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Summary

This paper applies the inverse probability weighted least-squares method to predict total medical cost in 
the presence of censored data. Since survival time and medical costs may be subject to right censoring 
and therefore are not always observable, the ordinary least-squares approach cannot be used to assess 
the effects of explanatory variables. We demonstrate how inverse probability weighted least-squares 
estimation provides consistent asymptotic normal coefficients with easily computable standard errors. In 
addition, to assess the effect of censoring on coefficients, we develop a test comparing ordinary least-
squares and inverse probability weighted least-squares estimators. We demonstrate the methods devel-
oped by applying them to the estimation of cancer costs using Medicare claims data.

Key words: Censoring; Inverse probability weighted estimation; Two-stage estimation; Exo-
genous censoring; Costs.

1. Introduction

Statistical methods applicable to the estimation of cost from Medicare or Medicaid claim files that are
often censored, are not well developed. Censoring can be due to incomplete data ascertainment or the
longitudinal nature of data collection. The average total cost for a group of patients has been esti-
mated in one of three ways: (1) by estimating the sample mean of observed costs from all cases, (2)
by estimating the sample mean of uncensored subjects only, and (3) by using modifications of stand-
ard survival analysis techniques. For various reasons, these methods yield biased estimators. The sam-
ple mean from all subjects creates a downward bias because it does not account for the costs incurred
after the time of censoring. The sample mean from uncensored subjects is biased toward the costs for
subjects with shorter survival times since longer survival times are likely to be censored (Lin et al.
1997; Bang and Tsiatis, 2000).

Application of methods such as Kaplan-Meier estimation or Cox regression on costs is not valid if
subjects accumulate costs with different rate functions over time. Survival analysis techniques assume
independence between the cost at the survival time and the cost at the censoring time. In fact the two
are generally positively correlated. To address this dependency, Lin et al. (1997) proposed a parti-
tioned estimator to assess average costs. This method partitions the entire time period of interest into
a number of smaller intervals and calculates for each interval an average cost and a product-limit esti-
mate of survival. The sum of the product of these two components is called the ‘‘product-limit sam-
pling average estimator” of total cost from the sample. Because of its rather complicated formula, the
computation of the variance estimator is a challenging programming exercise, which has led to the
bootstrap method to obtain variance estimates in applications (Sloan et al., 1999). Bang and Tsiatis



(2000) extended this method and proposed a partitioned estimator whose asymptotic distribution does
not depend on the choice of partition or the discreteness of the censoring times. If we are interested in
conditional average costs where the mean cost is adjusted for several factors, these estimation meth-
ods assume some homogeneity in the medical cost data in the sense that they are independent of
patient characteristics or the type of treatment. Because variables such as patient’s age, disease sever-
ity and comorbid conditions can influence cost, these variables should be accounted for in the estima-
tion, using for example, regression-based methods (Lin, 2000).

In this paper, the inverse probability weighted (IPW) least squares method is used to assess the
effects of covariates (e.g., patient and treatment characteristics) on medical costs with censored data.
IPW estimation has a long history in statistics (Horvitz and Thompson, 1952). More recent develop-
ments and applications of the IPW method are presented in several works (Horowitz and Manski,
1998; Robins and Rotnitzky, 1995, 1992; Robins et al., 1995; Rosenbaum, 1997). The method is ide-
ally suited to estimation from non-random samples, which might arise due to censoring or by the
sampling strategy used. We demonstrate how IPW estimation produces consistent estimators with a
covariance matrix that can be calculated by most commercial statistics software programs. We also
develop a test to compare IPW least squares and ordinary least squares methods (OLS) estimators.

This paper is organized as follows. The first section outlines IPW least squares as applied to cen-
sored medical cost data, including the statistical properties of the estimation. We then introduce a
Hausman type test to compare the estimators calculated by using IPW least squares and OLS over
uncensored data. The third section describes an application of our methods to the estimation of cancer
costs. STATA (version 7.0) is used for all estimations. The last section presents our conclusions.

2. IPW Least Squares

Suppose we are interested in the total medical cost over period ½0; L�. Since there is no further medical
expense after death, the total cost over ½0; L� is the same as the cumulative cost at T* ¼ min ðT ; LÞ,
where T is the survival time. The distribution of T is assumed to be continuous from 0 to L.

Assume that in the population of interest

y ¼ xbþ u ; ð1Þ
where y, x and b are respectively the cumulative cost (or transformed cost) at T*, a 1� K vector of
explanatory variables, a K � 1 vector of unknown regression parameters, and u is the unobservable
random disturbance or error, with an unspecified distribution. The first component of x is set to 1 so
that the first component of b represents the intercept.

Assume that

Eðx0uÞ ¼ 0 : ð2Þ
Under random sampling from the population, equation ð2Þ is the crucial assumption in obtaining con-
sistency of the OLS estimator of b in (1). With (2) and the rank assumption rank Eðx0xÞ ¼ K, the
OLS estimator using a random sample will be consistent for b. Assuming EðuÞ ¼ 0 alone does not
guarantee consistency.

Survival time and medical cost may be subject to right censoring and therefore are not always fully
observable. Cost censoring occurs when a subject’s follow-up time is less than L, and the patient is
alive at the time of censoring. Since no further expense is incurred after death, whether death occurs
before or after L is immaterial for the cost estimation. Let C be the time of censoring.

Let Z ¼ min ðC; T*Þ, s ¼ IðC � T*Þ, where Ið:Þ is the indicator function of the displayed event.
Assume T and C are independent given x.

Assumption 1:
(i) T*; y; x are observed when s ¼ 1,
(ii) y can be ignored in the selection equation, conditional on x:

Pðs ¼ 1 j x; yÞ ¼ Pðs ¼ 1 j xÞ ¼ PðC � T* j xÞ ¼ PðC � T*Þ :



When censoring is due to early study termination, the censoring time C is always observed along
with the subject characteristics x. The cost y is observed provided censoring has not occurred before
the death time T or the time horizon L, that is, provided s ¼ 1. Assumption 1 (ii) implies that the
likelihood of cost observation (given x) does not depend on the level of cost. This applies if C is
independent of ðy; T ; xÞ. Note that y and T could be dependent. The last part of assumption 1 (ii)
could be dropped by allowing PðC � T* j xÞ to depend on some of the covariates x. We refer to
PðC � T*Þ as the selection probability.

Suppose we have a random sample f(xi, yi, siÞ: i ¼ 1; 2; . . . ;Ng from the population to estimate b.
The underlying model is

yi ¼ xibþ ui ; ð3Þ
with Eðx0iuiÞ ¼ 0.

The IPW least square estimators, b̂bw =
P
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wiðyi � xibÞ2 ; ð4Þ

where wi ¼ ðsi=PðCi � Ti*ÞÞ and Q is the parameter space of b. Under assumption 1 and equation (2),
b̂bw is consistent asymptotically with asymptotic variance estimated by Vðb̂bwÞ ¼ ÂA
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and ûui ¼ yi � xib̂bw are the residuals after IPW least squares estimation (Wooldridge, 1999).
The objective function in (4) weights each observation ðyi; xiÞ by the inverse probability of its

appearing in the sample. Observations for which si ¼ 0 are not used in the optimization problem.
Since ðyi; xiÞ is observed only when si ¼ 1, b̂bw is computable from the observed data provided that
PðCi � Ti*Þ is known. If unknown, we need to replace PðCi � Ti*Þ with a consistent estimator, an
issue we address shortly.

Note that neither b̂bw nor its covariance matrix estimator use the censored observations. In addition
the estimated covariance matrix is the (White, 1980) heteroscedasticity-robust covariance matrix esti-
mator, obtained by applying the weight

ffiffiffiffiffi

wi

p
to all variables in the i-th observation. Heteroscedasticity-

robust standard errors after the weighted regression provide the estimated asymptotic standard errors.
Censoring can then be handled easily using a heteroscedasticity-robust covariance matrix.

Another advantage of this weighting scheme is that we can derive consistency of b̂bw under the
much weaker assumption (2) rather than Eðu j xÞ ¼ 0. From assumption 1, Eðw j x; yÞ ¼ 1 and so

Eðwx0uÞ ¼ EðEðw j x; yÞ x0uÞ ¼ Eðx0uÞ ¼ 0 : ð7Þ

So far, we have assumed that the selection probability PðC � T*Þ is known. In practice, this will be
unknown and therefore to operationalize b̂bw, we need a suitable estimator for this probability. Suppose
censoring is not covariate dependent, and define pðtÞ ¼ PðC > tÞ. For simplification of variance, as-
sume a parametric form pðt; qÞ for pðtÞ is known except for the unknown q. A nonparametric version
has been addressed by Lin (Lin, 2000). Using the sample, fðZi; siÞ : i ¼ 1; 2; . . . ;Ng where si ¼ 1� si,
we construct an estimator p̂pðtÞ ¼ pðt; q̂qÞ of pðtÞ. In particular, we assumed Ci is the response variable,
Ti* is the censoring variable. Then the unknown weights wi are estimated by

ŵwi ¼
si

p̂pðTi*�Þ
; ð8Þ

where pðt�Þ ¼ PðC � tÞ. To have all quantities properly defined, we impose the mild restriction,
pðLÞ > 0.



Under standard regularity conditions,1 a two step IPW least squares estimator that uses ŵwi instead
of wi in equation (4) consistently estimates b̂b (Newey and McFadden, 1994).

Formally, we define the two-step IPW least squares estimator ~bbw by

~bbw ¼ P

N
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ŵwix
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ŵwix
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ð9Þ

which is the solution to the minimization problem

min
b2Q

P

N
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ŵwiðyi � xi
~bbÞ2 : ð10Þ

Then ~bbw is asymptotically normally distributed with estimated variance

~VVw � Vð~bbwÞ ¼ ~AA
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where ~uui ¼ yi � xi
~bbw are the residuals.

Note that our estimator is identical in form to that proposed by Lin (2000). However, because we
will estimate a parametric form of pðtÞ, instead of Kaplan-Meier estimation, our weight ŵwi is different.
This leads to some simplification in computation of variance estimators. We will also provide both
first stage estimation adjusted and unadjusted variance matrices.

Clearly the variance expression in (11) does not adjust for the estimation of the wi. In the appendix,
we show that the use of the estimate of wi in the second step yields a variance estimator that is
asymptotically equivalent to that estimated with known wi under the much stronger assumption that
given x; ðy; T;CÞ are independent. However, unless we have short interval cost values, such as monthly
or weekly, we would expect ðy; TÞ to be correlated. In this case ~VVw in (11) has to be adjusted for
estimation of wi. In practice, it has been found that this adjustment has little effect on the asymptotic
standard errors. However, as shown in the appendix, using the estimated selection probability will
produce smaller standard errors than those given by (11). By ignoring this adjustment for simplicity,
inference based on (11) would be conservative. This is somewhat unusual for two-step estimation
problems, where the prevailing wisdom is that larger standard errors occur by adjusting standard
errors for a first stage estimation.

3. Comparison of the IPW and Unweighted Estimators

The OLS estimator for cases with complete data, called the unweighted estimator, ~bbu solves

min
b2Q

P

N

i¼1

siðyi � xibiÞ2 : ð14Þ

It is well-known that selection under exogenous censoring does not cause problems if we impose the
stronger assumption, Eðu j xÞ ¼ 0. By exogenous censoring we mean Eðu j x; sÞ ¼ 0 in equation (1).
This follows from Eðu j xÞ ¼ 0 under the assumption that y and ðT ;CÞ are independent given x. With

1 The conditions in which the uniform weak law of large numbers can be applied. For details; see Theorem 12.1 in Wool-

dridge, 2002). Lemma 4.3 in (Newey and McFadden, 1994) shows that if wi is replaced with a consistent estimator, the conver-
gence is still valid.



exogenous censoring, once covariates (e.g. patient and clinical characteristics) are selected, total cost
is independent of censoring and survival times. Then ~bbu is consistent and asymptotically normally

distributed and the usual variance matrix estimator Vð~bbuÞ ¼ ~AA
�1
u

~BBu
~AA
�1
u =N is consistent, where
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�uui ¼ yi � xi
~bbu are the residuals after OLS estimation of uncensored sample.

If censoring is exogenous, then unweighted and weighted estimators are both consistent. In such a
case, theory suggests that an unweighted estimator is more efficient under conditional homoscedasti-
city (Wooldridge, 1999). That states the variance of the unobservable error conditional on the explanatory
variables is constant.

Because the unweighted estimator is inconsistent under the violation of exogenous censoring and
the weighted estimator is consistent with or without exogenous censoring we can apply a Hausman
test to determine the exogeneity of censoring (Hausman, 1978).

The traditional form of Hausman statistics can be used under the assumption of conditional homo-
scedasticity. We can state this assumption as follows: For the selected sample,

Eðsiu2i x0ixiÞ ¼ s20Eðsix0ixiÞ: ð17Þ
When equation (17) holds, the unweighted least squares variance estimator is

~VVu � Vð~bbuÞ ¼ ~ss2 N�1
P
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provided we have a consistent estimator of ~ss2 of s20.
In general form, the Hausman test statistic can be written as:

H ¼ ð~bbw � ~bbuÞ0 ~VV
�1ð~bbw � ~bbuÞ ; ð19Þ

where ~VV � ~VVw � ~VVu, with ~VVw is defined in equation (11) and ~VVu is defined in equation (18).
In many cases, we may want to use a Hausman test when the homoscedasticity assumption is

violated. Homoscedasticity fails if (17) does not hold. This requires a robust form that replaces ~VV by
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ð: j :Þ is used to denote the appending of matrices side by side and ~eei ¼ ŵwi~uuix
0
i; si�uuix

0
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� �0
. Here ~uui and �uui

are the residuals after IPW least squares and OLS estimations of the selected sample respectively, and
ŵwi, ~AAw, ~AAu are defined in equations (8), (12) and (15).

Under the null hypothesis, censoring is exogenous, H �a c2ðKÞ. If we reject this hypothesis, exo-
genous censoring assumption is violated and OLS estimation using complete cases does not produce
consistent estimators, so IPW least squares method should be used. If we fail to reject the hypothesis,
the typical response is to conclude that the exogeneity assumption holds and OLS estimates are con-
sistent. Unfortunately, we may be committing a Type II error by failing to reject the null hypothesis
when it is false. Therefore, we recommend that in applications results be reported from both estima-
tion procedures.

If heteroscedasticity is present, the OLS estimator is no longer the best linear unbiased estimator.
Many tests for heteroscedasticity have been suggested over the years. The two common ones are
Breusch–Pagan (1980) and White (1980) tests. Breusch–Pagan test assumes that heteroscedasticity is
expressed through a linear function of explanatory variables. White’s test adds the squares and cross
products of all of the independent variables into the variance-estimation equation intending to test for



forms of heteroscedasticity that invalidates the usual OLS standard errors and test statistics. It is
possible to obtain more efficient estimators than those obtained using OLS, when the form of hetero-
scedasticity is known. In practice, we rarely know how the variance depends on a particular independ-
ent variable in a simple form.

Exogenous censoring occurs when cost, survival time, and censoring time are independent given
explanatory variables. When censoring is due to early study termination, censoring time is independ-
ent of the others. Cost and survival time, however, are expected to be correlated even after we control
for certain explanatory variables (e.g. patient and treatment characteristics). This occurs especially
when we have long interval costs, such as a year or more. If we have short interval cost values, such
as monthly or weekly, investigators can use the simple and more efficient method (OLS, for example), if
the conditional homoscedasticity assumption is satisfied. However, failing to reject the proposed Haus-
man test does not guarantee the assumption of exogenous censoring. The best approach is to present
both IPWLS and OLS estimates. We can summarize the decisions depending on the outcome of the
Hausman and heteroscedasticity tests as follows:

The methods described are easily applied using standard commercial statistical software programs.
The traditional Hausman test is part of most statistical programs (for example, SAS, STATA), but the
robust form of the Hausman test requires programming. We can use an alternative approach, the
regression-based Hausman test, for easy computation of the robust form (Wooldridge 1990). Since the
Hausman test compares systematic differences in the coefficients, if we regress the dependent variable
on weighted and unweighted explanatory variables and the coefficients are not different between the
two, then the F test for the coefficients on weighted explanatory variables should result in an insignif-
icant value. It can be shown that the statistics obtained from this procedure are asymptotically equiva-
lent to Hausman statistics that compare the weighted and unweighted estimators.

4. Application to Cancer Treatment Cost

4.1 Data

Hausman Heteroscedasticity

Present Not Present

Reject IPWLS IPWLS
Fail to Reject IPWLS OLS, IPWLS

From 1994 through 1997, 773 patients with incident cases of lung, prostate, colon and breast cancer 
were recruited from 24 Michigan community hospitals and their affiliated oncology units. Each patient 
provided written consent for researchers to acquire his or her Medicare claim files.

We obtained Medicare claim files for the two years following cancer diagnosis. The files included 
any reimbursement claims for inpatient or outpatient care, physician provider services (including la-
boratory tests and diagnostics, mammography, radiation, and intravenously chemotherapy), home 
health care, and/or skilled nursing facilities.

Total cost is the sum of these costs. Medicare payments were used as a proxy for direct medical 
care costs rather than billed charges. Medicare reimbursements formulas are designed to reflect an 
underlying pattern of resource use, whereas charges inflate actual cost. Charges were adjusted for 
inflation to 1997 prices by using the National Medical Care Price Index, 1994–1997. The costs of 
prescription drugs, unpaid caregiver services, and the services paid by other insurers or out-of-pocket 
were not included.

Surgical procedures were identified by the International Classification of Diseases version 9 (ICD-
9) and Current Procedural Terminology (CPT) Codes. We used all ICD-9 and CPT codes avaliable in



the inpatient, outpatient, and physician supplier files to identify chemotherapy and radiation. These
data were coded as dichotomous variables with yes/no categories for comparison purposes.

Physical function three months prior to diagnosis was assessed using the subscale from the Short
Form (SF)-36 (Ware et al., 2000). The 10-item subscale asks questions about such activities as lifting
heavy objects, participating in strenuous sports, climbing stairs, walking various distances, and ability
to bathe and dress. Patients were also asked if during the past two weeks they had experienced any of
33 symptoms. A count of all symptoms was summed for each patient.

Comorbid conditions were assessed with an instrument from the Aging and Health in America
Study, a national survey that asks patients to indicate whether a health professional has ever told them
they have one of 15 problems. The total number of positive responses was summed for each patient
and sorted into one of two categories: 0� 2, and 3þ. A comparison of patient reports of comorbid
conditions with medical record audits indicates that patients are able to recall other diagnosed ill-
nesses (Katz et al., 1996) and restricting the categories for comorbid conditions does not result in lost
predictive power ðNewschaffer et al., 1996).

Disease stage was determined using the American Joint Committee on Cancer (AJCC) Tumor
Nodes Metastasis (TNM) staging system which was applied to pathological data obtained from an
audit of patients’ medical records.

4.2 Descriptive analysis

Table 1 shows the variable definitions and summary statistics. We had complete data for 541 subjects
and incomplete data for 232 subjects. So, approximately 31 percent of the sample had censored data.

As shown in Table 1, the patient sample can be described as white and in their early seventies for
both censored and uncensored subjects. One third of the subjects were diagnosed with late stage
disease. Most subjects had three or fewer comorbidities and experienced some level of symptoms
related to cancer treatment. The patient sample is high functioning in terms of physical health.

The next six rows of Table 1 show the categorical variables related to treatment types. For censored
and uncensored subjects, except radiation we have similar percentages for the patients. Thirty percent
of the patients received radiation only in the complete subjects whereas 17% of incomplete subjects
had radiation.

The distribution of our sample in terms of cancer site is in the last four rows of Table 1.
The percentage of breast and lung cancer were nearly equivalent for censored and uncensored
subjects. The difference is subtler in prostate and colon cancer patients. About 31% of complete
subjects were diagnosed with prostate cancer whereas 26% of incomplete subjects had prostate
cancer. The percentages are 16 and 22 respectively for colon cancer with the complete and
incomplete cases.

The dependent variable, total Medicare payments two years following diagnosis is shown in the last
row of Table 1. Considering the mean alone, we find that the total cost of all care is $ 60,429 for the
two years following a lung-cancer diagnosis for complete cases and $ 55,877 for incomplete cases.

4.3 Regression analysis

Our aim is to determine how independent variables (e.g., gender, comorbidity, etc) predict total medi-
cal cost of cancer in the two years following diagnosis after we account for the bias introduced by
censoring.

We find that the cost distribution is skewed to the right, so we transformed the cost variable to a
log scale. We started with the log-scale residuals from a generalized linear model with a loga-
rithmic link function and found that the log-scale residuals are dense at the tails. Following Manning
and Mullahy (2001) we adopted an OLS-based model with a log-transformed dependent variable.
Heteroscedasticity is present according to both Breusch–Pagan and White tests.

Table 2 shows the result of the regression analysis predicting total cost of care for the two years
following a cancer diagnosis. The first column of Table 2 shows the unweighted regression coeffi-



Table 1 Summary statistics from the cancer study.

Variables Variable Description Mean

Uncensored Cases
ðn ¼ 541Þ

Censored Cases
ðn ¼ 232Þ

Mean Mean
Age Patient’s Age 72.51

(4.93)
72.25
(5.09)

Physical Functioning Patient’s
physical functioning

81.18
(24.08)

80.84
(23.99)

Symptoms A count of all symptoms 8.32
(4.66)

7.81
(4.26)

Comorbidity ¼ 1 if patient’s comorbid
conditions are three or more

0.27
ðn ¼ 146Þ

0.28
ðn ¼ 66Þ

Late Stage ¼ 1 if patient’s disease
stage is regional,distant or invasive

0.31
ðn ¼ 170Þ

0.31
ðn ¼ 72Þ

Surgery ¼ 1 if patient received surgery
only

0.22
ðn ¼ 122Þ

0.34
ðn ¼ 79Þ

Surgery & Chemo ¼ 1 if patient received
surgery and chemotherapy

0.08
ðn ¼ 46Þ

0.10
ðn ¼ 23Þ

Surgery & Radiation ¼ 1 if patient received
surgery and radiation

0.16
ðn ¼ 85Þ

0.15
ðn ¼ 34Þ

Surgery & Chemo &
Radiation

¼ 1 if patient received
surgery, chemotherapy and radiation

0.09
ðn ¼ 48Þ

0.10
ðn ¼ 24Þ

Chemo & Radiation ¼ 1 if patient received
chemotherapy and radiation

0.13
ðn ¼ 70Þ

0.13
ðn ¼ 30

Chemotherapy ¼ 1 if patient received
chemotherapy only

0.02
ðn ¼ 9Þ

0.01
ðn ¼ 2Þ

Radiation ¼ 1 if patient received radiation
only

0.30
ðn ¼ 161Þ

0.17
ðn ¼ 40Þ

Lung ¼ 1 if patient has lung cancer 0.27
ðn ¼ 143Þ

0.25
ðn ¼ 58Þ

Prostate ¼ 1 if patient has prostate cancer 0.31
ðn ¼ 170Þ

0.26
ðn ¼ 61Þ

Colon ¼ 1 if patient has colon cancer 0.16
ðn ¼ 85Þ

0.22
ðn ¼ 50Þ

Breast ¼ 1 if patient has breast cancer 0.27
ðn ¼ 143Þ

0.27
ðn ¼ 63Þ

Total Cost Total Cost $ 60,429
($ 69,138)

$ 55,877
($ 60,502)

For continuous variables, standard deviations are in parentheses; for categorical variables number of cases are in parentheses.



cients, while the second column shows weighted regression coefficients. The reference group for
treatment modalities is surgery plus adjuvant therapies and the reference group for site of cancer is
lung.

Variables that reach statistical significance ð p < 0:05Þ include physical function, type of cancer
(except colon), surgery and radiation, radiation only, and chemotherapy and radiation. Ten additional
points in patients’ prior physical function score decreases total medical cost by 0.7% according to the

Table 2 Correlates of log transformed total medical cost by OLS and
IPW Least Squares Methods, N ¼ 541.

Variable Coefficient

OLS IPWLS

Age 0.013
(0.008)

0.014
(0.008)

Physical Functioning �0.007
(0.002)**

�0.007
(0.002)**

Symptoms 0.001
(0.010)

�0.001
(0.011)

Late Stage 0.204
(0.110)

0.188
(0.111)

Comorbidity 0.087
(0.092)

0.085
(0.092)

Surgery Only �0.175
(0.138)

�0.168
(0.140)

Surgery & Chemo �0.009
(0.167)

0.017
(0.168)

Surgery & Radiation �0.342
(0.152)*

�0.343
(0.156)*

Chemo & Radiation �0.442
(0.186)*

�0.425
(0.193)*

Chemo Only �0.722
(0.382)

�0.680
(0.402)

Radiation Only �0.921
(0.152)**

�0.934
(0.155)**

Prostate �0.759
(0.139)**

�0.751
(0.142)**

Colon �0.249
(0.147)

�0.244
(0.149)

Breast �1.243
(0.138)**

�1.225
(0.142)**

Intercept 10.957
(0.690)**

10.909
(0.687)**

R-squared 0.34 0.34

Notes: Robust standard errors in parentheses. * significant at 5%; ** significant at 1%

Omitted categories: In situ/local stage, lung cancer, no treatment.



unweighted estimation and the IPW least square estimation.
According to unweighted estimation breast cancer patients and prostate cancer patients cost 71.1%

and 53.2% less than lung cancer patients respectively. These estimates are 70.6% and 52.8% in IPW
least square estimation.

Whether or not a person receives radiation or chemotherapy separately or in combination signifi-
cantly decreased the total medical cost relative to the mean costs for persons receiving surgery plus
adjuvant therapies. The estimates with respect to the unweighted and weighted least squares are: for
radiation only, 60.1% and 60.7% and for chemotherapy and radiation 35.7% and 34.6%. The cost of
surgery and radiation therapy is 28.9% less than the surgery plus adjuvant therapies. Both models
explain 34% of the variability in total costs at two years following diagnosis.

The difference between OLS and IPW least squares estimators are statistically different. F statistics
from regression based Hausman test suggests that OLS and IPW estimates are significantly different
ðFð14; 513Þ ¼ 8:25; ð p < 0:05ÞÞ. We reject the hypothesis that the censoring scheme is exogenous. In
this case unweighted estimators are inconsistent.

While the magnitude of Hausman statistics determines statistical significance of the coefficients, the
actual difference in the estimated coefficients determines what we might call practical significance.
An estimate can be statistically significant without being especially large. A statistically significant
value without being practically significant often occurs when we are working with large samples. A
consistency test rejects the null hypothesis with the probability approaching one as the sample size
grows whenever the alternative is true. Therefore, a discussion of the practical significance along with
the statistical significance of the estimates is appropriate. The results from OLS and IPWLS in our
cancer cost analysis suggest that the difference is important statistically but not practically.

5. Conclusions

This paper brings together theoretical work from the econometrics and biostatistics literatures to esti-
mate censored cost data using a weighted estimation methodology. As an example we estimated cen-
sored medical costs using OLS and IPW least-squares estimation techniques.

One limitation should be discussed. The exact asymptotic variances adjustment for the first stage 
estimation should be made, therefore if the interest lies on marginally insignificant variables, they 
should be interpreted with caution since with adjustment, they may become statistically significant.

The IPW least squares method solves for inconsistencies in the coefficients caused by censoring. 
The method is easily applicable using most statistical software programs. Under the assumption that 
selection can be ignored, the inverse probability weighting scheme identifies the population param-
eters. The method introduced handles large numbers of continuous and discrete explanatory variables 
for any mean type regressions.

The application of the method is a two-step estimation process. In the first step, we estimate 
selection probabilities by using the maximum likelihood method, where we assumed the density 
function is piecewise-constant over relevant time intervals by reversing the role of censoring and 
survival time. In the second step, we estimate heteroscedastic robust OLS on the uncensored dataset 
where each variable is weighted with the inverse of the square root of the estimated selection 
probabilities from the first stage. We showed that first stage adjusted covariance matrix is asympto-
tically equivalent to unadjusted covariance matrix under exogenous censoring assumption. We also 
proved that violation of this assumption yields a first stage adjusted variance matrix which is al-
ways as large as the unadjusted covariance matrix. This fact is important in practice. Most of the 
time investigators are interested in the effect of a certain variable (for example, treatment) on the 
dependent variable. If this effect is significant by IPW estimation without calculating a rather com-
plicated adjusted variance matrix, it is known in advance that the effect will be significant even if 
we compute the adjusted variance matrix.

We also developed a test to compare the coefficients estimated by the IPW least squares and by 
OLS. This test, combined with common heteroskedasticity tests, can be used to assess efficiency



improvement between two models. Specifically, if we reject the null hypothesis that the sampling
scheme is exogenous, IPW least squares method should be used because OLS yields inconsistent
estimates. Failing to reject the null hypothesis could be used to support unweighted estimation under
conditional homoscedasticity.

We also applied the proposed method to an inception cohort of patients newly diagnosed with
cancer. Our findings support that unweighted estimation yields inconsistent estimator due to censoring
bias. IPW least square estimation method removes that bias.

Appendix

Derivation of the Variance Formula for the Two Stage IPW Estimator

From (9) and (3) write
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ŵwix
0
ixi

� ��1

N�1=2 P
N

i¼1
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where ŵwi ¼
si

p̂pðTi*�Þ
. The censoring variable Ci is assumed independent of ðyi; TiÞ given the covariate

xi. We consider a parametric estimator p̂pt ¼ pðt; q̂qÞ for pðt; qÞ ¼ P½C > t j q� where q is q-dimen-
sional. The estimator q̂q of q is obtained via maximum likelihood based on the sample fðZi; siÞ:
i ¼ 1; 2; : . . . ;Ng. The likelihood can be derived by considering three cases: ð1Þ C is observed so that
C < L and T > C, or ð2Þ T is observed so that T < L and T < C, or ð3Þ the limit L is reached and
neither T nor C are observed, that is T � L;C � L. Then the likelihood for the i-th subject can be

expressed as fSðZiÞ gðZi; qÞg1�sifpðTi; qÞ f ðTiÞgsi½Ti<L� fpðL; qÞ SðLÞg½Ti�L;Ci�L�
where S is the survival

distribution and f the density of T , and g the density of C. The derivative with respect to q of the log-
likelihood is the q� 1 vector

di ¼ð1� siÞ 5q gðZi; qÞ=gðZi; qÞ þ ½Ti < L� si 5q pðZi; qÞ=pðZi;qÞ
þ ½Ti � L;Ci � L� 5q pðL; qÞ=pðL; qÞ

¼ ð1� siÞ 5q gðZi; qÞ=gðZi; qÞ þ sipðZi; qÞ=pðZi; qÞ :

Then q̂q is obtained as a solution to
P

N

i¼1

diðqÞ ¼ 0. Under the usual regularity conditions,
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where JðqÞ ¼ Ef _ddiðqÞg ¼ �EfdiðqÞ d0iðqÞg is a q� q matrix assumed to be positive definite. We ex-
pand the second term in (A1) as
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where ~qq is between q̂q and q. Again by standard arguments the term in parenthesis on the right hand
side converges to Eððsix0iui=ðpðTi*; qÞÞ

2Þ 50
q pðTi*; qÞÞ ¼ E ðx0iui=pðTi*; qÞÞ 50

q pðTi*; qÞ
� �

¼ DðqÞ; a
K � q matrix. Define ki ¼ six

0
iui=pðTi*; qÞ and note that DðqÞ ¼ Eðkid0iÞ. From (A2) and (A3)
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fki � DðqÞ J�1ðqÞ diðqÞg þ opð1Þ : (A4)



By the law of large numbers, the consistency of q̂q and standard convergence results (Newey and
McFadden, 1994), the matrix in (A1) converges in probability to Eðsix0ixi=pðTi*; qÞÞ ¼ Eðx0ixiÞ ¼ A:
Hence from (A1) and (A4) we obtain

ffiffiffiffi

N
p

ð~bbw � bÞ ¼ A�1N�1=2 P
N

i¼1

fki � DðqÞ J�1ðqÞ diðqÞg þ opð1Þ : (A5)

Application of the central limit theorem to (A5) reveals that
ffiffiffiffi

N
p

ð~bbw � bÞ converges in distribution to
a K-variate normal with mean vector 0 and covariance matrix V , where V ¼ A�1BA�1 and
B ¼ Eðkik0iÞ � DðqÞ J�1ðqÞ D0ðqÞ: Had we ignored the estimation of q assuming pðt; qÞ were known,
this variance V0 ¼ A�1Eðkik0iÞA�1. Since V0 � V is non negative definite, estimation of the variance of
~bbw that ignores first stage estimation is conservative. Also, if given x, ðy; T ;CÞ are independent then
under Eðu j xÞ ¼ 0 we get DðqÞ ¼ 0 and so V0 ¼ V . Hence use of an estimate of the selection prob-
ability in the second stage yields a variance estimator that is asymptotically equivalent to that esti-
mated with known selection probability.
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