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Abstract

It is well known that Local Projections (LP) residuals are autocorrelated. Conventional wisdom says

that LP have to be estimated by OLS with Newey and West (1987) (or some type of Heteroskedastic and

Autocorrelation Consistent (HAC)) standard errors and that GLS is not possible because the autocorrelation

process is unknown. I show that the autocorrelation process of LP is known and that autocorrelation

can be corrected for using GLS. Estimating LP with GLS has three major implications: 1) LP GLS can be

substantially more efficient and less biased than estimation by OLS with Newey-West standard errors. 2)

Since the autocorrelation process can be modeled explicitly, it is possible to give a fully Bayesian treatment

of LP. That is, LP can be estimated using frequentist/classical or fully Bayesian methods. 3) Since the

autocorrelation process can be modeled explicitly, it is now possible to estimate time-varying parameter LP.

*I thank Regis Barnichon, Rhys Bidder, Bill Branch, Ivan Jeliazkov, Òscar Jordà, Fabio Milani, Eric Swanson, Mike West, Jonathan
Wright, and seminar participants at several venues for helpful comments, discussions, and/or suggestions. This material is based upon
work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1106401, the Federal Reserve Bank
of San Francisco’s Thomas J. Sargent Dissertation Fellowship, and the Federal Reserve Bank of Boston under the American Economic
Association Summer Fellowship. Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the National Science Foundation, the Federal Reserve Bank of San Francisco, or
the Federal Reserve Bank of Boston.
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1 Introduction

Vector Autoregressions (VARs) were proposed in Sims (1980) as an alternative to the large scale simultane-

ous equation models of the time. Since then, VARs have been a major tool used in empirical macroeconomic

analysis, primarily being used for causal analysis and forecasting through the estimation of impulse response

functions. In a seminal paper, Jordà (2005) argued that impulse response functions could be estimated

directly using linear regressions called Local Projections (LP) and that LP are more robust to model mis-

specification than VARs.1,2 LP have been growing in popularity ever since, and the two methods often give

different results when applied to the same problem (Ramey, 2016, Nakamura and Steinsson, 2018). If the

true model is a VAR, then a correctly specified VAR is more efficient than LP because VARs impose more

structure than LP (Ramey, 2016).3 If the true model is not a VAR or if the lag length of the VAR is not

sufficiently long, then LP can outperform VARs (Plagborg-Møller and Wolf, 2019). Being that LP impulse

responses nest VAR impulse responses, the choice of whether to use impulse responses from LP or VARs can

be thought of as the bias-variance tradeoff problem with VARs and LP lying on a spectrum of small sample

bias variance choices.

It is well known that LP residuals are autocorrelated. Practitioners exclusively estimate LP via OLS with

Newey-West standard errors (or some type of Heteroskedastic and Autocorrelation Consistent (HAC) stan-

dard errors) (Ramey, 2016). Jordà (2005) argues that since the true data generating process is unknown,

Generalized Least Squares (GLS) is not possible and HAC standard errors must be used. Lazarus et al. (2018)

claim that LP have to be estimated with HAC standard errors because GLS estimates would be inconsistent.4

I show that under standard time series assumptions, the autocorrelation process is known and autocorrela-

tion can be corrected for using GLS. Moreover, I show the consistency and asymptotically normality of the

LP GLS estimator, as well as the asymptotic efficiency of LP GLS relative to LP OLS.

Being able to specify the autocorrelation process for LP has 3 major implications. First, LP GLS can be

substantially more efficient than LP estimated via OLS with Newey-West standard errors. Moreover, once

autocorrelation is corrected for, it can be shown that if the data is persistent and the true model is a VAR,

LP GLS impulse responses can be approximately as efficient as VAR impulse responses. Whether or not LP

GLS impulse responses are approximately as efficient depends on the persistence of the system, the horizon,

and the dependence structure of the system. All else equal, the more persistent the system, the more likely

1As noted in Stock and Watson (2018), LP are direct multistep forecasts. However, the goal of direct multistep forecast is an optimal
multistep ahead forecast, whereas the goal of LP is a consistent estimate of the corresponding impulse responses.

2In the case of stationary time series, Plagborg-Møller and Wolf (2019) show if the sample size is infinite, linear time-invariant
VAR(∞) and LP(∞) estimate the same impulse responses. This equivalence does not hold if the models are augmented with non-linear
terms.

3If one is willing to assume a likelihood function for the model, this is just the Cramer Rao Lower Bound argument.
4Lazarus et al. (2018) assume strict exogeneity (which neither LP or VARs satisfy) is necessary for GLS. Even though strict exogeneity

is often assumed for GLS, it is not a necessary condition for GLS (see Hamilton (1994), Stock and Watson (2007) for discussions on the
strict exogeneity assumption for GLS).
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LP GLS impulse responses will be approximately as efficient for horizons typically relevant in practice. It

follows that the efficiency of the VAR relative to the LP has been overstated in the literature.

Second, since the autocorrelation process is known, LP GLS can be estimated using fully Bayesian meth-

ods.5 Bayesian LP have many advantages such as allowing the researcher to incorporate prior information

for impulse responses at each horizon. Prior information can be used to shrink impulse responses at any

horizon to prevent overfitting. Economic theory can be incorporated into the prior to inform the shape of the

impulse responses (e.g. the impulse response is monotonic or hump shaped) and to discipline the long-run

behavior. Priors can be used to shrink parameter estimates when the number of parameters is large relative

to the number of observations making it possible to use LP to estimate systems with big data or panel data

with large cross sections over relatively short time frames (e.g. the Eurozone). Moreover, methodologies

used for Bayesian VARs (i.e. big data, sparsity, and variable selection methods) can now be carried over to

LP. Lastly, Bayesian methods do not need to do anything special to take into account unit roots.

Third, since autocorrelation is explicitly modeled, it is now possible to estimate time-varying parame-

ter LP. Time-varying parameter models are useful for several reasons. Researchers are often interested in

whether there is parameter instability in regression models. As noted in Granger and Newbold (1977), macro

data encountered in practice are unlikely to be stationary. Stock and Watson (1996) and Ang and Bekaert

(2002) show many macroeconomic and financial time series exhibit parameter instability. It is also common-

place for regressions with macroeconomic time series to display heteroskedasticity of unknown form (Stock

and Watson, 2007), and in order to do valid inference, the heteroskedasticity must be taken into account.

Parameter instability can occur for many reasons such as policy changes, technological evolution, changing

economic conditions, etc. If parameter instability is not appropriately taken into account, it can lead to

invalid inference, poor out of sample forecasting, and incorrect policy evaluation. Moreover, as shown in

Granger (2008), time-varying parameter models can approximate any non-linear model (non-linear in the

variables and/or the parameters), which makes them more robust to model misspecification. Bayesian meth-

ods are the primary methods used to estimate time-varying parameter models, and since autocorrelation is

explicitly corrected for in Bayesian LP, it is straightforward to apply time-varying parameters to LP.6

In this paper, I make several contributions. I show that the autocorrelation process of LP is known and

that autocorrelation can be corrected for using GLS. Estimating LP with GLS has three major implications:

First, LP GLS can be substantially more efficient and less biased than estimation by OLS with Newey-West

standard errors. Second, LP GLS can be estimated using fully Bayesian or frequentist methods. Third, it is

now possible to estimate time-varying parameter LP. The paper is outlined as follows: section 2 contains

5Miranda-Agrippino and Ricco (2018) introduce a method called Bayesian LP, but the method is not fully Bayesian, because they
replace the estimated scale matrix in the inverse-Wishart posterior with the Newey-West variance covariance matrix. Using plug-in
estimates for hyper–parameters is well known to cause probability intervals to underrepresent uncertainty (Koop and Korobilis, 2009,
Hoff and Wakefield, 2013). Furthermore, I will show why autocorrelation should be explicitly corrected for in LP.

6Time-varying parameter LP do not have to implemented using Bayesian methods.
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the core result showing that the autocorrelation process of LP is known and illustrates why GLS is possible.

Section 3 explains how to estimate LP GLS using both frequentist and Bayesian methods. Section 4 discusses

the relative efficiency of LP estimated by OLS with Newey-West standard errors vs LP GLS. Section 5 contains

Monte Carlo evidence of the small sample properties of LP GLS. Section 6 discusses issues in regards to non-

stationarity. Section 7 explains how time-varying parameter LP can be estimated and illustrates a Bayesian

procedure to do so. Section 8 concludes.

Some notation: N(⋅, ⋅), IW (⋅, ⋅), are the normal, and inverse-Wishart distributions, respectively. Tn(⋅, ⋅)
is the T-distribution with n degrees of freedom. y1∶T = {y1, ..., yT }. pÐ→ is converges in probability, and

d
Ð→ is

converges in distribution.

2 The Autocorrelation Process, OLS, and GLS

2.1 LP and Newey-West Standard Errors

To illustrate how LP work, take the simple VAR(1) model

yt = A1yt−1 + εt, (1)

where yt is a demeaned r×1 vector of endogenous variables and εt is an r×1 vector white noise process and

var(εt) = Σε.7 Assume that the eigenvalues of A1 have moduli less than unity and A1 ≠ 0. Iterating forward

leads to

yt+h = Ah+1
1

yt−1 +Ah
1
εt + . . . +A1εt+h−1 + εt+h.

To estimate the impulse responses of a VAR, one would estimate A1 from equation (1) and then use the

non-linear delta method, bootstrapping, or Monte Carlo integration to perform inference on the impulse

responses: {A1, A
2

1
, . . . ,Ah+1

1
}. To estimate impulse responses using LP, one would estimate the impulse

responses directly at each horizon with separate regressions

yt = B(1)1
yt−1 + e(0)t ,

yt+1 = B(2)1
yt−1 + e(1)t+1,

⋮

yt+h = B(h+1)1
yt−1 + e(h)t+h,

7Without loss of generality, yt is demeaned in order to remove the constant and simplify notation.
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where h is the horizon, and when the true data generating process is a VAR(1), {B(1)
1

,B
(2)
1

, . . . ,B
(h+1)
1

}
and {A1,A

2

1
, . . . ,Ah+1

1
} are equivalent. Even if the true data generating process is not a VAR(1), B(1)

1
= A1

because the horizon 0 LP is a VAR. In practice, it is common for more than one lag to be used. A VAR(k) and

the horizon h LP(k) can be expressed as

yt = A1yt−1 + . . . +Akyt−k + εt,

and

yt+h = B(h+1)1
yt−1 + . . . +B(h+1)k yt−k + e(h)t+h,

respectively. Bear in mind that any VAR(k) can be written as a VAR(1) (companion form), so results and

examples involving the VAR(1) the can be generalized to higher order VARs.

LP have been advocated by Jordà (2005) as an alternative to VARs. There are several advantages of using

LP as opposed to VARs. First, LP do not constrain the shape of the impulse response function like VARs, so it

can be less sensitive to model misspecification (i.e. such as insufficient lag length) because misspecifications

are not compounded in the impulse responses when iterating forward.8 Second, LP can be estimated using

simple linear regressions. Third, joint or point-wise analytic inference is simple. Fourth, LP can easily be

adapted to handle non-linearities (in the variables or parameters).

LP do have a couple of drawbacks. First, because the dependent variable is a lead, a total of h observations

are lost from the original sample when estimating projections for horizon h. Second, the error terms in LP

for horizons greater than 0 are inherently autocorrelated. Assuming the true model is a VAR(1), it is obvious

that autocorrelation occurs because the LP residuals follow an VMA(h) process of the residuals in equation

(1). That is

e
(h)
t+h = Ah

1
εt + . . . +A1εt+h−1 + εt+h,

or written in terms of LP

e
(h)
t+h = B

(h)
1

εt + . . . +B(1)1
εt+h−1 + εt+h.

Frequentists account for the inherent autocorrelation using Newey-West standard errors, which will yield

asymptotically correct standard errors in the presence of autocorrelation and heteroskedasticity of unknown

forms.9 Autocorrelation can be corrected for explicitly by including {εt, εt+1, . . . , εt+h−1} in the conditioning

set of the horizon h LP. Obviously {εt, εt+1, . . . , εt+h−1} are unobserved and would have to be estimated, but

this issue can be ignored for now and is addressed later.

There are two major advantages of correcting for autocorrelation explicitly. The first is that it fixes what

8In the case of the linear time-invariant estimators, VAR(∞) and LP(∞) estimate the same impulse responses asymptotically
(Plagborg-Møller and Wolf, 2019). This result does not hold if the models are augmented with nonlinear terms.

9This is assuming that a large enough lag truncation parameter for the autocorrelation is chosen. There is a major line of research
indicating that Newey-West standard errors perform poorly in small samples with persistent data (Müller, 2014).
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I dub the “increasing variance problem”. To my knowledge, the increasing variance problem has not been

noticed in the literature. If the true model is a VAR(1), then var(e(h)t+h) = ∑h
i=0A

i′

1
ΣεA

i
1
, which is increasing

in h.10 Newey-West standard errors are valid in the presence of autocorrelation because they take into

account autocorrelation is present when estimating the covariance matrix; they do not, however, eliminate

autocorrelation.11,12 To illustrate, let the true model be an AR(1) with

yt = .99yt−1 + εt,

where var(εt) = 1. The var(e(h)t+h) = ∑h
i=0A

i′

1
ΣεA

i
1
= ∑h

i=0 .99
2i. The table below presents the asymptotic

variance of the residuals for different horizons when estimated by OLS with Newey-West standard errors vs

LP estimated with GLS.

Table 1: Asymptotic Variance of Residuals for LP Horizons

Horizons 5 10 20 40

LP NW 5.7093 9.9683 17.3036 28.2102

LP GLS 1 1 1 1

Even if Newey-West standard errors are used, the increasing variance problem persists. In terms of the

MLE and OLS, correcting for autocorrelation explicitly is asymptotically more efficient because var(εt) ≤
var(e(h)t ), where the equality only binds when A1 = 0.

The second major advantage of correcting for autocorrelation explicitly is that it helps remedy what I

dub the “increased small sample bias problem”. When LP are estimated with OLS and Newey-West standard

errors, the small sample bias from estimating dynamic models increases relative to the model with no auto-

correlation. To see why, let us first review the finite sample bias problem with VARs (see (Pope, 1990) for

detailed derivations). Assume the true model is a VAR(1). The OLS estimate for the VAR is

Â1 = A1 +
T

∑
t=2

εty
′
t−1(

T

∑
t=2

yt−1y
′
t−1)−1.

This estimate is biased in finite samples because E(∑T
t=2 εty

′
t−1(∑T

t=2 yt−1y
′
t−1)−1) ≠ 0 because εt and (∑T

t=2 yt−1y
′
t−1)−1

are not independent. The stronger the correlation between εt and (∑T
t=2 yt−1y

′
t−1)−1, the larger the bias. In

macroeconomic applications, the bias is typically downward. The bias disappears asymptotically since εt

would be correlated with an increasingly smaller share of (∑T
t=2 yt−1y

′
t−1)−1.

If one were to estimate a LP via OLS with Newey-West standard errors at horizon h, the OLS estimate

10Since A1 has moduli less than unity, geometric progression can be used to show that the sum is bounded asymptotically.
11This is a major reason why Kilian and Kim (2011) found that LP had excessive average length relative to the bias-adjusted bootstrap

VAR interval in their Monte Carlo simulations. I provide Monte Carlo evidence of this in section 5.
12Macro variables tend to be persistent, so Ai

1
will more likely decay slowly leading to the increase in the variance to be pretty

persistent as h increases.
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would be

B̂
(h+1)
1

= B
(h+1)
1

+
T−h

∑
t=2

e
(h)
t+hy

′
t−1(

T−h

∑
t=2

yt−1y
′
t−1)−1.

If one were to correct for autocorrelation by including {εt, εt+1, . . . , εt+h−1} , the estimate would be

B̂
(h+1)
1

= B
(h+1)
1

+
T−h

∑
t=2

εt+hy
′
t−1(

T−h

∑
t=2

yt−1y
′
t−1)−1.

The absolute value of the correlation between e
(h)
t+h and (∑T−h

t=2 yt−1y
′
t−1)−1 is larger than the absolute value of

the correlation between εt+h and (∑T−h
t=2 yt−1y

′
t−1)−1 because e

(h)
t+h = A

h
1
εt + . . . +A1εt+h−1 + εt+h is correlated

with a larger share of (∑T−h
t=2 yt−1y

′
t−1)−1.13 To illustrate, I conduct a simple Monte Carlo simulation where I

generate 1,000 samples of length 200 for the following AR(1)

yt = .99yt−1 + εt,

where var(εt) = 1. I then estimate the impulse responses using a VAR, LP estimated with OLS, and LP

estimated with GLS. To correct for autocorrelation using GLS, I include the estimated residuals. Below is the

table of the mean impulse responses at different horizons for the different methods.

Table 2: Mean Impulse Response Estimates for T=200

Horizons 5 10 20 40

True .951 .9044 .8179 .6690

VAR .8355 .7072 .5231 .3148

LP NW .8259 .6713 .4223 .0787

LP GLS .8347 .7045 .5160 .2965

All of the estimated can be substantially biased, but not correcting for autocorrelation can make the bias

substantially worse. Even if autocorrelation is corrected for in LP, there can still be a small sample bias due

to the correlation between εt+h and (∑T−h
t=2 yt−1y

′
t−1)−1 not being 0 in finite samples, but additional bias due

to not explicitly correcting for autocorrelation would be eliminated.14

2.2 The Autocorrelation Process of LP

This subsection presents the core result: the autocorrelation process of LP is known under standard time

series assumptions and can be corrected for via GLS. First, I will show that even when the true data

13This is probably a major reason why Kilian and Kim (2011) found that LP impulse responses were more biased than the VAR impulse
responses in their Monte Carlo simulations.

14LP GLS tends to be a little more biased than the VAR because LP estimated at horizon h loses h observations at the end of the
sample.
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generating process is not a VAR, including the horizon 0 LP residuals (or equivalently, VAR residuals),

{εt, εt+1, . . . , εt+h−1}, in the horizon h conditioning set will eliminate autocorrelation as long as the data

are stationary and the horizon 0 LP residuals are uncorrelated. Second, I will show that the autocorrelation

process of e(h)t+h is known.

Assumption 1. The data {yt} are stationary and purely non-deterministic so there exists a Wold representation

yt = εt +
∞

∑
i=1

Θiεt−i.

Assumption 1 implies that by the Wold representation theorem, there exists a linear and time-invariant

Vector Moving Average (VMA) representation of the uncorrelated one-step ahead forecast errors {εt} . It fol-

lows from the Wold representation theorem that εt = yt−Proj(yt∣yt−1, yt−2, . . .) where Proj(yt∣yt−1, yt−2, . . .)
is the (population) orthogonal projection of yt onto {yt−1, yt−2, . . .}.

Consider for each horizon h = 0,1,2, . . . the infinite lag LP

yt+h = B
(h+1)
1

yt−1 +B(h+1)2
yt−2 + . . . + e(h)t+h.

Proposition 1. Under Assumption 1, including {εt, εt+1, . . . , εt+h−1} in the conditioning set of the horizon h LP

will eliminate autocorrelation in the horizon h LP residuals.

Proof. I first show that

Proj(yt+h∣εt+h−1, . . . , εt, yt−1, yt−2, . . .) = Proj(yt+h∣εt+h−1, . . . , εt, yt+h−1, yt+h−2, . . .).

From the Wold representation we know that εt+h−1 = yt+h−1 − Proj(yt+h−1∣yt+h−2, yt+h−3, . . .), which implies

that {εt+h−1, yt+h−1, yt+h−2, yt+h−3, . . .} are linearly dependent. This implies that yt+h−1 can be dropped from

Proj(yt+h∣εt+h−1, . . . , εt, yt+h−1, yt+h−2, . . .) since it contains redundant information. Therefore,

Proj(yt+h∣εt+h−1, . . . , εt, yt+h−1, yt+h−2, . . .) = Proj(yt+h∣εt+h−1, . . . , εt, yt+h−2, yt+h−3, . . .).

Similarly, εt+h−2 = yt+h−2−Proj(yt+h−2∣yt+h−3, yt+h−4, . . .), which implies that {εt+h−2, yt+h−2, yt+h−3, yt+h−4, . . .}
are linearly dependent. This implies that yt+h−2 can be dropped from Proj(yt+h∣εt+h−1, . . . , εt, yt+h−2, yt+h−3, . . .)
since it contains redundant information. Therefore,

Proj(yt+h∣εt+h−1, . . . , εt, yt+h−2, yt+h−3, . . .) = Proj(yt+h∣εt+h−1, . . . , εt, yt+h−3, yt+h−4, . . .).
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This process is repeated until yt is being dropped due to linear dependence yielding

Proj(yt+h∣εt+h−1, . . . , εt, yt, yt−1, . . .) = Proj(yt+h∣εt+h−1, . . . , εt, yt−1, yt−2, . . .).

Therefore, if the data are stationary and the horizon 0 LP residuals are uncorrelated,

Proj(yt+h∣εt+h−1, . . . , εt, yt−1, yt−2, . . .) = Proj(yt+h∣εt+h−1, . . . , εt, yt+h−1, yt+h−2, . . .).

Since conditional independence is satisfied it follows that

[yt+h−Proj(yt+h∣εt+h−1, . . . , εt, yt−1, yt−2, . . .)] ⊥ [yt+h−i−Proj(yt+h−i∣εt+h−i−1, . . . , εt−i, yt−i−1, yt−i−2, . . .)]∀i ≥ 1,

where ⊥ is the orthogonal symbol.

Therefore, if the data are stationary and the residuals {εt} are uncorrelated, autocorrelation can be

eliminated in the horizon h LP by including {εt, εt+1, . . . , εt+h−1} in the conditioning set. Of course, if the

true model requires only finitely many lags in the LP specification, then the proof above applies to that case

as well, since the longer lags will all have coefficients of zero in population.

Theorem 1. The autocorrelation process of the horizon h LP residuals (e
(h)
t+h) is known.

Proof. We know from the Wold representation that εt ⊥ yt−1, yt−2, . . ., hence εt ⊥ εs for t ≠ s. Recall that the

infinite lag horizon h LP is

yt+h = B
(h+1)
1

yt−1 +B(h+1)2
yt−2 + . . . + e(h)t+h = Proj(yt+h∣yt−1, yt−2, . . .) + e(h)t+h. (2)

By Proposition 1, including {εt, εt+1, . . . , εt+h−1} in the conditioning set eliminates autocorrelation, so the

horizon h LP can be rewritten as

yt+h = Proj(yt+h∣εt+h−1, . . . , εt, yt−1, yt−2, . . .) + u(h)t+h, (3)

where u
(h)
t+h = e

(h)
t+h − Proj(yt+h∣εt+h−1, . . . , εt) = e(h)t+h − Proj(yt+h∣εt+h−1) − . . . − Proj(yt+h∣εt). The Proj can

be broken up additively because {εt, . . . , εt+h−1} are orthogonal to each other and to {yt−1, yt−2, . . .}. By

Proposition 1, u(h)t+h is not autocorrelated. By the Wold representation we know that

Proj(yt+h∣εt) = Θhεt. (4)
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This implies, the horizon h LP can be written as

yt+h = B
(h+1)
1

yt−1 +B(h+1)2
yt−2 + . . . +Θhεt + . . . +Θ1εt+h−1 + u(h)t+h, (5)

which implies

e
(h)
t+h = Θhεt + . . . +Θ1εt+h−1 + u(h)t+h.

As a result, the autocorrelation process of e(h)t+h is known. Using the same linear dependence arguments as in

Proposition 1, it can be shown that

Proj(yt+h∣εt+h−1, . . . , εt, yt−1, yt−2, . . .) = Proj(yt+h∣yt+h−1, yt+h−2, . . .),

which implies that

u
(h)
t+h = εt+h,

in population.

Thus in population, the error process is a VMA(h) even if the true model is not a VAR. In population

B
(h)
1
= Θh,

which implies

e
(h)
t+h = B

(h)
1

εt + . . . +B(1)1
εt+h−1 + εt+h.

2.3 LP GLS and Its Properties

Since e
(h)
t+h can be written as

e
(h)
t+h = B

(h)
1

εt + . . . +B(1)1
εt+h−1 + u(h)t+h, (6)

GLS can be used to eliminate autocorrelation in LP while avoiding increasing the number of parameters by

including {εt, εt+1, . . . , εt+h−1} in the horizon h conditioning set. To understand how, I’ll first explain what

happens when {εt, εt+1, . . . , εt+h−1} is included in the conditioning set. Just like it is impossible to estimate

a VAR(∞) in practice, one cannot estimate LP with infinite lags since there is insufficient data. In practice

truncated LP are used where the lags are truncated at k. The proofs of consistency and asymptotic normality

discuss the rate at which k needs to grow with the sample size to ensure consistent estimation of the impulse

responses. In practice, k, needs to be large enough that the estimated residuals from the horizon 0 LP are

10



uncorrelated, which is what will be assumed for now. From Theorem 1 we know the horizon h LP is

yt+h = B
(h+1)
1

yt−1 + . . . +B(h+1)k yt−k +B(h)1
εt + . . . +B(1)1

εt+h−1 + u(h)t+h. (7)

Due to {εt, εt+1, . . . , εt+h−1} being unobserved, the estimates {ε̂t, ε̂t+1, . . . , ε̂t+h−1} from the horizon 0 LP must

be used instead. Estimates of the impulse responses are still consistent (see appendix for proof), how-

ever, even if the sample size is large, inference on the parameters will underrepresent uncertainty because

{ε̂t, ε̂t+1, . . . , ε̂t+h−1}, are generated regressors (Pagan, 1984). In order to do valid inference, one must take

into account that the generated regressors were estimated.15

For now, I will ignore the additional uncertainty from the generated regressors {ε̂t, ε̂t+1, . . . , ε̂t+h−1}.
Including {ε̂t, ε̂t+1, . . . , ε̂t+h−1} in the conditioning set increases the number of parameters in each equation

in the system by h × r. If consistent estimates of {B̂(h)
1

, B̂
(h−1)
1

, . . . , B̂
(1)
1
} are obtained in previous horizons,

one can do a Feasible GLS (FGLS) transformation. Let ỹ(h)t+h = yt+h − B̂(h)1
ε̂t − . . . − B̂(1)1

ε̂t+h−1. Then one can

estimate horizon h via the following equation

ỹ
(h)
t+h = B

(h+1)
1

yt−1 + . . . +B(h+1)k yt−k + ũ(h)t+h. (8)

ỹ
(h)
t+h is just a GLS transformation that eliminates the autocorrelation problem in LP without having to sacrifice

degrees of freedom and ũ
(h)
t+h is the error term corresponding to this GLS transformation. If the impulse

responses are estimated consistently, then by the continuous mapping theorem, ỹ(h)t+h converges in probability

to the true GLS transformation y
(h)
t+h = yt+h −B(h)1

εt − . . . −B(1)1
εt+h−1 asymptotically. For clarification LP can

be estimated sequentially horizon by horizon as follows. First estimate the horizon 0 LP

yt = B
(1)
1

yt−1 + . . . +B(1)k yt−k + u(0)t ,

and due to the horizon 0 LP being a VAR εt = u
(0)
t . B̂

(1)
1

and ε̂t are estimates of B(1)
1

and εt respectively .

Horizon 1 can be estimated as

ỹ
(1)
t+1 = B

(2)
1

yt−1 + . . . +B(2)k yt−k + ũ(1)t+1,

where ỹ
(1)
t+1 = yt+1 − B̂(1)1

ε̂t, and B̂
(2)
1

is the GLS estimate of B(2)
1

. Horizon 2 can be estimated as

ỹ
(2)
t+2 = B

(3)
1

yt−1 + . . . +B(3)k yt−k + ũ(2)t+2,

15In the proof of asymptotic normality of the limiting distribution, it can be seen that the impact of the generated regressors does not
disappear asymptotically.
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where ỹ
(2)
t+2 = yt+2 − B̂(2)1

ε̂t − B̂(1)1
ε̂t+1, and B̂

(3)
1

is the GLS estimate of B(3)
1

. Horizon 3 can be estimated as

ỹ
(3)
t+3 = B

(4)
1

yt−1 + . . . +B(4)k yt−k + ũ(3)t+3,

where ỹ
(3)
t+3 = yt+3 − B̂(3)1

ε̂t − B̂(2)1
ε̂t+1 − B̂(1)1

ε̂t+2, and so on.

The LP GLS estimator has the following three properties:

Theorem 2. Under the assumptions stated in Lewis and Reinsel (1985), the LP GLS estimator is consistent. In

particular

B̂
(h)
1

p
→ Θh.

Theorem 3. Under the assumptions stated in Lewis and Reinsel (1985), the limiting distribution of the LP GLS

estimates are asymptotically normal.

Theorem 4. Under the assumptions stated in Lewis and Reinsel (1985), the limiting distribution of the LP GLS

estimates are asymptotically more efficient than the limiting distribution of the LP OLS estimates.

Under the assumptions stated in Lewis and Reinsel (1985), Jordà and Kozicki (2011) show the consis-

tency and asymptotically normality of {B(h+1)
1

,B
(h+1)
2

, . . . ,B
(h+1)
k } when estimated via OLS.

Remark. The assumptions are general enough to include most stationary invertible VARMA models. Jordà

and Kozicki (2011) proof is an extension of Lewis and Reinsel (1985), who show consistency and asymptotic

normality of the VAR(∞). The conditions in Lewis and Reinsel (1985) state the rate at which the lag length,

k, needs to grow in order for the estimates to be consistent and asymptotically normal.

Proof. See appendix. The explicit assumptions and proofs are in section A.4 of the appendix.

As noted earlier, the parameters used in the GLS correction are not known, and their uncertainty should

be taken into account in order to do valid inference. To take into account the uncertainty in the generated

regressors, frequentist can use bootstrapping, multi-step estimation (Murphy and Topel, 1985), or joint esti-

mation (Newey and McFadden, 1994). Bayesian’s can marginalize uncertainty via Monte Carlo integration.

Estimation for both frequentist and Bayesian methods will be discussed in the next section.
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3 LP GLS Estimation

3.1 Frequentist Estimation via Bootstrapping

For frequentist estimation, LP GLS can be implemented using a circular block bootstrap scheme (Politis and

Romano, 1994). Bootstrap samples are first created using the circular block scheme, then for each boot-

strap sample, FGLS estimates of the LP horizons are constructed. To illustrate, first one must decide on the

number of bootstrap draws, J , the maximum number of of impulse response horizons to be estimated, H,

and the number of consecutive blocks, L. There are no good rules of thumb for choosing L in general, so

I follow Berkowitz et al. (1999) and set L = T 1/3. To construct the bootstrap data sets, the original data,

{y1, y2, yt−2, . . . , yT }, is wrapped around in a circle so that y1 follows yT . By construction, the horizon h LP de-

pends on the {yt+h, yt−1, yt−2, . . . , yt−k} tuple. Since LP will be estimated using FGLS and the transformation

must be done using the same data, one must first construct all possible {yt+H , . . . , yt−k} tuples. Then to pre-

serve correlation in the data blocks of L consecutive tuples are drawn at random and concatenated to gener-

ate a bootstrap sample. Then for each bootstrap sample, the impulse responses {B(h+1)
1

,B
(h+1)
2

, . . . ,B
(h+1)
k }

are estimated for each horizon using the FGLS estimation described in the previous section. This is done for

each of the J bootstrap draws. To clarify,

Algorithm 1: Block Bootstrapping Without Bias Adjustment

1: for each bootstrap replication j = 1, . . . , J

2: draw blocks of L consecutive {yt+H , yt−1, yt−2, . . . , yt−k} tuples to generate a bootstrap sample.

3: estimate {B(h+1)
1

,B
(h+1)
2

, . . . ,B
(h+1)
k } for each horizon via the FGLS procedure.

4: end.

Denoting {B(h+1),<j>
1

,B
(h+1),<j>
2

, . . . ,B
(h+1),<j>
k } as jth bootstrap replication for the impulse responses,

95% confidence intervals can then be constructed by taking the 2.5% and 97.5% quantiles of the param-

eter(s) of interest. The bootstrap can also be implemented with bias adjustment. The bias adjustment of

the LP GLS bootstrap follows the general procedure of Efron and Tibshirani (1993), and bias adjustment is

implemented for each horizon. The bias of any parameter, for example B
(h)
1

, can be calculated via bias =

J−1(∑J
j=1B

(h),<j>
1

) − B̂(h)
1

. The bias adjusted bootstrap replications are then B
(h),<j>,BA
1

= B
(h),<j>
1

− bias. To

summarize how to block bootstrap with bias adjustment,

13



Algorithm 2: Block Bootstrapping With Bias Adjustment

1: for each bootstrap replication j = 1, . . . , J

2: draw blocks of L consecutive {yt+H , . . . , yt−k} tuples to generate a bootstrap sample.

3: end

4: for each LP horizon h = 0, . . . ,H − 1
5: for each bootstrap replication j = 1, . . . , J

6: estimate {B(h+1)
1

,B
(h+1)
2

, . . . ,B
(h+1)
k } via the FGLS procedure.

7: end

8: calculate the bias and bias adjust the bootstrap estimates as in Efron and Tibshirani (1993).

9: end

The Monte Carlo simulations analyzing the finite sample properties implements the bias adjustment version

of the bootstrap.

3.2 Bayesian Estimation

3.2.1 The Likelihood

Despite LP growing in popularity, there has not been a fully Bayesian treatment, which is probably due to the

belief that Newey-West standard errors must be used because the autocorrelation process is unknown. Since

LP can be estimated using GLS, it is now possible to give a fully Bayesian treatment of LP. Due to LP being

standard linear regressions, one just needs to be able to set up the likelihood and elicit a prior. The default

prior used in this paper is the conjugate normal inverse-Wishart prior. Conjugate priors need not be used. LP

are linear regressions, so any prior that can be used with a linear regression can be used with Bayesian LP.

LP at horizon 0 are equivalent to VARs. To estimate LPs at horizon 0 just estimate

yt = B
(1)
1

yt−1 +B(1)2
yt−2 + . . . +B(1)k yt−k + u(0)t ,

as one would a standard Bayesian VAR. Define β(0) ≡ vec([B(1)
1

,B
(1)
2

, . . . ,B
(1)
k
]′), X ′(0)

t ≡ In�[yt−1, yt−2, . . . , yt−k]′,
then

yt =X
′(0)
t β(0) + u(0)t ,

where u
(0)
t ∼ N(0,Σ(0)u ). Assume a conditional normal inverse-Wishart prior for p(β(0),Σ(0)u ). That is

p(β(0)∣Σ(0)u ) ∼ N(b,Σ(0)u �Ω),
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p(Σ(0)u ) ∼ IW (n,Ψ),

where b, Ω, Ψ, and n are prior hyperparameters. The posterior is also conditional normal inverse-Wishart

p(β(0)∣Σ(0)u , y1∶T ) ∼ N(b,Σ(0)u �Ω),

p(Σ(0)u ∣y1∶T ) ∼ IW (n,Ψ),

where b, Ω, Ψ, and n are posterior hyperparameters whose formulas are well known and can be found in

the appendix. After estimating horizon 0, one can obtain J posterior draws of residuals {εk+1, . . . , εT } using

the fact that ε<j>t = yt −X ′(0)
t β(0),<j>, where β(0),<j> is the jth posterior draw of β(0). Now posterior draws

of y(1)t+1 can be constructed via ỹ
(1),<j>
t+1 = yt+1 −B(1),<j>1

ε
<j>
t . To understand why posterior draws for y(1)t+1 are

needed, note that in GLS, one uses parameter estimates in the transformation and treat the transformation

as known. The transformation, however, does not take into account uncertainty in the parameters used for

the transformation, so to properly take into account uncertainty, one must marginalize out uncertainty in the

transformation.

For each J , define y
(1)
t+1 ≡ ỹ

(1),<j>
t+1 and B

(1)
1
≡ B

(1),<j>
1

, which means for each J we treat the GLS transfor-

mation as known. The horizon 1 LP is

y
(1)
t+1 = B

(2)
1

yt−1 +B(2)2
yt−2 + . . . +B(2)k yt−k + u(1)t+1,

where u
(1)
t+1 ∼ N(0,Σ(1)u ). Define β(1) ≡ vec([B(2)

1
,B
(2)
2

, . . . ,B
(2)
k
]′) and X

′(1)
t ≡ In � [yt−1, yt−2, . . . , yt−k]′.

Then the horizon 1 LP can be rewritten as

y
(1)
t+1 =X

′(1)
t β(1) + u(1)t+1.

Again, assume a conditional normal inverse Wishart prior for p(β(1),Σ(1)u )

p(β(1)∣Σ(1)u ) ∼ N(b(1),Σ(1)u �Ω(1)),

p(Σ(1)u ) ∼ IW (n(1),Ψ(1)).

The posterior is conditional normal inverse-Wishart. That is

p(β(1)∣Σ(1)u , y1∶T ) ∼ N(b(1),Σ(1)u �Ω
(1)),

p(Σ(1)u ∣y1∶T ) ∼ IW (n(1),Ψ(1)).
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One Monte Carlo draw is obtained from the conditional posterior for each J , which marginalizes out uncer-

tainty in the GLS transformation.

This is done at each horizon in the LP. Before estimation of horizon h, one can obtain posterior draws

of y(h)t+h via ỹ
(h),<j>
t+h = yt+h −B(h),<j>1

ε
<j>
t − . . . −B(1),<j>

1
ε
<j>
t+h−1. For each J , define y

(h)
t+h ≡ ỹ

(h),<j>
t+h and B

(1)
1
≡

B
(1),<j>
1

, . . . ,B
(h)
1
≡ B

(h),<j>
1

. The horizon h LP is

y
(h)
t+h = B

(h+1)
1

yt−1 +B(h+1)2
yt−2 + . . . +B(h+1)k yt−k + u(h)t+h,

where u
(h)
t+h ∼ N(0,Σ(h)u ). Define β(h) ≡ vec([B(h+1)

1
,B
(h+1)
2

, . . . ,B
(h+1)
k

]′), X ′(h)
t ≡ In � [yt−1, yt−2, . . . , yt−k]′.

The horizon h LP can be rewritten as

y
(h)
t+h =X

′(h)
t β(h) + u(h)t+h.

Again, assume a conditional normal inverse gamma prior for p(β(h),Σ(h)u )

p(β(h)∣Σ(h)u ) ∼ N(b(h),Σ(h)u �Ω(h)),

p(Σ(h)u ) ∼ IW (n(h),Ψ(h)).

The posterior is conditional normal inverse-Wishart

p(β(h)∣Σ(h)u , y1∶T ) ∼ N(b(h),Σ(h)u �Ω
(h)),

p(Σ(h)u ∣y1∶T ) ∼ IW (n(h),Ψ(h)).

One Monte Carlo draw is obtained from the conditional posteriors for each J , which marginalized out

uncertainty in the GLS transformation. To summarize,

Algorithm 3: Bayesian LP

1: Estimate the Bayesian VAR/horizon 0 LP.

2: Generate J posterior draws for {B(1)
1

,B
(1)
2

, . . . ,B
(1)
k }

3: for each LP horizon h = 1, . . . ,H − 1
4: for each posterior draw j = 1, . . . , J

5: estimate {B(h+1)
1

,B
(h+1)
2

, . . . ,B
(h+1)
k } via the Bayesian version of the FGLS procedure.

6: end

7: end
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3.2.2 Priors

Bayesian LP allow the researcher to incorporate prior information for impulse responses at each horizon.

Incorporating prior information has multiple advantages. Prior information can be used to shrink impulse

responses at any horizon to prevent overfitting, which is often desirable in forecasting or when the number of

parameters is large (Giannone et al., 2015). Economic theory can be incorporated into the prior to inform the

shape of the impulse responses (e.g. the impulse response is monotonic or hump shaped) and to discipline

the long-run behavior (Giannone et al., 2018). Prior information from economic theory can also be used

to smooth impulse responses across horizons, which may be desirable in certain contexts (Barnichon and

Brownlees, 2018, Stock and Watson, 2018).

The default prior used in this paper is a conjugate training sample prior. When using a training sample

prior in Bayesian LP, the researcher must decide how many horizons they are going to estimated before they

choose the size of the training sample. To understand why, assume that the training sample is of size T .

The same training sample must be used for each horizon, so the training sample must be large enough to

estimate a training sample prior at each horizon. Recall that when estimating horizon h, h observations will

be lost from the original sample, so the training sample for horizon h has T − h observations.16

As shown in the previous section, the horizon 0 LP

yt = B
(1)
1

yt−1 +B(1)2
yt−2 + . . . +B(1)k yt−k + u(0)t .

can be recast as

yt =X
′(0)
t β(0) + u(0)t ,

where β(0) ≡ vec([B(1)
1

,B
(1)
2

, . . . ,B
(1)
k
]′), X

′(0)
t ≡ In � [yt−1, yt−2, . . . , yt−k]′, and u

(0)
t ∼ N(0,Σ(0)u ). The

conjugate training sample prior for p(β(0),Σ(0)u ) is

p(β(0)∣Σ(0)u ) ∼ N(b,Σ(0)u �Ω),

p(Σ(0)u ) ∼ IW (n,Ψ).

n is the prior degrees of freedom, b = β̂OLS and Ψ = nΣ̂OLS , where β̂OLS and Σ̂OLS are the OLS results from

the training sample. Ω =
T

n
(X ′X)−1 where X is the design matrix for the training sample and T

n
rescales

the conditional variance of β(0) so the conditional distribution will have the asymptotic variance of the OLS

results based on the average of n observations.17 n, which determines the informativeness of the prior, can

be chosen by the researcher or a prior can be placed on n and estimated using Griddy Gibbs or sampling

16This does not account for the k presample observations that will be treating as deterministic in the VAR(k).
17This is in the spirit of the unit information prior (Kass and Wasserman, 1995), but since this is done over a training sample, it does

not make double use of the data.
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importance resampling. In order for the prior mean of Σ(0)u to be defined, n ≥ p+ 2. By default, I set n = p+ 2
to make the prior weakly informative but still proper. The diagonal of Ω can be taken to prevent collinearity

issues if the prior is only based on small training sample (Brodersen et al., 2015). When estimating the

training sample prior for horizons 1 and greater, autocorrelation is corrected for in the training sample

estimates using the GLS procedure discussed in Section 2.2.18

Even though the conjugate normal inverse-Wishart training sample prior is the only prior presented,

many priors can be used with Bayesian LP. The priors need not be conjugate. LP are linear regressions, so

any prior that can be used with a linear regression can be used with Bayesian LP. Again, Bayesian LP allow the

researcher to incorporate prior information for impulse responses at each horizon. Prior information can be

used to shrink impulse responses at any horizon to prevent overfitting. Economic theory can be incorporated

into the prior to inform the shape of the impulse responses and to discipline the long-run behavior, which

would help smooth impulse responses across horizons and alleviate the sometimes erratic impulse responses

estimated from frequentist LP.

3.3 Structural Identification

This subsection briefly discusses structural identification in LP GLS. These techniques can be applied to both

the bootstrapped LP and Bayesian LP. For an extensive review of structural identification in VARs and LP see

Ramey (2016), and for an extensive treatment of identification in VARs and LP using external instruments

see Stock and Watson (2018). Structural identification in Bayesian LP is essentially the same as identification

with frequentist LP. Going back to the horizon 0 LP

yt = B
(1)
1

yt−1 +B(1)2
yt−2 + . . . +B(1)k yt−k + u(0)t ,

let u(0)t = Rst where st is a vector of structural shocks and R is an invertible matrix. If R is known, after esti-

mating {B(1)
1

,B
(2)
1

, . . . ,B
(h+1)
1

}, one can construct the structural impulse responses, {G(1),G(2), . . . ,G(h+1)},
via Monte Carlo integration where G(h) = B

(h)
1

R. Typically R is not known, but can be estimated, so Monte

Carlo integration can still be applied. An example of R being estimated would be a triangular (recursive) or-

dering.19 One would estimated horizon 0 LP, and then apply a recursive ordering to posterior (or bootstrap)

draws of Σ(0)u to obtain draws of R, and then draws of G(h) can be constructed via G(h) = B
(h)
1

R.

It is often the case that the researcher may not know all of the identifying restrictions in R or may

believe that R is not invertible, but the researcher has an instrument that they believe can trace out impulse

18Uncertainty is not marginalized out in the GLS transformation, ỹ(h)
t+h

, for the training sample.
19In the literature a triangular (recursive) ordering is often called a cholesky ordering because people often apply a cholesky decom-

position to impose the ordering. It should be noted that the cholesky normalizes the variances of the structural shocks to unity. If one
does not want to normalize the structural shocks one can instead use the LDL decomposition to impose recursive the ordering.
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responses of interest. The impulse responses of interest can instead be estimated by LP instrumental variable

regressions (LP-IV). Stock and Watson (2018) show that in order for LP-IV to be valid, 3 conditions need to

be satisfied. Decompose st into s1,t and s2,t where s1,t is the structural shock of interest at time t and s2,t

represents all other structural shocks at time t. Let zt be an instrument that the researcher believes can trace

out the impulse responses of s1,t. The instrument must satisfy the following three conditions

E[s1,tzt] ≠ 0,

E[s2,tzt] = 0,

E[st+jzt] = 0 for j ≠ 0.

The first two conditions are just the standard relevance and exogeneity conditions for instrumental variable

regression. The third condition is a lead-lag exogeneity condition, which guarantees that the instrument, zt,

is only identifying the impulse response of the shock s1,t. If the third condition is not satisfied, then zt will

amalgamate the impulse responses at different horizons. It may be the case that these conditions are only

satisfied after conditioning on suitable control variables (e.g. the lags of a VAR/horizon 0 LP).

Frequentist typically estimate LP-IV via two-stage least squares (2SLS). For example, say I want to es-

timate the impulse response, g(h), the impact a shock to monetary policy has on output at horizon h. Let

output be denoted as outputt and the monetary policy variable mpt. The frequentists approach is to estimate

LP-IV by running

outputt+h = g
(h)mpt + control variables + error(h)t+h (9)

via 2SLS and using zt as an instrument for mpt. Newey and West (1987) standard errors are used to account

for autocorrelation, but as shown section 2, this ignores the increasing variance problem. The increasing

variance problem is particularly problematic with LP-IV because the increasing variance can weaken the

strength of instrument for h ≥ 1.20 Alternatively, the impulse responses of shocks to s1,t can be recovered if

zt is included as an endogenous variable in the system and ordered first (Paul, ming, Plagborg-Møller and

Wolf, 2019). Let ẙt =

⎡⎢⎢⎢⎢⎢⎣
zt

yt

⎤⎥⎥⎥⎥⎥⎦
where yt contains mpt, outputt, and the control variables at time t, then the

horizon 0 LP/VAR is

ẙt = B̊
(1)
1

ẙt−1 + B̊(1)2
ẙt−2 + . . . + B̊(1)k ẙt−k + ů(0)t .

Since zt is ordered first due to its exogeneity, the residual for the zt equation, ů(0)
1,t , will be able to trace

out the structural impulse responses of interest.21 Going back to the monetary policy example, the impulse
20Whether the strength of the instrument is weakened depends in part on the type of impulse response being estimated. For example

if one is estimated a cumulative multiplier directly like in Ramey and Zubairy (2018), the autocorrelation would weaken the strength
of the instrument since the first stage of the 2SLS procedure has an increasing variance problem.

21Even if the control variables are exogenous to the system, any VARX can be written as a VAR with the exogenous variables ordered
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response g(h) can be constructed as the ratio of the impulse response of outputt+h to ů
(0)
1,t divided the impulse

response of mpt to ů
(0)
1,t . Hence by imbedding zt as an endogenous variable in the system and ordering it first,

one can just estimate equation (2) via their preferred LP GLS method and construct the impulse responses

of interest.

4 LP GLS and Relative Efficiency

To give a sense of potential efficiency gains of estimating LP via GLS, I will compare the asymptotic relative

efficiency of the LP GLS estimator and the standard LP estimator when the true model is an AR(1). The

asymptotic results apply for frequentists and Bayesians estimation due to the Bernstein-Von Mises theorem.

Take the simple AR(1) model

yt = ayt−1 + εt,

where ∣a∣ < 1 and a ≠ 0 and εt is a white noise error process with E(εt) = 0 and var(εt) = σ2. This implies

that E(yt) = 0 and the var(yt) = E(y′tyt) = σ2

(1−a2)
. Define {b(1), b(2), . . . , b(h+1)} as the LP impulse responses

for the AR(1) model. The limiting distribution of the LP GLS impulse response at horizon h is

√
T (b̂(h) − ah) dÐ→ N(0, [1 + (h2 − 1)a2h−2](1 − a2)),

(follows from Theorem 4). The limiting distribution of the LP impulse response estimated by OLS with

Newey-West standard errors at horizon h is

√
T (b̂(h) − ah) d

Ð→ N(0, (1 − a2)−1[1 + a2 − {2h + 1}a2h + {2h − 1}a2h+2]),

(Bhansali, 1997). The relative efficiency between the LP GLS and LP impulse responses,

[1 + (h2 − 1)a2h−2](1 − a2)2
[1 + a2 − {2h + 1}a2h + {2h − 1}a2h+2] ,

determines which specification is more efficient. Note that the relative efficiency not only depends on the

persistence, a, but on the horizon as well.

first in a block recursive scheme, therefore estimates from this setup are consistent.
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Table 3: Relative Efficiency of LP (GLS) to LP (NW)

Autocorrelation Horizons

Coefficient 3 5 10 20 30 40

a = .99 .993 .979 .945 .88 .818 .759

a = .975 .983 .948 .864 .713 .580 .464

a = .95 .966 .896 .735 .475 .288 .165

a = .9 .931 .792 .508 .179 .061 .029

a = .75 .827 .53 .195 .123 .123 .123

a = .5 .727 .496 .45 .45 .45 .45

a = .25 .854 .828 .827 .827 .827 .827

a = .1 .971 .97 .97 .97 .97 .97

a = .01 1 1 1 1 1 1

The gains from LP GLS can be large but they are not necessarily monotonic. This is because if the persistence

is not that high, the impulse responses decay to zero quickly making the variance of the impulse responses

small, and the gains from correcting for correcting for autocorrelation are not as large.

The efficiency gains of estimating LP via GLS, do not stop there. It turns out that when the true model is

a AR(1) and the system is persistent enough, LP estimated with GLS can be approximately as efficient as the

AR(1). Let â be the OLS estimate, the OLS estimate of a has the limiting distribution

√
T (â − a) dÐ→ N(0,1 − a2).

By the delta method, the horizon h impulse response has the limiting distribution

√
T (âh − ah) d

Ð→ N(0, h2a2h−2(1 − a2)).

The asymptotic relative efficiency between the AR and LP GLS impulse responses

h2a2h−2

h2a2h−2 + (1 − a2h−2) ,

determines which specification is more efficient. Since the true model is an AR(1), if the errors are normal,

the AR(1) model will be asymptotically more efficient due to the Cramer-Rao lower bound (Bhansali, 1997).

Below is a table of the relative efficiency between the AR and LP impulse responses for different values of a.
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Table 4: Asymptotic Relative Efficiency of AR to LP (GLS)

Horizons 5 10 20 30 40

a = .99 .997 .998 .999 .999 .999

a = .975 .991 .994 .996 .996 .996

a = .95 .980 .985 .985 .980 .968

a = .9 .95 .946 .881 .667 .302

a = .75 .736 .362 .007 0 0

a = .5 0 0 0 0 0

If the data is persistent enough, the LP impulse responses have approximately the same variance for horizons

relevant in macro. For example, the economics profession has still not determined if GDP has a unit root

or not. Assume that GDP is stationary but highly persistent with an AR(1) coefficient of .99. In this case,

the AR(1) impulse responses has approximately the same variance for at least the first 40 horizons. Müller

(2014) estimates the AR(1) coefficient for unemployment to be approximately .973. This would lead to

the AR(1) impulse responses having approximately the same variance for at least the first 40 horizons.

Other important macroeconomic variables such as inflation and the 3 month interest rate and most macro

aggregates are also highly persistent and would display similar results. It is not until the AR(1) coefficient is

.9 that you can see a notable difference over the first 40 horizons, and even then it is not until about 20 or

so horizons out.

When the true model is a multivariate VAR things become more complicated. Efficiency still depends on

the horizon and persistence, but because persistence can vary across the equations in the system, then for

any horizon, LP could be approximately as efficient for some impulse responses and much less efficient for

others. To see why, let us return to the VAR(1) model

yt = A1yt−1 + εt.

Take the eigenvalue decomposition of A1 = EΛ1E
′, where Λ1 = diag(λ1, . . . , λk) is the diagonal matrix of

distinct nonzero eigenvalues and E = [e1, . . . , ek] is the corresponding eigenmatrix and EE−1 = I where I is

the identity matrix. As a result Ah
1
= EΛh

1
E′ = ∑λh

1
e1e
′
1
. Define wt = E

−1yt and ηt = E
−1εt. For simplicity

assume E is known. This implies the VAR can be transformed into

wt = Λ1wt−1 + ηt,

which will be called the transformed model. Consequently

wt+h = Λ
h+1
1

wt−1 +Λh
1
ηt + . . . +Λ1ηt+h−1 + ηt+h.
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Since Λ is diagonal, each equation in the transformed VAR(1) is an AR(1) model. Therefore the results

derived earlier in this subsection for the AR(1) model apply.

More generally, it should be noted that, the efficiency gains of impulse responses estimated via LP GLS

impulse for a particular horizon depends on the relative efficiency of the eigenvalues, and how much an

eigenvalue contributes to the variance of an impulse response. So if A1 contains different eigenvalues, the

eigenmatrices and the correlation among eigenvalues would determine how much the variance of an eigen-

value contributes to the variance of an impulse responses in the untransformed model and hence determine

the relative efficiency of LP GLS impulse response to the VAR impulse responses. Essentially, the efficiency

gains of the VAR come from the less persistent components. Depending on how many persistent eigenvalues

there are and how much they contribute to the variance of the impulse responses, it is possible for LP GLS

to be approximately as efficient as the VAR, when the true model is a VAR. Whether impulse responses of LP

would be approximately as efficient would depend on the true data generating process, the persistence of the

system, the dependence structure of the variables, and the horizon. In other words, it would be specific to

the situation. It follows that the efficiency of the VAR relative to the LP has been overstated in the literature.

5 Monte Carlo Evidence

In this section I present Monte Carlo evidence of the finite sample properties of the bias adjusted LP GLS

bootstrap. The properties of LP GLS estimator will analyzed along with the properties of the LP estimated

via OLS with Newey-West standard errors (which will be referred to as LP NW), and the bias adjusted VAR

bootstrap (Kilian, 1998). Bayesian LP will not be included in the Monte Carlo exercise because Bayesian

methods do not carry the same interpretation as frequentist confidence intervals and their coverage cannot

be assessed the same way (Rubin, 1984, Hoff, 2009).

The Monte Carlo simulations will deal with AR(1) models since it is easy to isolate the persistence and,

as shown in the previous subsection, the results will be informative toward VARs generally. The population

model is

yt = ayt−1 + εt,

where a ∈ {.99, .975, .95, .9, .75, .5} and εt ∼ N(0,1) and the sample size T ∈ {250}. The different values

of a represent a range of eigenvalues encountered in macro. The sample size of 250 is representative of

a quarterly data set dating back to 1960. Even though the most prominent macro variables such as GDP,

inflation, and unemployment date back to at least 1948, many do not date back that far. The comprehensive

McCracken and Ng (2016) data set goes back to 1959, so a sample size of 250 seems reasonable.

Simulations are conducted 1,000 times for each combination of a and T . For each simulation, I estimated
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the model for each desired horizon using all three methods and then check if the 95% confidence intervals

contain the true impulse response. I then calculate the probability that the 95% confidence interval contains

the true impulse response over the Monte Carlo simulations which gives me the coverage of the different

methods. For each simulation draw, I also save the length of the 95% interval for the the different methods

for each horizon. The lengths are then averaged over each Monte Carlo simulation for each method and

horizon to get the respective average length of the 95% confidence intervals for each method and horizon.

For the bias adjusted LP GLS and VAR bootstraps, I generate 1,000 bootstrap draws. I set the lag truncation

parameter for the Newey-West standard errors to be h − 1, when estimating the horizon h LP. Note that for

correctly specified VARs, this is the true lag truncation parameter. 15 horizons are analyzed, which would be

representative of analyzing four years of impulse responses for quarterly data.

Figures 1 and 2 displays the coverage and average length respectively. In general the bias-adjusted

LP bootstrap has good finite sample properties. It tends to have coverage at or near the nominal level, but

coverage can decline somewhat at longer horizons, dropping as low as 87%, if the autocorrelation coefficient

is very persistent. This decline can be remedied to a degree by increasing the number of bootstraps. It is also

the case that for the most persistent autocorrelation coefficients, coverage tends to be closer to 90% than

95%. The bias adjusted VAR bootstrap has coverage at or near the nominal level at all horizons. Consistent

with the theoretical prediction in the previous section, the relative efficiency of the LP relative to the VAR

depends on the persistence, with high persistence levels tending to have similar average lengths, which is

consistent with asymptotic relative efficiency results in the previous section.

The LP NW estimator’s performance can be much worse than the other two estimators. Coverage can

drop drastically at higher horizons, below 60%, and if the data is persistent enough, coverage can be quite

below the nominal level even at shorter horizons. The lack of coverage is due not only to the small sample

bias but to Newey-West standard errors underestimating uncertainty. Note that the LP NW estimator tends

to have shorter length than the bias adjusted LP GLS and VAR bootstraps. To “test” if this is due to Newey-

West standard errors underestimating uncertainty, I estimate the “true” Monte Carlo variance of the different

methods. That is, for each simulation I generated the AR(1) model and estimated the point estimates for

each horizon using LP GLS, LP via OLS, and VAR via OLS. There is no bias correction here because the

point is to show that even without bias correction, using GLS would lead to efficiency gains. To construct

the VAR impulse responses, the OLS estimate was just raised to it’s respective power. I saved the point

estimates for each horizon for each simulation, and then I calculated the 95% quintiles (95% Monte Carlo

confidence interval) for across the saved simulation estimates. This give me an approximation of the “true”

95% confidence intervals for these methods for the specific model and sample size. Figure 3 displays the

average length for the “true” 95% confidence intervals. The efficiency gains of using GLS are pretty clear and

because the LP GLS and the VAR OLS do not use bias correction in this Monte Carlo, it follows that LP NW
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standard errors is underestimating uncertainty, and the lack of coverage is not solely due to the small sample

bias. Newey-West standard errors underestimating uncertainty is a common problem when the process is

persistent (Müller, 2014). It is also important to note that Newey-West standard errors are underestimating

uncertainty, even though the true lag truncation parameter is being used.

Even though the bias adjusted LP bootstrap displays good finite sample properties, the Monte Carlo

analysis of the “true” confidence intervals also indicate there is some efficiency loss from using the block

bootstrap. That is, the block bootstrap is not as efficient as it could be. The efficiency loss is probably due to

the chosen block length, particularly the choice of consecutive blocks L = T 1/3. Additional Monte Carlos also

show that changing the block length or implementing the stationary bootstrap can also improve the slight

decline in coverage for the highly persistent processes, but there can also be a loss in efficiency. Since the

block length involves a bias variance tradeoff with longer block lengths yielding less biased test statistics

with larger variances and shorter block lengths yielding the opposite, a rule or a cross validation method

such as Hall et al. (1995) needs to be developed.

6 Issues of Nonstationarity

It is also worth reiterating that the GLS procedure presented in section 2 and the consistency and asymptotic

normality of the procedure assumes stationarity. Nonstationarity can be caused by unit roots or structural

breaks. In the case of unit roots, inference from the frequentist perspective could differ depending on

which variables have unit roots and what the parameters of interest are (Sims et al., 1990, Jordà, 2009).

Consistency of the results can still hold if the errors have enough moments (Sims et al., 1990, Jordà, 2009), so

the procedure can still eliminate autocorrelation, but asymptotic normality of the results could break down,

so inference based on the frequentist procedures presented could be invalid if unit roots are present. If unit

roots are an issue and the order of integration is known, the data could just be difference to stationarity.

However the order of integration is probably not known. One could test for unit roots, but frequentist tests

unit roots lack power and can create considerable coverage distortions depending on the conclusion of the

test (Pesavento and Rossi, 2006). In the case of Bayesian LP, Bayesian methods do not need to do anything

special to take into account “explosive” nonstationarity behavior (e.g. unit roots) (Sims et al., 1990, Del

Negro and Schorfheide, 2011), so estimation and inference involving Bayesian LP could proceed as usual.22

When nonstationarity is caused by structural breaks, both the frequentist and Bayesian methods pre-

sented will break down if they do not properly take into account change(s) in the parameters. Stationarity

guarantees that the model has a linear time-invariant VMA representation. If the data are not stationary and

structural breaks are the cause, then the procedure may not eliminate autocorrelation. To understand why
22There is a lively debate about how to construct priors for Vector Error Correction models (Del Negro and Schorfheide, 2011).
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it matters if structural breaks are present, note that if the data are not stationary, it is possible for the esti-

mated horizon 0 LP residuals to be uncorrelated since the VAR can still produce reasonable one-step ahead

forecasts when the model is misspecified (Jordà, 2005). A “Wold representation” exists for nonstationary

data, but the impulse responses for this VMA representation are allowed to be time dependent (Granger and

Newbold, 1977, Priestley, 1988).23 Assuming there is no deterministic component, any time series process

can be written as

yt = εt +
∞

∑
i=1

Θi,tεt−i,

where Θi,t is now indexed by the horizon and time period and var(εt) = Σε,t. Using recursive substitution,

the time dependent Wold representation can be written as a time dependent VAR or a time dependent LP.24

It can be shown that a time dependent version of Theorem 1 exists. The horizon h time dependent LP is

yt+h = B
(h+1)
1,t yt−1 +B(h+1)2,t yt−2 + . . . + e(h)t+h, (10)

where

e
(h)
t+h = Θh,tεt + . . . +Θ1,tεt+h−1 + εt+h

B
(h)
1,t = Θh,t.

If impulse responses are time dependent at higher horizons, but a time invariant version of LP GLS is applied,

autocorrelation may not be eliminated at these horizons because the time-invariant LP are misspecified. In

other words, if the data are nonstationary and the nonstationarity is caused by structural breaks, the time

invariant version of LP GLS may not eliminate autocorrelation in the residuals since the estimates of the

impulse responses may not be consistent. In this sense, LP GLS is a type of general misspecification test,

because if one had estimated LP using OLS and Newey-West standard errors, the autocorrelation in the

residuals would not hint toward potential misspecification since the residuals are inherently autocorrelated.

As noted in Granger and Newbold (1977), macro data encountered in practice are unlikely to be station-

ary, implying that the Wold representation may be time dependent. If the impulse responses of the Wold

representation are time dependent, since time-varying parameter models can approximate any form of non-

linearity (Granger, 2008), a time varying version of LP GLS may be applied. The time-varying parameter

version of the above GLS procedure presented in section 2 will be able to eliminate autocorrelation as long

as the parameter changes are not so violent that a time-varying parameter model cannot track them. All else

equal, the more adaptive the time-varying parameter model, the better the time-varying parameter model

23Nonstationarity in economics typically refers to explosive behavior (e.g. unit roots), but nonstationarity is more general and refers
to a distribution that does not have a constant mean and/or variance over time (e.g. threshold models or models with stochastic
volatility). Depending on the true model, differencing may not make the data stationarity (Leybourne et al., 1996, Priestley, 1988).

24The lag lengths can be infinite. Obviously in practice, a finite lag length would be chosen.
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will be able to track changes and the better the approximation.25 Time-varying parameter LP are presented

in the next section. If the nature of the time dependence is known, that is, the researcher knows when the

structural breaks occur or the nature of the time variation (i.e. regime switching models for expansions and

recessions), then that specific time dependent model can be applied to the LP GLS procedure.

7 Time-Varying Parameter LP

As noted in the introduction, a researcher may be interested in allowing for time-varying parameters. Stock

and Watson (1996) and Ang and Bekaert (2002) show many macroeconomic and financial time series ex-

hibit parameter instability. It is also commonplace for regressions with macroeconomic time series to display

heteroskedasticity of unknown form (Stock and Watson, 2007), and in order to do valid inference, the het-

eroskedasticity must be taken into account. Parameter instability can occur for many reasons such as policy

changes, technological evolution, changing economic conditions, etc. If parameter instability is not appropri-

ately taken into account, it can lead to invalid inference, poor out of sample forecasting, and incorrect policy

evaluation. Moreover, time-varying parameter models can approximate any non-linear model (non-linear in

the variables and/or the parameters), which makes them more robust to model misspecification (Granger,

2008).

As mentioned in the previous section, for any time series process, there exists a time dependent Wold

representation

yt = εt +
∞

∑
i=1

Θi,tεt−i,

where Θi,t is now indexed by the horizon and time period and var(εt) = Σε,t. Using recursive substitution,

the time dependent Wold representation can be written as a time dependent VAR or a time dependent LP. It

can be shown that a time dependent version of Theorem 1 exists. The horizon h time dependent LP is

yt+h = B
(h+1)
1,t yt−1 +B(h+1)2,t yt−2 + . . . +B(h+1)k,t yt−k + e(h)t+h, (11)

where

e
(h)
t+h = Θh,tεt + . . . +Θ1,tεt+h−1 + εt+h

B
(h)
1,t = Θh,t.

Just like the time invariant case, k can be infinite in population but will be truncated to a finite value

in finite samples. Similarly to the time-invariant transformation, one can do a GLS transformation ỹ
(h)
t+h =

25Baumeister and Peersman (2012) show via Monte Carlo simulations that time-varying parameter models are able to capture discrete
breaks in a satisfactory manner should they occur.

27



yt+h − B̂(h)1,t ε̂t − . . . − B̂(1)1,t ε̂t+h−1. Then one can estimate horizon h via the following equation

ỹ
(h)
t+h = B

(h+1)
1,t yt−1 +B(h+1)2,t yt−2 + . . . +B(h+1)k,t yt−k + ũ(h)t+h. (12)

Estimation is carried out in the same way as in the time-invariant case, except the models are being estimated

with time-varying parameters.

Just like a static LP model can be more robust to model misspecification than a static VAR, a time-varying

parameter LP model can be more robust to model misspecification than a time-varying parameter VAR. If

the true model is time varying, then the misspecification of the VAR can extend to the time variation as

well. Due to the iterative nature of the VAR, misspecification in time variation would be compounded in the

construction of the impulse responses alongside other misspecifications in the VAR. Time-varying parameter

LP, however, allow for the amount and nature of time variation to change across horizons. Since time-varying

parameter models can also approximate any non-linear model, time-varying parameter LP can do a to better

job capture the time variation in the impulse responses at each horizon.

There are several ways to estimate time-varying parameter models. Bayesian methods are the primary

methods used to estimate time-varying parameter models, and because autocorrelation is explicitly corrected

for in Bayesian LP, it is straightforward to apply time-varying parameters to Bayesian LP. For the rest of this

section, I will describe a computationally convenient way to estimate time-varying parameter models. This

procedure is based off of Prado and West (2010). Let

yt =X
′
tβt + vt,

βt = βt−1 +wt,

where yt is a r × 1 vector βt is the p × 1 state vector at time t, Xt is a p × r vector of regressors at time t, vt is

a r × 1 vector observation noise with vt ∼ N(0,Σt), wt is the state evolution noise with wt ∼ N(0,Σt ⊗Wt),
and vs and wt are independent and mutually independent ∀s, t. Notice that the variance of vt is allowed to

be time-varying. Stochastic volatility (time-varying variance) is modeled as a beta-Bartlett Wishart random

walk. Define Dt−1 is the amount of information known at time t− 1. The beta-Bartlett Wishart random walk

is defined using the following t − 1 to time t update

p(Σt−1∣Dt−1) ∼ IW (nt−1,Ψt−1)

and

p(Σt∣Dt−1) ∼ IW (θnt−1, btΨt−1),
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where θ is a discount factor for stochastic volatility and bt = (θnt−1 + k − 1)/(nt−1 + k − 1).26 The models are

estimated using discount factors and the Forward Filter Backward Sampler (FFBS) algorithm, and details

about the estimation procedure can be found in the Appendix.27 Because discount factors and conjugate

priors are used, MCMC is not needed. This is crucial for three reasons. First, if the number or parameters is

even moderately large, time-varying parameter models such as Cogley and Sargent (2005), Primiceri (2005)

become computationally demanding to estimate if not infeasible (Koop and Korobilis, 2013). Second, LP

are estimated horizon by horizon in a sequential fashion which can make procedures such as Cogley and

Sargent (2005), Primiceri (2005) impractical. Third, in order to do model comparison or hypothesis testing,

it is often necessary to calculate the marginal likelihood, which is no trivial task for models estimated using

MCMC. In recent years discount factors have been used in the as a solution to when the procedures of

Cogley and Sargent (2005), Primiceri (2005) are burdensome (Koop and Korobilis, 2013, Koop et al., 2018).

This is not to suggest that time-varying parameter procedures such as Cogley and Sargent (2005), Primiceri

(2005) or other cannot be used, just that depending on the goal of the analysis and the computational power

available to the researcher, these procedures may not be practical.28

Discount factors (also known as forgetting factors) are a natural framework for allowing and controlling

for time variation in regression coefficients and the variance and are a core part of the Bayesian forecasting

literature (West and Harrison, 1997, Prado and West, 2010). Discount factors lie in the interval (0,1]. If a

discount factor, say θ = .99 is used, then from period t → t + 1, 1

θ
− 1 ≈ 1% of information known at time t is

discounted or forgotten in the Kalman filtration process.29 And if θ = .99, observations from 20 periods ago

receive approximately 80% as much weight as this period’s observation. The loss of information over time

allows more recent data to have a larger impact on the parameter value and is the crux for controlling for

time variation in the parameters. The discount factors are estimated using Griddy Gibbs. Including the the

discount factor as a parameter to be estimated takes into account uncertainty in the hyperparameters and is

a natural way to safeguard against overfitting (Giannone et al., 2015).

Due to the number of parameters being estimated, the priors for time-varying parameter models are quite

important (Koop and Korobilis, 2009), otherwise parameter estimates may be imprecise if the sample size is

not large. Like Cogley and Sargent (2005), Primiceri (2005), a training sample prior can be used. The prior

is the same as the one presented earlier in section 3.2.30

26The model uses different discount factors for the regression coefficients and stochastic volatility.
27See West and Harrison (1997), Prado and West (2010) for derivations and more details about time-varying parameter methods

using discount factors.
28If time-varying parameter procedures such as Cogley and Sargent (2005), Primiceri (2005) are used, it is recommended that the

MCMC be implemented using the more computationally efficient precision sampler in Chan and Jeliazkov (2009).
29A discount factor of .99 has properties similar to what Cogley and Sargent (2005) call their “business as usual” prior, and it can

be shown that the choice of prior shrinkage coefficient in Cogley and Sargent (2005) allows for variation in the regression coefficients
roughly similar to that allowed for by a regression coefficient discount factor of .99 (Koop and Korobilis, 2013).

30It should be noted that non-informative priors (such as reference priors) cannot be used in Bayesian model comparison due to
Bartlett’s paradox. If a training sample is not available, other priors can be used. See Koop and Korobilis (2009), Koop (2017) for a
review.
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9 Concluding Remarks

I show that LP can be estimated with GLS. Estimating LP with GLS has three major implications. First, LP

GLS can be substantially more efficient and less biased than estimation by OLS with Newey-West standard

errors. Moreover, if the data are persistent and the true model is a VAR, it can be shown that impulse

responses from LP can be approximately as efficient as impulse responses from VARs. Whether or not the

LP is approximately as efficient depends on the persistence of the system, the horizon, and the dependence

structure of the system. All else equal, the more persistent the system, the more likely LP impulse responses

will be approximately as efficient for horizons typically relevant in practice. Given that most macro data are

nonstationary or nearly nonstationary, even if the true model is a VAR, the efficiency of the VAR relative to

the LP has been overstated in the literature.

Second, because autocorrelation process can be modeled explicitly, it is possible to give a fully Bayesian

treatment of LP. That is, LP can be estimated using fully Bayesian or frequentist methods. Bayesian LP have

many advantages over frequentist LP and/or Bayesian VARs such as allowing the researcher to incorporate

prior information for impulse responses at each horizon. Prior information can be used to shrink impulse

responses at any horizon to prevent overfitting. Economic theory can be incorporated into the prior to

inform the shape of the impulse responses (e.g. the impulse response is monotonic or hump shaped) and to

discipline the long-run behavior. Bayesian methods do not need to do anything special to take into account

nonstationarity.

Third, since autocorrelation process can be modeled explicitly, it is now possible to estimate time-varying

parameter LP. Bayesian LP can easily be adapted to handle time-varying parameter models, but one does

not have to use Bayesian methods. Time-varying parameter LP can take into account structural instability

in the regression coefficients and/or the covariance matrix, and since time-varying parameter models can

approximate any form of non-linearity, makes them more robust to model misspecification (Granger, 2008).

The results in this paper have many potential extensions for both frequentist and Bayesian analysis. It

would be useful for frequentist to have a data dependent rule or cross validation method for the optimal

block length when using block bootstrapping for LP. It may be useful to extend some of the big data, sparsity,

and variable selection methods used for VARs to LP.31 It may also be useful to extend LP GLS to a non-linear

(in the variables) or non-parametric setting. Even though time-varying parameter models can approximate

any non-linear model (non-linear in the variables and/or the parameters), the approximation is for the

conditional mean, so if the true model is non-linear in the variables, estimation of the linear (in the variables)

time-invariant or time-varying parameter LP GLS would lead to inconsistent estimates of the true impulse

responses. One potential solution would be to extend polynomial LP, which are motivated by non-linear

31See Koop and Korobilis (2009), Koop (2017) for a review.
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version of the Wold representation (see Jordà (2005) section 3 for more details). If one is does not want to

make assumptions about the functional form or the model, the second potential solution would be to extend

nonparametric LP. Lastly, since LP are direct multistep forecasts, the results in this paper have the potential

to improve the forecast accuracy of direct multistep forecasts.
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Appendix

A.1 Normal Inverse-Wishart Posterior Equations

Let

yt = B
(1)
1

yt−1 +B(1)2
yt−2 + . . . +B(1)k yt−k + u(0)t ,

as one would a standard Bayesian VAR. Define β(0) ≡ vec([B(1)
1

,B
(1)
2

, . . . ,B
(1)
k
]′), X ′(0)

t ≡ In�[yt−1, yt−2, . . . , yt−k]′,
then

yt =X
′(0)
t β(0) + u(0)t ,

where u
(0)
t ∼ N(0,Σ(0)u ). Assume a conditional normal inverse-Wishart prior for p(β(0),Σ(0)u ). That is

p(β(0)∣Σ(0)u ) ∼ N(b,Σ(0)u �Ω),

p(Σ(0)u ) ∼ IW (n,Ψ),

where b, Ω, Ψ, and n are prior hyperparameters. Define y ≡ [y′k+1, . . . , y′T ]′ and X ≡ [X(0)k+1, . . . ,X
(0)
T ]′, The

posterior is also conditional normal inverse-Wishart. That is

p(β∣Σ, y1∶T ) ∼ N(b,Σ�Ω),

p(Σ∣y1∶T ) ∼ IW (n,Ψ),

where

Ω = (X ′X +Ω−1)−1,

Â = (X ′X)−1X ′y,

B = Ω[Ω−1B +X ′XÂ],

b = vec(B),

b = vec(B),

S = (y −XÂ)′(y −XÂ),

Ψ = S +Ψ + ÂX ′XÂ +BΩ−1B −B′(X ′X +Ω−1)B,

n = n + T − k.
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A.2 Forward Filter Backward Sampler (FFBS)

Forward Filtering

More detail about the algorithm can be found in Prado and West (2010). Recall that a TVP model can be

characterized as follows:

yt =X
′
tβt + vt,

βt = βt−1 +wt,

where yt is a r × 1 vector βt is the p × 1 state vector at time t, Xt is a p × r vector of regressors at time t, ǫt is

a r × 1 vector observation noise with vt ∼ N(0,Σt), wt is the state evolution noise with wt ∼ N(0,Σt ⊗Wt),
and vs and wt are independent and mutually independent ∀s, t. Notice that the variance of vt is allowed to

be time-varying. Stochastic volatility (time-varying variance) is modeled as a beta-Bartlett Wishart random

walk. Stochastic volatility is modeled as a beta-Bartlett Wishart random walk which is defined as following

t − 1 to time t update

p(Σt−1∣Dt−1) ∼ IW (nt−1,Ψt−1)

then

p(Σt∣Dt−1) ∼ IW (θnt−1, btΨt−1)

where θ is a discount factor for stochastic volatility and bt = (θnt−1 + k − 1)/(nt−1 + k − 1). Let D0 represents

initial prior information and the current information set represented by Dt = {Dt−1, yt}. The estimates of

a standard TVP DLM can be obtained as follows. First recall that for a VAR(k) Xt ≡ In � [y′t−1, . . . , y′t−k].
Imagine we have the posterior distributions of βt and vt at time t − 1. The posteriors are:

βt−1∣Σt−1,Dt−1 ∼ N(mt−1,Σt−1 �Ct−1),

Σt−1∣Dt−1 ∼ IW (nt−1,Ψt−1),

where

Mt =Mt−1 +Atǫ
′

t,

mt = vec(Mt),

Ct = Rt −AtA
′
tqt,

At = RtXt/qt,

Rt = Ct−1 +Wt = Ct−1/δ.
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nt = θnt−1 + 1,

Ψt = Ψt−1 + ǫtǫ′t/qt,

ǫt = yt − ft,

ft =X
′
tMt−1,

qt =X
′
tRtX

′
t + 1,

where δ is the discount factor for the regression coefficients.The volatility evolves from the Σt−1 posterior to

the prior of Σt according to

p(Σt∣Dt−1) ∼ IW (θnt−1, θΨt−1)

State evolves from the βt−1 prior to the βt posterior as follows:

βt∣Σt,Dt−1 ∼ N(mt−1,Σt �Rt),

βt∣Dt−1 and Σt∣Dt−1 are now the priors for βt and Σt respectively. This leads to the following one-step-ahead

predictive of yt:

yt∣Dt−1 ∼ Tθnt−1
(ft, qtΨt−1

nt−1
),

where The posterior for βt∣Dt and Σt∣Dt can be now be calculated.

Backward Sampling

Initialize at T draw

ΣT ∣DT ∼ IW (nt,Ψt),

βT ∣ΣT ,DT ∼ N(MT ,ΣT �CT ).

For t − 1 to 1

Σ−1t = θΣ
−1
t+1 + γt,

where

γ−1t ∼ IW ((1 − θ)nt,Ψt),

and

βt =mt + δ(βt+1 −mt) +N(0,Σt �C∗t ),
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where

C∗t = Ct − δ2Rt+1.

A.3 Choosing Lag Length and Estimating Discount Factors

The optimal the lag length is chosen by maximizing the joint log likelihood functions defined in terms of the

predictive densities

log[p(y1∶T ∣D0, δ, θ, lag length)] =
T

∑
t=1

log[p(yt∣Dt−1, δ, θ, lag length)],

where

p(yt∣Dt−1, δ, θ, lag length),

is the one step ahead predictive density, δ is the discount factor that controls for time variation in the

regression coefficients, and Dt−1 is the amount of information known at time t − 1.32 Maximizing the joint

log likelihood functions is equivalent to maximizing the marginal likelihood. If each model is assumed

to have the same prior probability, it is also equivalent to choosing the model with the highest posterior

probability. Let M1,M2, . . . ,MI denote I models of the same structure that only differ in their lag lengths.

The posterior probability for model i can be calculated by:

p(Mi∣y1∶T ,D0) = p(Mi)p(y1∶T ∣D0,Mi)
∑I

j=1 p(Mj)p(y1∶T ∣D0,Mj) .

Assuming all models have equal prior probability (p(Mi) = I−1 ∀i):

p(Mi∣y1∶T ,D0) = p(y1∶T ∣D0,Mi)
∑I

j=1 p(y1∶T ∣D0,Mj) .

Then conditional on the optimal lag length, the posterior distributions for the regression coefficients and the

variance are model averaged over the grid of discount factors in order to take into account the uncertainty

in the discount factors. Model averaging over the grid of discount factors is equivalent to placing a uniform

prior on the discount factors and estimating them using Griddy Gibbs. Ideally one would use sampling

importance resampling (see (Lopes et al., 1999)), but this is computationally impractical.

The regression coefficients’ discount factor is estimated over a default grid of [.7, 1] where the grid is

partitioned by .01. The stochastic volatility discount factor is also chosen over a default grid of [.7, 1] where

the grid is partitioned by .01. The initial grid size and partition are chosen because they cover fairly rapid

32Xt is suppressed in the marginal likelihood for clarity.
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parameter changes to no parameter change and should cover most situations (?) .33 It is important to

note that if posterior distribution of the discount factors pile up at the bottom of the grid, the grid must

be lowered. For example let us say that the median regression coefficient discount factor is .95, but the

median variance discount factor is .7. The grid for the variance discount factor must be lowered (e.g., to [.6,

1]). The reason for this is because the true discount factor for the variance may be .62 and the regression

coefficient discount factor 1, but because the grid initially only searched over [.7, 1], it may be optimal for

the regression coefficients to allow for time variation in order to compensate for the bound on the amount

of stochastic volatility. Theoretically, one could allow just for regression coefficient instability or only for

stochastic volatility. One would just have to restrict the discount factor not of interest to be equal to 1

and then search the grid for the other discount factor. This is not recommended because the restriction

may exaggerate the results of the test. For example, if the true model has stochastic volatility and the test

is restricted not to allow for stochastic volatility, it may be optimal for the time-varying parameter model

to exaggerate the amount of time variation in the regression coefficients in order to compensate for the

restriction.34

Depending on the situation more flexible time-varying parameter models may be needed. It is possible

to allow subsets of regression coefficients to have different discount factors. To do so one, would use block

discounting (Prado and West, 2010). However, it should be noted that as the number of discount factors

becomes large, the computational demands increase exponentially because a grid must be searched for each

discount factor. It is also possible to change discount factors over the sample period (Koop and Korobilis,

2013). Using cholesky style decoupling and recoupling (Zhao et al., 2016) or simultaneous graphical dy-

namic linear models(Gruber and West, 2016), it is also possible to allow each equation in a system to have

different discount factors.

A.4 Proofs of Consistency, Asymptotic Normality, and Efficiency of LP

GLS

Preliminaries and Assumptions

Let yt be an r × 1 vector with Wold representation given by

yt = εt +
∞

∑
h=1

Θhεt−h

33Depending on the context, these grid values may not be appropriate and can be adjusted accordingly. If desired, one can also
conduct a sensitivity analysis with the size of the grid partitions.

34A similar argument is made by Sims and Zha (2006) on an earlier version of Cogley and Sargent (2005) that did not allow for
stochastic volatility in their time-varying parameter model.
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where εt is i.i.d. with E(εt) = 0 and E(εtε′t) = Σε and the Θh satisfy ∑∞h=0 ∥ Θh ∥< ∞ where ∥ Θh ∥2=
tr(Θ′hΘh) with Θ0 = Ir. Further, assume det{Θ(z)} ≠ 0 for ∣z∣ ≤ 1 where Θ(z) = ∑∞h=0Θhz

h so that process

can be written as an infinite order VAR representation

yt =
∞

∑
j=1

Ajyt−j + εt

with ∑∞j=1 ∥ Aj ∥<∞ and A(z) = Θ(z)−1 . By recursive substitution

yt+h = B
(h)
1

yt +B(h)2
yt−1 + . . . + εt+h +Θ1εt+h−1 + . . . +Θh−1εt+1,

where B
(h)
1
= Θh, B(h)j = Θh−1Aj +B(h−1)j+1 for h ≥ 1 and with B

(0)
j+1 = 0; Θ0 = Ir with j ≥ 1. The horizon h LP

consists of estimating Θh from a least squares estimate of Ah
1

with truncated regression

yt+h = B
(h)
1

yt + . . . +B(h)k yt−k+1 + e(h)k,t+h,

where

e
(h)
k,t+h =

∞

∑
j=k+1

B
(h)
j yt−j+1 + εt+h +

h−1

∑
l=1

Θlεt+h−l.

For standard LP

B̂(k, h,OLS) = (B̂(h)
1

, . . . , B̂
(h)
k ) = Γ̂′1−k,hΓ̂−1k

Γ̂1−k,h = (T − k −H)−1∑T−h
t=k Xt,ky

′
t+h

Γ̂k = (T − k −H)−1∑T−H
t=k Xt,kX

′
t,k

Xt,k = (y′t, y′t−1, . . . , y′t−k+1)′

B̂(k, h,OLS) −B(k, h) = {(T − k −H)−1
T−H

∑
t=k

(
∞

∑
j=k+1

B
(h)
j yt−j+1 + εt+h +

h−1

∑
l=1

Θlεt+h−l)X ′t,k}Γ̂−1k

Define

U1T = {(T − k −H)−1
T−H

∑
t=k

(
∞

∑
j=k+1

B
(h)
j yt−j+1)X ′t,k}

U2T = {(T − k −H)−1
T−H

∑
t=k

εt+hX
′
t,k}

U3T = {(T − k −H)−1
T−H

∑
t=k

(
h−1

∑
l=1

Θlεt+h−l)X ′t,k}
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Proof of Consistency for LP OLS Correction

Assumption 2. Let yt satisfy the Wold representation as presented above. Assume that in addition,

(i)E∣εitεjtεktεlt∣ < ∞

for 1 ≤ i, j, k, l ≤ n.

(ii) k satisfies
k2

T
→ 0; T, k →∞

(iii) k satisfies

k1/2
∞

∑
j=k+1

∥ Aj ∥→ 0 T, k →∞.

These assumptions were used to show consistency of the VAR(∞) (Lewis and Reinsel, 1985) and the LP(∞)

(Jordà and Kozicki, 2011).

Proposition 2. Assume assumption 2 holds, then

∥ B̂(k, h,OLS) −B(k, h) ∥ p
→ 0.

Proof. Lewis and Reinsel (1985) establish that ∥ Γ̂−1k ∥1 is bounded in probability, so consistency in standard

LP consists of showing that ∥ U1T ∥,∥ U2T ∥, and ∥ U3T ∥ converge in probability to 0. This was shown in

Jordà and Kozicki (2011). However, their proof showing ∥ U3T ∥ converging to 0 is incorrect. It is incorrect

because (∑h−1
l=1 Θlεt+h−l)X ′t,k is assumed to be independent across time. It is not. A correct proof is

U3T = {(T − k −H)−1
T−H

∑
t=k

(
h−1

∑
l=1

Θlεt+h−l)X ′t,k}

∥ U3T ∥
2
=∥ {(T − k −H)−1

T−H

∑
t=k

(
h−1

∑
l=1

Θlεt+h−l)X ′t,k} ∥2

∥ U3T ∥
2
= (T − k −H)−2trace{[

T−H

∑
n=k

(
h−1

∑
l=1

Θlεn+h−l)X ′n,k]′[
T−H

∑
m=k

(
h−1

∑
l=1

Θlεm+h−l)X ′m,k]}

∥ U3T ∥
2
= (T − k −H)−2trace{

T−H

∑
m=k

T−H

∑
n=k

(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)X ′m,kXn,k}

by the cyclic property of traces.

E ∥ U3T ∥
2
= (T − k −H)−2trace

T−H

∑
m=k

T−H

∑
n=k

E{(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)X ′m,kXn,k}.
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For ∣n −m∣ > h − 1

E{(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)X ′m,kXn,k} = E{(
h−1

∑
l=1

Θlεn+h−l)′}E{(
h−1

∑
l=1

Θlεm+h−l)X ′m,kXn,k} = 0

by independence. So

E ∥ U3T ∥2= (T − k −H)−2trace
T−H

∑
m=k

∑
∣n−m∣<h

E{(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)X ′m,kXn,k}.

Note that

∣ E{(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)X ′m,kXn,k} ∣≤ (E[{(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)}2])1/2(E[{X ′m,kXn,k}2])1/2

by Cauchy-Schwarz inequality. And

X ′m,kXn,k = y
′
myn + y′m−1yn−1 + . . . + y′m−k+1yn−k+1

(X ′m,kXn,k)2 = (y′myn + y′m−1yn−1 + . . . + y′m−k+1yn−k+1)2

E[(X ′m,kXn,k)2] = Op(k2)

and

∣ E([(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)]2) ∣= constant

due to the finite fourth moments of ε and ∑∞h=0 ∥ Θh ∥<∞. Consequently for ∣n −m∣ ≤ h − 1,

trace{(E[{(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)}2])1/2(E[{X ′m,kXn,k}2])1/2} = Op(k).

This implies there exists some finite constant M such that

E ∥ U3T ∥2= (T−k−H)−2trace
T−H

∑
m=k

∑
∣n−m∣<h

E{(
h−1

∑
l=1

Θlεn+h−l)′(
h−1

∑
l=1

Θlεm+h−l)X ′m,kXn,k} ≤ (T−k−H)−2(T−k−H)(kh)M

E ∥ U3T ∥2≤ (T − k −H)−1k × constant p
→ 0.

Ô⇒ ∥ U3T ∥
p
→ 0

That completes the correction that shows that LP OLS is consistent.
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Proof of Consistency for LP GLS

Theorem 2. Assume assumption 2 holds, then for LP GLS

∥ B̂(k, h,GLS) −B(k, h) ∥ p→ 0.

Proof. To show consistency in LP GLS, there is an additional term

U4T = {(T − k −H)−1
T−H

∑
t=k

(
h−1

∑
l=1

Θ̂lε̂t+h−l)X ′t,k}

that must be taken into account. To see why note that the horizon h LP GLS is

yt+h −
h−1

∑
l=1

Θ̂j ε̂t+h−l = B
(h)
1

yt + . . . +B(h)k yt−k+1 + ũ(h)k,t+h,

where

ũ
(h)
k,t+h =

∞

∑
j=k+1

B
(h)
j yt−j+1 + εt+h +

h−1

∑
l=1

Θlεt+h−l −
h−1

∑
l=1

Θ̂j ε̂t+h−l.

and Θ̂h = B̂
(h)
1

. To show consistency of LP GLS it suffices to show that ∥ U4T ∥
p→ 0 because for LP GLS

∥ B̂(k, h) −B(k, h) ∥=∥ U1T Γ̂
−1
k +U2T Γ̂

−1
k +U3T Γ̂

−1
k −U4T Γ̂

−1
k ∥

≤∥ U1T ∥∥ Γ̂−1k ∥1 + ∥ U2T ∥∥ Γ̂−1k ∥1 + ∥ U3T ∥∥ Γ̂−1k ∥1 − ∥ U4T ∥∥ Γ̂−1k ∥1 .

Lewis and Reinsel (1985) establish that ∥ Γ̂−1k ∥1 is bounded in probability. Jordà and Kozicki (2011) show

∥ U1T ∥ and ∥ U2T ∥ converges in probability to 0, and Proposition 2 shows ∥ U3T ∥ converges in probability

to 0. The proof showing ∥ U4T ∥
p→ 0 will be a proof by induction. Assume the consistency for the previous

h − 1 horizons has been proven. Hence ∥ Θ̂l ∥
p→∥ Θl ∥<∞ for 1 ≤ l ≤ h − 1. Note

ε̂t = εt + (
∞

∑
j=1

Ajyt−j) − (
k

∑
i=1

Âiyt−i).

Therefore

U4T = {(T − k −H)−1
T−H

∑
t=k

(
h−1

∑
l=1

Θ̂lε̂t+h−l)X ′t,k}

= {(T − k −H)−1
T−H

∑
t=k

(
h−1

∑
l=1

Θ̂l(εt+h−l + (
∞

∑
j=1

Ajyt+h−l−j) − (
k

∑
i=1

Âiyt+h−l−i)))X ′t,k}
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=

h−1

∑
l=1

Θ̂l{(T − k −H)−1
T−H

∑
t=k

((εt+h−l + (
∞

∑
j=1

Ajyt+h−l−j) − (
k

∑
i=1

Âiyt+h−l−i)))X ′t,k}.

It was shown earlier that

∥ U3T ∥=∥
h−1

∑
l=1

Θl{(T − k −H)−1
T−H

∑
t=k

εt+h−lX
′
t,k} ∥ p→ 0.

Since h − 1 is finite and ∥ Θ̂l ∥
p→∥ Θl ∥<∞

∥
h−1

∑
l=1

Θ̂l{(T − k −H)−1
T−H

∑
t=k

εt+h−lX
′
t,k} ∥≤

h−1

∑
l=1

∥ Θ̂l ∥´¹¹¹¹¹¸¹¹¹¹¹¶
bounded

∥ {(T − k −H)−1
T−H

∑
t=k

εt+h−lX
′
t,k} ∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
plim=0

p→ 0.

To show ∥ U4T ∥
p→ 0 it suffices to show that

∥
h−1

∑
l=1

Θ̂l{(T − k −H)−1
T−H

∑
t=k

(
∞

∑
j=1

Ajyt+h−l−j −
k

∑
i=1

Âiyt+h−l−i)X ′t,k} ∥ p→ 0.

Owing to h − 1 in finite and ∥ Θ̂l ∥
p→∥ Θl ∥<∞, this simplifies to showing

∥ {(T − k −H)−1
T−H

∑
t=k

(
∞

∑
j=1

Ajyt+h−l−j −
k

∑
i=1

Âiyt+h−l−i)X ′t,k} ∥

=∥ {(T − k −H)−1
T−H

∑
t=k

((
∞

∑
j=k+1

Ajyt+h−l−j) − (B̂(k,1) −B(k,1))Xt+h−l−1,k)X ′t,k} ∥

=∥ {(T −k−H)−1
T−H

∑
t=k

((
∞

∑
j=k+1

Ajyt+h−l−j))X ′t,k}−{(T −k−H)−1
T−H

∑
t=k

((B̂(k,1)−B(k,1))Xt+h−l−1,k)X ′t,k} ∥ p→ 0.

Jordà and Kozicki (2011) and Lewis and Reinsel (1985) already showed

∥ {(T − k −H)−1
T−H

∑
t=k

((
∞

∑
j=k+1

Ajyt+h−l−j))X ′t,k} ∥ p→ 0.

Now all that is left to show is

∥ {(T − k −H)−1
T−H

∑
t=k

((B̂(k,1) −B(k,1))Xt+h−l−1,k)X ′t,k} ∥ p→ 0.

Note that (B̂(k,1) −B(k,1) does not depend on the t subscript so it can be factored out. That is,

∥ {(T − k −H)−1
T−H

∑
t=k

((B̂(k,1) −B(k,1))Xt+h−l−1,k)X ′t,k} ∥
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=∥ {(B̂(k,1) −B(k,1))(T − k −H)−1
T−H

∑
t=k

Xt+h−l−1,kX
′
t,k} ∥

≤ ∥ {(B̂(k,1) −B(k,1)) ∥´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
plim=0

∥ (T − k −H)−1
T−H

∑
t=k

Xt+h−l−1,kX
′
t,k} ∥1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bounded

p→ 0.

Since this is a proof by induction, it was assumed that the first h− 1 horizons are consistent, so the first term

converges in probability. The second term is bounded due to ∥ Γ̂k ∥1=∥ (T −k−H)−1∑T−H
t=k Xt,kX

′
t,k ∥1 being

bounded and since the autocovariances are absolutely summable. It follows that

∥ Θ̂l{(T − k −H)−1
T−H

∑
t=k

((εt+h−l + (
∞

∑
j=1

Ajyt+h−l−j) − (
k

∑
i=1

Âiyt+h−l−i)))X ′t,k} ∥ p→ 0

for each 1 ≤ l ≤ h − 1. Therefore, ∥ U4T ∥
p→ 0 since the sum of a finite number of terms that each converge to

zero also converges to 0. That is

∥ U4T ∥=∥
h−1

∑
l=1

Θ̂l{(T − k −H)−1
T−H

∑
t=k

((εt+h−l + (
∞

∑
j=1

Ajyt+h−l−j) − (
k

∑
i=1

Âiyt+h−l−i)))X ′t,k} ∥ p→ 0.

To complete the proof by induction, note that the horizon 0 LP is a VAR, and the consistency results for the

VAR were proved in Lewis and Reinsel (1985), so the first step in the induction process was proved.

Proof of Asymptotic Normality for LP OLS Correction

Assumption 3. Let yt satisfy the Wold representation as presented in the preliminary section. Assume that in

addition,

(i)E∣εitεjtεktεlt∣ <∞

for 1 ≤ i, j, k, l ≤ r.

(ii) k satisfies
k3

T
→ 0; T, k →∞

(iii) k satisfies

T 1/2
∞

∑
j=k+1

∥ Aj ∥→ 0 T, k →∞.

Proposition 3. Assume assumption 3 holds, then for LP OLS

√
T − k −Hvec[B̂(k, h,OLS) −B(k, h)] d→ N(0,Ωh).
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where

Ωh =

∞

∑
t=0

∞

∑
s=0

cov[vec{(εt+h +
h−1

∑
l=1

Θlεt+h−l)X ′t,kΓ−1k }, vec{(εs+h +
h−1

∑
l=1

Θlεs+h−l)X ′s,kΓ−1k }′].

These assumptions were used to show asymptotic normality of the VAR(∞) (Lewis and Reinsel, 1985) and

the LP(∞) (Jordà and Kozicki, 2011). It turns out Jordà and Kozicki (2011) use the incorrect Central Limit

Theorem. Jordà and Kozicki (2011) proof follows the same argument as Lewis and Reinsel (1985). Lewis and

Reinsel (1985) use a martingale CLT to prove asymptotic normality. This is possible because in the case of a VAR

since

vec{(T − k −H)−1/2
T−H

∑
t=k

(εt+1X ′t,k)Γ−1k }

is a martingale, because εt+1 and X ′t,k are independent of each other, and εt+1 is an i.i.d. and is therefore

uncorrelated over time. In order to use the martingale CLT theorem for standard LP

vec{(T − k −H)−1/2
T−H

∑
t=k

(εt+h +
h−1

∑
l=1

Θlεt+h−l)X ′t,kΓ−1k }

would need to be a martingale. But it is not a martingale. Even though (εt+h +∑h−1
l=1 Θlεt+h−l) is independent of

X ′t,k, the process is not a martingale because the error term (εt+h+∑h−1
l=1 Θlεt+h−l) is correlated across h horizons

and X ′t,k is correlated for potentially infinite horizons. Instead of using the Martingale Central Limit Theorem,

the Gordin Central Limit Theorem should have been used. Given that the εt are i.i.d. and strongly stationary,

(εt+h +∑h−1
l=1 Θlεt+h−l) are strongly stationary and ergodic. Due to the assumptions placed on yt, X

′
t,k is strongly

stationary and ergodic. Hence

{vec{(εt+h +
h−1

∑
l=1

Θlεt+h−l)X ′t,kΓ−1k }}t=∞t=−∞

is strongly stationary and ergodic (Hayashi, 2000, White, 2001). The Gordin CLT states that if a time series

process is strongly stationary and ergodic and satisfies the following three conditions:

1. Asymptotic uncorrelatedness

2. Summability of autocovariances

3. Asymptotic negligibility of innovations,

then it is asymptotically normal (Greene, 2012). The corrected proof of standard LP can be shown as follows.

Proof. To show asymptotic uncorrelatedness need to show that

limj→∞E[{(εt+h +
h−1

∑
l=1

Θlεt+h−l)X ′t,k}Γ−1k ∣{(εt+h−j +
h−1

∑
l=1

Θlεt+h−l−j)X ′t−j,k}Γ−1k ] = 0,
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where E[⋅∣⋅] is the conditional expectation. Asymptotic uncorrelatedness is trivially satisfied because when

j is greater than h − 1, the process is independent since (εt+h + ∑h−1
l=1 Θlεt+h−l) would be independent of

(εt+h−j +∑h−1
l=1 Θlεt+h−l−j).

To show Summability of autocovariances, need to show

limT→∞var((T − k −H)−1/2vec{
T−H

∑
t=k

(εt+h +
h−1

∑
l=1

Θlεt+h−l))X ′t,kΓ−1k })

is finite and constant. Define

sT = (T − k −H)−1/2vec{
T−H

∑
t=k

(εt+h +
h−1

∑
l=1

Θlεt+h−l))X ′t,kΓ−1k }.

Note that

vec{(εt+h +
h−1

∑
l=1

Θlεt+h−l)X ′t,kΓ−1k } = (Γ−1k Xt,k ⊗ Ir)vec((εt+h +
h−1

∑
l=1

Θlεt+h−l))

so

var(sT ) = (T−k−H)
T−H

∑
m=k

T−H

∑
n=k

E[(Γ−1k Xm,k⊗Ir)vec((εm+h+
h−1

∑
l=1

Θlεm+h−l))vec((εn+h+
h−1

∑
l=1

Θlεn+h−l))′(X ′n,kΓ′k−1⊗Ir)]

for ∣n −m∣ > h − 1 the most future (εt+h + ∑h−1
l=1 Θlεt+h−l) in the couple is independent of everything else.

Therefore

var(sT ) = (T−k−H)−1
T−H

∑
m=k

∑
∣n−m∣<h

E[(Γ−1k Xm,k⊗Ir)vec((εm+h+
h−1

∑
l=1

Θlεm+h−l))vec((εn+h+
h−1

∑
l=1

Θlεn+h−l))′(X ′n,kΓ′k−1⊗Ir)].

If one conditions on information known up to time n (Fn will denote the time n information set)

E[(Γ−1k Xm,k ⊗ Ir)vec((εm+h +
h−1

∑
l=1

Θlεm+h−l))vec((εn+h +
h−1

∑
l=1

Θlεn+h−l))′(X ′n,kΓ′k−1 ⊗ Ir) ∣ Fn]

= [(Γ−1k Xm,k ⊗ Ir)Σe(h),(m−n)(X ′n,kΓ′k−1 ⊗ Ir)]

where

Σe(h),(m−n) = E[(εm+h +
h−1

∑
l=1

Θlεm+h−l)(ε′n+h +
h−1

∑
l=1

ε′n+h−lΘ
′
l) ∣ Fn]

= E[(εm+h +
h−1

∑
l=1

Θlεm+h−l)(ε′n+h +
h−1

∑
l=1

ε′n+h−lΘ
′
l)]

which is constant and finite for all m and n due to the finite fourth moments of ε and ∑∞h=0 ∥ Θh ∥<∞.

[(Γ−1k Xm,k ⊗ Ir)Σe(h),(m−n)(X ′n,kΓ′k−1 ⊗ Ir)]
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= [(Γ−1k Xm,k ⊗ Ir)(1⊗Σe(h),(m−n))(X ′n,kΓ′k−1 ⊗ Ir)]

= [(Γ−1k Xm,k ⊗Σe(h),(m−n))(X ′n,kΓ′k−1 ⊗ Ir)]

= [Γ−1k Xm,kX
′
n,kΓ

′
k
−1 ⊗Σe,m,n]

and

E[Γ−1k Xm,kX
′
n,kΓ

′
k
−1 ⊗Σe(h),(m−n)] = Γ−1k Γ(m−n),kΓ

′
k
−1 ⊗Σe(h),(m−n)

where E(Xm,kX
′
n,k) = Γ(m−n),k. Due to

E[Γ−1k Xm,kX
′
n,kΓ

′
k
−1 ⊗Σe(h),(m−n)] = Γ−1k Γ(m−n),kΓ

′
k
−1 ⊗Σe(h),(m−n)

being constant

var(sT ) = (T−k−H)−1
T−H

∑
m=k

∑
∣n−m∣<h

E[(Γ−1k Xm,k⊗Ir)vec((εm+h+
h−1

∑
l=1

Θlεm+h−l))vec((εn+h+
h−1

∑
l=1

Θlεn+h−l))′(X ′n,kΓ′k−1⊗Ir)]

= ∑
∣n−m∣<h

E[(Γ−1k Xm,k ⊗ Ir)vec((εm+h +
h−1

∑
l=1

Θlεm+h−l))vec((εn+h +
h−1

∑
l=1

Θlεn+h−l))′(X ′n,kΓ′k−1 ⊗ Ir)]

= ∑
∣n−m∣<h

Γ−1k Γ(m−n),kΓ
′
k
−1 ⊗Σe(h),(m−n)

which is finite for finite h.

To show the Asymptotic negligibility of innovations, note that for k > h − 1 , the innovation is zero (this

point ends up not mattering). Since (Γ−1k Xt,k ⊗ Ir)vec((εt+h +∑h−1
l=1 Θlεt+h−l)) is second order stationary (it

has mean zero and it has been shown that the autocovariances are finite and constant at all horizons), then

there exists a Wold VMA representation. This Wold representation can be written as a stationary VAR (∞).

If I write the VAR (∞) as a VAR(1),

Zt = AZt−1 + et

so

rt0 = et

rt1 = Aet

rt2 = A
2et

⋮

Because the VAR is stationary, the impact of an innovation decays over time, and asymptotic negligibility
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trivially follows.

Proof of Asymptotic Normality LP GLS

For LP OLS

√
T − k −H[B̂(k, h,OLS) −B(k, h)] =√T − k −H[U1T Γ̂

−1
k +U2T Γ̂

−1
k +U3T Γ̂

−1
k ]

For LP GLS

√
T − k −H[B̂(k, h,GLS) −B(k, h)] =√T − k −H[U1T Γ̂

−1
k +U2T Γ̂

−1
k +U3T Γ̂

−1
k −U4T Γ̂

−1
k ]

where again

U4T = {(T − k −H)−1
T−H

∑
t=k

(
h−1

∑
l=1

Θ̂lε̂t+h−l)X ′t,k}

Theorem 3. If assumption 3 holds, then for LP GLS

√
T − k −Hvec[B̂(k, h,GLS) −B(k, h)] d→ N(0,ΩGLS

h ),

where

ΩGLS
h = var(ℵ) + var(Υ ) + cov(ℵ, Υ ′) + cov(Υ,ℵ′)

ℵ = (T − k −H)−1/2vec[
T−H

∑
t=k

εt+hX
′
t,kΓ

−1
k ]

Υ = vec[
h−1

∑
l=1

Θl

√
T − k −H(B̂(k,1) −B(k,1))Γ(h−l−1),kΓ−1k ]

Proof. To show that

√
T − k −H[B̂(k, h,GLS) −B(k, h)] =√T − k −H[U1T Γ̂

−1
k +U2T Γ̂

−1
k +U3T Γ̂

−1
k −U4T Γ̂

−1
k ]

is normally distributed, it will first help to simplify the expression by showing

√
T − k −H[B̂(k, h,GLS) −B(k, h)] p→

√
T − k −H[U1TΓ

−1
k +U2TΓ

−1
k +U3TΓ

−1
k −U4TΓ

−1
k ]

This can be done by showing that

∥
√
T − k −H[U1T +U2T +U3T −U4T ](Γ̂−1k − Γ−1k ) ∥ p→ 0.
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Jordà and Kozicki (2011) already showed that

∥ √T − k −H[U1T +U2T +U3T ](Γ̂−1k − Γ−1k ) ∥ p→ 0.

So I just need to show

∥
√
T − k −HU4T (Γ̂−1k − Γ−1k ) ∥ p→ 0.

To simplify the expression into something more manageable, I’ll begin by simplifying

√
T − k −H[U4T ](Γ̂−1k − Γ−1k ).

Let

ε̂t = εt + (
∞

∑
j=1

Ajyt−j) − (
k

∑
i=1

Âiyt−i),

then √
T − k −HU4T (Γ̂−1k − Γ−1k ) = {(T − k −H)−1/2

T−H

∑
t=k

(
h−1

∑
l=1

Θ̂lε̂t+h−l)X ′t,k}(Γ̂−1k − Γ−1k ).

= {(T − k −H)−1/2
T−H

∑
t=k

(
h−1

∑
l=1

Θ̂l(εt+h−l + (
∞

∑
j=1

Ajyt+h−l−j) − (
k

∑
i=1

Âiyt+h−l−i)))X ′t,k}(Γ̂−1k − Γ−1k ).

= {(T − k −H)−1/2
T−H

∑
t=k

(
h−1

∑
l=1

Θ̂l(εt+h−l + (
∞

∑
j=k+1

Ajyt+h−l−j) − (B̂(k,1) −B(k,1))Xt+h−l−1,k))X ′t,k}(Γ̂−1k − Γ−1k ).

= {(T − k −H)−1/2
h−1

∑
l=1

Θ̂l

T−H

∑
t=k

(εt+h−l + (
∞

∑
j=k+1

Ajyt+h−l−j) − (B̂(k,1) −B(k,1))Xt+h−l−1,k))X ′t,k}(Γ̂−1k − Γ−1k ).

So

∥
√
T − k −HU4T (Γ̂−1k − Γ−1k ) ∥

=∥ {(T − k −H)−1/2
h−1

∑
l=1

Θ̂l

T−H

∑
t=k

(εt+h−l + (
∞

∑
j=k+1

Ajyt+h−l−j)− (B̂(k,1)−B(k,1))Xt+h−l−1,k))X ′t,k}(Γ̂−1k −Γ−1k ) ∥

≤∥ {(T − k −H)−1/2
h−1

∑
l=1

Θ̂l

T−H

∑
t=k

(εt+h−l + (
∞

∑
j=k+1

Ajyt+h−l−j) − (B̂(k,1) −B(k,1))Xt+h−l−1,k))X ′t,k} ∥

× ∥ (Γ̂−1k − Γ−1k ) ∥1

≤

h−1

∑
l=1

∥ Θ̂l ∥ ( ∥ {(T − k −H)−1/2
T−H

∑
t=k

(εt+h−l + (
∞

∑
j=k+1

Ajyt+h−l−j) − (B̂(k,1) −B(k,1))Xt+h−l−1,k))X ′t,k} ∥ )

×{∥ (Γ̂−1k − Γ−1k ) ∥1}

=

h−1

∑
l=1

∥ Θ̂l ∥ ( ∥ {[k(T − k −H)]−1/2
T−H

∑
t=k

(εt+h−l + (
∞

∑
j=k+1

Ajyt+h−l−j) − (B̂(k,1) −B(k,1))Xt+h−l−1,k))X ′t,k} ∥ )
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×{k1/2 ∥ (Γ̂−1k − Γ−1k ) ∥1}

It has already been shown that

∥ Θ̂l ∥ p→∥ Θl ∥< ∞,

for each 1 ≤ l ≤ h− 1. And we know from Lewis and Reinsel (1985) that k1/2 ∥ (Γ̂−1k −Γ−1k ) ∥1 p→ 0. Since h− 1
is finite, to show

∥
√
T − k −HU4T (Γ̂−1k − Γ−1k ) ∥ p→ 0,

I just need to show that

( ∥ {[k(T − k −H)]−1/2
T−H

∑
t=k

(εt+h−l + (
∞

∑
j=k+1

Ajyt+h−l−j) − (B̂(k,1) −B(k,1))Xt+h−l−1,k))X ′t,k} ∥ )

is bounded for each 1 ≤ l ≤ h − 1.

( ∥ {[k(T − k −H)]−1/2
T−H

∑
t=k

(εt+h−l + (
∞

∑
j=k+1

Ajyt+h−l−j) − (B̂(k,1) −B(k,1))Xt+h−l−1,k))X ′t,k} ∥ )

≤∥ [k(T − k −H)]−1/2
T−H

∑
t=k

εt+h−lX
′
t,k ∥ +

∥ [k(T−k−H)]−1/2
T−H

∑
t=k

(
∞

∑
j=k+1

Ajyt+h−l−j)X ′t,k ∥ − ∥ [k(T−k−H)]−1/2
T−H

∑
t=k

(B̂(k,1)−B(k,1))Xt+h−l−1,kX
′
t,k ∥ .

The first term is bounded since it was shown in the proof of consistency that

∥ (T − k −H)−1
T−H

∑
t=k

εt+h−lX
′
t,k ∥= Op(( k

T − k −H )
1/2).

Jordà and Kozicki (2011) show that the second term converges in probability to 0. For the final term note

that

∥ [k(T − k −H)]−1/2
T−H

∑
t=k

(B̂(k,1) −B(k,1))Xt+h−l−1,kX
′
t,k ∥

≤ (T − k −H
k

)1/2 ∥ (B̂(k,1) −B(k,1)) ∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bounded

∥ (T − k −H)−1
T−H

∑
t=k

Xt+h−l−1,kX
′
t,k ∥1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bounded

.

Consequently

∥
√
T − k −HU4T (Γ̂−1k − Γ−1k ) ∥ p→ 0,
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and this completes the proof showing

√
T − k −H[B̂(k, h,GLS) −B(k, h)] p→

√
T − k −H[U1TΓ

−1
k +U2TΓ

−1
k +U3TΓ

−1
k −U4TΓ

−1
k ].

From Jordà and Kozicki (2011) we know that

∥
√
T − k −HU1TΓ

−1
k ∥

p→ 0.

As a result

√
T − k −H[B̂(k, h,GLS) −B(k, h)] p→

√
T − k −H[U2TΓ

−1
k +U3TΓ

−1
k −U4TΓ

−1
k ].

Therefore

√
T − k −H[B̂(k, h,GLS)−B(k, h)] p→ (T−k−H)−1/2(

T−H

∑
t=k

εt+hX
′
t,k)Γ−1k +(T−k−H)−1/2

T−H

∑
t=k

(
h−1

∑
l=1

Θlεt+h−l)X ′t,kΓ−1k

−(T − k −H)−1/2
T−H

∑
t=k

(
h−1

∑
l=1

Θ̂lε̂t+h−l)X ′t,kΓ−1k .

Since

ε̂t = εt + (
∞

∑
j=1

Ajyt−j) − (
k

∑
i=1

Âiyt−i)

= εt + (
∞

∑
j=k+1

Ajyt−j) − (B̂(k,1) −B(k,1))Xt−1,k),

it can be shown that

(T − k −H)−1/2
T−H

∑
t=k

(
h−1

∑
l=1

Θ̂lε̂t+h−l)X ′t,kΓ−1k p→ (T − k −H)−1/2
T−H

∑
t=k

(
h−1

∑
l=1

Θlεt+h−l)X ′t,kΓ−1k

−
h−1

∑
l=1

Θl

√
T − k −H(B̂(k,1) −B(k,1))Γ(h−l−1),kΓ−1k ,

(the proof is omitted for brevity). Therefore

√
T − k −H[B̂(k, h,GLS)−B(k, h)] p→ (T−k−H)−1/2(

T−H

∑
t=k

εt+hX
′
t,k)Γ−1k +

h−1

∑
l=1

Θl

√
T − k −H(B̂(k,1)−B(k,1))Γ(h−l−1),kΓ−1k .

Note that

vec[(T − k −H)−1/2{
T−H

∑
t=k

εt+hX
′
t,k}Γ−1k +

h−1

∑
l=1

Θl

√
T − k −H(B̂(k,1) −B(k,1))Γ(h−l−1),kΓ−1k ]
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= vec[(T − k −H)−1/2{
T−H

∑
t=k

εt+hX
′
t,k}Γ−1k ] + vec[

h−1

∑
l=1

Θl

√
T − k −H(B̂(k,1) −B(k,1))Γ(h−l−1),kΓ−1k ]

= {Ikr⊗Ir}vec[(T−k−H)−1/2{
T−H

∑
t=k

εt+hX
′
t,k}Γ−1k ]+(

h−1

∑
l=1

{Γ−1k Γ′(h−l−1),k⊗Θl})vec[
√
T − k −H(B̂(k,1)−B(k,1))]

To show that √
T − k −Hvec[B̂(k, h,GLS) −B(k, h)] d→ N(0,ΩGLS

h ),

it suffices to show that the joint distribution of

⎡⎢⎢⎢⎢⎢⎣
{Ikr ⊗ Ir}vec[(T − k −H)−1/2{∑T−H

t=k εt+hX
′
t,k}Γ−1k ]

(∑h−1
l=1 {Γ−1k Γ′(h−l−1),k ⊗Θl})vec[√T − k −H(B̂(k,1) −B(k,1))]

⎤⎥⎥⎥⎥⎥⎦
converge to a normal distribution.

⎡⎢⎢⎢⎢⎢⎣
{Ikr ⊗ Ir}vec[(T − k −H)−1/2{∑T−H

t=k εt+hX
′
t,k}Γ−1k ]

(∑h−1
l=1 {Γ−1k Γ′(h−l−1),k ⊗Θl})vec[√T − k −H(B̂(k,1) −B(k,1))]

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
{Ikr ⊗ Ir} 0

0 (∑h−1
l=1 {Γ−1k Γ′(h−l−1),k ⊗Θl})

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
vec[(T − k −H)−1/2{∑T−H

t=k εt+hX
′
t,k}Γ−1k ]

vec[√T − k −H(B̂(k,1) −B(k,1))]

⎤⎥⎥⎥⎥⎥⎦
Define

sT =

⎡⎢⎢⎢⎢⎢⎣
{Ikr ⊗ Ir} 0

0 (∑h−1
l=1 {Γ−1k Γ′(h−l−1),k ⊗Θl})

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
vec[(T − k −H)−1/2{∑T−H

t=k εt+hX
′
t,k}Γ−1k ]

vec[(T − k −H)−1/2{∑T−H
t=k εt+1X

′
t,k}Γ−1k ]

⎤⎥⎥⎥⎥⎥⎦
.

To show asymptotic normality of sT , the Gordin’s CLT will be used. Using similar reasoning as for standard

LP,

{
⎡⎢⎢⎢⎢⎢⎣
{Ikr ⊗ Ir} 0

0 (∑h−1
l=1 {Γ−1k Γ′(h−l−1),k ⊗Θl})

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
vec[εt+hX ′t,kΓ−1k ]
vec[εt+1X ′t,kΓ−1k ]

⎤⎥⎥⎥⎥⎥⎦
}t=∞t=−∞

is a strongly stationary and ergodic sequence.

To show asymptotic normality for LP GLS, it needs to be shown that

sT =

⎡⎢⎢⎢⎢⎢⎣
{Ikr ⊗ Ir} 0

0 (∑h−1
l=1 {Γ−1k Γ′(h−l−1),k ⊗Θl})

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
vec[(T − k −H)−1/2{∑T−H

t=k εt+hX
′
t,k}Γ−1k ]

vec[(T − k −H)−1/2{∑T−H
t=k εt+1X

′
t,k}Γ−1k ]

⎤⎥⎥⎥⎥⎥⎦
is normally distributed. Since sT is a strongly stationary and ergodic sequence, all that is left is to show the

following conditions are satisfied:

1. Asymptotic uncorrelatedness
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2. Summability of autocovariances

3. Asymptotic negligibility of innovations.

Asymptotic uncorrelatedness follows along the same lines as the standard LP and is omitted for brevity.

To show Summability of autocovariances, must show that

limT→∞var(sT )

is finite and constant. Note that

⎡⎢⎢⎢⎢⎢⎣
{Ikr ⊗ Ir} 0

0 (∑h−1
l=1 {Γ−1k Γ′(h−l−1),k ⊗Θl})

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

vec[εt+hX ′t,kΓ−1k ]
vec[εt+1X ′t,kΓ−1k ]

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
{Ikr ⊗ Ir} 0

0 (∑h−1
l=1 {Γ−1k Γ′(h−l−1),k ⊗Θl})

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
(Γ−1k Xt,k ⊗ Ir)vec[εt+h]
(Γ−1k Xt,k ⊗ Ir)vec[εt+1]

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
{Ikr ⊗ Ir} 0

0 (∑h−1
l=1 {Γ−1k Γ′(h−l−1),k ⊗Θl})

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
(Γ−1k Xt,k ⊗ Ir)εt+h
(Γ−1k Xt,k ⊗ Ir)εt+1

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
(Γ−1k Xt,k ⊗ Ir)εt+h

(∑h−1
l=1 {Γ−1k Γ′(h−l−1),k ⊗Θl})(Γ−1k Xt,k ⊗ Ir)εt+1

⎤⎥⎥⎥⎥⎥⎦
The autocovariances for lag m − n is

E[
⎡⎢⎢⎢⎢⎢⎣
(Γ−1k Xm,k ⊗ Ir)εm+h
lk(Γ−1k Xm,k ⊗ Ir)εm+1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
(Γ−1k Xn,k ⊗ Ir)εn+h
lk(Γ−1k Xn,k ⊗ Ir)εn+1

⎤⎥⎥⎥⎥⎥⎦

′

]

= E[
⎡⎢⎢⎢⎢⎢⎣
(Γ−1k Xm,k ⊗ Ir)εm+h
lk(Γ−1k Xm,k ⊗ Ir)εm+1

⎤⎥⎥⎥⎥⎥⎦
[ε′n+h(Γ−1k Xn,k ⊗ Ir)′ ε′n+1(Γ−1k Xn,k ⊗ Ir)′l′k]]

= E

⎡⎢⎢⎢⎢⎢⎣
(Γ−1k Xm,k ⊗ Ir)εm+hε′n+h(Γ−1k Xn,k ⊗ Ir)′ (Γ−1k Xm,k ⊗ Ir)εm+hε′n+1(Γ−1k Xn,k ⊗ Ir)′l′k
lk(Γ−1k Xm,k ⊗ Ir)εm+1ε′n+h(Γ−1k Xn,k ⊗ Ir)′ lk(Γ−1k Xm,k ⊗ Ir)εm+1ε′n+1(Γ−1k Xn,k ⊗ Ir)′l′k

⎤⎥⎥⎥⎥⎥⎦
where lk = (∑h−1

l=1 {Γ−1k Γ′(h−l−1),k ⊗Θl}). Now taking the conditional expectation based on the time n infor-

mation set, Fn,

= E(
⎡⎢⎢⎢⎢⎢⎣
(Γ−1k Xm,k ⊗ Ir)εm+hε′n+h(Γ−1k Xn,k ⊗ Ir)′ (Γ−1k Xm,k ⊗ Ir)εm+hε′n+1(Γ−1k Xn,k ⊗ Ir)′l′k
lk(Γ−1k Xm,k ⊗ Ir)εm+1ε′n+h(Γ−1k Xn,k ⊗ Ir)′ lk(Γ−1k Xm,k ⊗ Ir)εm+1ε′n+1(Γ−1k Xn,k ⊗ Ir)′l′k

⎤⎥⎥⎥⎥⎥⎦
∣ Fn)
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= (
⎡⎢⎢⎢⎢⎢⎣
(Γ−1k Xm,k ⊗ Ir)Σε,(m−n)(Γ−1k Xn,k ⊗ Ir)′ (Γ−1k Xm,k ⊗ Ir)Σε,(m+1−n−h)(Γ−1k Xn,k ⊗ Ir)′l′k

lk(Γ−1k Xm,k ⊗ Ir)Σε,(m+1−n−h)(Γ−1k Xn,k ⊗ Ir)′ lk(Γ−1k Xm,k ⊗ Ir)Σε,(m−n)(Γ−1k Xn,k ⊗ Ir)′l′k

⎤⎥⎥⎥⎥⎥⎦
)

= (
⎡⎢⎢⎢⎢⎢⎣

(Γ−1k Xm,k ⊗ Ir)(1⊗Σε,(m−n))(Γ−1k Xn,k ⊗ Ir)′ (Γ−1k Xm,k ⊗ Ir)(1⊗Σε,(m+1−n−h))(Γ−1k Xn,k ⊗ Ir)′l′k
lk(Γ−1k Xm,k ⊗ Ir)(1⊗Σε,(m+1−n−h))(Γ−1k Xn,k ⊗ Ir)′ lk(Γ−1k Xm,k ⊗ Ir)(1⊗Σε,(m−n))(Γ−1k Xn,k ⊗ Ir)′l′k

⎤⎥⎥⎥⎥⎥⎦
)

= (
⎡⎢⎢⎢⎢⎢⎣

(Γ−1k Xm,k ⊗Σε,(m−n))(Γ−1k Xn,k ⊗ Ir)′ (Γ−1k Xm,k ⊗Σm+h,n+1)(Γ−1k Xn,k ⊗ Ir)′l′k
lk(Γ−1k Xm,k ⊗Σm+1,n+h)(Γ−1k Xn,k ⊗ Ir)′ lk(Γ−1k Xm,k ⊗Σε,(m−n))(Γ−1k Xn,k ⊗ Ir)′l′k

⎤⎥⎥⎥⎥⎥⎦
)

= (
⎡⎢⎢⎢⎢⎢⎣

(Γ−1k Xm,kX
′
n,kΓ

−1
k ⊗Σε,(m−n)) (Γ−1k Xm,kX

′
n,kΓ

−1
k ⊗Σε,(m+1−n−h))l′k

lk(Γ−1k Xm,kX
′
n,kΓ

−1
k ⊗Σε,(m+1−n−h)) lk(Γ−1k Xm,kX

′
n,kΓ

−1
k ⊗Σε,(m−n))l′k

⎤⎥⎥⎥⎥⎥⎦
)

It follows that

E(
⎡⎢⎢⎢⎢⎢⎣

(Γ−1k Xm,kX
′
n,kΓ

−1
k ⊗Σε,(m−n)) (Γ−1k Xm,kX

′
n,kΓ

−1
k ⊗Σε,(m+1−n−h))l′k

lk(Γ−1k Xm,kX
′
n,kΓ

−1
k ⊗Σε,(m+1−n−h)) lk(Γ−1k Xm,kX

′
n,kΓ

−1
k ⊗Σε,(m−n))l′k

⎤⎥⎥⎥⎥⎥⎦
)

= (
⎡⎢⎢⎢⎢⎢⎣

(Γ−1k Γ(m−n),kΓ
−1
k ⊗Σε,(m−n)) (Γ−1k Γ(m−n),kΓ

−1
k ⊗Σε,(m+1−n−h))l′k

lk(Γ−1k Γ(m−n),kΓ
−1
k ⊗Σε,(m+1−n−h)) lk(Γ−1k Γ(m−n),kΓ

−1
k ⊗Σε,(m−n))l′k

⎤⎥⎥⎥⎥⎥⎦
)

which is finite since Γ−1k ,Γ(m−n),k,Σε,(m−n),Σε,(m+1−n−h), and lk are bounded in probability. Therefore, the

autocovariances of ⎡⎢⎢⎢⎢⎢⎣

(Γ−1k Xt,k ⊗ Ir)εt+h
lk(Γ−1k Xt,k ⊗ Ir)εt+1

⎤⎥⎥⎥⎥⎥⎦
are finite at all leads and lags.

For notational brevity let

qm =

⎡⎢⎢⎢⎢⎢⎣

(Γ−1k Xm,k ⊗ Ir)εm+h
lk(Γ−1k Xm,k ⊗ Ir)εm+1

⎤⎥⎥⎥⎥⎥⎦
.

Note that

var(sT ) = (T − k −H)−1
T−H

∑
m=k

T−H

∑
n=k

E[qmq′n].

For ∣n −m∣ ≥ h, E[qmq′n] = 0 due to independence so

var(sT ) = (T − k −H)−1
T−H

∑
m=k

∑
∣n−m∣<h

E[qmq′n].
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Since the expectations are constant and h
T
→ 0,

limT→∞var(sT ) = ∑
∣n−m∣<h

E[qmq′n].

which is finite. This completes the proof of summability of autocovariances.

It was shown in the proof of summability of autocovariances that qt is stationary. Hence asymptotic

negligibility of innovations follows along the same lines as the proof of asymptotic normality for standard

LP, so it is omitted for brevity.

Proof of Asymptotic Efficiency LP GLS Relative to LP OLS

Theorem 4. Under Assumption 3,

var{√T − k −Hvec[B̂(k, h,GLS) −B(k, h)]} − var{√T − k −Hvec[B̂(k, h,OLS) −B(k, h)]} ≤ 0

in the negative semi-definite sense. That is, the GLS estimator is more efficient than the OLS estimator.

Proof. The Wold representation can be inverted into an infinite order VAR representation

yt =
∞

∑
j=1

Ajyt−j + εt.

Any VAR(p) (including a VAR(∞)) can be written as a companion VAR(1). Denote this VAR(1) as

Yt = AYt−1 +Zt.

Take the eigenvalue decomposition of A = EΛE−1, where Λ is the diagonal matrix of distinct nonzero

eigenvalues and E is the corresponding eigenmatrix and EE−1 = I where I is the identity matrix. As a result

Ah
= EΛhE−1. Define Wt = E

−1Yt and ηt = E
−1Zt. This implies the VAR can be transformed into

Wt = ΛWt−1 + ηt.

Consequently

Wt+h = Λ
h+1Wt−1 +Λhηt + . . . +Ληt+h−1 + ηt+h.

Theorems 2 and 3 establish the consistency and asymptotic normality of LP OLS and LP GLS. If I can show

the limiting distribution of GLS estimator is more efficient than the limiting distribution of OLS estimator

for a stationary VAR(1) model at every horizon, it follows that the LP GLS estimator is asymptotically more
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efficient than the LP OLS estimator, since the mapping function from the LP estimates to the Wold coefficients

is continuous and differentiable. Define

√
T − k −Hq =

√
T − k −H[B̂(k, h,OLS) − B̂(k, h,GLS)].

Note that

limT→∞var[
√
T −Hvec{B̂(k, h,OLS) −B(k, h)}]

= limT→∞{var[
√
T −Hvec{B̂(k, h,GLS) −B(k, h)} +√T −Hvec{q}]

= limT→∞{var[
√
T − k −Hvec[B̂(k, h,GLS) −B(k, h)] + var[√T −Hvec(q)]

+cov[√T − k −H[vec{B̂(k, h,GLS)−B(k, h)},√Tvec{q}]+cov[√T − k −H[vec{B̂(k, h,GLS)−B(k, h)},√Tvec{q}]′}.

To show that LP GLS is more efficient, it suffices to show that

limT→∞cov[
√
T − k −Hvec{q},√T − k −Hvec{B̂(k, h,GLS) −B(k, h)}] ≥ 0,

in the positive semi-definite sense. Note that

√
T − k −H[B̂(k, h,GLS)−B(k, h)] p→ (T−k−H)−1/2(

T−H

∑
t=k

εt+hX
′
t,k)Γ−1k +

h−1

∑
l=1

Θl

√
T − k −H(B̂(k,1)−B(k,1))Γ(h−l−1),kΓ−1k ,

√
T − k −Hq

p→
√
T − k −HU4TΓ

−1
k ,

√
T − k −HU4TΓ

−1
k

p→ (T−k−H)−1/2
T−H

∑
t=k

(
h−1

∑
l=1

Θlεt+h−l)X ′t,kΓ−1k −
h−1

∑
l=1

Θl

√
T − k −H(B̂(k,1)−B(k,1))Γ(h−l−1),kΓ−1k .

So

limT→∞cov[
√
T − k −Hvec{U4TΓ

−1
k },
√
T − k −Hvec{B̂(k, h,GLS) −B(k, h)}]

= (T − k −H)−1
T−H

∑
m=k

T−H

∑
n=k

E[(Γ−1k Xm,k ⊗ Ir)(
h−1

∑
l=1

Θlεm+h−l)ε′n+h(Γ−1k Xn,k ⊗ Ir)′]

+(T − k −H)−1
T−H

∑
m=k

T−H

∑
n=k

E[(Γ−1k Xm,k ⊗ Ir)(
h−1

∑
l=1

Θlεm+h−l)ε′n+1(Γ−1k Xn,k ⊗ Ir)′(
h−1

∑
l=1

{Γ−1k Γ′(h−l−1),k ⊗Θl})
′]

−(T − k −H)−1
T−H

∑
m=k

T−H

∑
n=k

E[(
h−1

∑
l=1

{Γ−1k Γ′(h−l−1),k ⊗Θl})(Γ−1k Xm,k ⊗ Ir)εm+1ε′n+h(Γ−1k Xn,k ⊗ Ir)′]

−(T−k−H)−1
T−H

∑
m=k

T−H

∑
n=k

E[(
h−1

∑
l=1

{Γ−1k Γ′(h−l−1),k⊗Θl})(Γ−1k Xm,k⊗Ir)εm+1ε′n+1(Γ−1k Xn,k⊗Ir)′(
h−1

∑
l=1

{Γ−1k Γ′(h−l−1),k⊗Θl})
′].
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By independence and since the expectations are finite

=

h−1

∑
l=1

((Γ−1k Γ′k,(−l)Γ
−1
k ⊗ΘlΣε))

+
h−1

∑
l=1

((Γ−1k Γ′k,(h−l−1)Γ
−1
k ⊗ΘlΣε))(

h−1

∑
l=1

{Γ−1k Γ′(h−l−1),k ⊗Θl})
′

−[(
h−1

∑
l=1

{Γ−1k Γ′(h−l−1),k ⊗Θl})(Γ−1k Γ′(h−1),kΓ
−1
k ⊗Σε)]

−[(
h−1

∑
l=1

{Γ−1k Γ′(h−l−1),k ⊗Θl})(Γ−1k ⊗Σε)(
h−1

∑
l=1

{Γ−1k Γ′(h−l−1),k ⊗Θl})
′].

Second and fourth lines cancel so

limT→∞cov[
√
T − k −Hvec{U4TΓ

−1
k },
√
T − k −Hvec{B̂(k, h,GLS) −B(k, h)}]

=

h−1

∑
l=1

((Γ−1k Γ′k,(−l)Γ
−1
k ⊗ΘlΣε))

−[(
h−1

∑
l=1

{Γ−1k Γ′(h−l−1),k ⊗Θl})(Γ−1k Γ′(h−1),kΓ
−1
k ⊗Σε)].

In the case where the true model can be written as a VAR(1) which has been diagonalized then

limT→∞cov[
√
T − k −Hvec{U4TΓ

−1
k },
√
T − k −Hvec{B̂(k, h,GLS) −B(k, h)}]

=

h−1

∑
l=1

((Γ−1w ΓwΛ
′lΓ−1 ⊗ΛlΣη)) − [(

h−1

∑
l=1

{Γ−1w Γ′wΛ
′h−l−1 ⊗Λl})(Γ−1w Γ′wΛ

′h−1Γ−1w ⊗Ση)]

=

h−1

∑
l=1

((Λ′lΓ−1w ⊗ΛlΣη)) − [(
h−1

∑
l=1

{Λ′h−l−1 ⊗Λl})(Λ′h−1Γ−1w ⊗Ση)].

=

h−1

∑
l=1

((Λ′lΓ−1w ⊗ΛlΣη)) − [(
h−1

∑
l=1

{Λ2h−l−2Γ−1w ⊗ΛlΣη})]

=

h−1

∑
l=1

((Λ′l −Λ2h−l−2)Γ−1w ⊗ΛlΣη))

where E(WtW
′
t) = Γw, and since the model is a VAR(1), E(WtW

′
t−j) = ΛjΓw. Note that the dimensions of

the parameters have been suppressed for simplicity. Premultiply corresponding terms in the sum by identity

matrix

(Λl ⊗Λ−l) = I
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yields
h−1

∑
l=1

((Λ2l −Λ2h−2)Γ−1w ⊗Ση)

=

h−1

∑
l=1

(Λ2lΓ−1w ⊗Ση) − (h − 1)(Λ2(h−1)Γ−1w ⊗Ση)

which is positive definite since

h−1

∑
l=1

(Λ2l−2(h−1)Λ2(h−1)Γ−1w ⊗Ση) − (h − 1)(Λ2(h−1)Γ−1w ⊗Ση) ≥ 0

h−1

∑
l=1

(Λ−2(h−l−1)Λ2(h−1)Γ−1w ⊗Ση) − (h − 1)(Λ2(h−1)Γ−1w ⊗Ση) ≥ 0

h−1

∑
l=1

(Λ−2(h−l−1)Λ2(h−1)Γ−1w ⊗Ση)[(h − 1)(Λ2(h−1)Γ−1w ⊗Ση)]−1 − I ≥ 0

(h − 1)−1
h−1

∑
l=1

(Λ−2(h−l−1) ⊗ I) − I ≥ 0 for h = 2,3, . . .

since Λ is diagonal matrix where all of diagonal elements are less than one is absolute value and l + 1 ≤ h .

Therefore GLS is more efficient since

limT→∞var[
√
T − k −H[B̂(k, h,OLS) −B(k, h)]

= limT→∞{var[
√
T − k −H[B̂(k, h,GLS) −B(k, h)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

pos

+ var[√T −Hq]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pos

+ cov[√T − k −H[B̂(k, h,GLS) −B(k, h),√Tq]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pos−semi

+ cov[√T − k −H[B̂(k, h,GLS) −B(k, h),√Tq]′´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pos−semi

}.
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A.5 Figures
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Figure 1: Coverage Rates for 95% Confidence Intervals

62



2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LP GLS

LP NW

VAR

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LP GLS

LP NW

VAR

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LP GLS

LP NW

VAR

2 4 6 8 10 12 14
0.1

0.2

0.3

0.4

0.5

0.6

LP GLS

LP NW

VAR

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

LP GLS

LP NW

VAR

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

LP GLS

LP NW

VAR

Figure 2: Average Length for 95% Confidence Intervals
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Figure 3: Monte Carlo Simulation of “True” Length for 95% Confidence Intervals
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