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Abstract 

Although one often has detailed information about participants in a program, the lack of 

comparable information on non-participants precludes standard qualitative choice estimation. 

This challenge can be overcome by incorporating a supplementary sample of covariate values 

from the general population. New estimators are introduced that exploit the parameter 

restrictions implied by the relationship between the marginal and conditional response 

probabilities in the supplementary sample. An important advantage of these estimators over the 

existing alternatives is that they can be applied to exogenously stratified samples even when the 

underlying stratification criteria are unknown. The ability of these new estimators to readily 

incorporate sample weights make them applicable to a much wider range of data sources. The 

new estimators are also easily generalized to address polychotomous outcomes. 
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1. Introduction 

Often providers of a program or service have detailed information about their clients, but only 

very limited information about potential clients. Likewise, ecologists frequently have extensive 

knowledge regarding habitats where a given animal or plant species is known to be present, but 

they lack comparable information on habitats where they are certain not to be present. In 

epidemiology, comprehensive information is routinely collected about patients who have been 

diagnosed with a given disease; however, commensurate information may not be available for 

individuals who are known to be free of the disease. While it may be highly beneficial to learn 

about the determinants of participation (in a program or service) or presence (in a habitat or of a 

disease), the lack of a comparable sample of observations on subjects that are not participants (or 

that are non-present) precludes the application of standard qualitative response models, such as 

logit or probit.  

In fact, though, if a supplementary random sample can be drawn from the general 

population of interest, it is feasible to estimate conditional response probabilities. Importantly, 

this supplementary sample need not include information on whether the subjects are participants 

or non-participants, present or not present. Rather, it only must include measures of the relevant 

covariates, comparable to those collected from the primary sample (of subjects that are 

participants or that are present). This sampling scheme, involving a primary sample consisting 

exclusively of participants and a supplementary sample that includes both participants and non-

participants, has been assigned various names in the literature, including “use-availability 

sampling”, “supplementary sampling”, “case control sampling with contaminated controls”,  
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“presence pseudo-absence sampling”, and “presence-background sampling”.2   

 The existing literature on qualitative response estimation under this sampling scheme 

(Cosslett, 1981; Lancaster and Imbens, 1996) has focused on developing efficient estimators for 

the case where the primary and supplementary samples are each unstratified random samples 

from their respective underlying populations. This paper shows that the extension of the methods 

developed in these studies to permit estimation using exogenously stratified random samples 

requires detailed knowledge of the sample design. In many cases, however, such information is 

not available. Rather, only the sample weights are made public. For instance, researchers may be 

interested in using a general survey of the overall population as a supplementary data  source. In 

the U.S., a few examples include the Current Population Survey (CPS), the Survey of Income 

and Program Participation (SIPP), and the American Community Survey (ACS).3 Often, 

however, such data sources are derived using complex sampling designs and specific design 

details, such as the stratification criteria, are not made available to the public. As a consequence, 

it is not feasible to apply the estimation approaches developed by these authors to such data 

sources.4 

In this paper, we present some new estimators that can be applied to stratified samples 

even when the underlying details of the sampling design are not available; all that is required are 

the sample weights, which are routinely available. We develop separate estimators for the cases 

                                                           
2
 Discussions of applications of use-availability sampling in various fields include Breslow (1996) [epidemiology] 

Keating and Cherry (2004), Royle et al. (2012), and Phillips and Elith (2013) [ecology]; Erard et al. (2016) [tax 

compliance]; and Rosenman, Goates, and Hill (2012) [substance abuse prevention programs]. 
3
 If eligibility for a program or service is limited, one may be able to restrict the supplementary sample to include 

only those survey respondents who are eligible, providing that eligibility can be deduced from the survey 

information that has been collected. For instance, the CPS has detailed income information that can be useful in 

assessing eligibility for means-tested programs and services. 
4
 Even if the full details of the sampling design were made available to researchers, it would be difficult to adapt 

the Cosslett and Lancaster-Imbens estimators for application with the complex sampling designs employed in 

many national surveys, which typically involve multi-stage sampling, clustering, and post-stratification adjustment. 
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in which the prevalence rate (i.e., the overall take-up rate in the case of a program, the 

percentage of habitats occupied by a species in the case of wildlife presence, or the share of the 

population that is infected in the case of a disease), is and is not known. These new estimators 

are derived using an approach similar to that used in earlier work by Cosslett (1981) and 

Lancaster and Imbens (1996). The key difference is that the derivation relies on the empirical 

distribution of the covariates in the supplementary sample rather than their empirical distribution 

in the combined (primary and supplementary) sample.  

We perform Monte Carlo simulations involving unstratified random samples to compare 

the small sample performance of our new estimators against other existing estimators. We find 

that the performance of our estimators for both the known and unknown prevalence rate cases 

rivals that of the best existing estimators (Cosslett, 1981, and Lancaster and Imbens, 1996). We 

further show that our new estimators are easily generalized to address polychotomous response 

problems. As an illustration of this generalization, we estimate a multinomial logit specification 

of voting behavior using stratified primary and supplementary data samples that were 

respectively drawn from the CPS and the ACS. 

2. Known covariate distribution 

Using the notation of Lancaster and Imbens (1996), let y be a binary response variable equal to 1 

(for participation/presence) or 0 (for non-participation/non-presence) and let 𝑥 represent a vector 

of attributes with cumulative distribution function 𝐹(𝑥). We assume that the conditional 

probability that y is equal to 1 given 𝑥 follows a known parametric form,  Pr(𝑦 = 1|𝑥; 𝛽) =  𝑃(x; 𝛽), where 𝛽 is an unknown parameter vector we desire to estimate. 

Finally, we define the prevalence rate 𝑞 (the marginal probability that  y equals 1 in the 

population) as: 
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  𝑞 = ∫ 𝑃(𝑥; 𝛽)𝑑𝐹(𝑥). (1)  

2.1 Identification 

Suppose we have a simple random sample of size 𝑁1 from the subpopulation of cases with y 

equal to 1. The conditional probability of 𝑥 given 𝑦 = 1 is equal to: 

  g(𝑥|𝑦 = 1) = 𝑃(𝑥; 𝛽)𝑓(𝑥)𝑞 , (2) 

where 𝑓(𝑥) represents the joint marginal p.d.f. of 𝑥 [𝑓(𝑥) = 𝑑𝐹(𝑥)𝑑𝑥 ]. If 𝑓(𝑥) is known, it follows 

from Equation (2) that the function 𝑃(𝑥; 𝛽)/𝑞 is nonparametrically identified under such a 

sampling scheme. In many instances, one will be able to measure (at least to some degree of 

confidence) the value of 𝑞. For instance, one may have a reasonably reliable estimate of the take-

up rate for a particular government program or the prevalence rate for a given disease. If 𝑞 is 

known, then 𝑃(𝑥; 𝛽) is also nonparametrically identified.  

When 𝑞 is unknown, the relative probability 𝑃(𝑥; 𝛽)/𝑃(𝑦; 𝛽) continues to be 

nonparametrically identified. However, identification of 𝛽 in this case depends on the parametric 

specification of the conditional response probability. For certain specifications, it is not possible 

to separately identify all of the elements of 𝛽. For instance, under a linear probability model, 

𝑃(𝑥;𝛽0,𝛽1)𝑞 = (𝛽0𝑞 ) + (𝛽1𝑞 )′ 𝑥. Therefore, only the ratio of each element of 𝛽 to 𝑞 is identified. 

Ecological models of resource selection often rely on an exponential (log-linear) probability 

model. Under this specification, ln (𝑃(𝑥;𝛽0,𝛽1)𝑞 ) = (𝛽0 − 𝑙𝑛𝑞)+𝛽1′𝑥. In this case, each of the slope 

coefficients of the conditional response probability is identified, but the intercept is not.5  

                                                           
5
 Under pure choice-based sampling (which is referred to as a “case-control sampling” by epidemiologists and 

ecologists), the function ( 𝑃(𝑥;𝛽)1−𝑃(𝑥;𝛽)) (1−𝑞𝑞 ) is identified rather than (𝑃(𝑥;𝛽)𝑞 ). As a consequence, the intercept of the 
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Fortunately, the above two cases are exceptional. As discussed by Solymos and Lele 

(2016), all of the elements of 𝛽 are identified under most qualitative choice specifications, 

including the logit, probit, arctan, and complementary log-log models, so long as the specification 

includes at least one continuous covariate. Nevertheless, the above examples involving the linear 

and log-linear probability models do raise concerns about the possible consequences of relying on 

assumed functional forms to identify certain parameters of the conditional response probability 

function when the prevalence rate is unknown. Although formal identification can easily be 

achieved by relying on commonly used parametric specifications, one will tend to have less 

confidence in the quality of estimates of absolute probabilities than estimates of relative 

probabilities.  

2.2 Estimation 

If the joint distribution of the covariates 𝐹(𝑥) is known, consistent estimation of the conditional 

response probability parameters is relatively straightforward.6  

Consider first the case where the prevalence rate 𝑞 is unknown. In this case, one can 

estimate 𝛽 by solving the following unconstrained maximum likelihood estimation problem: 

                                                                                                                                                                                           

logit specification is not identified under a pure choice-based model when the prevalence rate is unknown, 

whereas it is the intercept of the exponential probability specification that is not identified under a supplementary 

sampling design. 
6
 Consistency of the estimators we present for this case follows from the proofs provided by Manski and McFadden 

(1981) for the estimators they have reviewed for a pure choice-based sampling design. Under the assumptions 

they present on pp. 12-13, the consistency of the estimator we present in Equation (3) for the case where the 

prevalence rate is unknown follows their proof for Estimator 1.16 on pp. 38-39, with their expression for 𝑔𝑁(𝑖, 𝑧, 𝜙) replaced by ln 𝑃(𝑧; 𝛽) − 𝑙𝑛(∫ 𝑃(𝑥; 𝛽)𝑑𝐹(𝑥)) and their expression for 𝑓(𝜙) replaced by (𝑃(𝑧;𝛽∗)𝑓(𝑧)𝑞 ) 𝑙𝑛 ( 𝑃(𝑧;𝛽)𝑓(𝑧)∫ 𝑃(𝑥;𝛽)𝑑𝐹(𝑥)) + 𝐾, where 𝛽∗ represents the true value of 𝛽. As they note on p. 38, consistency of 

the unconstrained version of an estimator ensures the consistency of a constrained version of the estimator. If 

therefore follows that our constrained maximum likelihood estimator in Equation (4) for the case of a known 

prevalence rate is also consistent. 
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 max𝛽  (∑ ln (𝑃(𝑥𝑖; 𝛽))𝑁1
𝑖=1 ) − 𝑁1𝑙𝑛 (∫ 𝑃(𝑥; 𝛽)𝑑𝐹(𝑥)). (3)  

Observe that the objective function in Equation (3) is a concentrated likelihood function obtained 

by substituting the expression in Equation (1) for the unknown value of 𝑞. An estimate (�̃�) of the 

prevalence rate can be obtained, if desired, using the formula �̃� = ∫ 𝑃(𝑥; 𝛽)𝑑𝐹(𝑥), where 𝛽 

represents the estimated value of 𝛽. 

 If the prevalence rate is known, one can instead estimate 𝛽 by solving the following 

constrained maximum likelihood estimation problem: 

 max𝛽 ∑ ln (𝑃(𝑥𝑖; 𝛽))𝑁1
𝑖=1  s.t.  𝑞 = ∫ 𝑃(𝑥; 𝛽)𝑑𝐹(𝑥). (4)  

Rather remarkably, then, if one actually knew the covariate distribution, it would be possible to  

estimate the conditional probability of participation using a sample that consists entirely of  

participants. 

3. Identification under a use-availability design 

Unfortunately, the joint distribution of the covariates will not generally be known in practice. 

However, we can overcome our ignorance of the covariate distribution by incorporating a 

supplementary sample of covariate values from the overall population into the analysis. 

Under this use-availability design, one would draw a primary random sample of covariate 

values from the subpopulation of participants and a separate supplementary random sample of 

covariate values from the general population. Assume, for now, that both the primary and 

supplementary samples are simple random samples. In Section 7 we will generalize our approach 

to account for exogenous stratification of one or both samples. 
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As noted by Lancaster and Imbens (1996), the supplementary sample under this design 

would permit identification of 𝑓(𝑥), while the primary sample would permit identification of 𝑃(𝑥; 𝛽)𝑓(𝑥)/𝑞. Thus, by implementing a use-availability design, the function 𝑃(𝑥; 𝛽)/𝑞 would 

continue to be non-parametrically identified. As noted previously for the case of a known 

covariate distribution, however, one would need to make parametric assumptions in order to 

separately identify the elements of 𝛽 and 𝑞 if the prevalence rate is unknown. 

4. Estimation when 𝑭(𝒙) and 𝒒 are both unknown 

Development of our new estimators of 𝛽 follows the approach introduced by Imbens (1992) and 

later employed by Lancaster and Imbens (1996). Under this approach, we begin by constructing 

an estimator for the case in which 𝑥 is discrete. We then demonstrate that our estimator can be 

expressed in a way that not only requires no knowledge of the points of support for 𝑥, but which 

remains valid even when 𝑥 is continuous. However, whereas Lancaster and Imbens (1996) and 

Cosslett (1981) develop their estimates based on the empirical probability distribution of 𝑥 in the 

combined sample, we rely instead on the empirical probability distribution of 𝑥 in the 

supplementary sample. As we shall see below in Section 7, this greatly simplifies estimation in 

cases where the primary and/or supplementary sample have been generated using a stratified 

sampling design. In particular, implementation of our estimators requires only application of the 

sample weights, whereas the Cosslett and Lancaster and Imbens estimators require detailed 

knowledge of the sampling design. 

4.1 Derivation of estimator 

If 𝑥 is discrete with 𝐾 known points of support, one can consistently estimate the 

probability (𝜆𝑘) that 𝑥 is equal to 𝑥𝑘 from a supplementary sample using the empirical 
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probability �̃�𝑘 = 𝑁0𝑘𝑁0 ,  𝑘 = 1, … , 𝐾, where 𝑁0𝑘 represents the number of observations in the 

supplementary sample with covariate value 𝑥 = 𝑥𝑘.7 The empirical probability �̃�𝑘 represents the 

unconstrained maximum likelihood estimate of 𝜆𝑘 based on the supplementary sample. 

If the prevalence rate is unknown, one can estimate the conditional response probability 

parameters by maximizing: 𝐿𝑞𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = (∑ 𝑁1𝑘𝑙𝑛(𝑃(𝑥𝑘; 𝛽))𝐾𝑘=1 ) − 𝑁1𝑙𝑛(∑ �̃�𝑘𝑃(𝑥𝑘; 𝛽)𝐾𝑘=1 ) 

over 𝛽, where 𝑁1𝑘 represents the number of observations in the primary sample of participants 

with covariate value 𝑥 = 𝑥𝑘. Equivalently, this optimization problem may be expressed as: 

  β̃𝑞𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = argmax𝛽  (∑ 𝑙𝑛(𝑃(𝑥𝑖; 𝛽))𝑁1
𝑙=1 ) − 𝑁1𝑙𝑛 (∑ 𝑃(𝑥𝑗; 𝛽)𝑁0𝑗=1 𝑁0 ). (5) 

The first order conditions for this estimator are:  
  ∑ 𝑃𝛽′ (𝑥𝑖; 𝛽)𝑃(𝑥𝑖; 𝛽)𝑁1

𝑖=1 − 𝑁1𝑁0�̃�(𝛽) (∑ 𝑃𝛽′ (𝑥𝑗; 𝛽)𝑁0
𝑗=1 ) = 0, (6) 

where 𝑃𝛽(𝑥; 𝛽) = 𝜕𝑃(𝑥;𝛽) 𝜕𝛽  and �̃�(𝛽) = ∑ 𝑃(𝑥𝑗; 𝛽)𝑁0𝑗=1 /𝑁0. Observe that these moments do not 

require knowledge of the points of support for 𝑥 and that they remain valid even when 𝑥 is not 

discrete.  

The above estimator for 𝛽 can be obtained using a standard maximum likelihood 

estimation routine.8 However, the usual estimates of the standard errors (based on the 

information matrix) will not be valid, owing to the reliance on a sample analog [�̃�(𝛽)] of the 

population relationship between 𝑞 and 𝛽. Intuitively, the reliance on an approximate relationship 

                                                           
7
 Whereas our approach focuses on the unconditional probability (𝜆𝑘) of 𝑥𝑘  and estimates it based on the 

supplementary sample moment (𝑁0𝑘/𝑁0), the Lancaster and Imbens (1996) approach focuses on the conditional 

probability (𝜋𝑘) that an observation with value 𝑥𝑘  is included in the combined sample and estimates this 

probability using the combined sample moment (𝑁0𝑘 + 𝑁1𝑘 )/(𝑁0 + 𝑁1 ). 
8
 See Lele and Keim (2006) for a related simulation-based approach to estimation in this case. 
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between 𝛽 and 𝑞 rather than the exact relationship tends to reduce the precision of our estimator 

to some degree. We rely on insights from generalized method of moments (GMM) theory to 

develop a covariance matrix estimator that properly accounts for this effect. 

4.2 GMM approach 

Following the approach taken by Lancaster and Imbens (1996) for their estimator, we recast the 

above problem using the GMM framework. Consider the following moments: 

  𝑔1(𝑥; 𝜃) = 𝑠 𝑃𝛽′ (𝑥; 𝛽)𝑃(𝑥; 𝛽) − (1 − 𝑠) 𝑁1𝑁0𝑞 𝑃𝛽′ (𝑥; 𝛽). (7) 

 

  𝑔2(𝑥; 𝜃) = (1 − 𝑠)(𝑞 − 𝑃(𝑥; 𝛽)), (8) 
 

where 𝜃 = (𝛽𝑞) and 𝑠 is a 1/0 indicator that identifies observations from the primary sample in 

the combined primary and supplementary sample. The moment 𝑔1(𝑥; 𝜃) is the single observation 

score from the pseudo-log-likelihood function defined in Equation (5), while 𝑔2(𝑥; 𝜃) reflects 

the relationship between marginal 𝑞 and conditional 𝑃(𝑥; 𝛽). These moments have an expected 

value of zero when evaluated at the true value of 𝜃.  

Let 𝑔(𝑥; 𝜃) represent the vector [𝑔1(𝑥; 𝜃)𝑔2(𝑥; 𝜃)], 𝑁 = (𝑁0 + 𝑁1) represent the size of the 

combined primary and supplementary sample, and  𝑔𝑁(𝑥; 𝜃) = 1𝑁 ∑ 𝑔(𝑥𝑛; 𝜃)𝑁𝑛=1  represent the (𝐻 + 1) x 1 vector of sample moment conditions. Based on our estimator 𝛽𝑞𝑢𝑛𝑘, we can rely on 

�̃�(�̃�𝑞𝑢𝑛𝑘) to estimate 𝑞, so that �̃� = ( 𝛽𝑞𝑢𝑛𝑘𝑛𝑜𝑤𝑛, �̃�(𝛽𝑞𝑢𝑛𝑘𝑛𝑜𝑤𝑛)). Then asymptotic covariance of our 

estimators can be estimated as: 
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  𝑉[√𝑁(�̃� − 𝜃)] ≅ 𝐺𝑁(𝑥; �̃�)′�̃�𝑁𝐺𝑁(𝑥; �̃�), (9) 

where �̃�𝑁 = [1𝑁 ∑ 𝑔(𝑥𝑛; 𝜃)𝑁𝑛=1 𝑔(𝑥𝑛; 𝜃)′]−1
 and 𝐺𝑁(𝑥; �̃�) = 𝜕𝑔𝑁(𝑥;𝜃)𝜕𝜃′ | �̃� .   

Alternatively, one can apply GMM estimation to develop asymptotically equivalent 

estimators of 𝛽 and 𝑞: 

  min𝛽 ,𝑞 𝑔𝑁 (𝑥; 𝜃)′𝑊𝑁𝑔𝑁(𝑥; 𝜃), (10) 

 

where 𝑊𝑁 = 1𝑁 ∑ 𝑔(𝑥𝑛; �̃�)𝑁𝑛=1 𝑔(𝑥𝑛; �̃�)′
 is an estimate of the asymptotic covariance matrix of 

√𝑁𝑔𝑁(𝑥; 𝜃) based on �̃�, a consistent initial estimate of 𝜃. 

5. Estimation when 𝐅(𝐱) is unknown and 𝐪 is known 

Suppose that the prevalence rate is known. Returning to the example above in Section 4.1 where 𝑥 is discrete with 𝐾 known points of support, one could consistently estimate 𝛽 in this case by 

maximizing the likelihood function, 𝐿𝑞𝑘𝑛𝑜𝑤𝑛 = ∑ 𝑁1𝑘𝑙𝑛[𝑃(𝑥𝑘; 𝛽)]𝐾𝑘=1 , subject to the analog of 

the constraint on 𝛽 that is imposed by prevalence rate from Equation (1):  𝑞 = ∑ �̃�𝑘𝐾𝑘=1 𝑃(𝑥𝑘; 𝛽), 
where 𝑁1𝑘 represents the number of observations in the primary sample of participants with 

covariate value  𝑥 = 𝑥𝑘,  𝑁0𝑘 represents the corresponding number of participants in the 

supplementary sample, and  �̃�𝑘 = 𝑁0𝑘𝑁0 . 
This estimator (𝛽𝑞𝑘𝑛𝑜𝑤𝑛) can be expressed in an alternative way as the solution to: 

  𝛽𝑞𝑘𝑛𝑜𝑤𝑛 = argmax𝛽 ∑ 𝑙𝑛(𝑃(𝑥𝑖; 𝛽))𝑁1
𝑖=1   𝑠. 𝑡.  𝑞 = ∑ 𝑃(𝑥𝑗; 𝛽)𝑁0𝑗=1 𝑁0 . (11) 

The Lagrangian for the optimization problem in Equation (11) is: 
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  ℒ(𝛽, 𝜇) = ∑ 𝑙𝑛(𝑃(𝑥𝑖; 𝛽))𝑁1
𝑖=1  + 𝜇 (𝑁0𝑞 − ∑ 𝑃(𝑥𝑗; 𝛽)𝑁0

𝑗=1 ). (12) 

The first-order conditions are: 

  𝜕ℒ𝜕𝛽 = ∑ 𝑃𝛽′ (𝑥𝑖; 𝛽)𝑃(𝑥𝑖; 𝛽)𝑁1
𝑖=1 − 𝜇 ∑ 𝑃𝛽′ (𝑥𝑗; 𝛽)𝑁0

𝑗=1 = 0. (13) 

  𝜕ℒ𝜕𝜇 = 𝑁0𝑞 − ∑ 𝑃(𝑥𝑗; 𝛽)𝑁0
𝑗=1 = 0. (14) 

Observe that these moments do not require knowledge of the points of support and that they 

remain valid even when 𝑥 is not discrete.  

It is desirable to have a consistent estimate of β to use as an initial value in the search for 

a solution to the above optimization problem. It can be shown that the limit value for the 

Lagrange multiplier μ in Equation (13) is equal to 𝑁1/(𝑁0𝑞 ). Similar to the approach used by 

Manski and McFadden (1981) to develop an initial consistent estimator for the standard choice-

based sampling problem, one can consistently estimate β by replacing μ with its limit value in 

Equation (12) and maximizing the following pseudo-likelihood function:  

  𝐿 = ∑ 𝑠𝑖𝑙𝑛(𝑃(𝑥𝑖; 𝛽)) − 𝑁1𝑁0𝑞 (1 − 𝑠𝑖)𝑃(𝑥𝑖; 𝛽)𝑁
𝑖=1 , (15) 

where 𝑠 is a 1/0 indicator that identifies observations from the primary sample in the combined 

primary and supplementary sample. 

We refer to our estimation methodology for the known prevalence rate case as “calibrated 

qualitative response estimation”, because the estimator is obtained by calibrating the response 

probabilities so that their average value within the supplementary sample is equal to the 
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population prevalence rate 𝑞. Following standard terminology for the classic qualitative response 

framework, we refer to our model as a “calibrated probit” when 𝑃(𝑥; 𝛽) is cumulative standard 

normal, and as a “calibrated logit” when 𝑃(𝑥; 𝛽) is cumulative standard logistic.  

The estimator 𝛽𝑞𝑘𝑛𝑜𝑤𝑛 is calibrated to ensure that the average predicted probability of 

participation in the supplementary sample is consistent with the prevalence rate, even in small 

samples. To solve the constrained optimization problem for this estimator, one can rely on 

readily available algorithms, such as the maxLik package in R, or the nonlinear optimization 

routines in SAS@/IML@, and the CML application in GAUSS@,. 

5.1 GMM framework 

Although the conditional response probability parameters can be estimated using a constrained 

maximum likelihood algorithm, the usual estimate of the covariance matrix of the parameter 

estimates from such an algorithm will not be valid. Again, this is because we have replaced the 

exact formula for 𝑞  (∫ 𝑃(𝑥; 𝛽)𝑑𝐹(𝑥))  with its sample analog (∑ 𝑃(𝑥𝑗; 𝛽)𝑁0𝑗=1 /𝑁0). We rely on 

insights from generalized method of moments (GMM) theory to develop a covariance matrix 

estimator that properly accounts for this substitution.  

Consider the following moments: 

  𝑔1(𝑥; 𝛽) = 𝑠 𝑃𝛽′ (𝑥; 𝛽)𝑃(𝑥; 𝛽) − (1 − 𝑠) 𝑁1𝑁0𝑞 𝑃𝛽′ (𝑥; 𝛽). (16) 

 𝑔2(𝑥; 𝛽) = (1 − 𝑠)(𝑞 − 𝑃(𝑥; 𝛽)). (17) 

The moment 𝑔1(𝑥; 𝛽) is the single observation score from the pseudo-log-likelihood function 

defined in Equation (15), while 𝑔2(𝑥; 𝛽) reflects the relationship between marginal 𝑞 and 

conditional 𝑃(𝑥; 𝛽). These moments have an expected value of zero when evaluated at the true 

value of 𝛽. An estimate of asymptotic covariance matrix for our estimator 𝛽𝑞𝑘𝑛𝑜𝑤𝑛 can be 
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obtained by evaluating the standard formula for the GMM estimator of the covariance matrix 

based on these moment conditions at 𝛽𝑞𝑘𝑛𝑜𝑤𝑛. Alternatively, one can directly apply GMM 

estimation to the above moment conditions to obtain an asymptotically equivalent estimator of 𝛽. 

Depending on one’s preference, then,  one can rely either on maximum likelihood estimation or 

unconstrained GMM estimation.  

6. Monte Carlo analysis 

We have undertaken a Monte Carlo analysis to compare the small sample performance of our 

estimators against other existing estimators. In our simulations, we employ a logit specification 

for the conditional probability of participation involving two independent standard normal 

regressors and an intercept. The coefficients of the two regressors are fixed at one, while the 

intercept is varied to achieve alternative approximate values of the prevalence rate 𝑞, including 

0.125, 0.25, 0.50, 0.75, and 0.875. We perform 1,000 replications for each experiment.  

A standard use-availability design is employed that includes a supplementary random 

sample of 𝑁0 = 400 participants and non-participants and a primary random sample of         𝑁1 = 400 ∗ 𝑞 participants. We also experiment with a larger supplementary sample of          𝑁0 = 1,600 participants and non-participants. 

6.1 Known prevalence rate 

For the known prevalence rate case, we compare the small sample performance of our calibrated 

logit estimator (𝛽𝑞𝑘𝑛𝑜𝑤𝑛), defined in Equation (11), against several alternative estimators from 

the existing literature on supplementary sampling. Below, we briefly describe these alternative 

estimators, which are explored in more detail in Appendix A. We then present our findings. 
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Cosslett (1981) developed a generalized framework for estimating discrete choice models 

using choice-based samples. Through a straightforward extension of his estimation methodology 

for the case of a known prevalence rate, a supplementary sampling estimator for the response 

parameters (𝛽) can be obtained as the solution to the following optimization problem: 

  𝑚𝑎𝑥𝛽 min𝜆1   ∑ 𝑠𝑖𝑙𝑛(𝑃(𝑥𝑖; 𝛽)) − 𝑙 𝑛(𝜆1𝑃(𝑥𝑖; 𝛽) + 1 − 𝜆1𝑞), 𝑁
𝑖=1  (18) 

where 𝜆1 is a weight factor that is estimated jointly with 𝛽. We refer to this estimator as the 

“Cosslett” estimator in our Monte Carlo simulations. Observe that the solution for this estimator 

is at a saddle point of the objective function in Equation (18).  

The Lancaster-Imbens (1996) estimator is obtained by applying GMM estimation to the 

following three moment conditions:  

  𝑔1(𝑥; 𝛽, ℎ) = 𝑃𝛽′ (𝑥; 𝛽)𝑃(𝑥; 𝛽) (𝑠 − 𝑅(𝑥; 𝛽, 𝑞, ℎ)). (19) 

 

  𝑔2(𝑥; 𝛽, ℎ) = − 1𝑞 (𝑠 − 𝑅(𝑥; 𝛽, 𝑞, ℎ)). (20) 

  

  𝑔3(𝑥; 𝛽, ℎ) = ℎ − 𝑅(𝑥; 𝛽, 𝑞, ℎ), (21) 

where 𝑅(𝑥; 𝛽, 𝑞, ℎ) = ℎ(𝑃(𝑥;𝛽)𝑞 )[ℎ(𝑃(𝑥;𝛽)𝑞 )+(1−ℎ)] represents the conditional probability of selection into the 

primary sample. In this model, parameter ℎ, which represents the Bernoulli probability that a 

sample observation is drawn from the subpopulation of participants, is estimated jointly 

with 𝛽.This contrasts with the approach taken by Cosslett (1981) as well as our current approach 

wherein the values of 𝑁0 and 𝑁1 are treated as fixed. 



15 

 

 

The Steinberg-Cardell (1992) estimator is the solution to the following optimization 

problem: 

  max𝛽  ∑ 𝑠𝑖 (𝑁0𝑞𝑁1 ) 𝑙𝑛 ( 𝑃(𝑥𝑖; 𝛽)1 − 𝑃(𝑥𝑖; 𝛽))𝑁
𝑖=1 + (1 − 𝑠𝑖)𝑙𝑛(1 − 𝑃(𝑥𝑖; 𝛽)). (22) 

The Monte Carlo simulation results are summarized in Table 1. For each case, we report 

the mean and median estimates, the mean asymptotic standard deviation of the estimates (ASD), 

the standard deviation of the estimates (SSD) over the 1,000 replications, and the mean absolute 

deviation from the median estimates (MAD) over the 1,000 replications. In some of the 

simulations, certain estimators are subject to convergence problems. For such estimators, we 

perform our tabulations based on the subset of replications that are free from convergence 

problems. The number of replications where an estimator has failed to converge is reported as 

“#Failures”. 

When 𝑞 is relatively low, the estimators all perform similarly, with the exception of the 

Steinberg-Cardell estimator. Even when the prevalence rate is small, this estimator is relatively 

inefficient in comparison with the other estimators. As the prevalence rate rises, the calibrated 

logit estimator continues to perform comparably to the Cosslett and Lancaster-Imbens 

estimators. On the other hand, the Steinberg-Cardell estimator suffers not only from relatively 

high standard errors, it also is subject to periodic convergence problems. 

In the final case presented in Table 1, we explore the performance of the various 

estimators when the prevalence rate is high (𝑞 = 0.875), but a larger estimation sample is 

employed. In particular, we quadruple the sample size (from 𝑁0 = 400 and 𝑁1 = 350 to 𝑁0 = 1,600 and 𝑁1 = 1,400). The application of a larger estimation sample largely eliminates 
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the convergence problems associated with the Steinberg-Cardell estimator. As well, the precision 

of all of the estimators is substantially improved.  

We have also performed some Monte Carlo simulations for our alternative GMM-based 

estimator. Our GMM estimator based on the moment conditions in Equations (16) and (17) 

produces very similar results to our calibrated logit estimator, even in small samples. 

6.2 Unknown prevalence rate 

Alternative estimators for the case of an unknown prevalence rate have been proposed by 

Cosslett (1981) and Lancaster and Imbens (1996). We show in Appendix A that these two 

estimators are actually the same. The Cosslett-Lancaster-Imbens estimator is the solution to the 

following optimization problem: 

 max𝛽 max𝑞∈(0,1)   ∑ 𝑠𝑖𝑙𝑛 (𝑁1𝑁𝑞 𝑃(𝑥𝑖; 𝛽)) − 𝑙𝑛 (𝑁1𝑁𝑞 𝑃(𝑥𝑖; 𝛽) + 𝑁0𝑁 )𝑁
𝑖=1 . (23) 

We have undertaken some Monte Carlo simulations to compare the small sample 

performance of our pseudo-maximum likelihood estimator based on Equation (5) and the 

Cosslett-Lancaster-Imbens estimator based on Equation (23) for the unknown prevalence rate 

case. The results are summarized in Table 2. For each case, we report the mean and median 

estimates, the standard deviation of the estimates (SSD), and the mean absolute deviation from 

the median estimates (MAD) over the 1,000 replications. We also present the mean asymptotic 

standard deviation of the estimates based on the pseudo-likelihood function (LSD). In the case of 

the Cosslett-Lancaster-Imbens estimator, we derive the standard error estimates using the inverse 

of the information matrix. Lancaster and Imbens (1996) have shown that these standard error 

estimates are consistent for the coefficients (but not for 𝑞). For our pseudo-maximum likelihood 

model, we rely on the Huber-White standard errors for our LSD estimates. The LSD estimate of 
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the standard error for our pseudo-maximum likelihood estimate of 𝑞 is computed using the delta 

method. In large samples, these estimates will tend to be somewhat too small, because they do 

not account for our reliance on a sample analogue of the true relationship between marginal 𝑞 and conditional 𝑃(𝑥; 𝛽). We compare our LSD estimates to the GMM-based standard error 

estimates (GSD), which do account for this relationship. 

In small samples, both estimators are subject to periodic convergence problems. We base 

our performance measures for a given estimator on the subset of replications that are free from 

such problems. The number of replications for which an estimator has failed to converge is 

reported as “#Failures”. 

Comparing findings for the cases involving a known and an unknown prevalence rate, it 

is clear that precision suffers when 𝑞 is unknown. The discrepancy in performance across these 

two cases is especially pronounced when 𝑞 is relatively large (𝑞 = .75 and 𝑞 = .875). In 

addition, the discrepancy is much larger for the intercept than for the slope coefficients.  

Overall, our pseudo-maximum likelihood estimator performs quite comparably to the 

Cosslett-Lancaster-Imbens estimator in terms of mean and median performance as well as 

precision. Lancaster and Imbens (1996) have reported that their estimator has periodic 

convergence issues in small samples, particularly when the true value of 𝑞 is close to zero. This 

problem extends to our estimator. As noted by Lancaster and Imbens, when 𝑞 is close to zero, 

supplementary sampling is close to pure choice-based sampling, and the choice-based sampling 

estimator of the intercept in a logit model is not identified when 𝑞 is unknown. We find that the 

estimated covariance matrices for both supplementary sampling estimators tend to become ill-

conditioned at solutions involving estimated values of 𝑞 close to zero, and the standard error of 

the intercept estimate becomes very large in such cases.  
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Our simulation results indicate that convergence problems are also prevalent when the 

true value of 𝑞 is relatively high (𝑞 = 0.75 and 𝑞 = .875). One source of such problems is that, 

despite the high actual prevalence rate, some replications result in an estimated prevalence rate 

that is actually close to zero. Another source of convergence problems when 𝑞 is relatively high 

involves estimates of the prevalence rate that are very close to the upper bound of one. Typically 

in such cases, the average predicted conditional probability of participation approaches one 

within the primary sample, while the average predicted probability is just slightly smaller within 

the supplementary sample.  

In the final case presented in Table 2, we explore the performance of the estimators when 

the prevalence rate is high (𝑞 = 0.875), but a larger estimation sample is employed. This not 

only leads to substantial improvements in precision, it also greatly reduces the incidence of 

convergence problems. In general, then, when the prevalence rate is not known, it is especially 

beneficial to employ a reasonably large overall sample in estimation. 

We have also performed Monte Carlo simulations using our GMM estimator based on the 

moment conditions in Equations (7) and (8). The results indicate that this estimator and our 

pseudo-maximum likelihood estimator for the case of an unknown prevalence rate produce very 

similar estimates, even in small samples.  

7. Exogenously stratified samples 

The results from the Monte Carlo simulations indicate that our new estimators rival the 

performance of the existing estimators developed by Cosslett and Lancaster-Imbens for the case 

in which the primary and supplementary data sources are simple random samples from their 

respective populations. The advantage of our new estimators is that they can also be applied in 

situations where the Cosslett and Lancaster-Imbens estimators are not feasible.  
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In Appendix B, we show how each of the existing supplementary sampling estimators 

can be generalized to accommodate exogenous stratification of the primary and/or 

supplementary samples. With the sole exception of the relatively inefficient Steinberg-Cardell 

estimator, however, implementation of these generalized estimators would require one to allocate 

observations from both the primary and supplementary samples to a common set of sampling 

strata (or substrata in the likely case that the stratum definitions differ across the two samples). 

Unfortunately, the requisite information is not always available to do so. For instance, the U.S. 

Census Bureau does not publicly disclose its stratification criteria for national surveys such as 

the CPS, SIPP, and ACS.9 Therefore, if public-use data from one of these surveys were used as a 

supplementary sample from the general population, researchers would not know how to 

construct comparable strata for members of the primary sample, which would preclude 

application of these estimation methods.10 

An important advantage of our new supplementary sampling estimators is that they can 

be implemented even when the stratification criteria are unavailable; all that is needed are the 

sample weights. Let the sample weights for the primary data source be represented by 𝑤1 and 

                                                           
9
 Under a fairly simple stratified random sampling design, it may be possible to deduce the stratification criteria (at 

least approximately) by analyzing the characteristics of each subsample of observations with a common value for 

the sample weight (assuming that the relevant stratifying variables are present in the data sample). However, such 

an approach is not feasible for more complex survey designs. For instance,  Census surveys often involve multi-

stage sampling, clustering, post-stratification adjustment, and imputation. As a consequence, the final sample 

weight often varies among observations within the same initial stratum. Even when the sampling criteria for the 

supplementary sample can be deduced, it is only feasible to evaluate the relative sampling weights if the stratifying 

variables are also present in the primary sample. In cases where both the primary and supplementary data sources 

are stratified, one would further need to divide the existing strata for the two data samples into sub-strata that are 

comparable across the two samples. In such cases, the presence of sparse or empty sub-strata would complicate 

estimation. 
10

 Even if the specific survey design criteria were made known for such surveys, it would be very difficult to adapt 

the Cosslett and Lancaster-Imbens estimators to account for the complexity of these survey designs. Although 

Appendix B shows how to apply these estimators under a relatively simple stratified random sampling process, 

accounting for more complex designs involving multi-stage sampling and clustering would be much more 

challenging. 
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those for the supplementary data source by 𝑤0. We assume that these weights have been 

normalized so that they sum to the size of their respective samples, 𝑁1 and 𝑁0. If either of the 

samples is not stratified, the weight for each observation in that sample would be set equal to 

one. 

Our generalized constrained pseudo-maximum likelihood estimator for the case of a 

known prevalence rate (𝛽𝑊,𝑞𝑘𝑛𝑜𝑤𝑛) is constructed by incorporating the relevant sample weights 

into the objective function and constraint of the optimization problem described by         

Equation (11): 

  𝛽𝑊,𝑞𝑘𝑛𝑜𝑤𝑛 = argmax𝛽 ∑ 𝑤1𝑖𝑙𝑛(𝑃(𝑥𝑖; 𝛽))𝑁1
𝑖=1   𝑠. 𝑡.  𝑞 = ∑ 𝑤0𝑗𝑃(𝑥𝑗; 𝛽)𝑁0𝑗=1 𝑁0 . (24) 

When the prevalence rate is unknown, the objective function in Equation (5) is easily generalized 

to account for stratified sampling as follows: 

  𝛽𝑊,𝑞𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = max𝛽  (∑ 𝑤1𝑖𝑙𝑛(𝑃(𝑥𝑖; 𝛽))𝑁1
𝑙=1 ) − 𝑁1𝑙𝑛 (∑ 𝑤0𝑖𝑃(𝑥𝑗; 𝛽)𝑁0𝑗=1 𝑁0 ) . 11 (25) 

The GMM versions of our estimators can also be generalized by appropriately weighting the 

moment conditions; these weighted moment conditions can also be employed to estimate the 

covariance matrices for the above estimators. 

8. Polychotomous response models 

Our estimation approach readily generalizes to account for more than two outcomes. For 

instance, suppose there are 𝑀+1 possible outcomes indexed by the values 𝑦 = 0, 1, ⋯ , 𝑀. Define 

                                                           
11

 If the available sample weights for the primary and supplementary samples sum to their respective population 

totals, then the prevalence rate actually will be known since it can be computed as the ratio of the sum of the 

sample weights for the primary sample to the sum of the sample weights for the supplementary sample. However, 

if only normalized sample weights are available (which instead sum to the respective sample sizes), it will not be 

possible to deduce the prevalence rate from such weights. 
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the outcome probabilities as:  Pr(𝑦 = 𝑚|𝑥; 𝛽) =  𝑃(𝑚|𝑥; 𝛽),   𝑚 = 0, 1, … , 𝑀, where 𝑃(𝑚|𝑥; 𝛽) has a known parametric form. This framework is sufficiently general to include both 

ordinal and multinomial response models.  

Let the outcome 𝑦 = 0 represent non-participation and let the remaining 𝑀 outcomes 

represent alternative forms of participation. Suppose one has a random participant-only sample 

of size 𝑁1 that includes observations with outcomes 1 through 𝑀. Sampling among these 

participants may be choice-based, meaning that the sampled number of observations (𝑁1𝑚) for a 

given participation outcome 𝑚 may not be representative of the incidence of this outcome within 

the participant population. In addition, suppose one has a supplementary random sample of size 𝑁0 from the general population that includes observations on all types of participants as well as 

non-participants.  

Define 𝑞𝑚 as the prevalence rate for outcome  𝑚, 𝑚 = 1, ⋯ , 𝑀. Assuming these 

prevalence rates are known, our calibrated qualitative response estimator for the binary response 

case described in Equation (11) may be adapted to account for polychotomous responses as 

follows: 

  𝛽𝑃,𝑞𝑘𝑛𝑜𝑤𝑛 = argmax𝛽 ∑ 𝑙𝑛(𝑃(𝑦𝑖|𝑥𝑖; 𝛽))𝑁1
𝑖=1   𝑠. 𝑡.  𝑞𝑚 = ∑ 𝑃(𝑚|𝑥𝑗; 𝛽)𝑁0𝑗=1 𝑁0 ,  𝑚 = 1 ⋯ , 𝑀. (26) 

Thus, the generalized form of our calibrated qualitative response estimator involves 𝑀 

constraints, one for each outcome in the primary sample. To estimate the covariance matrix 

of 𝛽𝑃,𝑞𝑘𝑛𝑜𝑤𝑛, one can rely on the GMM covariance matrix formula associated with the following 

moment conditions:  

  𝑔0(𝑥; 𝛽) = 𝑃𝛽′ (𝑦|𝑥; 𝛽)𝑃(𝑦|𝑥; 𝛽) − (1 − 𝑠) ∑ 𝑁1𝑚𝑁0𝑞𝑚
𝑀

𝑚=1 𝑃𝛽′ (𝑚|𝑥; 𝛽). (27) 



22 

 

 

 

  𝑔𝑚(𝑥; 𝛽) = (1 − 𝑠)(𝑞𝑚 − 𝑃(𝑚|𝑥; 𝛽)),   𝑚 = 1, … , 𝑀. (28) 

Alternatively, one can derive an asymptotically equivalent estimator of 𝛽 by applying GMM 

estimation to these moment conditions. 

 If the prevalence rates are unknown, the optimization problem defined in Equation (5) 

may be generalized to: 

  𝛽𝑃,𝑞𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = argmax𝛽  ∑ 𝑙𝑛(𝑃(𝑦𝑖|𝑥𝑖; 𝛽))𝑁1
𝑖=1 − ∑ 𝑁1𝑚𝑙𝑛 (∑ 𝑃(𝑚|𝑥𝑗; 𝛽)𝑁0𝑗=1 𝑁0 )𝑀

𝑚=1 . (29) 

The parameters 𝑞𝑚 can then be estimated using the analogue estimator:  �̃�𝑚 = ∑ 𝑃(𝑚|𝑥𝑗;�̃�𝑃,𝑞𝑢𝑛𝑘)𝑁0𝑗=1 𝑁0 . 

For  estimation of the covariance matrix, one can rely on the GMM covariance matrix formula 

based on the moment conditions in Equations (27) and (28), where these conditions are now 

taken as a function of the unknown parameters 𝑞𝑚 as well as 𝛽. Alternatively, one can derive 

asymptotically equivalent estimators of 𝛽 and 𝑞 by applying GMM estimation to these moment 

conditions.  

 To extend the above estimators to account for stratified random sampling on exogenous 

factors, one simply applies the appropriate primary and supplementary sample weights to the 

terms in equations (26) through (29).  

9. An example using stratified data samples 

Burden et al. (2014) estimate the determinants of voting behavior using data from the Current 

Population Survey (CPS) for 2004 and 2008 using both binary and multinomial logit 

specifications. In this section, we focus on their analysis for 2008. We begin by estimating 

similar specifications to those used in their study based on the same 2008 CPS data sample. We 
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then compare the results against alternative estimates derived from a use-based sample design 

involving a voter-only subsample from the CPS and a supplementary sample from the overall 

voting-eligible population from the American Community Survey (ACS). These alternative 

estimates include results based on our calibrated binary and multinomial logit models, the 

Steinberg-Cardell binary logit estimator as well as a multinomial logit generalization of their 

estimator that we have derived in Appendix B, and our pseudo-MLE binary and multinomial 

logit estimators for the case involving an unknown prevalence rate.12 

 The binary logit specification employed by Burden et al. distinguished voters and non-

voters. The multinomial logit specification distinguished among the following modes of voting:  

(1) election-day voting; (2) early voting in person; and (3) early voting by mail. Both 

specifications relied on the following explanatory variables: 

Early:  Dummy for residence in a state that permits early voting.  
EDR:  Dummy for residence in a state that permits one to both register and vote on Election 

Day. 
Early*SDR:  Dummy for residence in an early voting state that permits same-day registration. 
Early*EDR:  Interaction between Early Voting and EDR. 
Early*EDR*SDR:  Interaction between Early Voting, SDR, and EDR. 
30-Day Reg. Close:  Dummy for residence in a state that requires voters to be registered 30 days 

in advance of an election. 
ID Requirement:  Dummy for residence in a state that requires voters to show some form of 

identification. 
Education:  Indicator for educational attainment (4 values ranging from less than high school 

diploma to Bachelor’s degree or higher). 
African American: Dummy for self-identified race of Black only or Black in combination with 

another race. 
Hispanic:  Dummy for self-identified race of Hispanic origin. 
Naturalized Citizen:  Dummy for naturalized citizenship. 
Married:  Dummy for married. 
Female:  Dummy for female. 
Age: Age in years. 
Age 18–24: Dummy for age between 18 and 24. 
Age 75 plus:  Dummy for age 75 or over. 
                                                           
12

The authors have kindly posted the Stata code they used in their analysis at https://electionadmin.wisc.edu 

/BCMM_AJPS_CPSanalysis.zip. This code greatly facilitated the replication of their original results. 

https://electionadmin.wisc.edu/BCMM_AJPS_CPSanalysis.zip
https://electionadmin.wisc.edu/BCMM_AJPS_CPSanalysis.zip
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Competitiveness:  A poll-based index of campaign competitiveness (a higher value indicates a 
more competitive campaign). 

South:  Dummy for residence in a southern state. 
North Dakota:  Dummy for residence in North Dakota (which does not require voter 
registration). 
Oregon:  Dummy for residence in Oregon (a “vote-by-mail” state). 
Washington:  Dummy for residence in Washington state (a “vote-by-mail” state). 
Self-Reported Vote:  Dummy equal to one if voting status was self-reported and zero if reported 

by another family member. 
Natural. 10+ Years:  Dummy for naturalized citizen who entered the U.S. prior to 1998. 
Residence 1 Year:  Dummy for tenure of at least one year at current residence. 
Income:  Indicator for total family income (16 values ranging from less than $5,000 to $150,000 

and over). 

The estimation sample was restricted to individuals who appeared eligible to vote (age 18 or over 

and a U.S. citizen) and who did not reside in the District of Columbia.  

In order to apply the calibrated qualitative response methodology, it is essential to have 

comparably defined and measured variables in the primary and supplementary data sources. As 

this example demonstrates, this requirement imposes limitations on the set of explanatory 

variables that one can use in an analysis. In particular, the last four variables listed above do not 

satisfy this requirement. Although a comparable family income concept can be constructed from 

the ACS data, it turns out that the CPS family income measure is missing for approximately 20 

percent of the voting-eligible sample, including a disproportionate share of lower-income 

households.13 Consequently, the (weighted) subsample with non-missing information is not 

representative of the overall population and therefore cannot be validly compared against the 

(weighted) ACS sample. A similar missing data problem exists with regard to tenure at the  

                                                           
13

 Based on a comparison of the ACS (which has complete income information) and the CPS, it appears that a 

disproportionate share of the missing responses in the CPS is attributable to lower income households. Burden et 

al. restrict their analysis to the portion of their CPS sample with non-missing income information. This restriction 

might be justified if it can be assumed that willingness to provide income information on the CPS survey is 

uncorrelated with voting behavior. However, the validity of this assumption is uncertain. Note that even if this 

assumption were valid, it would not be feasible to include the income measure as a regressor in the calibrated 

qualitative response model. 
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current address.14 In addition, two of the variables used in the Burden et al. analysis (Naturalized 

10+ Years and Self-Reported Vote) cannot be constructed from the ACS data.15 

For purposes of illustration and comparison of methodologies, we have therefore 

estimated specifications that exclude these four variables from the analysis. Tables 3 and 4, 

respectively, compare the standard binary and multinomial logit estimates based on the CPS to 

the corresponding estimates of our alternative models based on a supplementary sampling 

scheme that includes the subsample of voters in the CPS as our primary sample and a 10 percent 

random subsample of voting-eligible individuals in the ACS as our supplementary sample. Both 

the CPS and the ACS rely on stratified sampling designs, so we incorporate the publicly 

available sample weights from both surveys in our analysis as discussed in Section 7.16 

Overall, our calibrated binary and multinomial logit estimates are qualitatively quite 

similar to the standard binary and multinomial logit results.17 Differences in the relative 

magnitudes of certain coefficients across methods are largely attributable to moderate differences 

in the weighted mean values of the underlying regressors (such as the dummies for marital status, 

                                                           
14

 This Information is missing for approximately 13 percent of the CPS voter-eligible sample. The authors set the 

Residence 1 Year dummy equal to one when this information was missing, which resulted in an unknown number 

of instances of misclassified residential tenure status. Such an approach introduces bias into the binary and 

multivariate logit findings. Moreover, it invalidates the comparison against ACS data employed under our 

calibrated qualitative response approach.  
15

 The Naturalized 10+ Years dummy is based on information concerning the date of entry to the U.S. The ACS 

inquires about the date of naturalization but not the date of entry (which typically occurs many years earlier). 
16

 In the case of the standard binary and multinomial logit specifications based on the CPS data sample, we have 

followed the authors in performing an unweighted analysis, followed by the computation of cluster-robust 

standard errors by state.  
17

 For our calibrated binary logit model, we have relied on the weighted mean value of the voting indicator in the 

CPS sample, inclusive of those observations with missing income information, as our measure of the prevalence 

rate. Similarly, for the calibrated multinomial logit model, we have relied on the weighted mean values of reported 

shares of individuals voting on election day in person, voting early in person, and voting early by mail (inclusive of 

observations with missing income information) as our measures of the prevalence rates for these three different 

voting methods. 
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age range, and residence in certain states with different voting requirements) across the two data 

sources.  

Overall, the Steinberg-Cardell coefficient estimates are also qualitatively quite similar to 

the logit estimates for the binary response case. However, some of the multinomial response 

coefficient estimates based on the Steinberg-Cardell approach deviate fairly substantially from 

the corresponding multinomial logit and calibrated multinomial logit estimates. 

Our pseudo-maximum likelihood estimates based on unknown prevalence rates are very 

similar to our calibrated binary and multinomial logit results based on specified values for the 

prevalence rates. In addition, the pseudo-maximum likelihood estimates of the prevalence rates 

are reasonably close to measures computed using the weighted CPS statistics. Overall, our 

combined estimation sample is quite large (273,933). Although we do lose some precision when 

we do not specify a prevalence rate in estimation, the large overall size of the combined sample 

(273,933) ensures that we are still able to obtain reasonably precise estimates of the conditional 

response probability parameters. 

10. Summary and conclusion 

Frequently, researchers have access to detailed information on the relevant characteristics of 

participants in a program, patients suffering from a disease, or habitats where a species is known 

to be present. However, their lack of comparable information about households that do not 

participate in the program, individuals who are free of the disease, or habitats where the species 

is not present precludes the application of standard qualitative response models to analyze the 

determinants of the outcome under investigation. 

If the joint probability distribution of the underlying covariates were known, we have 

demonstrated how a constrained maximum likelihood procedure could be used to estimate the 
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parameters of the conditional response probability distribution based solely on an available 

sample of participants. This approach exploits the parameter restrictions implied by the 

relationship between the marginal and conditional probabilities of participation:                      𝑞 = ∫ 𝑃(𝑥; 𝛽) 𝑑𝐹(𝑥), where 𝑞 is the marginal probability of participation (i.e., the prevalence 

rate), 𝑃(𝑥; 𝛽) is the conditional probability of participation, and 𝐹(𝑥) is the joint distribution 

function of the covariates. In practice, however, this approach is not generally feasible to 

implement, because 𝐹(𝑥) is unknown.  

To overcome this problem, we have shown that one can replace the unknown relationship 

between the marginal and conditional response probability distributions with its analogue based 

on a supplementary sample of size 𝑁0 from the general population:  �̃� = 1𝑁0 ∑ 𝑃(𝑥𝑖; 𝛽)𝑁0𝑖=1 . Using 

this analogue relationship, we have derived some feasible new constrained and unconstrained 

pseudo-maximum likelihood estimators of the parameters of the conditional response probability 

distribution. Following Lancaster and Imbens (1996), we show how our optimization problem 

can be recast under a GMM framework. This leads to some asymptotically equivalent estimators 

as well as a straightforward way to obtain appropriate standard errors for our pseudo-maximum 

likelihood estimators. We also demonstrate that our framework is readily generalized to 

accommodate polychotomous responses. 

We have conducted some Monte Carlo simulations to compare the small sample 

performance of our new estimators against that  of existing estimation approaches, including 

Cosslett (1981), Lancaster and Imbens (1996), and Steinberg and Cardell (1992). Our Monte 

Carlo simulations reveal several insights. When the prevalence rate is known, our calibrated 

qualitative response estimator rivals the performance of the best existing estimators (Lancaster-

Imbens and Cosslett) in small samples. The Steinberg-Cardell estimator exhibits less precision in 
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our Monte Carlo simulations, and it is also subject to convergence issues, particularly when the 

sample size is small and 𝑞 is relatively large. 

When the prevalence rate is unknown, our pseudo-maximum likelihood estimator 

performs comparably to the Cosslett-Lancaster-Imbens estimator. Our Monte Carlo simulations 

reveal that both estimators are relatively imprecise in small samples and are subject to periodic 

convergence problems, particularly when 𝑞 is fairly close to either of its boundaries (0 or 1). 

Both of these problems are alleviated by using a larger estimation sample. However, owing to 

the reliance on specific parametric assumptions to identify the conditional response probability 

parameters when the prevalence rate is unknown, one will tend to have greater confidence in 

estimates of relative, rather than absolute, probabilities. 

An important advantage of our new estimators over those proposed by Cosslett and 

Lancaster-Imbens is that the latter estimators require detailed knowledge of the sampling criteria 

when the primary and/or supplementary sample is exogenously stratified. This precludes their 

application when the relevant sampling criteria have not been made publicly available, such as 

when the supplementary sample has been drawn from a Census survey. In contrast, our 

estimators require knowledge only of the sample weights, which are routinely available. The new 

estimators therefore significantly broaden the scope of potential data sources that can be used in 

estimation of qualitative response probabilities. With these new estimators, for example, one can 

rely on publicly available data from national surveys, such as the CPS, ACS, and SIPP, as 

supplementary data sources for estimation.  
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Appendix A:  Existing alternative estimators 

This appendix provides a discussion of existing alternative estimators of the conditional response 

probability parameters under a supplementary sampling scheme. 

Estimators based on the Cosslett framework for a known prevalence rate 

In his seminal study of discrete choice estimation under choice-based sampling, Cosslett (1981) 

derives a generalized framework for asymptotically efficient estimation. Although he extends his 

framework to consider the case of supplementary sampling when the prevalence rate is unknown, 

he does not derive a corresponding supplementary sampling estimator for the situation involving 

a known prevalence rate. We employ Cosslett’s estimation framework to derive an estimator for 

this situation below. 

The first step is to consider the optimization problem under a specified functional form 

for the covariate distribution: 

  max𝛽  ∑ 𝑠𝑖𝑙𝑛(𝑃(𝑥𝑖; 𝛽)) + 𝑙𝑛𝑓(𝑥𝑖)  𝑠. 𝑡.  𝑞 = ∫ 𝑃(𝑥; 𝛽) 𝑓(𝑥) 𝑑𝑥𝑁
𝑖=1 . (30) 

Under Cosslett’s approach, one replaces the covariate density 𝑓(𝑥) in Equation (30) with an 

empirical density characterized by a weight factor 𝑤𝑖: 
  max𝛽,𝑤1,𝑤2,⋯,𝑤𝑁  ∑ 𝑠𝑖𝑙𝑛(𝑃(𝑥𝑖; 𝛽)) + 𝑙𝑛 (𝑤𝑖)  𝑠. 𝑡.  𝑞 = ∑ 𝑃(𝑥𝑖; 𝛽)𝑁

𝑖=1 𝑤𝑖  and ∑ 𝑤𝑖𝑁
𝑖=1 = 1.𝑁

𝑖=1   (31) 
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The first-order condition for 𝑤𝑖 implies:  
1𝑤𝑖 = 𝜆1𝑃(𝑥𝑖; 𝛽) + 𝜆0, 18 where 𝜆1 and 𝜆0 are the 

Lagrange multipliers associated with the two constraints in Equation (31). Substitution of this 

result into Equation (31) yields the dual optimization problem: 

  𝑚𝑎𝑥𝛽 min𝜆0, 𝜆1   ∑ 𝑠𝑖𝑙𝑛(𝑃(𝑥𝑖; 𝛽)) − 𝑙 𝑛(𝜆1𝑃(𝑥𝑖; 𝛽) + 𝜆0) − 𝑁(1 − 𝜆1𝑞 − 𝜆0).𝑁
𝑖=1   (32) 

Observe that, whereas the original optimization problem involved maximization over the 

weights 𝑤𝑖, the dual optimization problem involves minimization over the Lagrange multipliers. 

The optimization problem in Equation (32) is equivalent to the following problem: 

  𝑚𝑎𝑥𝛽 min𝜆0, 𝜆1   ∑ 𝑠𝑖𝑙𝑛(𝑃(𝑥𝑖; 𝛽)) − 𝑙 𝑛(𝜆1𝑃(𝑥𝑖; 𝛽) + 𝜆0)   𝑠. 𝑡.  𝜆1𝑞 + 𝜆0 = 1.𝑁
𝑖=1   (33) 

Further simplification is possible by substituting the above constraint on the multipliers into the 

objective function: 

  𝑚𝑎𝑥𝛽 min𝜆1   ∑ 𝑠𝑖𝑙𝑛(𝑃(𝑥𝑖; 𝛽)) − 𝑙 𝑛(𝜆1𝑃(𝑥𝑖; 𝛽) + 1 − 𝜆1𝑞). 𝑁
𝑖=1  (34) 

A less efficient but simpler feasible estimator of 𝛽 can be obtained by substituting the 

limit values for 𝜆0 and 𝜆1 (𝑁0/𝑁 and 𝑁1/𝑁𝑞, respectively) into Equation (32): 

  max𝛽  ∑ 𝑠𝑖𝑙𝑛(𝑃(𝑥𝑖; 𝛽)) − 𝑙𝑛 (𝑁1𝑁𝑞 𝑃(𝑥𝑖; 𝛽) + 𝑁0𝑁 )𝑁
𝑖=1 . (35) 

This simplified estimator was proposed by Lancaster and Imbens (1996, p. 153) as a feasible 

means to obtain an initial consistent estimate for use in solving the GMM estimation problem 

associated with their estimator. 

                                                           
18

 Note that the weights 𝑤𝑖  must be positive, which implies that (𝜆1𝑃(𝑥𝑖; 𝛽) + 𝜆0) must also be positive. 
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Lancaster-Imbens estimator for a known prevalence rate 

Lancaster and Imbens (1996) develop a GMM approach to the estimation of response 

probabilities using a supplementary sampling scheme. In their formulation of the problem, the 

primary and supplementary samples are drawn using a sequence of Bernoulli trials with 

unknown parameter ℎ. They begin by considering a case involving discrete covariate values that 

have a finite number of points of support, characterized by the p.d.f. 𝑓(𝑥; 𝜆). The likelihood 

function for this problem may be expressed as: 

  𝐿 = ∑(𝑠𝑖𝑙𝑛 𝑃(𝑥𝑖; 𝛽) + 𝑓(𝑥𝑖; 𝜆))𝑁
𝑖=1 − 𝑁1𝑙𝑛ℎ − 𝑁0 ln(1 − ℎ) − 𝑁1𝑙𝑛𝑞. (36) 

Lancaster and Imbens then reparametrize this likelihood function in terms of the sampling 

distribution of the covariates: 𝑔(𝑥; 𝜆) = [(ℎ/𝑞)𝑃(𝑥; 𝛽) + (1 − ℎ)]𝑓(𝑥; 𝜆). The reformulated 

likelihood function is specified in terms of 𝛽, 𝑞, ℎ, and 𝜋: 

  𝐿𝑅 = ∑ 𝑠𝑖𝑙𝑛 𝑅(𝑥𝑖; 𝛽, 𝑞, ℎ) + (1 − 𝑠𝑖) ln(1 −  𝑅(𝑥𝑖; 𝛽, 𝑞, ℎ)) + ln 𝑔(𝑥𝑖;  𝜋)𝑁
𝑖=1 , (37) 

where 𝑅(𝑥; 𝛽, 𝑞, ℎ) = (ℎ/𝑞)𝑃(𝑥;𝛽)(ℎ/𝑞)𝑃(𝑥;𝛽)+(1−ℎ) and the value of 𝜋 at the 𝑘𝑡ℎ point of support (𝑥𝑘) is 

equal to  𝜋𝑘 = [(ℎ/𝑞)𝑃(𝑥𝑘; 𝛽) + (1 − ℎ)]𝜆𝑘.  
Whereas maximization of the original likelihood function is subject to the restriction  𝑞 = ∫ 𝑃(𝑥; 𝛽)𝑑𝐹(𝑥; 𝜆), maximization of the reformulated likelihood function is subject to the 

restriction ℎ = ∫ 𝑅(𝑥; 𝛽)𝑑𝐺(𝑥; 𝜋).19 Rather than pursue a constrained maximum likelihood 

estimation strategy, Lancaster and Imbens derive their estimator by applying GMM estimation 

based on the following three moment conditions:  

                                                           
19

 Ward et al. (2009) develop an expectation-maximization (EM) algorithm that solves for the constrained 

maximum likelihood solution under a logistic specification for the conditional response probability distribution. 
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  𝑔1(𝑥; 𝛽, ℎ) = 𝑃𝛽′ (𝑥; 𝛽)𝑃(𝑥; 𝛽) (𝑠 − 𝑅(𝑥; 𝛽, 𝑞, ℎ)). (38) 

 

  𝑔2(𝑥; 𝛽, ℎ) = − 1𝑞 (𝑠 − 𝑅(𝑥; 𝛽, 𝑞, ℎ)). (39) 

 

  𝑔3(𝑥; 𝛽, ℎ) = ℎ − 𝑅(𝑥; 𝛽, 𝑞, ℎ). (40) 

The third moment condition is the sample analogue of the restriction ℎ = ∫ 𝑅(𝑥; 𝛽)𝑑𝐺(𝑥; 𝜋), 

while the first two conditions represent the single observation scores of the likelihood function in 

Equation (37) for 𝛽 and ℎ, respectively. Observe that these three moment conditions do not 

require knowledge of the points of support for 𝑥, and they remain valid even when 𝑥 is 

continuous. 

Steinberg-Cardell estimator for a known prevalence rate 

The Steinberg-Cardell (1992) estimator is motivated by the estimator that one might use under 

the hypothetical scenario where the primary sample includes all participants in the population 

and the supplementary sample includes all participants and non-participants in the population. 

Even if the participants and non-participants in the supplementary sample could not be 

distinguished, one could effectively estimate a binary choice model by solving the following 

optimization problem: 

  max 𝛽  ∑ 𝑠𝑖𝑙𝑛 𝑃(𝑥𝑖; 𝛽)𝑇
𝑖=1  + 𝑙𝑛(1 − 𝑃(𝑥𝑖; 𝛽)) − 𝑠𝑖 𝑙𝑛(1 − 𝑃(𝑥𝑖; 𝛽)), (41) 

where 𝑇 represents the population size. Under the standard binary choice framework, the 

likelihood function accumulates the values of 𝑙𝑛𝑃(𝑥𝑖; 𝛽) across all participants and the values of 𝑙𝑛(1 − 𝑃(𝑥𝑖; 𝛽)) across all non-participants. The former tally is achieved by the first term in 
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Equation (41), while the latter is achieved by the combination of the second and third terms. 

Rearranging terms, the optimization problem in Equation (41) can equivalently be expressed as: 

  max𝛽  ∑ 𝑠𝑖𝑙𝑛 ( 𝑃(𝑥𝑖; 𝛽)1 − 𝑃(𝑥𝑖; 𝛽))𝑇
𝑖=1 + 𝑙𝑛(1 − 𝑃(𝑥𝑖; 𝛽)). (42) 

Now consider our supplementary sampling design under which a simple random sample of size 𝑁1 is drawn from the overall subpopulation of participants and a simple random sample of size 𝑁0 is drawn from the overall population of participants and non-participants. The Steinberg-

Cardell estimator approximates the optimization problem in Equation (42) by scaling up the 

sample probabilities by the inverse of the sampling rates: 

  max𝛽  ∑ 𝑠𝑖 (𝑞𝑇𝑁1) 𝑙𝑛 ( 𝑃(𝑥𝑖; 𝛽)1 − 𝑃(𝑥𝑖; 𝛽))𝑁
𝑖=1 + (1 − 𝑠𝑖) ( 𝑇𝑁0) 𝑙𝑛(1 − 𝑃(𝑥𝑖; 𝛽)). (43) 

 

Cosslett-Lancaster-Imbens estimator for an unknown prevalence rate 

Cosslett (1981) has derived an alternative supplementary sampling estimator for the case of an 

unknown prevalence rate based on maximization of the following pseudo-likelihood function:  

  𝐿 = ∑ 𝑠𝑖𝑙𝑛(𝜆𝑃(𝑥𝑖; 𝛽)) − 𝑙𝑛 (𝜆𝑃(𝑥𝑖; 𝛽) + 𝑁0𝑁 )𝑁
𝑖=1 . (44) 

The above expression is maximized jointly over 𝛽 and 𝜆. If desired, an estimate of the 

prevalence rate can be obtained from the estimated value of 𝜆 by applying the normalization 

condition: (𝜆𝑞 + 𝑁0𝑁 ) = 1. 20 

                                                           
20

 See pp. 71-73 of Cosslett (1981) for a discussion of how to estimate prevalence rates by applying scale factors 

based on the relevant normalization condition for a problem. Although Cosslett imposed the restriction 𝜆 > 0 for 
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Alternatively, one can use this condition to re-specify the optimization problem directly in terms 

of 𝛽 and 𝑞: 

  max𝛽 max𝑞∈(0,1)   ∑ 𝑠𝑖𝑙𝑛 (𝑁1𝑁𝑞 𝑃(𝑥𝑖; 𝛽)) − 𝑙𝑛 (𝑁1𝑁𝑞 𝑃(𝑥𝑖; 𝛽) + 𝑁0𝑁 )𝑁
𝑖=1 . (45) 

This is, in fact, the same as the optimization problem that Lancaster and Imbens (1996) have 

derived for the case involving an unknown prevalence rate.21 

Appendix B: Exogenously Stratified Samples 

Each of the existing supplementary sampling estimators can be generalized to accommodate 

exogenous stratification of the primary and/or supplementary samples. Assume, for simplicity, 

that the observations in each sample belong to one of B commonly defined strata. Let the sample 

weights be represented by 𝑤1𝑏 for stratum b of the primary sample and 𝑤0𝑏 for stratum b of the 

supplementary sample. Assume these weights have been normalized so that they sum to the sizes 

of their respective samples, 𝑁1 and 𝑁0. In particular, let 𝑤1𝑏 = (𝑇1𝑏𝑁1𝑏) (𝑁1𝑇1 ) and 𝑤0𝑏 = ( 𝑇𝑏𝑁0𝑏) (𝑁0𝑇 ), 
where N represents sample totals, T represents the population totals, and subscripts are used to 

identify subtotals associated with a specific sample stratum.22 

The Cosslett estimator in Equation (34) for the case in which the prevalence rate is 

known can be generalized to accommodate this exogenously stratified sampling design as 

follows: 

                                                                                                                                                                                           

the maximization of the likelihood function in Equation (44), one would actually need to impose the stronger 

restriction 𝜆 > 𝑁1𝑁   to insure that the estimated prevalence rate is less than one. 
21

 Lele (2009) has introduced a data-cloning algorithm as an alternative to standard maximum likelihood 

estimation routines for this problem. 
22

 If sampling strata differ across the two samples, b is meant to index a common set of substrata that have been 

constructed so that, within each sample, each member of a given substratum has a common weight.  
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  𝑚𝑎𝑥𝛽 min𝜆11,𝜆12,…,𝜆1𝐵   ∑ ∑ 𝑠𝑖𝑙𝑛(𝑃(𝑥𝑖𝑏; 𝛽)) − 𝑙 𝑛(𝜆1𝑏𝑃(𝑥𝑖𝑏; 𝛽) + 1 − 𝜆1𝑏𝑞𝑏), 𝑁𝑏
𝑖=1

𝐵
𝑏=1  (46) 

where 𝐵 represents the number of strata, 𝑁𝑏 represents the combined sample size of stratum 𝑏, 

and 𝜆1𝑏 is the stratum-specific multiplier. The prevalence rate within stratum 𝑏 (𝑞𝑏) can be 

computed from the overall prevalence rate (𝑞), the shares of the overall primary and 

supplementary samples belonging to the stratum, and the stratum-specific weights according to 

the formula: 𝑞𝑏 = (𝑤1𝑏𝑤0𝑏) (𝑁1𝑏/𝑁1𝑁0𝑏/𝑁0) 𝑞 = 𝑇1𝑏𝑇𝑏 .  

The Lancaster-Imbens estimator for the case of a known prevalence rate is based on the 

conditional probability 𝑅(𝑥𝑖; 𝛽, 𝑞, ℎ) that an observation 𝑖 was selected into the primary sample, 

where 𝑅(𝑥𝑖; 𝛽, 𝑞, ℎ) = (ℎ/𝑞)𝑃(𝑥𝑖;𝛽)(ℎ/𝑞)𝑃(𝑥𝑖;𝛽)+(1−ℎ). Under a stratified sampling design, this probability will 

depend on the stratum to which the observation belongs. For an observation 𝑖 from stratum b, the 

stratum-specific probability of the observation being drawn from the primary sample is 

computed as:  𝑅(𝑥𝑖𝑏; 𝛽, 𝑞𝑏 , ℎ𝑏) = (ℎ𝑏/𝑞𝑏)𝑃(𝑥𝑖𝑏;𝛽)(ℎ𝑏/𝑞𝑏)𝑃(𝑥𝑖𝑏;𝛽)+(1−ℎ𝑏). Therefore, to accommodate exogenous 

stratification, the terms 𝑞, ℎ, and 𝑅(𝑥; 𝛽, 𝑞, ℎ) in moment equations (19) through (21) would 

need to be made stratum specific [𝑞𝑏 , ℎ𝑏, and 𝑅(𝑥𝑖𝑏; 𝛽, 𝑞𝑏 , ℎ𝑏), 𝑏 = 1, ⋯ , 𝐵]. 

When the prevalence rate is unknown, the generalized Cosslett-Lancaster-Imbens 

pseudo-likelihood function for exogenously stratified samples can be expressed as: 

  𝐿 = ∑ ∑ 𝑠𝑖𝑏𝑙𝑛 ( 1𝑤1𝑏 ( 𝑁1𝑁𝑞) 𝑃(𝑥𝑖𝑏; 𝛽)) − 𝑙𝑛 ( 1𝑤1𝑏 ( 𝑁1𝑁𝑞) 𝑃(𝑥𝑖𝑏; 𝛽) + 1𝑤0𝑏 (𝑁0𝑁 ))𝑁𝑏
𝑖=1

𝐵
𝑏=1 . (47) 

Observe that the generalized version of each of the above estimators requires knowledge 

of which specific stratum (𝑏 = 1, ⋯ , 𝐵) any given observation from either sample has been 
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assigned.23 In the case of the generalized Cosslett estimator for a known prevalence rate, such 

knowledge is necessary both to compute the stratum-specific prevalence rates (𝑞𝑏) and to 

associate the common stratum members from each sample with their specific multiplier (𝜆1𝑏). In 

the case of the generalized Lancaster-Imbens estimator for a known prevalence rate, one needs to 

know the stratification assignments in order to compute the stratum-specific prevalence rates and 

to associate the common stratum members from each sample with their stratum-specific 

Bernoulli parameter ℎ𝑏 and stratum-specific conditional probability of assignment to the primary 

sample (𝑅(𝑥𝑖𝑏; 𝛽, 𝑞𝑏 , ℎ𝑏)). In the case of the generalized Cosslett-Lancaster-Imbens estimator for 

an unknown prevalence rate, one needs to know which members from the two samples belong to 

a common stratum so that one can identify the corresponding weights associated with that 

stratum in the two samples; observe that the second expression in Equation (47) requires 

knowledge of both 𝑤0𝑏 and 𝑤1𝑏 for each member of stratum 𝑏 in the combined sample. 

Thus, even when the sampling strata are comparably defined in the primary and 

supplementary data samples, one needs to know more than just the supplied values of the sample 

weights in order to apply these generalized estimators. In particular, one needs to be able to 

identify which members from the two samples belong to a common stratum. In practice, of 

course, it is reasonable to expect that the sampling strata will be defined differently in the two 

samples. For instance, one might have a simple random primary sample and a stratified random 

supplementary sample. In such cases, one would need to divide one or both samples into 

                                                           
23

 Provided that each stratum within a sample is associated with a unique weight, knowledge of the sample 

weights would be sufficient to distinguish the strata within the sample. However, estimation of the generalized 

models requires aligning observations from the same stratum across the two samples so that they can be 

associated with the same stratum-specific parameters. Consequently, knowledge of the sample weights alone 

would not be sufficient to estimate these models even in the unrealistic case where the two samples have 

commonly defined strata.  
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substrata that are comparably defined for the two samples. To do so would require even more 

detailed knowledge of the sampling designs. In particular, one would need to know the specific  

criteria underlying the stratum assignments. Furthermore, both data samples would need to 

contain the variables associated with these sampling criteria in order to divide the existing strata 

within each sample into common sets of substrata.24 

Unfortunately, the requisite information about the sampling criteria may not be available 

in practice, in which case these estimators cannot be applied. For instance, one might want to 

rely on data from a Census Survey, such as the CPS, ACS, or SIPP, as one’s supplemental 

sample from the general population. For such surveys, the stratification criteria are not publicly 

disclosed. Moreover, even if such information were available, it would be difficult to generalize 

these estimators to account for the complex multi-stage stratified sampling designs underlying 

such surveys. 

Steinberg and Cardell (1992) have proposed an extension of their estimation framework 

for the case of a known prevalence rate to accommodate exogenously stratified primary and/or 

supplementary samples. The generalized Steinberg-Cardell estimator is obtained as the solution 

to the following optimization problem: 

   max𝛽  ∑ 𝑤1𝑖𝑠𝑖 (𝑁0𝑞𝑁1 ) 𝑙𝑛 ( 𝑃(𝑥𝑖; 𝛽)1 − 𝑃(𝑥𝑖; 𝛽)) + 𝑤0𝑖(1 − 𝑠𝑖)𝑙𝑛(1 − 𝑃(𝑥𝑖; 𝛽))𝑁
𝑖=1 . (48) 

Like our new estimators, the generalized Steinberg-Cardell estimator requires knowledge only of 

the sample weights. However, the Steinberg-Cardell estimator has been shown to be relatively 

inefficient in the simulations presented in Section 6 as well as in prior studies (e.g., Lancaster 

and Imbens, 1996). 

                                                           
24

 A further complication of such an approach is the possibility of sparse or empty substrata. 
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 Steinberg and Cardell (1992) restrict their attention to binary choice estimation. 

However, we demonstrate below that their approach can be extended to accommodate 

multinomial response problems. Using the notation presented in Section 8, let  𝑃(𝑚|𝑥; 𝛽) represent a parametric specification of the probability of outcome 𝑚 for                𝑚 = 0, ⋯ , 𝑀.  Denote the prevalence rate associated with this outcome as 𝑞𝑚, and allow 𝑠𝑚 to 

serve as a 1/0 indicator of presence of an observation with this outcome in the participant-only 

sample. A generalization of the Steinberg-Cardell estimator for this problem is obtained as the 

solution to the following estimation problem: 

  max 𝛽  [(∑ ∑ 𝑤1𝑖𝑠𝑚𝑖𝑀
𝑚=1 (𝑁0𝑞𝑚𝑁1 ) 𝑙𝑛 (𝑃(𝑚|𝑥; 𝛽)𝑃(0|𝑥; 𝛽) )𝑁1

𝑖=1 ) − ∑ 𝑤0𝑖𝑙𝑛(𝑃(0|𝑥; 𝛽))𝑁0
𝑗=1 ] . (49) 
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Table 1: Monte Carlo Simulation Results, Prevalence Rate Known 

 Steinberg-Cardell  Lancaster-Imbens  Calibrated Logit  Cosslett 𝛽0 𝛽1 𝛽2 𝛽0 𝛽1 𝛽2 𝛽0 𝛽1 𝛽2 𝛽0 𝛽1 𝛽2 𝒒 = 0.125, 𝑵𝟎 = 400, 𝑵𝟏 = 50 

Actual -2.574 1.00 1.00 -2.574 1.00 1.00 -2.574 1.00 1.00 -2.574 1.00 1.00 

Mean -2.64 1.05 1.04 -2.58 1.00 1.00 -2.61 1.03 1.02 -2.61 1.03 1.03 

Median -2.59 1.01 1.01 -2.56 0.99 0.98 -2.58 1.01 1.01 -2.59 1.01 1.01 

ASD 0.30 0.32 0.32 0.18 0.23 0.24 0.20 0.25 0.25 0.20 0.25 0.25 

SSD 0.26 0.31 0.30 0.21 0.26 0.26 0.20 0.26 0.25 0.21 0.26 0.25 

Mad 0.19 0.24 0.23 0.16 0.21 0.20 0.16 0.20 0.19 0.16 0.20 0.19 

#Failures 0 0 0 0 𝒒 = 0.25, 𝑵𝟎 = 400, 𝑵𝟏 = 100 

Actual -1.492 1.00 1.00 -1.492 1.00 1.00 -1.492 1.00 1.00 -1.492 1.00 1.00 

Mean -1.53 1.04 1.05 -1.50 1.00 1.01 -1.51 1.02 1.03 -1.51 1.03 1.04 

Median -1.50 0.99 1.00 -1.49 0.99 0.99 -1.50 1.00 1.02 -1.50 1.01 1.01 

ASD 0.21 0.32 0.32 0.10 0.22 0.22 0.11 0.23 0.23 0.11 0.23 0.23 

SSD 0.15 0.31 0.30 0.11 0.22 0.23 0.11 0.22 0.23 0.11 0.22 0.23 

Mad 0.11 0.23 0.23 0.08 0.17 0.18 0.08 0.17 0.18 0.08 0.17 0.18 

#Failures 0 0 0 0 𝒒 = 0.50, 𝑵𝟎 = 400, 𝑵𝟏 = 200 

Actual 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 

Mean 0.02 1.10 1.08 0.01 1.02 1.01 0.01 1.03 1.02 0.01 1.03 1.02 

Median 0.01 1.05 1.02 0.00 1.01 1.00 0.01 1.03 1.01 0.01 1.03 1.01 

ASD 0.28 0.48 0.47 0.07 0.23 0.23 0.08 0.24 0.24 0.07 0.24 0.24 

SSD 0.09 0.42 0.41 0.07 0.25 0.23 0.07 0.25 0.23 0.07 0.25 0.23 

Mad 0.06 0.30 0.29 0.05 0.20 0.19 0.06 0.20 0.18 0.05 0.19 0.18 

#Failures 2 0 0 0 𝒒 = 0.75, 𝑵𝟎 = 400, 𝑵𝟏 = 300 

Actual 1.492 1.00 1.00 1.492 1.00 1.00 1.492 1.00 1.00 1.492 1.00 1.00 

Mean 1.71 1.16 1.19 1.55 1.01 1.02 1.56 1.04 1.05 1.57 1.05 1.06 

Median 1.53 1.01 1.01 1.52 1.01 1.02 1.54 1.03 1.03 1.54 1.03 1.04 

ASD 1.33 1.20 1.21 0.23 0.35 0.36 0.24 0.34 0.35 0.24 0.35 0.35 

SSD 0.58 0.76 0.75 0.26 0.38 0.38 0.24 0.34 0.36 0.25 0.35 0.36 

Mad 0.38 0.54 0.53 0.19 0.30 0.30 0.18 0.27 0.28 0.18 0.27 0.28 

#Failures 30 0 0 0 𝒒 = 0.875, 𝑵𝟎 = 400, 𝑵𝟏 = 350 

Actual 2.574 1.00 1.00 2.574 1.00 1.00 2.574 1.00 1.00 2.574 1.00 1.00 

Mean 2.96 1.02 1.10 2.75 0.97 1.01 2.81 1.02 1.06 2.82 1.04 1.08 

Median 2.63 0.88 0.95 2.65 0.94 1.00 2.72 1.03 1.07 2.72 1.02 1.08 

ASD 3.90 2.25 2.44 0.50 0.60 0.62 0.54 0.55 0.55 0.61 0.63 0.63 

SSD 1.02 0.94 1.02 0.63 0.63 0.63 0.55 0.61 0.61 0.64 0.60 0.63 

Mad 0.70 0.70 0.74 0.46 0.49 0.50 0.41 0.45 0.47 0.44 0.44 0.47 

#Failures 181 0 0 0 𝒒 = 0.875, 𝑵𝟎 =1,600, 𝑵𝟏 = 1,400 

Actual 2.574 1.00 1.00 2.574 1.00 1.00 2.574 1.00 1.00 2.574 1.00 1.00 

Mean 2.96 1.02 1.10 2.75 0.97 1.01 2.81 1.02 1.06 2.80 1.04 1.08 

Median 2.63 0.88 0.95 2.65 0.94 1.00 2.72 1.03 1.07 2.72 1.03 1.07 

ASD 3.90 2.25 2.44 0.50 0.60 0.62 0.54 0.55 0.55 0.59 0.61 0.62 

SSD 1.02 0.94 1.02 0.63 0.63 0.63 0.55 0.61 0.61 0.63 0.58 0.61 

Mad 0.70 0.70 0.74 0.46 0.49 0.50 0.41 0.45 0.47 0.44 0.43 0.46 

#Failures 181 0 0 16 
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Table 2: Monte Carlo Simulation Results, Prevalence Rate Unknown 

 𝒒 Known 𝒒 Unknown 

Lancaster-Imbens Calibrated Logit Cosslett-Lancaster-Imbens Pseudo-MLE 𝛽0 𝛽1 𝛽2 𝛽0 𝛽1 𝛽2 𝛽0 𝛽1 𝛽2 𝑞 𝛽0 𝛽1 𝛽2 𝑞 𝒒 = 0.125, 𝑵𝟎 = 400, 𝑵𝟏 = 50 

Actual -2.574 1.00 1.00 -2.574 1.00 1.00 -2.574 1.00 1.00 0.125 -2.574 1.00 1.00 0.125 

Mean -2.58 1.00 1.00 -2.61 1.03 1.02 -2.42 1.26 1.25 0.18 -2.47 1.24 1.24 0.17 

Median -2.56 0.99 0.98 -2.58 1.01 1.01 -2.40 1.15 1.17 0.16 -2.43 1.16 1.17 0.16 

GSD 0.18 0.23 0.24 0.20 0.25 0.25 1.30 0.49 0.49 0.12 2.93 1.16 1.13 0.38 

LSD  1.33 0.47 0.46 0.12 1.53 0.47 0.45 0.11 

SSD 0.21 0.26 0.26 0.20 0.26 0.25 0.93 0.60 0.57 0.10 0.94 0.52 0.51 0.10 

Mad 0.16 0.21 0.20 0.16 0.20 0.19 0.68 0.34 0.34 0.08 0.68 0.32 0.32 0.08 

#Failures 0 0 288 297 𝒒 = 0.25, 𝑵𝟎 = 400, 𝑵𝟏 = 100 

Actual -1.492 1.00 1.00 -1.492 1.00 1.00 -1.492 1.00 1.00 0.125 -1.492 1.00 1.00 0.125 

Mean -1.50 1.00 1.01 -1.51 1.02 1.03 -1.45 1.14 1.16 0.27 -1.49 1.12 1.15 0.27 

Median -1.49 0.99 0.99 -1.50 1.00 1.02 -1.41 1.09 1.09 0.27 -1.44 1.08 1.09 0.27 

GSD 0.10 0.22 0.22 0.11 0.23 0.23 0.95 0.39 0.40 0.13 2.69 0.98 1.00 0.42 

LSD  0.91 0.37 0.37 0.13 0.91 0.35 0.35 0.11 

SSD 0.11 0.22 0.23 0.11 0.22 0.23 0.76 0.38 0.40 0.11 0.79 0.37 0.38 0.11 

Mad 0.08 0.17 0.18 0.08 0.17 0.18 0.58 0.28 0.29 0.09 0.59 0.27 0.28 0.09 

#Failures 0 0 138 136 𝒒 = 0.5, 𝑵𝟎 = 400, 𝑵𝟏 = 200 

Actual 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.50     0.00 1.00 1.00 0.50 

Mean 0.01 1.02 1.01 0.01 1.03 1.02 0.09 1.13 1.12 0.50 0.02 1.11 1.10 0.49 

Median 0.00 1.01 1.00 0.01 1.03 1.01 0.04 1.04 1.05 0.50 0.01 1.03 1.04 0.50 

GSD 0.07 0.23 0.23 0.08 0.24 0.24 0.96 0.46 0.44 0.15 2.63 1.03 1.00 0.45 

LSD  0.83 0.40 0.40 0.14 0.85 0.39 0.38 0.12 

SSD 0.07 0.25 0.23 0.07 0.25 0.23 0.89 0.47 0.45 0.13 0.89 0.45 0.43 0.14 
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 𝒒 Known 𝒒 Unknown 

Lancaster-Imbens Calibrated Logit Cosslett-Lancaster-Imbens Pseudo-MLE 𝛽0 𝛽1 𝛽2 𝛽0 𝛽1 𝛽2 𝛽0 𝛽1 𝛽2 𝑞 𝛽0 𝛽1 𝛽2 𝑞 

Mad 0.05 0.20 0.19 0.06 0.20 0.18 0.65 0.32 0.32 0.11 0.65 0.31 0.31 0.11 

#Failures 0 0 56 57 𝒒 = 0.75, 𝑵𝟎 = 400, 𝑵𝟏 = 300 

Actual 1.492 1.00 1.00 1.492 1.00 1.00 1.492 1.00 1.00 0.75 1.492 1.00 1.00 0.75 

Mean 1.55 1.01 1.02 1.56 1.04 1.05 2.10 1.30 1.33 0.72 1.91 1.25 1.25 0.72 

Median 1.52 1.01 1.02 1.54 1.03 1.03 1.62 1.06 1.10 0.75 1.58 1.05 1.07 0.75 

GSD 0.23 0.35 0.36 0.24 0.34 0.35 2.34 0.92 0.93 0.17 3.26 1.22 1.22 0.36 

LSD  1.80 0.70 0.75 0.15 1.51 0.61 0.61 0.12 

SSD 0.26 0.38 0.38 0.24 0.34 0.36 2.77 1.07 1.34 0.15 2.30 0.95 1.09 0.15 

Mad 0.19 0.30 0.30 0.18 0.27 0.28 1.39 0.59 0.59 0.11 1.26 0.55 0.52 0.11 

#Failures 0 0 67 61 𝒒 = 0.875, 𝑵𝟎 = 400, 𝑵𝟏 = 350 

Actual 2.574 1.00 1.00 2.574 1.00 1.00 2.574 1.00 1.00 0.875 2.574 1.00 1.00 0.875 

Mean 2.75 0.97 1.01 2.81 1.02 1.06 4.40 1.51 1.73 0.83 4.31 1.48 1.68 0.83 

Median 2.65 0.94 1.00 2.72 1.03 1.07 2.86 1.11 1.08 0.88 2.89 1.10 1.08 0.88 

GSD 0.50 0.60 0.62 0.54 0.55 0.55 4.61 1.40 1.63 0.19 4.26 1.44 1.48 0.26 

LSD  5.38 1.59 2.02 0.17 2.93 0.99 1.04 0.13 

SSD 0.60 0.62 0.63 0.55 0.61 0.61 7.44 2.15 3.25 0.14 7.30 2.23 3.11 0.15 

Mad 0.45 0.48 0.50 0.41 0.45 0.47 2.86 1.02 1.16 0.09 2.83 1.01 1.14 0.10 

#Failures 1 0 220 181 𝒒 = 0.875, 𝑵𝟎 = 1,600, 𝑵𝟏 = 1,400 

Actual 2.574 1.00 1.00 2.574 1.00 1.00 2.574 1.00 1.00 0.875 2.574 1.00 1.00 0.875 

Mean 2.59 0.98 0.98 2.61 1.01 1.00 2.81 1.09 1.08 0.86 2.75 1.07 1.07 0.86 

Median 2.57 0.99 0.99 2.59 1.00 1.00 2.62 1.00 1.00 0.87 2.58 1.01 1.00 0.87 

GSD 0.22 0.25 0.25 0.23 0.25 0.25 1.26 0.46 0.46 0.08 2.05 0.71 0.70 0.13 

LSD  1.08 0.41 0.41 0.07 0.96 0.36 0.36 0.70 

SSD 0.24 0.28 0.27 0.23 0.24 0.25 1.79 0.60 0.64 0.07 1.76 0.62 0.60 0.08 

Mad 0.19 0.21 0.21 0.17 0.19 0.19 0.92 0.35 0.35 0.05 0.91 0.35 0.34 0.05 

#Failures 0 0 15 10 
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Table 3:  Standard Logit vs. Supplementary Sampling Estimators of the Decision to Vote 

 

 

Variable 

Original 

Specification 

Restricted Specification 

Standard Logit Standard Logit 

 

Calibrated Logit 

 

Steinberg-Cardell Pseudo-MLE   

q unknown 

Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat. 

Early -0.1845  -3.32 -0.1283  -2.18 -0.1083  -2.75 -0.1270 -2.82 -0.1108 -2.63 

EDR 0.1870  2.07 0.2392  3.31 0.2745  3.65 0.3295 3.59 0.2825 3.31 

Early*SDR 0.0037  0.08 0.0004  0.01 0.0336  0.71 0.0568 1.06 0.0328 0.67 

Early*EDR -0.0723  -0.57 0.0283  0.25 0.0218  0.17 0.0863 0.56 0.0198 0.15 

Early*EDR*SDR 0.1292  1.58 0.2033  2.68 0.1778  2.31 0.2763 2.99 0.1807 2.22 

30-Day Reg. Close -0.1220 -2.51 -0.1048  -2.46 -0.0581  -1.54 -0.0628 -1.47 -0.0596 -1.50 

ID Requirement 0.0036  0.06 -0.0090  -0.16 -0.0042  -0.10 -0.4393 - 0.09 -0.6029 -0.13 

Education 0.6002  28.64 0.6277  31.93 0.7074  41.17 0.6893 32.67 0.7322 5.91 

African American 0.7181  11.83 0.4030  7.09 0.6192  11.34 0.4960 8.36 0.6429 4.84 

Hispanic -0.0489  -0.48 -0.1068  -1.00 0.0600  1.11 0.0153 0.27 0.0650 1.06 

Naturalized Citizen -1.0275 -5.88 -0.5793  -8.31 -0.5242  -8.34 -0.6899 -11.03 -0.5319 -7.30 

Married 0.4258 18.04 0.4619  19.06 0.8235  24.01 0.8329 21.46 0.8515 6.03 

Female 0.1489  8.26 0.1693  12.08 0.2353  7.57 0.2291 6.45 0.2424 5.21 

Age 0.0254  21.29 0.0237 21.89 0.0248  17.98 0.0236 14.58 0.0256 5.92 

Age 18–24 0.4257  11.37 0.2141  6.23 0.3308  6.14 0.2718 4.60 0.3455 3.82 

Age 75 plus -0.1085  -2.03 -0.2443 -6.12 -0.3448  -4.95 -0.3703 -4.40 -0.3564 -3.96 

Competitiveness 0.0119  4.33 0.0095  3.86 0.0121  5.22 0.0117 4.46 0.0126 4.17 

South -0.0760  -1.25 -0.0457  -0.87 -0.1154  -2.68 -0.0710 -1.44 -0.1205 -2.34 

North Dakota -0.3501  -4.28 -0.2542  -3.23 -0.2570 -1.16 -0.3112 -1.18 -0.2579 -1.11 

Oregon 0.1872  4.01 0.0912  1.62 0.2453  1.89 0.3755 2.19 0.2467 1.84 

Washington -0.0204  -0.34 0.0305  0.51 0.0814  0.69 0.1634 1.15 0.0818 0.67 

Self-Reported Vote 0.8231  28.51      

Natural. 10+ Years 0.4565 2.76 

Residence 1 Year 0.2681  7.58 

Income 0.0828  25.57 

Constant -4.9878  -19.83 -3.4479 -14.49 -4.2386 -19.72 -4.0733 -16.38 -4.3398 -8.34 

Estimated value of q  0.6484 11.12 

CPS-based value of q 0.6362  

# Overall  Sample 73,333 91,161 274,172 274,172 274,172 

# Partic. Sample 50,362 59,090 59,090 59,090 59,090 

# Suppl. Sample  215,082 215,082 215,082 
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Table 4:  Standard Multinomial Logit vs. Supplementary Sampling Estimators of the Decision to Vote 

 

Vote on Election Day in Person 

Variable 

Original 

Specification 

Restricted Specification 

Standard MNL 

 

Standard MNL 

 

Calibrated MNL 

 

Steinberg-Cardell Pseudo-MLE 

q Unknown 

Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat. 

Early -0.5173 -5.07 -0.4576 -4.14 -0.4294 -10.92 -0.5589 -24.66 -0.3653 -2.18 

EDR 0.1368 1.52 0.1906 2.21 0.2148 2.89 0.1083 1.58 0.2194 1.93 

Early*SDR -0.3858 -3.94 -0.3932 -3.64 -0.3541 -7.30 -0.5767 -24.62 -0.2634 -1.41 

Early*EDR -0.3898 -2.38 -0.2845 -1.82 -0.3011 -2.36 -0.4730 -2.75 -0.2240 -1.08 

Early*EDR*SDR -0.1721 -1.69 -0.0928 -0.91 -0.1036 -1.34 -0.3125 -5.09 -0.0374 -0.30 

30-Day Reg. Close -0.1394 -1.68 -0.1231 -1.55 -0.0959 -2.51 -0.0718 -3.35 -0.0987 -2.10 

ID Requirement -0.0749 -0.81 -0.0895 -1.03 -0.0888 -2.03 -0.1382 -4.99 -0.0657 -1.09 

Education 0.5522 24.37 0.5724 26.95 0.6470 37.01 0.2820 30.96 0.6985 3.47 

African American 0.6633 9.57 0.3625 5.38 0.5597 10.18 0.1912 8.00 0.6056 3.01 

Hispanic -0.0501 -0.39 -0.1046 -0.77 0.0676 1.21 -0.0060 -0.22 0.0695 0.84 

Naturalized Citizen -1.0241 -5.53 -0.5721 -7.12 -0.5060 -7.90 -0.3619 -11.69 -0.5230 -6.07 

Married 0.4624 16.67 0.4903 16.08 0.8455 24.19 0.4658 24.68 0.8792 3.28 

Female 0.1166 6.65 0.1440 10.10 0.2058 6.52 0.0924 5.27 0.2202 3.34 

Age 0.0189 12.39 0.0178 12.50 0.0186 13.28 0.0033 4.36 0.0216 4.27 

Age 18–24 0.2708 6.36 0.0605 1.48 0.1877 3.40 -0.0941 -3.03 0.2483 2.80 

Age 75 plus -0.1958 -3.22 -0.3312 -7.68 -0.4067 -5.67 -0.2721 -6.38 -0.3987 -2.60 

Competitiveness 0.0068 1.40 0.0051 1.09 0.0097 4.12 0.0024 1.78 0.1108 3.46 

South -0.2331 -1.95 -0.2056 -1.84 -0.2776 -6.40 -0.2882 -13.05 -0.2638 -2.07 

North Dakota -0.2383 -1.92 -0.1588 -1.38 -0.1888 -0.85 -0.0736 -0.19 -0.2158 -0.90 

Oregon -1.9307 -23.43 -1.9537 -19.93 -1.6540 -10.21 -2.4138 -21.03 -1.3481 -2.46 

Washington -1.5068 -17.79 -1.4311 -16.34 -1.2843 -9.33 -1.8263 -27.11 -1.0219 -2.20 

Self-Reported Vote 0.8387 27.56      

Natural. 10+ Years 0.4540 2.66   

Residence 1 Year 0.3311 8.77   

Income 0.0770 19.10   

Constant -4.0707 -9.40 -2.9532 -6.20 -3.5269 -16.06 -1.6888 -13.76 -3.9669 -8.85 

Estimated value of q   0.4384 3.96 

CPS-based value of q 0.4455  

# Overall  Sample 73,333 91,161 273,933 273,933 273,933 

# Election Day 36,027 42,468 42,468 42,468 42,468 

# Early in Person 6,518 7,473 7,473 7,473 7,473 

# Early by Mail 7,667 8,910 8,910 8,910 8,910 

# Supp. Sample  215,082 215,082 215,082 
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Vote Early in Person 

Variable 

Original 

Specification 

Restricted Specification 

Standard MNL 

 

Standard MNL 

 

Calibrated MNL 

 

Steinberg-Cardell Pseudo-MLE 

q Unknown 

Coeff. t-Stat. Coeff. t-

Stat. 

Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat. 

Early 1.6829 4.13 1.7419 4.15 1.8617 29.16 1.6248 30.62 1.9331 11.52 

EDR -0.1572 -0.32 -0.1359 -0.27 0.4320 2.83 0.2166 0.93 0.4392 2.25 

Early*SDR 1.5449 3.05 1.5848 3.06 1.8319 25.89 1.4648 28.14 1.9296 10.45 

Early*EDR 1.6352 3.47 1.7582 3.65 2.0800 13.13 1.7810 5.74 2.1590 9.73 

Early*EDR*SDR 1.8385 3.92 1.9231 4.07 2.2332 22.00 1.9063 18.26 2.3007 17.26 

30-Day Reg. Close 0.2923 1.29 0.2945 1.26 0.4199 8.81 0.4102 13.14 0.4188 7.31 

ID Requirement -0.4379 -1.12 -0.3991 -1.02 -0.3684 -6.23 -0.4124 -8.07 -0.3439 -4.49 

Education 0.7469 20.50 0.8114 22.07 0.8968 38.90 0.4621 35.93 0.9529 4.87 

African American 1.1944 9.54 0.8339 7.80 1.1334 17.16 0.6482 22.33 1.1909 6.18 

Hispanic -0.0047 -0.03 -0.0413 -0.22 0.1637 2.19 0.1226 2.98 0.1629 1.63 

Naturalized Citizen -1.0959 -3.61 -0.7775 -6.12 -0.7515 -8.23 -0.5184 -10.25 -0.7637 -6.32 

Married 0.4207 8.34 0.4805 12.46 0.8676 19.19 0.4302 16.54 0.9034 3.44 

Female 0.2119 5.72 0.2072 7.56 0.2903 7.05 0.1597 6.70 0.3061 4.30 

Age 0.0380 14.07 0.0345 13.30 0.0363 19.94 0.0177 17.47 0.0394 7.73 

Age 18–24 0.5669 5.65 0.3272 3.44 0.4198 5.01 0.0770 1.59 0.4871 4.27 

Age 75 plus -0.3148 -3.96 -0.4794 -6.95 -0.6119 -6.61 -0.4349 -7.61 -0.6009 -3.64 

Competitiveness 0.0422 2.01 0.0363 1.72 0.0371 11.43 0.0278 10.73 0.3848 9.30 

South 1.0992 4.09 1.1374 4.07 1.2982 23.37 1.2318 31.71 1.3129 10.43 

North Dakota -0.0975 -0.31 0.0152 0.05 0.0638 0.26 0.2182 0.38 0.0438 0.16 

Oregon -0.9134 -2.04 -1.0924 -2.39 -0.2739 -0.57 -1.1670 -2.90 -0.0091 -0.01 

Washington -0.7455 -1.76 -0.7733 -1.80 -0.2162 -0.49 -0.9737 -3.11 0.0520 0.08 

Self-Reported Vote 0.8745 20.42      

Natural. 10+ Years 0.3071 1.04   

Residence 1 Year 0.0659 1.09   

Income 0.1066 12.15   

Constant -12.7293 -8.01 -10.8073 -6.64 -11.9484 -38.76 -10.9415 -47.89 -12.2765 -17.16 

Estimated value of q   0.1029 8.89 

CPS-based value of q 0.0911  

# Overall  Sample 73,333 91,161 273,933 273,933 273,933 

# Election Day 36,027 42,468 42,468 42,468 42,468 

# Early in Person 6,518 7,473 7,473 7,473 7,473 

# Early by Mail 7,667 8,910 8,910 8,910 8,910 

# Supp. Sample    215,082 215,082 215,082 
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Vote Early by Mail 

Variable 

Original 

Specification 

Restricted Specification 

Standard MNL 

 

Standard MNL 

 

Calibrated MNL 

 

Steinberg-Cardell Pseudo-MLE 

q Unknown 

Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat. 

Early 0.6610 1.72 0.6854 1.76 0.6341 11.67 0.4749 12.47 0.7022 4.29 

EDR -0.0728 -0.14 -0.0241 -0.05 -0.1503 -1.42 -0.2575 -1.86 -0.1497 -1.03 

Early*SDR 1.5043 3.27 1.4634 3.07 1.5338 23.21 1.2309 30.30 1.6298 8.87 

Early*EDR 1.1422 2.79 1.1938 2.87 1.3157 8.46 1.0582 4.78 1.3952 6.47 

Early*EDR*SDR 1.2403 3.52 1.2763 3.59 1.1877 12.38 0.9369 9.72 1.2502 9.97 

30-Day Reg. Close -0.5417 -1.66 -0.4977 -1.51 -0.6267 -11.66 -0.5876 -15.49 -0.6329 -10.27 

ID Requirement 0.8577 2.71 0.8069 2.63 1.0427 16.95 -0.9419 17.53 1.0710 13.75 

Education 0.7245 22.38 0.7658 26.52 0.8615 38.15 0.4199 32.26 0.9183 4.70 

African American 0.3408 2.52 -0.0272 -0.23 0.1493 1.91 -0.2523 -5.82 0.2067 1.06 

Hispanic -0.0909 -0.74 -0.2001 -1.74 -0.1276 -1.66 -0.1994 -4.40 -0.1236 -1.29 

Naturalized Citizen -0.9739 -4.18 -0.5166 -4.92 -0.4301 -5.29 -0.2707 -6.25 -0.4327 -3.89 

Married 0.2802 6.05 0.3513 8.78 0.7246 16.50 0.3199 12.31 0.7571 2.86 

Female 0.2638 10.09 0.2803 11.91 0.3640 9.03 0.2192 9.01 0.3818 5.52 

Age 0.0511 16.95 0.0477 15.66 0.0510 27.06 0.0276 25.17 5.4712 10.88 

Age 18–24 1.2234 8.06 1.0245 6.59 1.1358 13.77 0.6122 12.04 1.2215 11.10 

Age 75 plus 0.1292 1.69 -0.0007 -0.01 -0.0654 -0.76 0.0293 0.58 -0.0554 -0.34 

Competitiveness 0.0131 1.11 0.0107 0.89 0.0055 1.87 -0.0038 -1.56 0.0712 1.92 

South -0.8552 -2.36 -0.8136 -2.31 -0.9299 -16.07 -0.9242 27.60 -0.9226 -7.32 

North Dakota -1.1583 -3.50 -0.9977 -2.99 -1.0984 -4.59 -0.8634 -1.58 -1.1334 -4.35 

Oregon 3.2773 10.37 3.0915 9.65 3.3895 22.45 2.3700 34.74 3.7038 7.20 

Washington 2.0571 5.46 2.1073 5.51 2.0251 15.00 1.3197 24.11 2.2957 5.15 

Self-Reported Vote 0.7550 19.95     

Natural. 10+ Years 0.5019 1.96 

Residence 1 Year 0.1443 2.44 

Income 0.0980 13.46 

Constant -9.9828 -9.61 -8.3723 -7.68 -8.7091 -31.10 -7.3882 -36.28 -9.0592 -13.06 

Estimated value of q    0.1146 8.37 

CPS-based value of q 0.0986  

# Overall  Sample 73,333 91,161 273,933 273,933 273,933 

# Election Day 36,027 42,468 42,468 42,468 42,468 

# Early in Person 6,518 7,473 7,473 7,473 7,473 

# Early by Mail 7,667 8,910 8,910 8,910 8,910 

# Supp. Sample  215,082 215,082 215,082 

 


