would have to be modified accordingly.  

9.2 Variance of the contamination rate and probability of an outbreak 

Reducing the variance of exposure in order to slow contagion is a new idea. Actually, in a slightly 

different context, Lipsitch et al. (2003) show that for a given average rate of contamination (number 

of people infected by each spreader), if the number of cases in the total population is limited to a 

handful, then a higher variance of the contamination rate reduces slightly the probability of an 

outbreak. Given this apparent contradiction, the difference between the present framework and the 

analysis of Lipsitch et al. must be explained. 

First, the decrease in the probability of an outbreak identified by Lipsitch et al. is quantitatively limited, 

and relies on the fact that the number of cases in the total population is very limited: with ten 

spreaders, an outbreak is almost certain whatever the variance.  

Second, and more importantly, a higher variance reduces the probability of an outbreak but not the 

expected number of contaminated people. Actually, Lipsitch et al. document that over the 201 first 

SARS cases in Singapore, 103 were contaminated by just 5 people. Thus, there is no real contradiction 

between the present analysis and that of Lipsitch et al., who do not assert that higher variance would 

be beneficial in any sense.  

Table 8: relative increase in the number of expected contaminations 
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due to mean-preserving deviations – exponential inverse link function 

ν=2 

α 

Small n Intermediate n global 

3 +/- 1 3 +/- 2 4 +/- 1 4 +/- 2 6 +/- 3 10 +/- 5 20 +/- 10 10 +/- 9 

0.001 16,6% 66,5% 8,3% 33,2% 29,8% 27,5% 25,8% 89,1% 

0.002 16,6% 66,3% 8,3% 33,1% 29,7% 27,2% 25,3% 88,2% 

0.005 16,5% 65,8% 8,2% 32,7% 29,2% 26,4% 23,8% 85,7% 

0.01 16,2% 64,9% 8,0% 32,1% 28,3% 25,2% 21,5% 81,6% 

0.02 15,8% 63,2% 7,7% 31,0% 26,7% 22,8% 17,6% 74,1% 

0.05 14,6% 58,3% 6,9% 27,6% 22,4% 16,9% 10,5% 56,5% 

0.1 12,5% 50,6% 5,6% 22,6% 16,5% 10,8% 6,8% 39,2% 

0.2 8,9% 36,9% 3,5% 14,5% 9,4% 6,8% 3,1% 26,5% 

0.3 5,8% 25,8% 2,1% 9,2% 6,8% 5,8% -1,2% 20,2% 

0.4 3,4% 17,1% 1,4% 6,3% 6,7% 3,6% -2,7% 12,8% 

0.5 1,8% 10,8% 1,4% 5,8% 7,1% 0,5% -2,2% 5,8% 

2/3 1,5% 6,0% 2,7% 8,6% 5,3% -3,3% -0,9% -1,5% 

ν=1 

α 

Small n Intermediate n global 

3 +/- 1 3 +/- 2 4 +/- 1 4 +/- 2 6 +/- 3 10 +/- 5 20 +/- 10 10 +/- 9 

0.001 16,6% 66,5% 8,3% 33,2% 29,9% 27,5% 25,9% 89,2% 

0.002 16,6% 66,4% 8,3% 33,1% 29,7% 27,3% 25,4% 88,5% 

0.005 16,5% 65,9% 8,2% 32,8% 29,3% 26,6% 24,2% 86,3% 

0.01 16,3% 65,2% 8,1% 32,3% 28,6% 25,6% 22,3% 82,9% 

0.02 15,9% 63,8% 7,8% 31,3% 27,2% 23,6% 19,2% 76,7% 

0.05 14,9% 59,6% 7,1% 28,5% 23,6% 18,9% 14,0% 62,7% 

0.1 13,2% 53,1% 6,1% 24,4% 19,0% 14,5% 10,9% 50,0% 

0.2 10,2% 41,9% 4,4% 18,1% 13,9% 11,5% 4,1% 39,5% 

0.3 7,8% 33,2% 3,4% 14,3% 12,4% 8,9% -1,9% 29,3% 

0.4 6,0% 26,8% 3,1% 12,7% 12,0% 4,6% -3,4% 17,7% 

0.5 5,0% 22,7% 3,3% 12,8% 11,0% 0,0% -2,7% 8,0% 

2/3 5,5% 20,8% 4,4% 15,2% 6,0% -4,5% -1,0% -1,1% 

ν=0.387 

α 

Small n Intermediate n global 

3 +/- 1 3 +/- 2 4 +/- 1 4 +/- 2 6 +/- 3 10 +/- 5 20 +/- 10 10 +/- 9 

0.001 16,6% 66,6% 8,3% 33,3% 29,9% 27,6% 26,0% 89,5% 

0.002 16,6% 66,5% 8,3% 33,2% 29,8% 27,5% 25,7% 89,0% 

0.005 16,5% 66,2% 8,2% 33,0% 29,5% 27,0% 24,9% 87,6% 

0.01 16,4% 65,7% 8,2% 32,6% 29,0% 26,3% 23,8% 85,4% 

0.02 16,2% 64,7% 8,0% 32,0% 28,2% 25,2% 22,4% 81,8% 

0.05 15,5% 62,0% 7,5% 30,2% 26,2% 23,1% 21,7% 76,0% 

0.1 14,4% 58,0% 7,0% 27,9% 24,3% 22,6% 20,6% 74,6% 

0.2 12,8% 52,2% 6,3% 25,6% 24,3% 22,6% 7,2% 70,0% 

0.3 11,8% 49,0% 6,4% 25,8% 25,6% 17,0% -2,8% 51,0% 

0.4 11,6% 48,3% 7,0% 27,6% 25,3% 8,1% -4,9% 29,4% 

0.5 12,2% 49,9% 7,9% 30,3% 21,9% 0,1% -3,7% 13,3% 

2/3 15,3% 57,2% 9,7% 34,1% 10,7% -6,7% -1,2% -0,2% 
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10. Conclusion and future research 

The homogenous use and cleaning of a limited number of devices used successively by many people 

limits contamination when some users are unknown contagious carriers of a virus. That is, it is optimal 

that the same (or at least a very similar) number of people uses each device between two cleanings. 

This result is based on the fact that when many people use the same device, the probability that some 

of them are infected increase and the number of people they can infect also increases, so that the 

number of exposures to contamination is a convex function of the number of successive users. This 

result is robust to parameters such as the proportion of spreaders or the conditional probability of 

contamination. For realistic parameters values at the start of an epidemic, reducing heterogeneity in 

use and cleaning reduces substantially the speed of contamination. However, for this baseline 

framework, the effects tend to decrease when the proportion of contaminated people increase.  

Convexity results extend only partially to the simultaneous use framework, for which I evidence 

concavity above a number of users that decreases with the proportion of spreaders. This provides 

additional argument for early organizational action in times of epidemic. 

I also consider the case where more spreaders increase the conditional probability of contamination. 

Convexity tends to increase, at least with the linear probability model. This model, which is used for 

tractability, may lack realism if the proportion of spreaders is high. Further work, using for instance 

logit or probit transforms, may be in order here. 

Surprisingly enough, these variance considerations, as well as the simple need to reduce the average 

number of people using a device or sharing a space, are often disregarded even during deadly 

epidemics. Also, the previous literature points to the beneficial effects of higher variance on the risk 

of an outbreak, but to the best of my knowledge, not to its detrimental effects on the expected number 

of contaminations.  

Although crucial, these variance considerations are second-order with respect to the need for 

decreasing the average number of users and more generally to the need for public health policies of 

social distancing, test and track, or others, in times of epidemic. Their advantage is to be 

implementable in times of high uncertainty with very scarce information. In later phases, they may 

help slow contamination and, for instance, make test and trace policies more efficient. Note that if the 

research question addressed here is the speed of contamination rather than the final steady state, 

these variance considerations could be embedded in a more general framework to assess their 

contribution to decreasing the contamination rate Rt below one during epidemics. 

The meaning of the results presented here depends on the channels of contamination at work in a 

specific epidemic. Cleaning constraints may be imposed by the ratio of the number of people and uses 

to the cleaning capacity over a given period. In that case, and if the time span between two users does 

not matter, the number of devices is of minor relevance. Conversely, if cleaning constraints are time-

related (e.g. natural cleaning happens over night as regards aerosol risk of contamination) or if the 

time-span between two users matters, then increasing the number of devices decreases exposure. 

These topics deserve consideration in future work. 

Dynamic analysis (people using the devices or sharing the offices/production lines repeatedly) is 

required in future research and may include topics like constant nominal allocation of people to 

devices and constant running order. The case of different types of devices and the optimal organization 

with constant nominal allocation (e.g. the potential optimality of having the same and/or nested 

nominal allocations of a group of people to different types of devices) deserves consideration.  
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Appendix 

Optimal cleaning with two types of devices 

In the successive use case, it is interesting to assess the optimal cleaning strategy when two (or more) 

types of devices are used, for instance, restrooms and coffee machines. I express the cleaning costs in 

terms of the change in the number of users of a device that can be obtained by allocating one marginal 

“unit” of cleaning capacity to this type of device. That is, the reallocation of a marginal unit of cleaning 

capacity from user 2 to user 1 decreases n1 by Δn1 and increases n2 by Δn2
16. An intuitive notation of 

the costs k1 and k2 of cleaning respectively devices of types 1 and 2 is:  𝑘1 = 1|∆𝑛1| and 𝑘2 = 1|∆𝑛2| 
At the optimum, the gains from allocating a marginal unit of cleaning to a device of type 1 must equal 

the losses from deallocating a marginal unit of cleaning from a device of type 2. 𝐸[𝑐𝑛1] − 𝐸[𝑐𝑛1−1] and 𝐸[𝑐𝑛2] − 𝐸[𝑐𝑛2−1] provides decent approximation of the absolute value of changing respectively n1 

and n2 by one unit. If α is small enough and if n1 and n2 are large enough, these differences can also 

represent decent approximation in the neighborhood of n1 and n2. Thus: [𝐴 − 1]           |∆𝑛1|. {𝐸[𝑐𝑛1] − 𝐸[𝑐𝑛1−1] } = |∆𝑛2|. {𝐸[𝑐𝑛2] − 𝐸[𝑐𝑛2−1] }                                                   
or: [𝐴 − 2]                                                          𝑘1𝑘2 = 𝐸[𝑐𝑛1] − 𝐸[𝑐𝑛1−1]𝐸[𝑐𝑛2] − 𝐸[𝑐𝑛2−1] = 𝛽1(1 − 𝛼)(1 − (1 − 𝛼)𝑛1−1)𝛽2(1 − 𝛼)(1 − (1 − 𝛼)𝑛2−1)        
First, note that given the assumption of initial exogenous contamination, and since I disregard the 

endogenous dynamics, α is the same for both types of devices. On the right-hand-side, what changes 

between both devices is the conditional probability of contamination β and the number of users n. 

Also, the numerator and the denominator are increasing functions of n, so that from [10], the optimal 

(constrained) ni increases with ki.  

  

                                                           
16 Note that costs are expressed in marginal number of users, i.e.  in unit of time*use intensity, not time alone. 


