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Abstract

There has been a long tradition of presumed perfect mobility in urban economics. Workers switch their

locations in direct response to differences in local economic performance. Recent empirical observations

prove otherwise. The number of movers rapidly declines with distance moved while there is a positive

correlation between distance moved and skill level. I build a general equilibrium model of a system of cities

to explain the city-size distribution as a result of reduced mobility. Workers with a heterogeneous skill level

have a corresponding distance-tolerance level and self-sort into select cities. The resulting size distribution

reflects the trade-off between the distance moved and earning opportunities enhanced by agglomeration.

I extrapolate consumers’ tolerance towards distance and skill level from US Census data on city size and

intercity migration.
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JEL classification: J61, R12

1 Introduction

1.1 Consumers Are Not Footloose

Labor mobility exhibits recognizable geographical patterns. There is a log linear relationship between inter-

city migration and distance moved. An exceeding share of migration occurs within a close proximity and

there are only a few who move coast to coast. The US does not impose any statutory restrictions on relocation

of households, and yet, consumers behave as if there were some in place. Take St. Louis for example. Figure 1

represents the inflow into the city from other metropolitan statistical areas (MSA). The vast majority of people

in the city are from Missouri and Illinois when in fact consumers are free to move anywhere in the country.

The inflow drops at an exponential rate with distance. When the distance increases by 1%, the inflow from

that area drops by about 1%. It is known that the city-size distribution has a fat tail (cf. figure 2, Gabaix and

Ioannides [GI04], and Duranton [Dur07]). The intercity migration itself follows the same rank-size pattern as

shown in figure 1(b).

The city-size distribution is a result of household relocation. Any city size is the sum of the inflows into,

less the outflows out of, the city over time. It does not take a big leap to imagine that the city-size distribution

hinges on the degree of ease of movement. However, mobility has been overlooked in the literature, and

probably for good reasons (to be discussed below). The models of the city-size distribution traditionally

assume perfect mobility. Workers move to another city in direct response to local economic conditions

regardless of how far the distance moved is. The resulting equilibrium size distribution is independent from

where workers were in the period before. While the path dependence takes place on the side of productivity

at the city level, at the individual level, workers behave as if they do not remember or care which cities they

lived in preceding periods.

This paper is tasked with explaining why there is a correlation between inflow frequency and distance

moved in order to describe the city-size distribution as a result of intercity migration. I identify four causes,

among many, as critical factors behind the geographically bounded labor mobility.

∗Department of Economics, Concordia University, and CIREQ. Address: 1455 boul. de Maisonneuve O, Montréal (Québec) H3G 1M8.
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Figure 1. Data source: US Census Bureau, 2009-2013 American Community Survey.
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Figure 2. US city-size distribution (population in log scale). Data source: US Census
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Figure 3. Reason for relocation by educational at-

tainment. Data source: Geographical mobility be-

tween 2014 and 2015, US Census.

The first conjecture is, all else equal, that the geographi-

cal extent of job search expands with the level of skill. Ph.D.

students on the job market fly everywhere, whereas it is un-

likely to see a high school student looking through fast food

restaurant chain’s vacancy notices all over the country. In

fact, employment-related reasons list among the primary fac-

tors of relocation. As figure 3 shows, employment-related

reasons become more predominant as the level of educational

attainment steps up.

Davis and Dingel [DD12] show that skilled labor tend to

move more frequently as a result of spatial sorting triggered

by idea exchange. In their model, Skilled labor has different

equilibrium utility levels depending on their skill level. They move to the city where they can make full use of

their skill. Consequently, they tend to move farther and more frequently compared to unskilled labor. They

suspect that their findings are set off by difference in the search behavior of workers of varying skill levels.

Rauch [Rau13] shares the same supposition. See Molloy et al. [MSW11] for other reasons behind relocation.

Regarding heterogeneous skills and spatial sorting, Behrens et al. [BDRN14] show that workers sort into
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a city and select their occupation according to their skill level. Along with skill levels, location-variant

serendipity determines the productivity and in turn the degree of agglomeration in each city. Eeckhout et al.

[EPS14] find evidence in support of extreme skill complementarity where the co-presence of workers from

top- and bottom-tier skill levels does not undermine but rather enhances their productivity. In either model,

relocation is costless or does not depend on the distance moved.

Mobility is a topic of interest in labor economics too, but not in the same sense as I discuss in the

current paper. Market imperfections lead to reduced mobility in terms of type-matched industry, but not

geographical mismatch (cf. Manning [Man10] and Hirsch et al. [HJO16]).

Along with the heterogeneous skill levels, uncertainty aversion may deter long-distance relocation. A

resident in Duluth, MN is likely to know more about the local economy of Minneapolis than that of Houston

for example. If he receives identical job offers from both locations, a move to Minneapolis is easier as he

does not have to learn about the city as much as he would about Houston. I expect that consumers become

exponentially less knowledgeable about the local economy of a city as it gets farther from his birthplace.

Thirdly, I assume that all else equal, a worker prefers to work near her birthplace for social reasons.

Whereas a worker may be mobile per se, it is prohibitively costly to move the entire network of people she

meets in her daily personal or social life. In addition, she may not know about the urban life in a distant city

as much as her home town’s. While job-related reasons are an important determinant in location choice as

discussed above, she does not live for her job alone. She might also enjoy the social life, which is intrinsically

chained to the location it takes place and she cannot take it with her to another city. Thus, presented with

two identical job opportunities, one in her birth city and the other from elsewhere, she prefers to take the

former.

Together with the cost of being far from their social network, workers may incur a lingering region-

specific cost due to cultural differences within the same country. If a Québécois educated mostly in French

moves to Vancouver for a job in an Anglophone firm, his productivity, and by extension, his lifetime earnings

may be lower than what he could have made in a comparable but Francophone firm in Montréal. A liberal-

minded Minnesota expat in the South may find the life there tormenting, compared to a Texan of a similar

educational background in the South. Even if he could go back to Minnesota, the experience in the South

may turn out to be a traumatic life event that stays with him for the rest of his life, and thus very costly to

him. These regional differences in societal norms act as a deterrent against free mobility. Indeed, Falck et al.

[FHLS12] document Germans’ reluctance to move outside of their area of shared regional dialect. Woodard

[Woo11] suggests similar cultural divides in the US, which reduces mobility.

1.2 Mobility in Urban Economics

Nevertheless, perfect mobility is a sensible assumption to make when analyzing the city-size distribution for

two reasons. For the most part, researchers regard a city as a placeholder to host households. They leave off

geographical features when conducting their analysis and focus on a size and other economic variables that

are not tied to the location of the city. The equilibrium is unique only up to the size distribution but not to

the location of cities.

On balance, urban economists have been good at deriving the true-to-life size distribution but not as

good at identifying where cities are. And rightly so because correspondence between the size and the

location is not the salient features in the existing models. Workers can switch their locations at no cost

and thus do not sense the distance when they relocate. It matters little which city hosts which point in

the predicted size distribution. One can move all New Yorkers to St. Louis, and drive all St. Louisans out

into Minneapolis (or any permutation of size and location thereof) without making any difference in the

equilibrium outcome. This is justifiable because the city-size distribution arises as a result of depleted spatial

arbitrage opportunities. Any difference by location, be it the utility level or real wage, will be eliminated

in the end as consumers move (freely) to exhaust any arbitrage opportunities left. This greatly reduces the

number of the equilibria. Any worker of the same attributes achieves the same utility level regardless of how

far they had to move to realize it.

In addition, one could argue that relocation cost (and by extension the distance moved) is negligible in
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the grand scheme of things. While a consumer incurs the cost of relocation only so often, the benefits of

relocation (e.g., higher wage, better quality of life etc.) keep accruing over time once relocation is complete.

Thus the difference in distance moved is easily dwarfed by the lifetime increase in economic welfare.

However, the assumption could be expedient. While it is true that the pecuniary cost of relocation is a

one-time expense, out-of-towners may pay other implicit prices over a long period of time, be it personal

or regional as I explored above. If workers have young children in their household, they cannot ask their

parents or other family members to look after them once they move out of the city. And day care services

take up a significant portion of their income. Workers may want to visit their family or close friends from

high school every holiday season, and those trips cost them more (both in terms of time and money) if they

live farther away from home.

1.3 Tolerance to Distance

While I cannot observe consumers’ aversion to distance moved per se, the resulting distribution figure 1(b)

clearly suggests its existence. In this light, the current paper breaks away from the convention and incor-

porates consumers’ tolerance to distance as described above. I listed four factors that contribute to con-

sumers’ reluctance to move, but I cannot tell them apart because they can be observed only indirectly via

the geographical distribution of inflow. Instead of representing them one by one, I model distance-bound

household’s behavior with a single, general variable that measures the degree of tolerance towards distance

moved. Each consumer will draw her tolerance level from a given distribution and makes a location choice

based on it. Distance tolerance is interpreted broadly to represent the aforementioned skill level, affinity to

the birthplace and region-specific characters rather than a mere distance. For instance, a consumer raised in

a liberal household in California may find Texas very “far” not only geographically but also psychologically,

resulting in a low tolerance towards distance.

In the context of Starrett’s spatial impossibility theorem (cf. Starrett [Sta78], and Boyd and Conley [BC97]),

I am violating two assumptions in this paper; one majorly and the other only trivially. First, free mobility is

the very assumption that I would like to forgo. Consumers do assess relocation cost and it makes a sizable

difference in their welfare. The overwhelming majority of models of the city-size distribution keep to the

assumption of free mobility instead. Second, I violate the assumption of homogeneous space to break the

symmetry in the size distribution. Each industry receives a productivity boost only in a city, but not in a

rural area. However, I keep the violation to a bare minimum: I do not introduce city-variant productivity

differences. All the industries share the same productivity regardless of which city they are housed in. I will

discuss more on productivity in (6). Regarding the remaining assumptions, unlike New Economic Geography

models (cf. Fujita et al. [FKV99]), I maintain the assumption of perfect and complete markets.

The rest of the paper is organized as follows: In the upcoming section I will lay out the model and uncover

the relationship among distance, inflow and city size. I will validate my theoretical predictions in section 3

using US Census data, and section 4 concludes.

2 Model

2.1 Landscape

The economy is assumed to be closed. Some cities near the border may receive an economic boost for its

proximity to the country’s trading partners, or on the contrary, lag behind because they are far from the

center of domestic economic activities. In order to stay focused on reduced mobility, I take the country to be

a sphere X of size one. Since there is no end point on a sphere, if there is any asymmetry in equilibrium, I

know definitively that it is not caused by the terrestrial restrictions such as the proximity to the border or the

center of the country, but rather by imperfect mobility.

Consider a production economy of a system of cities. There are I cities indexed by i, and N (∈ R+)
consumers in the economy. The model rolls out in two stages. Initially, consumers are uniformly distributed

across the country. Each consumer is endowed with a pair (t, 2) ∈ {1, · · · , T} × Y (⊆ N×R). The first entry

is type t, which represents her skill and identifies her best suited industry to work in. There are nt of type-t
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consumers. Along with the type, she also draws her distance-tolerance factor 2 from the distribution with

probability density function (pdf) ft(2) and cumulative distribution function (CDF) Ft(2). A high 2 implies

that relocation is not costly and that she does not mind moving far. Note that
∫

Y
ft(2)d2= nt for all t, totaling

up to
∑

t

∫

Y
ft(2)d2= N nationwide.

The type distribution ft(2) may possibly depend not only on t but also on birthplace x ∈ X . However,

since consumers cannot chose a place to be born at, it is safer and more reasonable to assume that ft(2) takes

the same form regardless of the location.

In the first stage, consumer’s birthplace and type are revealed as above. However, for the reasons to be

discussed later in (14), consumers only know their value of (t, 2) but do not know from what distribution

their 2 is drawn.

In the second stage, consumers of type t make simultaneous and uncoordinated decision on their location.

A type-t consumer can either stay at her initial location x or move to one of the cities. For simplicity, assume

that each city attracts and/or hosts at most one type, in which case, T ≤ I . Furthermore, I set T = I so that

there is a one-to-one correspondence between the set of types and the set of cities.1 For each type, there

exists exactly one city conducive exclusively to that type. Empirically speaking, this assumption is not much

of a restriction to impose because of flexibility in T . If T falls short of I , I may split “prospective doctors”

into “prospective doctors who speak French” and “prospective doctors who do not” to increase T till it

matches I (the latter cannot move to Québec unless they are willing to change their vocation). From here on

I refer to type t by its corresponding city i and use the term “city”, “type” and “industry” interchangeably

where applicable.2 I will review below three choices of location that a type-i consumer can make and their

consequences:

1. move to type-matched city i (as portrayed by Chloe, the city dweller),

2. stay put at x (by Ryan, the rural resident), or

3. move to type-discordant city j(, i) (by Diane, the disoriented).

2.2 Chloe the City Dweller

First, take a look at Chloe, a type-i consumer who becomes a resident of city i.

2.2.1 Consumption and Location Choice

Her preferences over a numéraire composite consumption good ci and housing hi are represented by

u(ci , hi; x , 2) = ci(x , 2) +η log hi(x , 2), (1)

where η measures the portion of her expenditure on housing. See appendix A.1 for other preference specifi-

cations and interpretation on ci(x , 2). She is endowed with a unit of time, which she converts into ci(x , 2) to

earn wage 4i . Her budget constraint is

4i ≥ ci(x , 2) + pihi(x , 2) +ρ [li(x), 2] , (2)

where li(x) is the geodesic (the shortest path on the sphere) between x and city i, and ρ(·) measures the

lifelong opportunity cost of relocation.3 4 For any give 2 the opportunity cost of relocation ρ(·) is increasing

and concave in geodesic. Consumers’ nonlinear perception of distance gives grounds for this assumption. A

1I could set T < I , which would become superfluous: As I will establish later, any city i > T will not have any inflow of workers and fall

off the list of cities anyway.
2I will discuss this assumption further in section 4.
3 There are three ways to factor in aversion to relocation: 1) Put 2 directly into the utility function with

∂ u(·, ·, 2)
∂ 2 > 0. 2) Put 2 into the

budget constraint. 3) Combine the two above. I went for 2) because it is the most interpretive way to disentangle the role of tolerance from

the overall end result. Since the utility level does not equalize in equilibrium, it is hard to keep track of ρ(·) if I leave it nested in the utility

function. Nevertheless, with appropriate parameterization and some added complications, 1) and 3) will also lead to the same results to

follow.
4I take η to be less than 4i −ρ(·) for any i, x and 2 to exclude corner solutions.
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St. Louis native will find a move from St. Louis to Chicago more draining than a move from Fairbanks to

Anchorage (roughly the same distance apart). The additional cost increase wears out with the distance.

Coupled with this assumption, I also implement ∂ ρ[li(x), 2]/∂ 2< 0, i.e., the higher the distance tolerance

is, the lower the relocation cost will be. Note that 4i is constant across x and 2, and preferences over

(ci(x), hi(x)) are the same across 2 according to the current specifications: Her productivity will neither

increase or decrease regardless of how far she moved to reach i or how much she was willing to do so. In

addition, her preferences for the bundle are independent of 2 (though her Marshallian demand ci(x , 2) and

by extension, her indirect utility function will differ by tolerance level in equilibrium).

In addition to finding the optimal consumption bundle, a consumer also needs to make her location

choice. Denote location choice by a mapping 1i(x , 2) : X × Y → {0, 1, · · · , I}. If a consumer who drew (x , 2)

decides to become a Chloe, 1i(x , 2) = i. Similarly, for Diane, 1i(x , 2) = j(, i). I tack 0 to the set of cities

for Ryan: 1i(x , 2) = 0. In preparation for definition 2.1 of feasibility to follow, define an indicator function

1{i}[1i(x , 2)] that takes the value of 1 if 1i(x , 2) = i and 0 otherwise. For instance, Chloe takes the value of 1

whereas Ryan and Diane take 0.

2.2.2 Feasibility

Figure 4. Consumers are uniformly distributed on the ball

with radius r = 1

2
p
π

.

I will make a quick note here on the shape of the

country and the geographical distribution of con-

sumers. When the surface area is normalized to

unity, the radius of the ball is 1

2
p
π

(cf. figure 4).

Since each type is uniquely associated with their

type-concordant city, in what follows, I will iden-

tify x by the geodesic length between the type city

and consumer’s birthplace. (I will nevertheless call

back li(x) if the distinction between a generic loca-

tion and geodesic location is necessary for identifi-

cation purposes, where applicable). Land supply x

radian away from city i is sin x

2
(the perimeter of the

cut surface in figure 4). Accordingly, a measure of

type-i residents born x radian away from city i is

ni
sin x

2
. The number of type-i residents in city i is

then

si =

∫ π

0

ni

sin x

2

∫

Y

1{i}[1i(x , 2)] dFi(2)d x (3)

With all the necessary variables and functions in hand, I formally define the feasible allocation in this

economy as follows:

Definition 2.1 Feasible Allocation:

An allocation is a list of functions [ci(x , 2), hi(x , 2), 1i(x , 2)]I
i=1

with ci : X ×Y → R+ and hi : X ×Y → R+, location

choice 1i : X × Y → {0, 1, · · · , I}, and output (zi)
I
i=1
∈ RI

+
. Given type-size distribution (ni)

I

i=1
and distance-tolerance

distribution [ fi(2)]
I
i=1

, an allocation is feasible if

sizi =

∫ π

0

ni

sin x

2

∫

Y

1{i}[1i(x , 2)] ci(x , 2)dFi(2)d x , (4)

H =

∫ π

0

ni

sin x

2

∫

Y

1{i}[1i(x , 2)] hi(x , 2)dFi(2)d x , and (5)

si ≤ ni

for any i, where si is defined by (3).5

5Strictly speaking, I need to define Ryan’s allocation in definition 2.1 as well. I did not do so because the topic of interest, the city-size

distribution, does not depend on the feasibility with respect to Ryan-like consumers. The only role Ryan plays in the determination of the

size distribution is his absence, which I already made accounted for through the indicator function in (4) and (5). The same goes for Diane.
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As explained earlier, ρ(·) entails both tangible and intangible costs. It represents the airfare to visit Chloe’s

family every Thanksgiving for example. However, it goes beyond these out-of-pocket expenses. Along with

(4) and (5), I could as well hypothesize the third market for “consolation for relocation”. In other words,

Chloe or Diane “purchases” a unit of solace for being an expat or condolences for her virtual loss of friends

and families at the price of ρ(·). This third market would make it easier to interpret and place the present

model in the grand scheme of general equilibrium. While it is true that I seek to build a general equilibrium

model, I will leave out this market, because, hometown-bound airplanes aside, these “goods” do not come

in material form, and it is not clear who actually supplies them nor does there seem to be any resource

constraint on them to warrant an explicit condition. Instead, I simply take ρ(·) as a function of (x , 2) drawn

from the exogenous distribution and fold it into the budget constraint as an unavoidable dead load inflicted

upon her when she leaves her birthplace behind.

2.2.3 Production

Turning to production, as mentioned earlier, workers supply one unit of (perfectly inelastic) labor6 to produce

the composite goods with a constant returns to scale technology. In particular, τ units of labor produces

zi = Ai(si)τ units of composite goods. As opposed to what is conventionally assumed, I assume that Ai(si)

does not vary with industry i or city size si (unless it is zero). In particular

A(si) =

(

1 if si = 0

a(> 1) if si > 0.
(6)

In the current model, I do not rely on productivity differences to break the otherwise uniform distribution

of workers. I shut off the channel through which productivity differences bring in variations in city sizes in

order to isolate the role that distance tolerance plays, or else I will not be able to tell how much of the size

differences is the result of imperfect mobility. However, I still do need to secure some incentive for residents

to clump together in one location (a city). Absent economies of localization, no one will move to a city (cf.

Glaeser et al. [GKS01]). Specification (6) is the minimally invasive way to do so without introducing added

complications from type-dependent productivity.

Firms are a price taker and earn zero profit in equilibrium. Thus, each worker earns

4i = a. (7)

Evidently, the model does not pick up on the urban wage premium (cf. Yankow [Yan06]), which I can easily

incorporate by having a dependent on si in (6). Besides, my focus is imperfect mobility, not urban wage

premium. Note also that disposable income, i.e., wage 4i exclusive of the cost of relocation ρ(·), still varies

city to city, as 2 is drawn from type-specific fi(2), which in turn changes the realized value of ρ [li(x), 2] by

type, and subsequently, the disposable wage 4i −ρ(·) by city.7

2.3 Ryan the Rural Resident

Let us turn to Ryan. He is a type-i consumer who stays put. He becomes a Robinson Crusoe-type rural

resident to lead a life under the backyard capitalism. His marginal product gets pushed back to A(si = 0) =

1(< a) according to (6), housing consumption becomes independent of the city size, and the cost of relocation

turns ρ(0, 2) = 0. I mark his maximum utility level by 3i , which, by construction, is independent of x . It

still does depend on the housing units available in a rural area and how costly ρ(·) is to Chloe (and thus

how cost-saving it is to stay in the countryside by comparison). In order to keep the model on point, assume

that the land in the rural area is abundant enough and the number of people who do not move out of the

birthplace will not affect the value of 3i .

6Labor supply is not presumed to depend on the distance moved. An out-of-town worker may work more to compensate for the lifetime

cost of relocation. She may as well work less to spare time in rebuilding her social network in her newly acquainted foreign soil. In the

absence of available evidence, I shall take a neutral stance on labor supply.
7See appendix A.1 for more on the effective wage.
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Furthermore, assume 3i is the same across the types so as to remove arbitrariness. Variations in city size

are already captured by fi(2) and I do not need two sources of variations. I will discuss this further when I

determine the type composition between Chloe and Ryan in (14).

2.4 Diane the Disoriented

As a third option, another type-i consumer, Diane, could move to a type-incompatible city j(, i). In this

case, she will not receive a type-specific productivity boost either, i.e., A(si = 0) = 1. Worse yet, her housing

consumption will be smaller than the rural value above due to the likely presence of type- j residents choking

up the rent, whom Diane splits the land supply H with. As I will show later in (13), Ryan’s utility level is

at most Chloe’s. Thus, Diane in city j makes the same income (i.e., 1) as Ryan while having a smaller house

than Ryan’s. She will then achieve an even lower utility level than his. As such, I will safely rule out this last

option in equilibrium.8

2.5 Trans-Tolerance Value

For any given i,

ci(x , 2) = 4i −ρ [li(x), 2]−η, and (8)

hi(x , 2) =
η

pi

(9)

maximize (1) subject to (2). Chloe’s indirect utility function is then

3i (pi , 4i(x); x , 2, si) = 4i −ρ [li(x), 2]−η+η (logη− log pi) . (10)

Housing supply is H in each city and the housing market clears when

sihi = H, (11)

from which I obtain the equilibrium rent pi =
ηsi

H
, i.e, the more crowded the city becomes, the more expensive

the rent per unit will be. Note that the expenditure on housing is always pihi = η regardless of the city size:

Chloe copes with an increasing city size by reducing her lot size without changing her expenditure share of

housing.9

Firm’s first order condition (7) and housing market clearance (11) further simplify her indirect utility

function (10) to

3i (a, x , 2, si) = a−ρ [li(x), 2]−η log si +η(log H − 1). (12)

Unsurprisingly, Chloe’s utility level drops with distance x , holding everything else constant. Notice the

trade-off among the economies of agglomeration a, diseconomies of agglomeration −η log si and distance

tolerance 2. Holding the value of 3i(·) constant, if the destination city becomes crowded or the productivity

boost a gets smaller, the only residents with high enough tolerance 2 would become a Chloe, or else they are

better off becoming a Ryan.

Now consider who becomes a Chloe and who becomes a Ryan. A type-i consumer will become a Chloe

if her utility level (12) is greater than Ryan’s 3i :

3i (a, x , 2, si) = a−ρ [li(x), 2]−η log si +η(log H − 1)≥ 3i . (13)

A resident at the margin meets (13) with equality. Since ρ(·, 2) is strictly monotone decreasing in 2, one can

solve (13) with equality for 2 to define a trans-tolerance function

2i(x) ··= ρ−1
�

li(x), a−η log si +η(log H − 1)− 3i
�

. (14)

8At the intraurban level, there is an evidence of residents, albeit reluctantly, going for this option. See Coulson et al. [CLW01].
9Note also that as long as si > 0, any additional increase in si will not benefit Chloe in contrast to models that feature agglomeration.

In particular, agglomeration only swaps 1 in (6) with a that appears in (12) but nothing more regardless of the city size. Thus, for Chloe,

the best-case scenario is to have an infinitesimally small population in city i to unlock urban productivity (but she has no control over the

population).
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A couple of observations on (14) are in order. First off, 2i(x) determines the fraction of people to become

a Chloe. Anyone who drew 2 ≥ 2i(x) does not show much affinity to her birthplace or her opportunity

cost of staying put is too high and moves out, whereas anyone with 2 ≤ 2i(x) has a lot to lose by relocation

and stays in. Thus, the higher the trans-tolerance is, the higher the ratio of Ryan’s will be. In this regard,

trans-tolerance can be thought of as the minimum tolerance level required to make consumers want to move

out of their birthplace, or analogously, the maximum tolerance level permissible to have consumers stay in,

making it the threshold value of tolerance where the phase switches.

Secondly, 2i(x) is increasing in x because ρ(·) is increasing in li(x). In the vicinity of city i, the number

of Ryan’s is very small because it does not take much to turn residents a Chloe. As a result, the borderline

tolerance is pretty low. However, as the distance to i increases, the cost of relocation bears down on the

consumers and they will not become a Chloe as easily as before unless their tolerance is high, making the

borderline tolerance high as well.

There are in fact two ways to go about the trans-tolerance value. One is to assume that 2i(x) = 2(x) for

all i. The other is to allow 2i(x) to take different values depending on the type. I will explain the difference

between them below.

(a) Type-independent trans-tolerance. (b) Type-dependent trans-tolerance.

Figure 5. Shaded areas mark a measure of Chloe’s. In either case, type i has more Chloe’s than type j.

First suppose that 2i(x) = 2(x) for all i at any x ∈ X . If 2i(x) will be the same across the types, then

2 should have been drawn from different distributions depending on the type as in figure 5(a) (or else the

city-size distribution will be uniform). In this case, if fi(2) first-order stochastically dominates f j(2), then

si > s j (cf. (16) below). Type i should be more distance-tolerant than type j so that at any given x , more of

type i must have drawn 2 ≥ 2(x) than type j. In this case, 2 can be interpreted as a skill level that indicates

the favorable degree of concentration of workers. Industry j features low-skill labor that does not benefit

from concentration of workers within the same industry. Consequently, their distance tolerance is drawn

from the distribution with a low mean. By contrast, industry i involves a type of workers who capitalize

on interactions among them at a large scale. Type-i workers have a lower barrier to relocation because their

opportunity cost of staying put and not tapping into their urban productivity A(si)(> 1) is substantially high.

Now suppose instead that 2i(x) can differ from 2 j(x) but 2 itself is drawn from the identical distribution

regardless of the type as in figure 5(b). In this case, if 2i(x) < 2 j(x), then si > s j . The variation in city size

comes directly from (14), rather than the distribution from which 2 is drawn. City i has a larger influx of

people because the net effect of agglomeration a − η log si is large and/or the fallback utility level 3i is low.

Once again, type i is likely to be a high-skill type whereas industry j does not call for much concentration of

workers.

Empirically speaking, I cannot tell which one is at work because I do not have direct observations of

fi(2) or ρ−1(·). To cover all bases, I will consider both type-dependent and -independent trans-tolerance

for the empirical analysis in section 3. For the theoretical analysis to follow, I will pick type-independent

trans-tolerance (figure 5(a)) for the following reasons.
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I make two simplifications in order to implement the first way in a consistent manner. First one is what

I already made in section 2.3. The fallback value 3 is shared across the type so that, holding everything else

constant, trans-tolerance will not change by type because of the utility level Ryan achieves. Second, I take

si that appears in (14) to be an expected value of si for technical reasons. In the current model, after 2 is

drawn, consumers move on to the next stage, where everyone makes a simultaneous decision on his/her

location. Consumers only know their draw of 2 but presumably do not know what distribution it is drawn

from (neither do we in reality). Consequently, they cannot accurately compute the value of si before making

decision. For this reason, consider si in (14) to be an expected value of si , shared across the type. In this way,

I keep 2i(x) constant with respect to i. Nevertheless, the type-difference will be factored into the equilibrium

through a different channel, i.e., through a type-variant fi(2).

It is ideal to have the expected city size constant across the type. In this way I can ascribe all the variance

in size to imperfect mobility rather than to the existing city size. However, in reality, location choice is not

simultaneous and consumers make sequential decisions on location knowing the existing city size. I can

easily model this by letting the estimated value of si in the first stage match the realized value in the second

stage, which effectively turns the model into figure 5(b). That said, even if I opt instead for type-independent

2(x), the model is still consistent in that it concludes in two stages. Once consumers make their location

choice, they cannot take back their decision and readjust their location upon the realization of si , as there

are no subsequent periods to do so. Furthermore, since I forgo the utility equalization in equilibrium (cf.

definition 2.2), workers are not set to readjust their location anyway.10

While the ratio between Chloe and Ryan declines with distance, the measure of city residents flowing in

from location x ,

mi(x) ··= ni

sin x

2

∫ ∞

2(x)

fi(2)d2, (15)

is not necessarily monotone in x (I will come back to this shortly). Consequently, the city size is

si =

∫ π

0

mi(x)d x =

∫ π

0

ni

sin x

2

∫ ∞

2(x)

fi(2)d2d x . (16)

Note that si ≤ ni , i.e., not all the type-i residents become a Chloe unless 2(x)→−∞. Thus, the current model

could be regarded as a variant of Harris-Todaro model [HT70] with migration decision made on the basis of

urban-rural utility differential rather than expected income differential. Consequently, in the present model,

the urban population S =
∑I

i=1
si is at most equal to the total population N =

∑I

i=1
ni (and probably less).

In fact, most of the models of city-size distributions can be thought of as a limiting case of the present

model where trans-tolerance tends to infinity (2(x) → −∞) so that everyone becomes a Chloe. This can

happen in a couple of different ways. Looking at (14), if I remove the concept of distance, i.e., li(x) = 0 so

that any x ∈ X is equidistant and effectively 0 km away from city i, then no one bears the cost of relocation

ρ(0, ·) so that for sufficiently low 3i everyone becomes a Chloe and the size distribution turns uniform.

Similarly, if a or H becomes overwhelmingly dominant and/or 3i → −∞, even in the presence of sensible

distance li(x), everyone moves to city i. The resulting city-size distribution (si)
I
i=1

becomes the (exogenous)

type distribution (mi)
I
i=1

itself. Existing models endogenously derive the city-size distribution using other

factors of choice than imperfect mobility to frame agglomeration (the one more complicated than (6)).

2.6 Inflow as a Function of Distance Moved

Turning back to the aforementioned monotonicity, I establish

Proposition 2.1 Immigration and Distance Moved

For any type i, the inflow of workers mi(x) declines with distance moved for x ∈
�

π
2

, π
�

.

Proof. Both
∫∞
2(x)

fi(2)d2 and sin x decrease within the range of distance in question, making mi(x) decline

with x . �

10 I will lay off subscript i in 2i(x) until section 3.
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Remark. While this proposition sounds plausible and desirable, it is partly an artifact of having a ball for a

country. In figure 6(b), an unconditional mass of Chloe (the yellow line) drops with distance, whereas the

baseline population (the green line) only does so past the equator. Thus, the product of the two (the red line)

will decline past the equator for certain. What is important is the part that I cannot establish a proposition

for, i.e., what happens between 0 (city i) and π
2

(the equator). I expect that the percentage of Chloe’s naturally

declines with distance for increasing cost of relocation. However, conditional on 2, the base population itself

will increase with x . The size of the locations equidistant from city i is sin x

2
. With the assumption of a

uniform11 distribution of consumers, there are ni
sin x

2
of potential Chloe’s and Ryan’s, which increase till x

hits the equator. I do not know, when combined, how these two factors play out together. Between x = 0 and

(a)

0 (city i) /2 (equator)

distance x

0

y(x)

n
i
sin(x)/2

S
i
[y(x)]

[n
i
sin(x)/2]S

i
[y(x)]

(b)

Figure 6. The blue line is trans-tolerance 2(x) in both figures. The part sliced off in figure 6(a) is the mass of Chloe’s and

the remaining portion is Ryan’s. Si(2) denotes their survival function of fi(2). In figure 6(b), the yellow line is decreasing

if the blue line is increasing and vice versa. The red line is the product of green and yellow lines, i.e., the volume of the

part sliced off in figure 6(a). It is monotone decreasing in the lower hemisphere x ≥ π2 (proposition 2.1) but may not be so

in the remaining hemisphere.

π
2

, the migration rate (the red line in figure 6(b)) actually picks up first for increasing land size ni
sin x

2
before

it eventually starts to wind down as reduction from
∫∞
2(x)

fi(2)d2 eventually overwhelms the increasing land

size.

In view of this, one must be careful when interpreting estimation results in section 3. Just by the look of

mi(x), the real effect of distance intolerance may be offset by a mere geometric (and not economic) fact that

the perimeter of concentric circles gets longer as one moves far from center i towards x = π
2

.

Lastly, ρ−1(·) is decreasing in 2 as does ρ(·). Then holding else constant, the higher the in-city boost a is,

the lower the trans-tolerance will be, and consequently, the more residents will become a Chloe. The opposite

is true for diseconomies of agglomeration −η log si or the fallback value 3i . Thus, there is a trade-off between

a and si or 3i for given 2(x). To keep to the same 2(x) while a increases, si and/or 3i must be large as well.

As I alluded to in section 2.4, nobody becomes a Diane. Living in a wrong city, her composite good

consumption evens out with Ryan’s but her housing consumption falls behind his. She will be better off

staying put (to become a Ryan) or moving to her type-concordant city (to become a Chloe) than moving into

a city she is not cut out for.

Now that I know all consumers’ location choice, I can define the equilibrium.

11I can easily bypass this problem by banning Chloe and Ryan’s parents from giving birth in the upper hemisphere and making city i an

isolated island. This is indeed a viable scenario for workers moving to Alaskan or Hawaiian cities. For workers with their type-matched cities

found in the 48 contiguous states, the more likely scenario is that the initial distribution is not uniform but rather the opening population

declined with distance from potential city sites to begin with. Since I do not have a way to know what the real initial distribution was, this

scenario does not apply here.
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2.7 Competitive Equilibrium

Definition 2.2 Competitive Equilibrium:

An equilibrium is a feasible allocation [ci(x , 2), hi(x , 2), 1i(x , 2)]I
i=1

and (zi)
I
i=1

, and price system (pi)
I
i=1
∈ RI

+
, such

that [ci(x , 2), hi(x , 2), 1i(x , 2)]I
i=1

maximizes the utility level and (zi)
I
i=1

maximizes the profit under (pi)
I
i=1

for any

(x , 2) ∈ X × Y and i ∈ {1, · · · , I}

Note that since Diane fails to maximize her utility level and thus such a consumer cannot exist in equi-

librium, (4) and (5) simplify to

siA(si) =

∫ π

0

ni

sin x

2

∫ ∞

2(x)

ci(x , 2)dFi(2)d x , (17)

H =

∫ π

0

ni

sin x

2

∫ ∞

2(x)

hi(x , 2)dFi(2)d x , and (18)

in equilibrium.

Furthermore, using Chloe’s demand for goods (8) and the first order condition (7), and (17), the city size

can be written as

si =
1

a

∫ π

0

ni

sin x

2

∫ ∞

2(x)

{a−ρ[li(x), 2]−η} dFi(2)d x . (19)

The first item, 1

a
on the right-hand side of (19), may seem odd at first. How come the city size declines with

urban productivity? The answer is threefold. The first two reasons are commonplace among the models of

the city-size distribution, whereas the last one is specific to the current model.

First, it simply means that if urbanites are productive, it takes less of them to meet the same demand,

ceteris paribus. Moreover, this adverse effect is actually offset by two forces. To begin with, increased

productivity raises wage, which in turn increases demand as can be seen in (8). The city then needs more

workers to cater for growing demand, increasing si in the end. In most models, this is the end of the story,

and usually the second force (increase in demand) outweighs the first force (reduction in employment due

to better technology to lower required labor), because of the usual size-dependent urban productivity as

opposed to the size-independent productivity (6). Consequently, urban productivity does not reduce the city

size but rather increases it.

Furthermore, unique to the current model, better urban productivity lowers trans-tolerance so that those

who would otherwise stay put will become a Chloe upon realizing an increase in a. The overall effect

depends on the exact shape of fi(·). If fi(·) is low near 2(x), then an increase in a may backfire because A(si) is

only binary and does not have the city size built into it. In this case, immigration is not sensitive to a change

in 2(x) and by extension, in a. The consumer base does not grow much and the city may not need as many

workers after all.

Notice the curious lack of oft-cited utility equalization in definition 2.2, namely, I do not require 3i(a, x , 2, si) =

3 j(a, x , 2, s j) for all i, j (compare this to, for example, the first equation on the right column on page 1446

of Eeckhout [Eec04] or equation (8) in Berliant and Watanabe [BW18]). The utility level can and does vary by

type and by the initial location of a consumer in equilibrium. The utility level varies by type in Eeckhout et

al. (equation (3) in [EPS14]) as well but mine further varies by birthplace.

By and large, a Chloe who happened to be born close to her type destination achieves a higher utility

level than those who did not. There is no way to arbitrage this differential among Chloe’s in the current

model model as they cannot choose or optimize their place to be born into. Neither can we in reality.

The only utility equalization that is guaranteed to take place in the present model is that in the continuum

of distance tolerance, a Chloe who happens to draw 2= 2(x) achieves the same utility level as Ryan’s at each

x ∈ X . Recall that trans-tolerance 2(x) is so defined to pin down the ratio between Chloe’s and Ryan’s.

Therefore, the equilibrium utility level does not equate between Ryan and Chloe either, except at the margin.

Note also that the competitive equilibrium, if exists, is also Pareto optimal. I did not use externalities

of any form, be it positive or negative, to break the otherwise uniform distribution of economic activities.

Congestion, a usual source of negative externalities, exists here but it is priced through the housing market

and thus it is modeled not as real externalities but only as pecuniary externalities. Agglomerations, a usual
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source of positive externalities, take place too but in its uncomplicated form (6), adding another Chloe to a

city does not increase an incumbent Chloe’s productivity, which already took a jump from 1 to a when the

first Chloe moved in and has hung at a since. Thus, the first fundamental theorem of welfare economics

applies here.

2.8 City-Size Distribution

Since I cannot derive the city-size distribution without specifying the form of fi(2), I will narrow down

some candidate forms. First of all, I need to be able to tell types apart using only fi(·). I did not introduce

heterogeneous productivity in (6) in order to keep the focus on geographical mobility. Thus, any difference

in city size needs to arise out of heterogeneous distance tolerance: if fi(·) and f j(·) are identical, then, barring

any other source of heterogeneity, si and s j become identical too as can be seen from (3).

That said, I may introduce heterogeneity via the cost of relocation ρ(·) instead of fi(·) to the same effect.

Put differently, I can define ρi(·) by type. Therefore, I have some degree of freedom. In total there are three

possible ways to move forward from here:

1. Assume fi(·) and ρ(·): Type differs only in distance tolerance but once 2 is drawn, consumers recognize

it in the same way regardless of their type.

2. Assume f (·) and ρi(·): Distance tolerance is identically distributed but the way consumers recognize it

differs by type.

3. Assume fi(·) and ρi(·): A combination of both.

(Note that at least one of the two has to be type dependent or else people will end up in a uniform size

distribution). Researchers are free to pick whichever depending on the data availability. Unfortunately, there

are no data available on either one of them as far as I am aware. Since ρ(·) is bivariate while fi(·) is univariate,

I will take the first option for tractability reasons.

Along with these two functions, one may also make ni vary with i. However, ni is orthogonal to mobility.

To turn off its explanatory power, I assume ni is constant across i. Bear in mind that it is not useful to collect

the data on the size of an individual industry to estimate ni . The size of the industry only represents the

people who did move to the city, but not the potential number of people who are best suited for the industry

but did not make it to the city due to their low distance tolerance. Nevertheless, I will keep the subscript for

comparative statics later to examine the trade-off between ni and fi(·).
Given this, I can rewrite city size (16) as:

si =

∫ π

0

ni

sin x

2
Si[2(x)]d x , (20)

where Si(2) ··= 1− Fi(2) is the survival function of 2.

I will differentiate distance-tolerance distributions by some criteria to make testable predictions out of

(16). There are various ways to rank density functions. I propose two of them below and discuss their

implications on the city-size distribution.

Proposition 2.2 First-Order Stochastic Dominance and City Size

If fi(·) first-order stochastically dominates f j(·), si ≥ s j in equilibrium.

Proof. Suppose that fi(·) first-order stochastically dominates f j(·). For any given location x , Si[2(x)] ≥
S j[2(x)]. Integrating both sides of the inequality over the country with the density of ni

sin x

2
= n j

sin x

2
at

each x , one obtains

si =

∫ π

0

ni

sin x

2
Si[2(x)]d x ≥
∫ π

0

n j

sin x

2
S j[2(x)]d x = s j (21)

from (20). �
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Remark. Furthermore, if Si(2) > S j(2) at 2 = 2(x), (21) holds with strict inequality. Observe that the inequality

will be flipped if n j is sufficiently larger than ni . That is, there is a trade-off between the distance-tolerance

distribution and the number of potential city residents. Even when type i is overall tolerant towards reloca-

tion, its corresponding city size may be trumped by more intolerant type j if type i is outnumbered by type

j in the hinterland to begin with.

It should also be noted that proposition 2.2 will not hold if estimated si has to match the realized value,

and/or Ryan’s utility level depends on his type attribute. In that case there could be a rank reversal. For

instance, if type i’s default value 3i is higher than type j’s, or the expected value of si is higher than that of

s j (city i is deemed to be overcrowded), then si may fall behind s j because 2(x) of type i will be higher than

type j’s.

The next proposition is useful for the empirical analysis to follow:

Proposition 2.3 Distance Elasticity of Inflow and City Size

Suppose that the inflow can be written as

ni

sin x

2
Si [2(x)] = β1i + β2i x .

If β1i = β1 j and β2i > β2 j , si > s j in equilibrium. Similarly, if β1i > β1 j and β2i = β2 j , si > s j .

Proof. Suppose β1i = β1 j and β2i > β2 j . The equilibrium city size (20) will be si = πb1i +
1

2
π2β2i > πb1 j +

1

2
π2β2 j = s j . The similar argument goes for the second part of the proposition. �

Remark. I will discuss the meaning of β2 in section 3.

Rearrange (15) and one can estimate trans-tolerance by

2(x) = S−1
i

�

mi(x)

ni
sin x

2

�

. (22)

3 Empirical Testing

3.1 Data Employed

I use US Census Bureau’s American Community Survey 2009-2013.12 The questionnaire asks which MSA a

responder lived a year prior to the survey. A total of 381 MSA’s report in- and out-migration13 so that there

are 381×381 entries of inflow and outflow recorded between each pair of cities.

I associate the migration data above with the estimated population in 201314 for two reasons. The most

recent census taken before 2013 was 2010. However, since I frame the model with people moving first to

settle the city size, it is not plausible to regress the result between 2009 and 2013 on 2010 data. The next

census is in 2020, which is still underway at the time of writing.

As can be seen in figure 1(b), exclusion of Alaska and Hawaii improves the fit from R2 = .2185 to .2752.

However, the objective is not to find the best fit for this particular regression. I do not have any theoretical

basis on which to precludes cities in these states. The only difference between the two states and the remain-

ing 48 states is that there are either Canadian cities (not included) or the Pacific (not habitable) lying between

them. However, the western part of the contiguous 48 states is not densely populated either (cf. figure 2(a)).

If I exclude the two states, I may as well have to exclude California, which lists 4 entries on the roster of the

20 largest MSA’s. I will keep them intact throughout this section.

In all the figures and tables to follow, ∗∗∗, ∗∗, and ∗ denote coefficient significant at 1%, 5% and 10%

respectively.

12Data available at https://www.census.gov/data/tables/2013/demo/geographic-mobility/metro-to-metro-migration.html.
13There were 383 MSA’s as of 2013, two of which were recently promoted from a micro statistical area to MSA. Their size are reported but

inflow data were not yet recorded in the 2009-2013 survey and thus excluded from the study.
14https://www.census.gov/data/tables/time-series/demo/popest/2010s-total-metro-and-micro-statistical-areas.html.
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3.2 Translation from Theory to Empirical Analysis

I will make several adjustments to the data above in order to test theoretical implications of section 2.

In theory, the initial distribution is uniform whereas in reality, all locations are pre-populated with a

number of consumers inherited from the previous period. To make the initial distribution as close to a

uniform distribution as possible and eliminate the initial heterogeneity, I normalize the inflow by the total

outflow from the city of origin.

Turning to the geographic difference between the theory and the actual US, while a city is assumed to be

a point in theory, an actual MSA takes up an expanse of land. I will use its centroid to compute its geodesic

to incoming locations. In addition, the present model features a sphere and the maximum moving distance

possible is
p
π regardless of the destination. The actual US does not stretch over the entire sphere but rather

cuts off at .21
p
π. Consequently, the maximum distance differs city to city. Among 381 MSA’s, Carson City,

NV15 has the shortest maximum distance possible of 4,187 km, from Bangor, ME. In turn, Honolulu and

Bangor have the longest maximum distance possible of 8,293 km, between each other. While the gap between

the top and bottom of the maximum range is mitigated by the fact that Alaska and Hawaii are included, this

may nevertheless contaminate the estimation results: I may inadvertently underestimate Carson City’s size

for the reason other than distance tolerance, i.e., even if there were someone willing to move to the city from

8,293 km away, that worker will not show up in the data because the country cuts off at 4,187 km. I may

overshoot Honolulu and Bangor vice versa.
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Figure 7.

That being said, I do not detect any systemic interaction between the maximum range and city size in

figure 7.16 The cap on the distance (unsurprisingly) does not affect the city size. While the longest cutoff

is about twice as long as the shortest cutoff, consumers perceive the distance in a logarithmic scale. The

perceived gap is thus much smaller than twofold as a linear scale implies. I will nevertheless regress city size

on inflow and the maximum range in section 3.4. The latter captures the said non-economic constraints so

that the coefficient on the former will not be watered down by their presence.

Some city pairs report a flow of zero. However, I need to take a log of the regressand as a linear scale is

useless in the city-size context (cf. Limpert et al. [LSA01]). As with the city-size distribution itself, the vast

majority of incoming cities are small. The difference between a flow of zero and one is marginal and should

not be a determining factor in the estimations to follow.

In order to stabilize the readings, I impute the flow by raising them by one across the board. One may

instead drop the cities with an inflow of zero. However, doing so will discount the fact that no one moved

from those cities, the observation that is equally as important as the fact that someone moved from other

cities. Besides, some estimates are sensitive to this removal, when they should not be. To compensate for this

distortion, I will conduct a separate regression using quantiles in section 3.5, where I do not augment the

15Very coincidentally, Carson City was also the smallest MSA in 2013.
16To be consistent with the remainder of the current section, I measure the maximum distance in log scale. Since maximum distances are

already quite long thanks in particular to inclusion of two Hawaiian MSA’s, taking a log of them barely changes the estimation.
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flow and leave the flow of zero as is.

I carry out three sets of empirical analysis to examine the nature of interaction between the distance

tolerance and the city size by industry. In section 3.3 I regress the city size on the moments of mi(x) by

industry. Section 3.4 examines the relationship between the size and the rate of decline of mi(x). Finally in

section 3.5 I regress the size on quantiles to ensure robustness of the preceding two analyses.

Having done all the three estimations above, I will then extrapolate the trans-tolerance value for each

type from the existing city size in section 3.6.

3.3 Regression on Moments

First, I regress the city size on the mean and standard deviation of its inflow in table 1. When the mean or

the standard deviation of inflow inflates by 1%, the destination’s size grows by .5% and .7% respectively. The

findings indicates that the pdf flattens out and shifts to the right with the city size in line with proposition 2.2.

For any given x , large cities have a high mean of inflow than small cities, which in turn implies that the former

first-order stochastically dominates the latter in 2. Note that if one assumes perfect mobility instead, the mean

and variance of distance moved would be the same for any i and thus orthogonal to the city size, which is

unlikely according to figure 8.
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Figure 8. Color and line width are size proportionate.

intercept mean standard deviation R2 adjusted R2

coefficient 7.365∗∗∗ 0.8059∗∗∗ 0.1079 0.1056

t-statistic 9.39 6.77

coefficient 6.975∗∗∗ 0.8024∗∗∗ 0.4005 0.3989

t-statistic 19.38 15.91

coefficient 3.988∗∗∗ 0.5123∗∗∗ 0.7487∗∗∗ 0.4423 0.4394

t-statistic 6.02 5.32 15.05

Table 1.

There are some notable outliers. Four CDF’s in Alaska and Hawaii (two each in each state) do not take

off until later because they only have one city nearby (the one and only other MSA in the same state) and

the next hike in value needs to wait till they cross the Pacific or Canada. They are largely a geographical

artifact and do not necessarily mean that they gather high-skilled labor. Aside from them, among large cities,

Philadelphia consists mostly of locally sourced labor, whereas Seattle and Riverside take in more globally

oriented workers. However, conditional on the mean, Philadelphia and Riverside find residents of more

diverse origin than Seattle does for their size.
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While both of them are significant, table 1 indicates that the standard deviation exerts more influence on

the size than the mean does. The size responds more to how widespread the cities of origin are than to how

far people moved on average. Consequently, the aforementioned geographical artifact does not distort the

projected city size in Alaska and Hawaii as much.

3.4 Regression on Distance Elasticity of Inflow

There are two more ways to summarize the inflow distribution than the moments examined above. In this

section, I regress the city size on its inflow over x and compute coefficient β1i on the constant and β2i on x as

in figure 1(b), not only for St. Louis but for all 381 MSA’s. Then I further regress the city sizes on β1i and β2i .

Table 2 and figure 9 report the results.
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intercept β1 β2 β1β2 max range R2 adjusted

R2

coefficient 12.79∗∗∗ .2183∗∗∗ .3641 .3624

t-statistic 285.53 14.73

coefficient 11.22∗∗∗ -1.394∗∗∗ .1736 .1714

t-statistic 66.37 -8.92

coefficient 20.35∗∗∗ .9360∗∗∗ 6.914∗∗∗ .7000 .6985

t-statistic 55.15 25.76 20.58

coefficient 20.69∗∗∗ 1.101∗∗∗ 7.106∗∗∗ .1287∗∗∗ .7224 .7202

t-statistic 57.37 23.92 21.83 5.51

coefficient 7.532∗∗∗ .9224∗∗∗ 6.345∗∗∗ 1.394∗∗∗ .7484 .7464

t-statistic 4.88 27.64 20.13 8.52

coefficient 7.054∗∗∗ 1.109∗∗∗ 6.525∗∗∗ .1462∗∗∗ 1.487∗∗∗ .7771 .7747

t-statistic 4.84 26.85 21.88 6.95 9.60

Table 2. Note that the reported values are the coefficients of the coefficients β1 and β2 themselves.

Since I take a log of x and si , β2 measures the percentage increase in inflow against a 1% increase in

distnace, i.e., the distance elasticity of inflow. I included the interactive term β1β2 as a regressor. While I

cannot fully predict the city size by β1 or β2 alone, the product of the two tends to be high among large cities

than among small cities.

Having controlled for the maximum range and other city-specific terms, the city size increases by 6.5%

when the distance elasticity of inflow grows by 1%. That is, it is unlikely that a city has a large population

and is unable to bring in people from afar. In turn, an industry with a low trans-tolerance value boasts a

large city.

In figure 9, all four entries from Alaska and Hawaii cut below the estimated size. It is likely a systemic

pattern. Given the size of the city, these cities should have lower β2 and they would have if they were
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surrounded by other cities nearby. In reality, they are surrounded by Canada or the Pacific, neither one of

them provides an inflow.

None of these would matter if one assumed perfect mobility. New York City may be composed exclusively

of people from New England or of people from California, with no difference in its size in the end. In contrast,

the present model anticipates that New York City cannot have the size it has unless it gathers workers from

across the country. Conversely, Beaumont, TX cannot have many people moving in from California, which

would otherwise indicate that high-skilled labor would move to Beaumont, running counter to the fact that

the city is actually small. Unlike New York City, most of its inflow should and does originate from within its

vicinity as its low β2 value suggests.

3.5 Regression on Quantiles

Lastly, I regress the city size on quantiles. Unlike previous sections 3.3 and 3.4 I do not have to impute or

alter an inflow of 0 here because I only take a log of distance rather than inflow. The results still point to the

same direction as sections 3.3 and 3.4 do.

A 2-quantile estimation (the first row in table 3) indicates that the farther the median is, the larger the city

will be, which meshes with figure 8(a) in section 3.3 and figure 9 in section 3.4. For 3 quantiles and above,

regardless of the number of quantiles, the farther quantiles are always positively correlated with the city size.

On the other hand, the nearest quantile is negatively correlated with the size only if the distance is split in 3

to 5 ways. Above 5, the quantiles are too fine and start to pick up noises.

Large cities’ trans-tolerance grows slowly with x and consequently, mi(x) falls slower than small cities’.

If the majority of the residents are moving in from remote locations, the last quantile should be far. The

resulting city size should be large according to proposition 2.2. Figure 10(b) seems to support the proposition.

By the same token, if the majority of residents are moving in from the nearby locations, the first quantile is

short and according to proposition 2.2, the resulting city size should be small. Although not as strongly as

the previous case does, figure 10(a) echoes the proposition as well.

While R2 values are lower than those found in tables 1 and 2 due to the lack of control for other variables,

this analysis complements sections 3.3 and 3.4 and ensures its robustness.

intercept 1st quantile 2nd

quantile

3rd

quantile

4th

quantile

5th

quantile

6th

quantile

R2 adjusted

R2

coefficient 1.217 1.332∗∗∗ 0.1372 0.1350

t-statistic 0.82 7.77

coefficient 10.09∗∗∗ -0.03591 .4353∗∗∗ 0.0875 0.0827

t-statistic 22.83 -0.33 4.23

coefficient 9.748∗∗∗ -0.116 0.2254∗ .3015∗∗ 0.0968 0.0896

t-statistic 18.37 -1.01 1.96 2.48

coefficient 9.260∗∗∗ -0.03657 0.06634 0.1557 .3264∗∗ 0.0983 0.0887

t-statistic 15.3 -0.29 0.4 0.98 2.3

coefficient 9.280∗∗∗ 0.1062 -0.3106∗ 0.3752∗ 0.06757 0.2694∗ 0.1034 0.0915

t-statistic 13.59 0.8 -1.76 1.95 0.37 1.7

coefficient 8.895∗∗∗ 0.1801 -.5429∗∗∗ .4859∗∗ 0.0266 0.07047 0.03307∗ 0.1118 0.0975

t-statistic 11.52 1.23 -2.59 2.27 0.12 0.32 1.76

Table 3.

3.6 Estimation of the City’s Type

By examining the distribution of the distance moved of incoming residence, one can infer which city corre-

sponds to which type. For the time being, I will assume that 2 follows the normal distribution with mean µi

and variance σi for expository purposes. (In practice, any distribution with the property in proposition 2.2

will do). I set µi equal to the log of the total inflow the destination receives, and shift it upwards by µ171

across the board so that the city of geometric mean size (Tuscaloosa, AL, 171st in rank in this case) will have
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Figure 10.

the mean of zero. The variance is set to unity. The actual tolerance distribution can be imputed from other

observable variables such as the distribution of wage, the number of children or educational attainment,

which I will leave for future research. I ran kernel density estimation on inflow first to filter out the noise.
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Figure 11. Trans-tolerance by distance. Line color and width are proportional to the total inflow into each destination.

Figure 11 plots 2i(x) for all the destinations and table 4 lists 2i(x) for select destinations at x = 100, 101, · · · , 105

km.17 All in all, large cities register lower trans-tolerance values than small cities. For instance, a resident

x = 103 km away from her type destination has to have only 2 = −2.87 or above to move to Los Angeles,

whereas that of Lewiston, ID and WA needs to exceed 2.37. If 2i(x) is assumed (and likely) to be negatively

correlated with the skill level for instance, then those who move to Los Angeles are more skilled than those

who move to Lewiston, ID and WA.

Among cities listed in table 4, Riverside seems to attract workers from a wider range of locations than

its cohort. Conversely, Albany, OR is more locally oriented compared to MSA’s of similar size and thus less

productive than what its size alone suggests.

17Some destinations record −∞ in their immediate vicinity due to scant data points I have to obtain robust readings. These represents

trans-tolerance values for residents who were born only 100 or 101 km away from their type destination, which are expectedly low. While

x starts from 0 in theory, unfortunately, the majority of MSA’s are more than 102 km apart from each other and I do not have enough data

density from which to extrapolate those residents’ accurate trans-tolerance value. They are likely to be recorded as movers within the same

MSA in practice. By contrast MSA’s are treated as a point in section 2 and consumers cannot conceivably move within a point.
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rank remark MSA total inflow 2i

�

100
�

2i

�

101
�

2i

�

102
�

2i

�

103
�

2i

�

104
�

2i

�

105
�

1 Los Angeles-Long Beach-Anaheim, CA 244,099 -∞ -10.46 -4.84 -2.87 -0.24 4.13

2 New York-Newark-Jersey City, NY-NJ-PA 228,599 -∞ -9.59 -4.51 -2.89 -0.37 3.86

3 Washington-Arlington-Alexandria,

DC-VA-MD-WV

196,434 -∞ -10.51 -4.26 -2.52 -0.19 4.23

4 Riverside-San Bernardino-Ontario, CA 178,510 -10.35 -6.21 -3.82 -2.02 -0.60 1.49

5 Dallas-Fort Worth-Arlington, TX 172,896 -∞ -∞ -5.15 -2.75 0.75 5.16

34 St. Louis, MO-IL 52,944 -∞ -∞ -3.99 -1.23 1.54 5.32

44 max range Urban Honolulu, HI 41,804 -∞ -∞ -7.51 -3.22 0.85 5.95

95 1st quarter Santa Maria-Santa Barbara, CA 22,928 -∞ -7.51 -2.02 0.04 2.34 6.68

171 geometric mean Tuscaloosa, AL 11,911 -7.11 -3.22 -0.95 0.65 2.14 4.25

191 2nd quarter Sierra Vista-Douglas, AZ 10,576 -7.78 -4.12 -1.57 0.14 2.07 4.86

286 3rd quarter Albany, OR 5,658 -∞ -∞ 0.78 1.59 6.48 7.87

314 max range Bangor, ME 4,540 -∞ -6.34 -1.19 1.36 3.55 8.08

366 min range and size Carson City, NV 3,062 -3.37 -1.29 0.39 1.85 3.22 4.75

381 last quarter Lewiston, ID-WA 1,732 -∞ -3.95 0.10 2.37 4.52 8.25

Table 4.

4 Conclusion and Extensions

I examined the role tolerance to distance moved plays in determining the city-size distribution. Each worker

draws a distance tolerance level from the distribution unique to her type. She then makes a decision on

whether to stay put or move to a city to tap into urban productivity that the city has to offer. She compares

urban productivity with an urban housing market, a fallback value of her utility level when she stays, and

of course, how far the city is from her birthplace when making a location choice. I derive the trans-tolerance

value at which the workers splits between movers and non-movers, which is a function of the aforementioned

location choice factors. The city-size distribution arises as a result of the trans-tolerance value specific to each

industry and city.

I regressed the city size on several aspects of the underlying distribution of distance tolerance. The

empirical data are in accordance with the predictions from the model.

I assumed that each city hosts at most one type. In reality, cities host multiple types. Assuming co-

location of different types in the same city in in the same way as Eeckhout et al. [EPS14] would yield a finer

result than above, provided that relocation data are recorded by industry. I do not know of such data.

In order to stay focused on the city size, I left urban productivity as plain as possible. In reality, the dis-

tance moved may reveal the immigrants’ productivity levels, the aggregate of which determines the citywide

productivity. It will be useful to relax the current assumption on urban productivity and have the distance

moved explain it.

As examined in section 2.6, no one becomes a Diane in equilibrium. In reality, it is not easy to know

in advance where the type-match city is located. Skill compatibility is not fully understood until workers

actually start working at their destination, which may or may not be the right destination. One may introduce

some uncertainty in matching between type and industry in order to analyze when and where Diane-type

workers can exist in equilibrium.

I assumed that consumers live for two periods: a youth period in the city of birth and an adult period

after they made a relocation decision. Some workers switch their cities multiple times in the course of their

lifetime in reality. The current model can be extended to incorporate a longer time horizon.

As I alluded to when I estimated the trans-tolerance value from the migration data, ideally, I would like

to start with the observed data rather than estimating from the migration data. While there are no data on

distance tolerance per se, there are ways to infer its distribution. For instance, the number of children in the

household may reveal their opportunity cost of labor. That implies their skill level, which in turn, can be

used to gauge their trans-tolerance level as these two variables are deemed to be negatively correlated.
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A Appendix

A.1 Selection of Utility Function

With the quasi-linear utility function, the difference in disposable income, i.e., wage exclusive of the cost of

relocation ρ(·), is simply absorbed by ci(x), while hi(x) remains constant. That is, hi(x) is the same no matter

how long the distance moved is, while ci(x) will adjust to accommodate the differences in ρ(·).
On the other hand, the counteracting force against agglomeration is captured solely via hi(x). The rent

grows with city size si and with the fixed land supply of H , hi(x) declines with si . However, the city size

itself will not affect ci(x).

Thus, with the quasi-linear utility function, I have a clean separation of variation in distance moved

(registered exclusively through ci(x)) and the diseconomies of agglomeration (registered exclusively through

hi(x)). As an added bonus, ci(x) becomes linear in disposable income in the end. I can regard ci(x) simply

as a leftover income after deducting housing expenses and ρ(·).
This does not preclude the use of other specifications such as Cobb-Douglas or by extension, a CES utility

function, which will violate one more assumption of Starett’s theorem. I opt for the quasi-linear utility

function to leave out complications not essential for my analysis.
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