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Textual information and IPO underpricing: 

A machine learning approach 
 
 

Abstract 

 
This study examines the predictive power of textual information from S-1 filings in 
explaining IPO underpricing. Our empirical approach differs from previous research, as we 
utilize several machine learning algorithms to predict whether an IPO will be underpriced, or 
not. We analyze a large sample of 2,481 U.S. IPOs from 1997 to 2016, and we find that 
textual information can effectively complement traditional financial variables in terms of 
prediction accuracy. In fact, models that use both textual data and financial variables as 
inputs have superior performance compared to models using a single type of input. We 
attribute our findings to the fact that textual information can reduce the ex-ante valuation 
uncertainty of IPO firms, thus leading to more accurate estimates. 
 
 
JEL classification: C63, G12, G14, G40 

Keywords: Initial public offerings; First-day returns; Machine learning; Natural language 
processing 
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1. Introduction 

One of the most heavily examined issues in the corporate finance literature is the 

underpricing of initial public offerings (IPOs). Underpricing is estimated as the percentage 

difference between the offer and the closing price at the end of the first-trading day 

(Ljungqvist, 2007). When the closing price is higher than the offer price, the IPO is 

considered to have been underpriced. In their early studies, Logue (1973) and Ibbotson 

(1975) find that when firms go public, they tend to sell their shares at a substantial discount. 

This underpricing discount is also confirmed by subsequent empirical studies (Ritter and 

Welch, 2002; Loughran and Ritter, 2004; Ljungqvist, and Wilhelm, 2005; Banerjee et al, 

2011; Loughran and McDonald, 2013; Butler et al., 2014). Despite this extensive research 

however, there is still much to explore on how the IPO shares are priced (Hanley and Hoberg, 

2010). 

The pricing of an IPO is a difficult task for two reasons. First, the issuing firms have no 

observable market price prior to the IPO, and second, they have little or no historical data 

(Ibbotson et al., 1994). Apparently, this lack of available information leads to higher 

valuation uncertainty for IPO firms. Hence, the higher the valuation uncertainty, the higher 

the underpricing, as investors are less able to accurately price the newly issued stock (Beatty 

and Ritter, 1986). This argument builds on the winner’s curse model of Rock (1986). 

According to this model, there is information asymmetry between different types of investors, 

and as a result, underwriters underprice IPOs to ensure the participation of uninformed 

investors in the market. In fact, the vast majority of work in the field explains IPO 

underpricing under the information asymmetry perspective (Ljungqvist and Wilhelm, 2005). 

A recent strand of the literature examines whether the textual information of IPO 

prospectuses affects the ability of investors to price a new issue. When U.S. firms go public, 

the Securities and Exchange Commission (SEC) requires them to submit the IPO prospectus, 
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or S-1 filing, on the Electronic Data Gathering, Analysis, and Retrieval (EDGAR) system. 

This requirement ensures that investors are properly informed regarding the issuing firms’ 

valuation, future business strategies, and potential risks (Ferris et al., 2013). In fact, the IPO 

prospectuses are the most informative sources for investors, as the amount of publicly 

available information for new issues is rather limited (Ding, 2016). In this respect, Hanley 

and Hoberg (2010) find that a more informative IPO prospectus leads to more accurate offer 

prices and less underpricing. Loughran and McDonald (2013) proxy the ex-ante valuation 

uncertainty of IPOs firms using the tone of the S-1 filing. The authors find that higher 

percentages of uncertain, weak modal, and negative words in the IPO prospectuses are 

associated with higher levels of underpricing.  

At this point, it is worth mentioning that the majority of prior studies examine IPO 

underpricing under an econometric set-up. However, there are some recent papers that 

investigate this issue using machine learning algorithms (Basti et al., 2015; Quintana et al., 

2017). Among them, there is a handful of studies which examine the IPO underpricing as a 

binary classification task (Cheng et al., 2007; Chen et al., 2010; Kim et al., 2019). In other 

words, these studies use machine learning algorithms in order to distinguish underpriced from 

overpriced IPOs. In several finance classification tasks, machine learning algorithms have 

advantages over traditional techniques for two reasons: (1) they often can produce accurate 

predictions (Mai et al., 2019), and (2) they do not depend on statistical distributions 

(Pasiouras et al., 2010). To the best of our knowledge however, a common element of such 

studies in IPO underpricing classification prediction is that they ignore the textual 

information of IPO prospectuses, as they merely focus on financial variables. Considering 

that S-1 filings contain vital information regarding the IPO firms’ valuation, the IPO 

prediction literature leaves a lot of available information unexploited. 

The primary aim of this paper therefore is to examine whether and to what extent the 
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textual information of the S-1 filings can improve the predictive power of machine learning 

algorithms in an IPO classification task. We choose to treat the IPO underpricing issue as a 

classification task, inspired by the fact that the literature on investment strategies primarily 

focuses on the direction of stock price movements instead of the magnitude (Nardo et al., 

2016). 

To address our research question, we utilize a large and comprehensive sample of 2,481 

U.S. IPOs over the period 1997 to 2016. For the purpose of our analysis, we extract textual 

features from the 4 major sections of the S-1 filing, their combination, and the entire S-1 

filing. In addition, we collect data on financial variables frequently-used in the IPO literature. 

Then, we use both sources of data separately or together as inputs in our machine learning 

algorithms, and we evaluate their predictive ability according to the out-of-sample 

performance of our models. In our classification task, we use the following machine learning 

models: (1) support vector machine, (2) logistic regression, (3) random forest, and (4) 

multilayer perceptron. 

One issue that emerges when we attempt to combine the plethora of textual features with 

financial variables is the curse of dimensionality. More precisely, the high dimensional space 

of our textual features overrules the importance of financial variables, leading to less accurate 

estimates. To overcome this issue, we employ the singular value decomposition 

dimensionality reduction technique. Notably, when we do so, we find that textual data can 

effectively complement financial variables in our IPO classification task. In fact, when both 

sources of data are inserted as inputs in our machine learning algorithms, we achieve out-of-

sample accuracy scores that in some instances exceed 70%. In practice, the magnitude of this 

accuracy score means that our models are able to correctly distinguish between overpriced 

and underpriced IPOs in more than 70% of the future cases. In terms of our models 

performance, random forest produces the highest accuracy scores, followed by logistic 
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regression and multilayer perceptron. 

As an additional step in our empirical analysis, we also investigate whether the tone of the 

S-1 filing can improve the predictive power of our machine learning algorithms. We measure 

the S-1 tone using the six sentiment word lists of Loughran and McDonald (2011). Our 

findings indicate that when sentiment scores are used as mixed inputs with financial variables 

in our classification models, the prediction accuracy is comparable to our aforementioned 

findings. Interestingly, each sentiment score performs better in a different section of the S-1 

filling, a finding which is consistent with prior relevant studies (Hanley and Hoberg, 2012; 

Ferris et al., 2013; Brau et al., 2016). Finally, our results remain robust to a series of 

robustness tests that deal with sample selection and methodological issues.  

Our findings are important to all key parties of an IPO transaction. In fact, a machine 

learning model designed to predict underpricing can profoundly benefit investors, managers, 

and underwriters, as it would allow them to ex-ante identify whether the IPO will be 

underpriced, or not. On the one part, our study complements the existing literature that 

examines IPO underpricing under the perspective of information asymmetry. We propose that 

the textual information of the S-1 filing reduces the valuation uncertainty of IPO firms, and 

helps the involving parties to value the issuing firm more accurately. On the other part, our 

research contributes to the literature, as we introduce new methodological insights on how 

textual disclosure can efficiently be combined with numerical data as mixed inputs in the 

machine learning algorithms. 

The remainder of the paper is organized as follows. Section 2 briefly discusses the relevant 

literature of IPO underpricing. Sections 3 and 4 describe our sample collection and 

methodology. Section 5 discusses our empirical results, and Section 6 concludes the paper. 
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2. Literature Review 

Prior empirical studies indicate that underpricing is a persistent phenomenon in the U.S. 

IPOs market. In fact, during the previous decades, underpricing in the U.S. averages between 

7% and 65% (Ritter and Welch, 2002; Loughran and Ritter, 2004; Ljungqvist, and Wilhelm, 

2005; Loughran and McDonald, 2013; Butler et al., 2014). However, the level of 

underpricing varies substantially across time periods (Loughran and McDonald, 2013). 

In their early study, Ritter and Welch (2002) examine a sample of 6,249 U.S. IPOs from 

1980 to 2001, and report an average underpricing of 18.8%. Loughran and Ritter (2004) use a 

sample of 6,391 IPOs occurred from 1980 to 2003, and breakdown their examination period 

into four sub-periods. Their findings point out a substantial degree of variation in the level of 

underpricing across time periods. More precisely, in the 1980s, the average IPO was 

underpriced by 7%. During 1990-1998, the average underpricing was 15%, and then jumped 

to 65% in the dot-com bubble years (1999 and 2000). In the post-bubble years (2001-2003) 

however, first-day returns dropped to an average of 12%. In a more recent study, Loughran 

and McDonald (2013) analyze the first-day performance of 1,887 U.S. IPOs for the period 

1997-2010, and find a mean first-day return of 34.8%. Consistent with previous empirical 

evidence, they document that the more underpriced IPOs took place in the dot-com bubble 

years. 

2.1. IPO underpricing and information asymmetry 

Information asymmetry is considered to be an important determinant of IPO underpricing 

(Banerjee et al., 2011). According to the winner’s curse model of Rock (1986), some 

investors are better informed regarding the true value of the shares being offered than other 

investors. In the context of this model, informed investors only buy shares of attractive IPOs, 

whereas uninformed investors bid for every new share issued. This information asymmetry 

problem results in a winner’s curse for uninformed investors. More precisely, uninformed 
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investors get the full supply of unattractive IPOs, while in attractive IPOs, their demand is 

partly crowded out by the informed investors. In that event, first-day returns for uninformed 

investors should be zero or even negative (Ritter and Welch, 2002). Thus, uninformed 

investors may choose not to bid for any IPO. Under this scenario, underwriters underprice 

IPOs in order to retain uninformed investors in the market. 

Ritter (1984) and Beatty and Ritter (1986) extend the winner’s curse model by focusing on 

firms’ valuation uncertainty. More precisely, the authors hypothesize that underpricing 

increases with the level of ex-ante uncertainty regarding the value of the IPO firm, as it is 

more difficult for investors to correctly price the new issue. Interestingly, several empirical 

studies provide empirical support for this hypothesis, by using proxies to account for firms’ 

valuation uncertainty. Among these proxies are: firm age (Ritter, 1984; Ljungqvist and 

Wilhelm, 2003; Loughran and Ritter, 2004; Chahine, 2008), growth opportunities as 

measured by price to earnings ratio (Chen et al., 2004; Hauser et al., 2006), or industry sector 

(Benveniste et al., 2003). Younger firms, with more growth opportunities, and/or high-tech 

firms should have higher levels of ex-ante valuation uncertainty, which translates to higher 

IPO underpricing (Engelen and Van Essen, 2010). 

Information asymmetry can impact other key parties of an IPO transaction besides 

investors. In fact, Baron and Holmstrom (1980) and Baron (1982) focus on the information 

asymmetry between underwriters and the issuing firm. The authors suggest that higher levels 

of ex-ante uncertainty regarding the value of the IPO firm are associated with more 

information asymmetry between underwriters and issuers, which results in higher 

underpricing. 

2.2. Ex-ante uncertainty and IPO prospectuses 

There are several early studies that use information from IPO prospectuses to proxy for ex-

ante valuation uncertainty. Such proxies include the number of uses of IPO proceeds (Beatty 
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and Ritter, 1986) or the number of risk factors declared in the prospectus (Beatty and Welch, 

1996). Other studies attempt to link the information content of prospectuses with IPO 

underpricing. For instance, Bhabra and Pettway (2003) find that financial data included in the 

prospectus can explain part of the IPO performance. Furthermore, Leone et al. (2007) 

investigate whether the uses of IPO proceeds included in the prospectuses can relate to IPO 

underpricing. Their findings suggest that the more specific the use of proceeds disclosure, the 

less the ex-ante uncertainty, which in turn leads to less underpricing.  

A more recent strand of the literature examines whether the textual information contained 

in IPO prospectuses can explain underpricing. Arnold et al. (2010) analyze the Risk Factors 

section of IPO prospectuses and find that soft information contained in this section is a strong 

determinant of first-day returns. Hanley and Hoberg (2010) use textual information based on 

the word content analysis of IPO prospectuses. Further, the authors decompose the 

prospectuses into their four main components: (1) Summary, (2) Risk Factors, (3) Use of 

Proceeds, and (4) Management Discussion and Analysis. Their results indicate that greater 

informative content results in more accurate offer prices and less underpricing. In addition, 

stronger disclosure of information in IPO prospectuses is associated with lower litigation risk 

(Hanley and Hoberg, 2012). 

Loughran and McDonald (2013) emphasize on the tone of IPO prospectuses, using word 

lists as a proxy of ex-ante uncertainty. The authors document that higher levels of text 

uncertainty translate to higher first-day returns. Ferris et al. (2013) indicate that more 

conservative language in the IPO prospectus leads to higher underpricing. Moreover, Brau et 

al. (2016) find that the strategic tone of the IPO prospectus is related to underpricing. In fact, 

more frequent usage of positive and/or less frequent usage of negative strategic words is 

associated with higher first-day returns. 
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2.3. Machine learning approach of IPO underpricing 

As mentioned in the previous section, there is a growing literature that relates textual 

information with first-day returns. However, all these studies use the textual content of IPO 

prospectuses in an econometric framework. Recently, there are a handful of papers which 

attempt to predict underpricing with the usage of machine learning algorithms (Quintana et 

al., 2017). Supervised machine learning algorithms learn from historical data in order to 

predict future outcomes. The benefits of these algorithms are that they are able to produce 

accurate predictions, and they work well with both numerical and categorical data (Bastι et 

al., 2015). 

In Table 1, we provide a list of all papers that use machine learning algorithms in an IPO 

classification task. In their early study on IPO underpricing, Mitsdorffer et al. (2002) utilize 

several machine learning models, such as Bayesian classifications, support vector machines, 

decision trees, and artificial neural networks. More precisely, the authors conduct a 

classification task by developing models which try to identify IPOs with first-day returns of 

50% or higher. In a similar fashion, several other studies use financial variables as inputs in 

machine learning algorithms to classify whether the IPOs will realize positive or negative 

first-day returns (Cheng et al., 2007; Chen et al., 2010; Kim et al., 2019). 

In the non-IPO literature, there is an ongoing effort to combine textual information with 

financial variables in machine learning models (Mai et al., 2019). Yet, to the best of our 

knowledge, evidence along these lines is rather elusive when it comes to IPO classification 

prediction. In fact, there is one paper by Ly and Nguyen (2020), which uses only the 

prospectus sentiment (without the addition of financial variables) to predict whether an IPO 

will be underpriced, or not. The authors utilize several machine learning algorithms, such as 

random forest, decision trees, and logistic regression. Their findings indicate that most of 

these models are not able to produce accurate estimates, as only the logistic regression 
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consistently achieved an accuracy score of higher than 50%. In this paper therefore, we 

attempt to fill the gap in the literature by examining whether the inclusion of both textual 

information and financial variables in machine learning models can enhance our knowledge 

on IPO underpricing classification prediction. 

Insert Table 1 here 

3. Data and textual analysis 

3.1. Sample selection 

We collect our IPO sample from Thomson Financial Securities Data. Our sample includes 

completed U.S. IPOs during the period 1997 to 2016.1 In line with Loughran and McDonald 

(2013), we exclude all IPOs with an offer price of less than $5. Furthermore, all financial 

firms (savings institutions and banks), real estate investment trusts (REITs), American 

Depository Receipts (ADRs) and closed-end funds are excluded from our sample. After 

applying those criteria, our final sample consists of 2,481 IPOs. We obtain stock price data 

for the close of the first-trading day from the Center for Research in Security Prices (CRSP). 

3.2. Matching process and datasets 

Our sample includes 576 IPOs with negative first-day returns and 1,905 IPOs with 

positive first-day returns, respectively. Apparently, the higher proportion of underpriced IPOs 

suggests that our sample is imbalanced. Hence, if we apply random sampling, our estimates 

would be less efficient, as this approach will probably generate a sample consisting of more 

underpriced than overpriced IPOs (Palepu, 1986; Pasiouras et al., 2007; Veganzones and 

Severin, 2018). To get a better insight on this issue, Figure 1 depicts the imbalance rate of our 

sample. In each year of our examination period, the imbalance rate is the ratio of underpriced 

IPOs to overpriced IPOs. Hence, an imbalanced rate of 2 suggests that there are two times 

more underpriced IPOs than overpriced IPOs in a given year. Notably the highest imbalance 

 
1 The earliest offer date of our sample is on January 9, 1997 and the latest on December 14, 2016. 



10 

 

rate is observed during the dot-com bubble years. 

Insert Figure 1 here 

To mitigate this imbalanced dataset problem, we adopt the undersampling approach as in 

Veganzones and Severin (2018). More precisely, this method generates a balanced subset 

from our original dataset by excluding observations from the majority category. This method 

is widely-used in several classification tasks in finance, such as bankruptcy or acquisition 

prediction (Barnes, 1998; Laitinen and Kankaanpaa, 1999; Doumpos et al., 2004; Neophytou 

and Mar Molinero, 2004; Pasiouras et al., 2007, 2010). 

According to the undersampling approach, we need to match our 576 overpriced IPOs 

with an equal number of underpriced IPOs.2 To do so, we follow the approach of Pasiouras et 

al. (2010), and we use time (year of the S-1 filing) as the matching criterion. This enables us 

to do direct comparisons between overpriced and underpriced IPOs, without having to control 

for any time effects. We do not include any other variables in our matching approach, 

because, if we use a financial variable for matching purposes, then we have to exclude it from 

our classification models (Hasbrouck, 1985). 

3.3. Textual data and methodology 

Textual data are obtained from S-1 filings from the SEC’s Electronic Data Gathering, 

Analysis, and Retrieval (EDGAR). The S-1 filing is the initial registration form for IPOs 

(IPO prospectus), as required by the SEC. We collect the S-1 filings for all IPOs of our 

sample, using a web-crawling algorithm. 

3.3.1. Textual sources and parsing process 

Knowledge retrieval from text is a quite sensitive and demanding process. All the 

retrieved IPO prospectuses are encoded in hypertext markup language (HTML). For each 

retrieved S-1, we follow the parsing procedure of Loughran and McDonald (2013), and we 

 
2 Imbens (1992) points out that an equally shaped sample may provide more relevant information than random 
sampling. 



11 

 

eliminate HTML formatting and any other non-textual information, such as embedded images 

or spreadsheets that might be present in the text (Bodnaruk et al., 2015). Furthermore, we 

remove all identified HTML tables, unless their alphabetic character content exceeds 85%. 

Following Hanley and Hoberg (2010) and Ferris et al. (2013), we decompose the S-1 

filings into their four key sections: Management Discussion and Analysis (MD&A), Risk 

Factors, Use of Proceeds, and Summary. In addition, we create an artificial S-1 filing by 

aggregating the four sections. Then, we are interested in examining the kind of information 

each section really contains. To do so, we apply Latent Dirichlet Allocation (LDA) to the 

four sections separately, in the spirit of Nguyen et al. (2015).3 LDA is an algorithm used for 

topic extraction. In our case, LDA intuitively detects the most common topics in the S-1 

corresponding section, and tries to find the words that belong to each topic. By inspecting the 

most frequent words, we manually assign an overall label to each topic to reflect its meaning. 

In fact, we investigate which topics are typically covered by each one of the four sections 

across all filings. 

Table 2 presents the results of this analysis. Our findings indicate that each section 

contains specific information regarding the offering process. In particular, the MD&A section 

describes how managers intend to increase their share price, and boost future revenues and 

sales (Ferris et al., 2013). The Risk Factors section outlines the potential risks of the firm 

such as the uncertainty of future products, or regulatory issues (Ding, 2016). Next, the Use of 

Proceeds section indicates how the firm intends to use the money raised, such as acquisition 

events, or dividend payments. Finally, the Summary section briefly refers to the key aspects 

of the S-1 filing. Particularly, it describes the offering process and provides an overview of 

the balance sheet and cash flow statements (Ferris et al., 2013). 

Insert Table 2 here 

 
3 The authors focus on social media messages considering them as a mixture of hidden topics. 
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3.3.2. Pre-processing and Bag-of-Words 

The extent to which pre-processing is vital regarding the performance of any classification 

algorithm is frequently-highlighted in the textual analysis literature (Nassirtoussi et al., 2014; 

Kumar and Ravi, 2016). In particular, pre-processing includes a range of sub-processes where 

the raw text is converted into meaningful inputs for our predictive models. 

As a first step, we remove all acronyms, abbreviations, single letter words, numbers, 

punctuation marks, and stop words (Gandhi et al., 2019; Katsafados et al., 2020). This 

filtering procedure has the benefit of reducing the informational opaqueness of the textual 

inputs, which contributes to superior prediction performance. Furthermore, we impose a 

minimum occurrence threshold in order to remove words with low frequency (Schumaker 

and Chen, 2009). In the spirit of Mai et al. (2019), we take into account the 20,000 most 

frequent words of the S-1 filing. In fact, having an excessive number of textual features 

reduces the effectiveness of any learning algorithm and yields inferior results (Pestov, 2013). 

At a second step, we need to convert our textual data into numerical units that a learning 

algorithm can understand (Mai et al., 2019). We do so because textual data, like natural 

language, have an unstructured format that cannot be inserted as input in our models. Hence, 

we follow the bag of words (BOW) approach in order to convert our unstructured textual data 

into inputs with explicit numerical structure. According to this approach, we tokenize text 

into words using the Natural Language Toolkit (NLTK). More precisely, we consider each 

unique word as a different feature, and we create a document-term matrix, where each row 

and column represent a document and a word, respectively; the value of each cell of the 

matrix is the value of the corresponding word feature in the particular document (Kumar and 

Ravi, 2016). We discuss how feature values are computed below. 

One limitation of the BOW approach is that it does not effectively account for the 

presence of polysemous words in the text. Polysemous are words with multiple meanings. 
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Hence, a perfect model would also use a textual feature for each meaning of polysemous 

words. To alleviate this problem, we also employ word n-gram features, in effect using a bag 

of n-grams representation. This model is a set of sequential n tokens (Sun et al., 2017). The 

BOW representation is a special case of the bag of n-grams representation with n equal to 1 

(unigram). For other values of n, we obtain bigrams (n equal to 2), trigrams (n equal to 3), as 

in Kumar and Ravi (2016). To some extent, word n-grams make word representations aware 

of their context (surrounding words), especially for larger values of n. However, n values 

larger than 3 are rarely used, because the size of the corresponding feature set (possible n-

grams) increases exponentially. In this paper, we present results for unigrams and bigrams.4  

Finally, we compute the values of the features, where we represent each textual feature 

with a numeric value. To do so, we employ the two classical term weighting schemes: (1) the 

term frequency (TF) normalized by document length, and (2) the term frequency-inverse 

document frequency (TF-IDF). The former calculates the proportion of each word in each 

document and assigns equal weight to each of them, while the latter downweights the TF 

scores based on the document frequency of each word in our sample of IPO prospectuses 

(Kearney and Liu, 2014; Nassirtoussi et al., 2014). If TF(tij) is the number of times a word i 

appears in a document j, divided by the total word count of the same document for 

normalization purposes, then we calculate TF-IDF weight of word i in the jth document as 

follows: TF-IDF(tij) = TF(tij)  × [−log (niN)] 
where N represents the number of documents in our entire dataset, and ni the total number of 

documents including at least one occurrence of the ith word. 

At this point it is worth mentioning that the TF-IDF approach is considered to be more 

effective than the TF approach, as it assigns lighter weights to very common words, which 

 
4 We have also used trigrams in our models with no substantial improvement in our results.  
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are often not useful for document classification purposes (Balakrishnan et al., 2010; Brown 

and Tucker, 2011; Kumar et al., 2012; Hagenau et al., 2013; Loughran and McDonald, 2016; 

Mai et al, 2019). Moreover, we also use as separate textual features the sentiment scores 

based on the LM word lists (Loughran and McDonald, 2011). As in Loughran and McDonald 

(2013), we compute sentiment scores using the TF approach.5 

3.3.3. Financial variables 

Besides textual data, we also use eight financial variables frequently-used in the relevant 

literature (Loughran and Ritter, 2004; Loughran and McDonald, 2013).6 More precisely, we 

use the following control financial variables: (1) Sales is the logarithm of firm annual sales in 

the 12 months prior to the IPO; (2) Positive EPS is a dummy variable which equals to 1 if the 

IPO has positive earnings per share in the year before going public, and 0 otherwise; (3) 

Share overhang is the amount of shares retained divided by the amount of shares in the IPO;7 

(4) Venture capital is a dummy variable which equals to 1 if the IPO is backed by venture 

capital, and 0 otherwise; (5) Prior Nasdaq 15-day returns is the buy and hold returns of the 

Nasdaq index 15 trading days before IPO date; (6) Up-revision is the percentage upward 

revision from the mid-point of the filing range, if the offer price is higher than mid-point, and 

0 otherwise; (7) Top-tier is a dummy variable which equals to 1 if at least one underwriter 

has been classified as top-tier according to the rankings of Carter and Manaster (1990), Carter 

et al. (1998) and Loughran and Ritter (2004), and 0 otherwise, and (8) Days between S-1 and 

1-trading day is the logarithm of days between S-1 filing date and first-trading day. 

Table 3 reports the summary statistics of our final (imbalanced) sample. In general, the 

 
5 In untabulated results, we repeat the analysis using the TF-IDF approach. The results were qualitatively 
similar. 
6 We use only those variables that have a statistically significant impact on first-day returns, as documented in 
previous empirical studies (Loughran and McDonald, 2013). In unreported analysis, we have also used the 
dummy variable TECH, which equals 1 for IPO firms in the technology sector, and 0 otherwise (Loughran and 
Ritter, 2004). The inclusion of this variable does not impact our results. 
7 According to Loughran and McDonald (2013), this variable may act as a proxy of scarcity. Fewer shares 
provided to the market for the initial offering are associated with stronger investors' demand for the stock. 
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statistics are comparable with Loughran and McDonald (2013) and Butler et al. (2014). First-

day returns is the underpricing measure, and is calculated as the percentage change from the 

offer price to the closing price. The average IPO of our sample is underpriced by 31.1% with 

a corresponding median value of 12.5%.8 Average annual firm sales are $451.9 million and 

the mean upward revision is in the order of 10.5%. In line with Gao et al. (2013), only 39% 

of our sampled firms have positive EPS in the year before the IPO. Moreover, 53% of our 

IPO firms are backed by venture capitalists and 78% of issuing firms use a top-tier 

underwriter. In addition, the average time interval between the S-1 filing and the first-trading 

day is approximately four months (115.9 calendar days). Finally, we also report summary 

statistics for the percentages of Loughran and McDonald’s (2011) sentiment words lists. 

Insert Table 3 here 

 

4. Machine learning models 

To perform our classification task, we use the following machine learning algorithms: (1) 

support vector machine, (2) logistic regression, (3) random forest, and (4) multilayer 

perceptron. In this section, we will briefly describe the details of these techniques.9 

4.1. Support vector machine 

Support vector machine (SVM) is a machine learning algorithm developed by Vapnik 

(1998). SVM has been widely-used in various finance tasks, such as IPO underpricing 

prediction (Bastı et al., 2015; Quintana et al., 2017; Quintana et al., 2018), bankruptcy 

prediction (Min and Lee, 2005; Shin et al., 2005; Wu et al., 2007; Veganzones and Severin, 

2018; Mai et al., 2019), time-series forecasting (Cao, 2003; Huang et al., 2005; Pai and Lin, 

 
8 The highest value of underpricing (697.5%) in our sample comes from the IPO of VA Linux Systems on 
December 9, 1999. The offer price was $30 and the closing price at the first-trading day was $239.25.  

 
9 In all our models, all the financial variables are standardized. Textual features are also standardized when they 
are combined with financial variables. 
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2005) and merger prediction (Pasiouras et al., 2008). In its simplest form, SVM is a non-

probabilistic supervised linear classifier, which draws a decision boundary that has the form 

of a hyperplane in the original feature space. The training instances at the boundaries of the 

margin, or (when allowing ‘slack’ in the separation) inside the margin, or on the wrong side 

of the hyperplane are called support vectors. Finding the maximum margin hyperplane is a 

quadratic programming optimization problem, and the solution depends only on the support 

vectors. In the case of non-linearly separable data, it is common to use the SVM with non-

linear kernel functions such as the radial basis function kernel (RBF). This approach ensures 

that the training data are projected in a higher dimensional space, where they become linearly 

separable (Nassirtoussi et al., 2014). For this reason, we repeat our experiments using: (i) a 

linear SVM, and (ii) an SVM with RBF kernel in our empirical study.10 

4.2. Logistic regression 

The logistic regression model (LOGIT) is probably the most popular predictive model in 

finance (Hasbrouck, 1985; Palepu, 1986; Ambrose and Megginson, 1992; Barnes, 1998; 

Powell, 2001; Espahbodi and Espahbodi, 2003; Pasiouras and Tanna, 2010; Veganzones and 

Severin, 2018; Mai et al., 2019; Ly and Nguyen, 2020). LOGIT estimates a non-linear 

sigmoid function between the binary output and the control variables. The model’s 

parameters are learned by maximizing the conditional log-likelihood of the training data, 

typically using stochastic gradient ascent or variants. Regularization terms are also typically 

added to the log-likelihood to avoid overfitting the training data. We use L2 regularization, 

which subtracts the squared L2 norm of the weights vector from the log-likelihood. The 

mathematics behind this model is described as follows: 

 
10 The hyper-parameters of our SVM models are tuned based on the 5-fold cross-validation performance of the 
training set. 
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where Y is the binary output (in our case Y equals 1 if the IPO is underpriced, and 0 

otherwise), Xi,t is a vector of n control variables at time t, bi are parameters of the model, and 

b0 is a bias term. 

4.3. Random forest 

Random forest (RF) is a machine learning algorithm suitable for both regression and 

classification tasks. It was initially developed by Breiman (2001) and is a variant of the 

Bagging ensemble learning method (Breiman, 1996). In our classification task, RF generates 

a number of uncorrelated decision trees trained on bootstrap copies of original samples by 

randomly choosing a subset of features. Each individual tree predicts a class and the category 

with the most votes becomes the output of the model (Mai et al., 2019). The benefit of this 

approach is that it reduces variance without increasing bias substantially. Notably, in the IPO 

literature, Quintana et al. (2017) highlight the high predictive power of RF models. 

4.4. Multilayer perceptron 

Recent work in the field of Natural Language Processing (NLP) is dominated by neural 

network models (Goldberg, 2017). One of the simplest kinds of neural networks are Multi-

Layer Perceptrons (MLPs), which have also been used in previous work in the financial 

domain (Kumar and Ravi, 2016). Currently in NLP, more complex neural models are often 

used, such as Recurrent Neural Networks (Goldberg, 2017), and Transformer-based models. 

However, in this paper, we experiment with MLPs because they are more directly applicable 

to BOW text representations and, hence, also more directly comparable to the other models 

we consider. In an MLP, there is an input layer of neurons, in which our variables are 
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introduced as inputs into the network. In addition, there are one or more hidden layers.11 

Once the hidden layer receives the content from the input layer, non-linear functions are used 

before transferring the estimated values to the next hidden or the output layer. Finally, the 

output layer chooses the predictive class based on the received input from the hidden layers.12 

Unlike logistic regression, which can be seen as a degenerate form of MLP with no hidden 

layer, MLPs can learn non-linear functions. In the IPO literature, there are several studies that 

use MLPs to predict underpricing (Jain and Nag, 1995; Reber et al., 2005; Cheng et al.; 2007; 

Wang et al., 2018). 

 

5. Empirical results and discussion 

5.1. Evaluation 

It is significant to ensure that our IPO underpricing prediction models are properly 

evaluated with respect to their out-of-sample performance. In this paper, we split the data into 

training and testing datasets, as in Mai et al. (2019). In line with previous studies, we partition 

our data by selecting 80% of our sample as the training set and the remaining 20% as the 

testing set (Geng et al., 2015; Doumpos et al., 2017; Routledge et al., 2017). In addition, we 

select our testing set from a future period rather than in random (Pasiouras et al., 2008; 

Pasiouras and Tanna, 2010). We do so, in order to test our model against a future period. In 

fact, the usefulness of a classification model depends on its ability to correctly classify 

objects in the future (Espahbodi and Espahbodi, 2003; Pasiouras et al., 2008). 

Next, we describe the two measures we use to evaluate the out-of-sample performance of 

 
11 The networks with a large number of layers of hidden neurons are known as deep networks, thus leading to 
the terminology of deep learning (Goldberg, 2017).  
12 We use 5-fold cross-validation for hyper-parameter tuning. As a result, our MLP model has 3 hidden layers, 
each of which has 200 neurons. Given that MLP is a feedforward model that maps inputs (financial variables 
and textual features) to a binary outcome (underpricing or not), we apply backpropagation algorithms to train 
the model. Furthermore, we use cross-entropy as the loss function, Adam as the optimizer algorithm, and 
rectified linear unit (ReLU) as the activation function in each hidden layer. ReLU is defined as f(x) = max (0, x). 
Finally, we use early stopping to mitigate overfitting (Mai et al., 2019). To do so, we set aside 10% of training 
data as validation or development set. 
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our models. The first metric we use is the accuracy measure, which is widely-used in many 

finance tasks (Palepu, 1986; Mitsdorffer et al., 2002; Pasiouras et al., 2007; Pasiouras and 

Tanna, 2010; Pasiouras et al., 2010; Nguyen et al., 2015; Bastı et al., 2015; Mai et al., 2019; 

Ly and Nguyen, 2020). Accuracy ranges from 0 to 1. The higher the score, the better the out-

of-sample performance of the model. Considering that our dataset is fully balanced, our 

models would be considered effective when they perform better than chance, which 

corresponds to an accuracy score of higher than 50%. In sum, Accuracy can be expressed as 

follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (|𝑇𝑃| + |𝑇𝑁|)(|𝑇𝑃| + |𝐹𝑃| + |𝐹𝑁| + |𝑇𝑁|) 

where TP is the number of observations correctly labeled as positive (underpriced) IPOs by 

the classifier, TN is the number of observations correctly identified as negative (overpriced) 

IPOs by the model, FP the number of observations incorrectly labeled as positive IPOs by the 

classifier and FN is the number of observations incorrectly identified as negative IPOs by the 

model. 

The second evaluation measure we use is the receiver operating characteristic (ROC) 

curves. ROC has been frequently used in many classification tasks in finance, such as IPO 

underpricing prediction (Bastı et al., 2015), bank merger prediction (Pasiouras et al., 2008; 

Pasiouras and Tanna, 2010) bankruptcy prediction (Veganzones and Severin, 2018; Mai et 

al., 2019), among others. The ROC curve plots the true-positive rate of the classifier on the 

vertical axis, and the false positive rate on the horizontal axis, by varying the classification 

threshold. Models closer to the upper and left corner of the diagram have a better out-of-

sample performance. For comparison reasons, we plot a 45-degree line which indicates a 

random assignment of class labels. Based on ROC curves, we calculate the area under the 

curve (AUC). This measure ranges between 0 and 1. An uninformative classifier yields an 

AUC value of 0.5, while an AUC value of 1 indicates perfect classification. 



20 

 

5.2. Prediction using textual features and financial variables separately 

In this section, we examine whether the language used by managers and investment 

bankers in the S-1 filing has any predictive power in distinguishing underpriced from 

overpriced IPOs. Hence, in the first six panels of Table 4, we report out-of sample accuracy 

scores of our prediction models, using only textual data as inputs. Each panel draws data 

from a separate section of the S-1 filing: entire S-1 filing (Panel A), the aggregate four major 

sections (Panel B), Risk Factors (Panel C), Summary (Panel D), Use of Proceeds (Panel E) 

and Management Discussion and Analysis (Panel F). Further, we use four different types of 

textual features: (1) term frequency (TF), (2) term frequency inverse document frequency 

(TF-IDF), (3) term frequency with bigrams (TF+bigrams), and (4) term frequency inverse 

document frequency with bigrams (TF-IDF+bigrams).13 

In most cases, our models perform better than chance, which suggests that textual 

information is important in our classification task. Among the four sections (Panels C to F), 

MD&A yields the highest accuracy score (0.644), when the MLP model is used with TF-IDF 

as the textual input. As described before, MD&A provides a detailed explanation of a firm’s 

operation, in a way that is comprehensible to the average investor. Hence, its high 

informative content allows investors to properly value the issuing firm. Furthermore, both 

Risk Factors and Summary sections produce adequate accuracy scores. More precisely, the 

highest score of the Risk Factors section equals 0.628 and is achieved when TF+bigrams are 

used as inputs in the logistic regression model. In the Summary section, the highest score is 

0.625 and it is achieved with the logistic regression with TF+bigrams and the RF with TF 

features. The Use of Proceeds appears to be the least informative section, as its best score 

equals 0.592 when we use TF+bigrams as inputs in the random forest model. 

One interesting insight from our analysis is the difference in accuracy scores between the 

 
13 Types 1 and 2 use only unigrams, and types 3 and 4 use a combination of unigrams and bigrams. 
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entire S-1 filing (Panel A) and the aggregate four sections (Panel B). In general, the four 

major sections produce slightly better results compared to the entire filing, as the combined 

section reflects unique information from each separate section and minimizes the noise 

introduced in the model. Notably, the four sections produce the highest accuracy score 

(0.649), when we use TF+bigrams in the logistic regression model. In terms of our models 

performance, RF, LOGIT, and MLP outperform SVMs either with linear kernel or with non-

linear kernel (RBF). 

Further, we also investigate whether financial variables alone can distinguish between 

underpriced and overpriced IPOs. In Panel G of Table 4, we use only financial variables as 

inputs in our prediction models. By looking at the accuracy scores, we observe that the MLP 

outperforms the other benchmarking models (0.675), while the RF has the second-best 

accuracy score (0.671). Overall, our results indicate that financial variables can effectively 

contribute to our classification task. 

Insert Table 4 here 

5.3. Prediction with both textual and financial data 

We now examine the classification ability of our models when we use both textual data 

and financial variables as inputs. The critical question that arises here is whether textual data 

include further incremental information beyond the financial variables, and if so, which 

models can achieve better prediction accuracy.  

Table 5 presents the results of this analysis. At a first glance, it seems that the combination 

of textual data with financial variables worsens the predictive ability of our models, as the 

accuracy scores are lower compared to Table 4. We attribute this underperformance to the 

curse of dimensionality. In fact, one concern with the massive quantity of textual features is 

that they may overrule the role of financial variables and decrease the performance of our 

models. We address this issue in the next session. 
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Insert Table 5 here 

5.4. Prediction with singular value decomposition 

To deal with the curse of dimensionality, we apply the singular value decomposition 

(SVD) dimensionality reduction technique. This is a very popular method in machine 

learning and NLP tasks, since it can project high-dimensional document vectors into a low 

dimensional space (Howland et al., 2003; Kim et al., 2005). The benefit of this approach is 

twofold: (1) it approximates the document very well by preserving the meaningful 

information, and (2) it copes with the curse of dimensionality (Mai et al., 2019). In our 

empirical specification, we use SVD to project the original feature vectors to 100 dimensions 

(SVD-100).14 By using such a low level of textual representation, we expect that both textual 

data and financial variables can effectively increase the predictive power of our classification 

models. 

Table 6 presents the accuracy scores of our models, when we use a combination of SVD-

100 textual features and financial variables.15 In line with our expectations, we find that the 

out-of-sample performance is substantially improved. More specifically, we observe that in 

many cases, the prediction accuracy exceeds 70%, which suggests that our models can now 

better capture the most important information from the original features. Again, the most 

informative section appears to be the combination of the 4 major sections (Panel B of Table 

6). In fact, when we use the TF-IDFSVD100 unigrams along with financial variables as inputs 

in the random forest model, we achieve an accuracy score of 0.736. This means that our 

model is able to correctly classify underpriced from overpriced IPOs in 73.60% of the future 

cases. In addition, consistent with our previous results, RF, LOGIT, and MLP outperform 

both types of SVMs. 

 
14 It is worth-mentioning that we take into account merely the 100 first SVD components since they were found 
to explain almost 80% of the joint variance of the 20,000 most frequent textual features in the S-1 filings. 
15 We also report results using only the SVD100 features as inputs in our classification models (see Table A1 in 
the Appendices). 
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Insert Table 6 here 

Figure 2 presents the ROC curves of our three best machine learning algorithms (RF, 

LOGIT, and MLP). We observe that AUC values are consistently above 0.7, with the TF-IDF 

features producing the highest scores (AUC values range from 0.75 to 0.79). When we 

compare the three models, we find that LOGIT and RF compete, since each one prevails 

across a specific spectrum of cut-off probabilities. Overall, our findings indicate that textual 

information in a decreased-dimension form can effectively supplement the financial variables 

and increase the prediction accuracy of our models. 

Insert Figure 2 here 

5.5. Prediction with a combination of lexicon features and financial data 

To get further insight of how textual information impacts our classification task, we also 

employ the document tone in our analysis, using the word lists of Loughran and McDonald 

(2011). In detail, we use these word lists to classify words into the six following categories: 

(1) negative, (2) positive, (3) uncertain, (4) weak modal, (5) strong modal, and (6) legal. 

Then, we compute sentiment scores based on how frequently a word appears in each one of 

these lexicons. In line with Loughran and McDonald (2013), we use each sentiment score 

separately in our analysis, due to the correlations and word overlap among word lists. 

Moreover, in each one of our models, we also include our 8 financial variables. 

Table 7 presents the results of this analysis. Interestingly, we report results comparable 

with Table 6. In fact, RF and MLP models yield accuracy scores that in many cases exceed 

70%. What is intriguing in our findings is that each lexicon produces higher results in a 

separate section of IPO prospectus. In the entire S-1 filling for instance, the best lexicons are 

the weak modal and the legal, which both produce an accuracy score of 0.690 with the 

random forest model. In the combined 4 sections, the positive lexicon yields the highest 

accuracy score (0.706) again with the use of RF. This finding is consistent with Brau et al. 
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(2016), who document that the S-1 section may reflect some kind of strategic optimism. In 

both Risk Factors and Use of Proceeds sections, the highest scores are achieved with the legal 

word list, a finding which could be related to the potential litigation risks associated with 

these sections. Turning to the MD&A section, strong modal results in the highest accuracy 

score (0.706) with the use of MLP. This finding is expected to some extent, as this section of 

the IPO prospectus reflects managers’ confidence regarding the future prospects of their firm 

(Ferris et al., 2013). In the Summary section, the weak modal word list produces the best 

outcome. Considering that Summary is written by the underwriter in most cases, a weaker 

tone may be chosen to deal with potential litigation risks (Hanley and Hoberg, 2012). Finally, 

Table 8 reviews all the aforementioned findings. 

Insert Table 7 here 

Insert Table 8 here 

5.6. Robustness tests 

In this section, we conduct three main robustness tests to ensure the stability of our results. 

First, we exclude all crisis years from our sample. More precisely, we remove all IPOs from 

years 2000-2001 as the years of dot-com bubble, and from years 2008-2009 as the years of 

the financial crisis (Cohen et al., 2020).16 Our results remain qualitative similar to the ones 

reported in Table 6 (see Table A2 in the Appendices). 

As a second robustness test, we adopt two alternative sample splits for our training and 

testing datasets. First, we select 70% of our data as the training set, and the remaining 30% as 

the testing set (Veganzones and Severin, 2018; Kim et al., 2019). Second, we select 75% of 

our data as the training set, and the remaining 25% as the testing set (Gogas et al., 2018). 

Notably, our results are not influenced by these changes in the sample proportions (see 

Tables A3 and A4 in the Appendices). 

 
16 Now, our balanced sample consists of 503 overpriced and 503 underpriced IPOs. 
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As a final robustness check, we change the threshold of the most frequent words from 

20,000 to 10,000. Our findings suggest that the main inferences of this article do not change 

when we use a different maximum number of textual features (see Table A5 in the 

Appendices). 

 

6. Conclusions 

Our study adds to the extensive literature of IPO underpricing. We utilize various machine 

learning classification models to distinguish between overpriced and underpriced IPOs. This 

allows us to explore if textual information from S-1 filings provides useful information in 

IPO underpricing prediction. The intuition behind this approach is based on the findings of 

Loughran and McDonald (2013), who document that textual information may proxy for the 

ex-ante uncertainty of the issuing firms’ valuation. Our empirical approach goes beyond the 

scope of previous studies for two reasons. First, instead of using an econometric set up, we 

consider the task as a binary classification by using machine learning algorithms. Second, we 

examine the predictive power of unigram and bigram textual features, which do not require 

sentiment lexica and can, thus, be used more easily in less widely spoken languages where 

linguistic resources are typically more difficult to obtain. 

For the purposes of our study, we collect a sample of 2,481 IPOs during the period 1997 to 

2016. For each issuing firm, we retrieve the S-1 filing and we decompose it into its four 

major sections. Then, we construct a plethora of textual features from each one of these 

sections, the combination of all four sections, and the entire S-1 filing. We use the textual 

features along with several frequently-used financial variables as inputs in our machine 

learning models. We do so, in order to investigate whether our classification models can 

extract meaningful information from IPOs prospectuses, and if so, whether this information 

can effectively be combined with financial variables.  
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In our empirical analysis, we first examine the predictive power of textual information and 

financial variables separately. Our findings indicate that both types of inputs achieve an out-

of-sample accuracy that in most cases exceeds 50%. However, when we combine the two 

sources of data, the accuracy scores are reduced, due to the high dimensionality of textual 

features. For this reason, we lower the dimensional space of our textual features by using the 

SVD dimension reduction technique. Notably, when we do so, we obtain superior results. In 

fact, when we combine SVD textual features with financial variables, we are able to achieve 

accuracy scores that in some cases exceed 70%. When it comes to our classification models, 

LOGIT, RF, and MLP yield the highest scores. Furthermore, AUC values complement the 

outperformance of these three models, as AUC values range between 0.72 and 0.79. 

As a concluding remark, our research points out new methodological insights on how the 

plethora of textual features should efficiently be integrated with numerical data as mixed 

inputs into the machine learning algorithms. Apart from identifying the best classification 

model, our findings highlight the importance of textual information in IPOs underpricing 

prediction. We show that textual information from S-1 filings could reduce the ex-ante 

uncertainty of IPOs valuation, and thereby increase the predictive power of classification 

models. On this end, we hope that our study will provide fertile ground for future research, as 

there is still much to explore on this issue. For instance, future research may utilize other 

machine learning algorithms, including more complex neural models from recent NLP 

research, to predict IPOs underpricing. 

  



27 

 

References 

Ambrose, B. W., & Megginson, W. L. (1992). The role of asset structure, ownership 
structure, and takeover defenses in determining acquisition likelihood. Journal of 

Financial and Quantitative Analysis, 27, 575-589. 

Arnold, T., Fishe, R. P. H., & North, D. (2010). The effects of ambiguous information on 
initial and subsequent IPO returns. Financial Management, 39, 1497-1519. 

Balakrishnan, R., Qiu X. Y., & Srinivasan P. (2010). On the predictive ability of narrative 
disclosures in annual reports. European Journal of Operational Research, 202, 789-
801. 

Banerjee, S., Dai, L., & Shrestha, K. (2011). Cross-country IPOs: What explains differences 
in underpricing?. Journal of Corporate Finance, 17, 1289-1305. 

Barnes, P. (1998). Can takeover targets be identified by statistical techniques? Some UK 
evidence. Journal of the Royal Statistical Society: Series D (The Statistician), 47, 573-
591. 

Baron, D. P. (1982). A model of the demand for investment banking advising and distribution 
services for new issues. Journal of Finance, 37, 955-976. 

Baron, D. P., & Holmstrom, B. (1980). The investment banking contract for new issues under 
asymmetric information: Delegation and the incentive problem. Journal of Finance, 35, 
1115-1138. 

Bastı, E., Kuzey, C., & Delen, D. (2015). Analyzing initial public offerings' short-term 
performance using decision trees and SVMs. Decision Support Systems, 73, 15-27. 

Beatty, R. P., & Ritter, J. R. (1986). Investment banking, reputation, and the underpricing of 
initial public offerings. Journal of Financial Economics, 15, 213-232. 

Beatty, R. P., & Welch, I. (1996). Issuer expenses and legal liability in initial public 
offerings. Journal of Law and Economics, 39, 545-602. 

Benveniste, L. M., Ljungqvist, A., Wilhelm Jr., W. J., & Yu, X. (2003). Evidence of 
information spillovers in the production of investment banking services. Journal of 

Finance, 58, 577-608. 

Bhabra, H. S., & Pettway, R. H. (2003). IPO prospectus information and subsequent 
performance. Financial Review, 38, 369-397. 

Bodnaruk, A., Loughran, T., & McDonald, B. (2015). Using 10-K text to gauge financial 
constraints. Journal of Financial and Quantitative Analysis, 50, 623-646. 

Brau, J. C., Cicon, J., & McQueen, G. (2016). Soft strategic information and IPO 
underpricing. Journal of Behavioral Finance, 17, 1-17. 

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140. 

Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. 

Brown, S. V, & Tucker, J. W. (2011). Large-sample evidence on firms' year-over-year 
MD&A modifications. Journal of Accounting Research, 49, 309-346. 

Butler, A. W., Keefe, M. Ο. C., & Kieschnick, R. (2014). Robust determinants of IPO 
underpricing and their implications for IPO research. Journal of Corporate Finance, 
27, 367-383. 

Cao, L. (2003). Support vector machines experts for time series forecasting. Neurocomputing, 



28 

 

51, 321-339. 

Carter, R., & Manaster, S. (1990). Initial public offerings and underwriter reputation. Journal 

of Finance, 45, 1045-1067. 

Carter, R. B., Dark, F. H., & Singh, A. K. (1998). Underwriter reputation, initial returns, and 
the long-run performance of IPO stocks. Journal of Finance, 53, 285-311. 

Chahine, S. (2008). Underpricing versus gross spread: New evidence on the effect of sold 
shares at the time of IPOs. Journal of Multinational Financial Management, 18, 180-
196. 

Chen, G., Firth, M., & Kim, J. B. (2004). IPO underpricing in China’s new stock markets. 
Journal of Multinational Financial Management, 14, 283-302. 

Chen, Y. S., Chen, J. S., & Cheng, C. H. (2010). An alternate method of examining IPO 
returns. Intelligent Automation and Soft Computing, 16, 151-161. 

Cheng, C.H., Chen, Y.S., & Chen, J.S. (2007). Classifying initial returns of electronic firm’s 
IPOs using entropy based rough sets in Taiwan trading systems. Second International 
Conference on Innovative Computing, Information and Control (ICICIC). 

Cohen, L., Malloy, C., & Nguyen, Q. (2020). Lazy prices. Journal of Finance, 75, 1371-
1415. 

Ding, R. (2016). Disclosure of downside risk and investors’ use of qualitative information: 
Evidence from the IPO prospectus’s risk factor section. International Review of 

Finance, 16, 73-126. 

Doumpos, M., Andriosopoulos, K., Galariotis, E., Makridou, G., & Zopounidis, C. (2017). 
Corporate failure prediction in the European energy sector: A multicriteria approach 
and the effect of country characteristics. European Journal of Operational Research, 
262, 347-360. 

Doumpos, M., Kosmidou, K., & Pasiouras, F. (2004). Prediction of acquisition targets in the 
UK: A multicriteria approach. Operational Research: An International Journal, 4, 191-
211. 

Engelen, P. J., & Van Essen, M. (2010). Underpricing of IPOs: Firm-, issue-and country-
specific characteristics. Journal of Banking and Finance, 34, 1958-1969. 

Espahbodi, H., & Espahbodi, P. (2003). Binary choice models for corporate takeover. 
Journal of Banking and Finance, 27, 549-574. 

Ferris, S. P., Hao, Q., & Liao, M. Y. (2013). The effect of issuer conservatism on IPO pricing 
and performance, Review of Finance, 17, 933-1027. 

Gandhi, P., Loughran, T., & McDonald, B. (2019). Using annual report sentiment as a proxy 
for financial distress in U.S. banks. Journal of Behavioral Finance, 20, 424-436. 

Gao, X., Ritter, J. R., & Zhu, Z. (2013). Where have all the IPOs gone? Journal of Financial 

and Quantitative Analysis, 48, 1663-1692. 

Geng, R., Bose, I., & Chen, X. (2015). Prediction of financial distress: An empirical study of 
listed Chinese companies using data mining. European Journal of Operational 

Research, 241, 236-247. 

Gogas, P., Papadimitriou, T., & Agrapetidou, A. (2018). Forecasting bank failures and stress 
testing: A machine learning approach. International Journal of Forecasting, 34, 440-
455. 



29 

 

Goldberg, Y. (2017). Neural network methods for natural language processing. Morgan & 
Claypool Publishers. 

Hagenau, M., Liebmann, M., & Neumann, D. (2013). Automated news reading: Stock price 
prediction based on financial news using context-capturing features. Decision Support 

Systems, 55, 685-697. 

Hanley, K. W., & Hoberg, G. (2010). The information content of IPO prospectuses. Review 

of Financial Studies, 23, 2821-2864. 

Hanley, K. W., & Hoberg, G. (2012). Litigation risk, strategic disclosure and the 
underpricing of initial public offerings. Journal of Financial Economics, 103, 235-254. 

Hasbrouck, J. (1985). The characteristics of takeover targets q and other measures. Journal of 

Banking and Finance, 9, 351-362. 

Hauser, S., Yaari, U., Tanchuma, Y., & Baker, H. (2006). Initial public offering discount and 
competition. Journal of Law and Economics, 49, 331-351. 

Howland, P., Jeon, M., & Park, H. (2003). Structure preserving dimension reduction for 
clustered text data based on the generalized singular value decomposition. SIAM 

Journal on Matrix Analysis and Applications, 25, 165-179. 

Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement 
direction with support vector machine. Computers & Operations Research, 32, 2513-
2522. 

Ibbotson, R. G. (1975). Price performance of common stock new issues. Journal of Financial 

Economics, 2, 235-272. 

Ibbotson, R. G., Sindelar, J. L., & Ritter, J. R. (1994). The market’s problems with the pricing 
of initial public offerings. Journal of Applied Corporate Finance, 7, 66-74. 

Imbens, G. W. (1992). An efficient method of moments estimator for discrete choice models 
with choice-base sampling. Econometrica, 60, 1187-1214. 

Jain, B. A., & Nag, B. N. (1995). Artificial neural network models for pricing initial public 
offerings. Decision Sciences, 26, 283-302. 

Katsafados, A. G., Androutsopoulos, I., Chalkidis, I., Fergadiotis, E., Leledakis, G. N., & 
Pyrgiotakis, E. G. (2020). Using textual analysis to identify merger participants: 
Evidence from U.S. banking industry. Working Paper. Available at SSRN: 
https://ssrn.com/abstract=3474583.  

Kearney, C., & Liu, S. (2014). Textual sentiment in finance: A survey of methods and 
models. International Review of Financial Analysis, 33, 171-185. 

Kim, H., Howland, P., & Park, H. (2005). Dimension reduction in text classification with 
support vector machines. Journal of Machine Learning Research, 6, 37-53. 

Kim, J., Shin, S., Lee, H. S., & Oh, K. J. (2019). A machine learning portfolio allocation 
system for IPOs in Korean markets using GA-rough set theory. Sustainability, 11, 
6803. 

Kumar, B. S., & Ravi, V. (2016). A survey of the applications of text mining in financial 
domain. Knowledge-Based Systems, 114, 128-147. 

Kumar, R. B., Kumar, B. S., & Prasad, C. S. S. (2012). Financial news classification using 
SVM. International Journal of Scientific and Research Publications, 2, 1-6. 

https://ssrn.com/abstract=3474583


30 

 

Laitinen, T., & Kankaanpaa, M. (1999). Comparative analysis of failure prediction methods: 
The Finnish case. European Accounting Review, 8, 67-92. 

Leone, A. J., Rock, S., & Willenborg, M. (2007). Disclosure of intended use of proceeds and 
underpricing in initial public offerings. Journal of Accounting Research, 45, 111-153. 

Ljungqvist, A. (2007). IPO Underpricing. In B.E. Eckbo, (Eds.), Handbook of Corporate 

Finance: Empirical Corporate Finance (pp. 375-422). Amsterdam: Elsevier-North 
Holland. 

Ljungqvist, A., & Wilhelm Jr, W. J. (2003). IPO pricing in the dot‐com bubble. Journal of 

Finance, 58, 723-752. 

Ljungqvist, A., & Wilhelm Jr, W. J. (2005). Does prospect theory explain IPO market 
behavior? Journal of Finance, 60, 1759-1790. 

Logue, D. E. (1973). On the pricing of unseasoned equity issues: 1965-1969. Journal of 

Financial and Quantitative Analysis, 25, 133-141. 

Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, 
dictionaries, and 10-Ks. Journal of Finance, 66, 35-65. 

Loughran, T., & McDonald, B. (2013). IPO First-day returns, offer price revisions, volatility, 
and form S-1 language. Journal of Financial Economics, 109, 307-326. 

Loughran, T., & McDonald, B. (2016). Textual analysis in accounting and finance: A survey. 
Journal of Accounting Research, 54, 1187-1230. 

Loughran, T., & Ritter, J. (2004). Why has IPO underpricing changed over time? Financial 

Management, 33, 5-37. 

Ly, T. H., & Nguyen, K. (2020). Do words matter: Predicting IPO performance from 
prospectus sentiment. 2020 IEEE 14th International Conference on Semantic 
Computing. 

Mai, F., Tian, S., Lee, C., & Ma, L. (2019). Deep learning models for bankruptcy prediction 
using textual disclosures. European Journal of Operational Research, 274, 743-758. 

Min, J. H., & Lee, Y. C. (2005). Bankruptcy prediction using support vector machine with 
optimal choice of kernel function parameters. Expert Systems with Applications, 28, 
603-614. 

Mitsdorffer, R., Diederich, J., & Tan, C. (2002). Rule extraction from the technology IPOs in 
the US stock market. Proceedings of the 9th International Conference on Neural 
Information Processing (ICONIP’02) (IEEE Press, Piscataway), 2328-2334. 

Nardo, M., Petracco‐Giudici, M., & Naltsidis, M. (2016). Walking down wall street with a 
tablet: A survey of stock market predictions using the web. Journal of Economic 

Surveys, 30, 356-369. 

Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., & Ling Ngo, D. C. (2014). Text mining for 
market prediction: A systematic review. Expert Systems with Applications, 41, 7653-
7670. 

Neophytou, E., & Mar Molinero, C. (2004). Predicting corporate failure in the UK: A 
multidimensional scaling approach. Journal of Business Finance and Accounting, 31, 
677-710. 

Nguyen, T. H., Shirai, K., & Velcin, J. (2015). Sentiment analysis on social media for stock 
movement prediction. Expert Systems with Applications, 42, 9603-9611. 



31 

 

Pai, P. F., & Lin, C. S. (2005). A hybrid ARIMA and support vector machines model in stock 
price forecasting. Omega, 33, 497-505. 

Palepu, K. G. (1986). Predicting takeover targets: A methodological and empirical analysis. 
Journal of Accounting and Economics, 8, 3-35. 

Pasiouras, F., & Tanna, S. (2010). The prediction of bank acquisition targets with 
discriminant and logit analyses: Μethodological issues and empirical evidence. 
Research in International Business and Finance, 24, 39-61. 

Pasiouras, F., Gaganis, C., & Zopounidis, C. (2010). Multicriteria classification models for 
the identification of targets and acquirers in the Asian banking sector. European 

Journal of Operational Research, 204, 328-335. 

Pasiouras, F., Gaganis, C., Tanna, S., & Zopounidis, C. (2008). An application of support 
vector machines in the prediction of acquisition targets: Evidence from the EU banking 
sector. In C. Zopounidis, M. Doumpos, & P. Pardalos (Eds.), Handbook of financial 
engineering (pp. 431-456). Boston: Springer. 

Pasiouras, F., Tanna, S., & Zopounidis, C. (2007). The identification of acquisition targets in 
the EU banking industry: An application of multicriteria approaches. International 

Review of Financial Analysis, 16, 262-281. 

Pestov, V. (2013). Is the k-NN classifier in high dimensions affected by the curse of 
dimensionality? Computers & Mathematics with Applications, 65, 1427-1437. 

Powell, R. G. (2001). Takeover prediction and portfolio performance: A note. Journal of 

Business Finance and Accounting, 28, 993-1011. 

Quintana, D., Chávez, F., Luque Baena, R. M., & Luna, F. (2018). Fuzzy techniques for IPO 
underpricing prediction. Journal of Intelligent & Fuzzy Systems, 35, 367-381. 

Quintana, D., Sáez, Y., & Isasi, P. (2017). Random forest prediction of IPO underpricing. 
Applied Sciences, 7, 636. 

Reber, B., Berry, B., & Toms, S. (2005). Predicting mispricing of initial public offerings. 
Intelligent Systems in Accounting, Finance and Management, 13, 41-59. 

Ritter, J. R. (1984). The “hot issue” market of 1980. Journal of Business, 57, 215-240. 

Ritter, J. R., & Welch, I. (2002). A review of IPO activity, pricing, and allocations. Journal of 

Finance, 57, 1795-1828. 

Rock, K. (1986). Why new issues are underpriced. Journal of Financial Economics, 15, 187-
212. 

Routledge, B. R., Sacchetto, S., & Smith, N. A. (2017). Predicting merger targets and 
acquirers from text. Working Paper, Carnegie Mellon University. 

Schumaker, R. P., & Chen, H. (2009). Textual analysis of stock market prediction using 
breaking financial news: The AZFin text system. ACM Transactions of Information 

Systems, 27, 1-19. 

Shin, K. S., Lee, T. S., & Kim, H. (2005). An application of support vector machines in 
bankruptcy prediction model. Expert Systems with Applications, 28, 127-135. 

Sun, S., Luo, C., & Chen, J. (2017). A review of natural language processing techniques for 
opinion mining systems. Information Fusion, 36, 10-25. 

Vapnik, V. N. (1998). Statistical learning theory. (1st ed.). New York: Wiley. 



32 

 

Veganzones, D., & Severin, E. (2018). An investigation of bankruptcy prediction in 
imbalanced datasets. Decision Support Systems, 112, 111-124. 

Wang, D., Qian, X., Quek, C., Tan, A. H., Miao, C., Zhang, X., Ng, G. S., & Zhou, Y. 
(2018). An interpretable neural fuzzy inference system for predictions of underpricing 
in initial public offerings. Neurocomputing, 319, 102-117. 

Wu, C. H., Tzeng, G. H., Goo, Y. J., & Fang, W. C. (2007). A real-valued genetic algorithm 
to optimize the parameters of support vector machine for predicting bankruptcy. Expert 

Systems with Applications, 32, 397-408. 

 

  



33 

 

Figure 1 

Imbalance rate of the final IPO sample 

 
This figure represents the imbalanced rate of our final (imbalanced) sample on an annual basis. The final 
(imbalanced) sample consists of 2,481 IPOs from 1997 to 2016. In each year of our examination period, the 
imbalance rate is the ratio of underpriced IPOs to overpriced IPOs. 
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Figure 2 

ROC curve with both SVD-100 textual data and financial variables 

 

This figure depicts the receiver operating characteristic (ROC) curves for three machine learning algorithms: (1) 
logistic regression (LOGIT MODEL), (2) random forest (RF MODEL), and (3) multilayer preceptor (MLP 
MODEL). The red dotted line represents a 45-degree line which indicates a random assignment of class labels. 
Area stands for the area under curve (AUC) measure. TF and TF-IDF represent the two term weighting 
schemes. TF stands for the term frequency scheme, and TF-IDF for the term frequency-inverse document 
frequency scheme. Bigrams are word pairs represented as a single textual feature. 
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Table 1 

Studies on IPO underpricing classification 
Authors Country IPO deals Period Models 
Mitsdorffer et al. (2002) USA 182 1996-2000 ANN, Bayesian classifier, Decision Tree, Rule learners, SVM 

Cheng et al. (2007) Taiwan 220 1985-2003 ANN, Naive Bayes, Rough Sets 

Chen et al. (2010) Taiwan 220 1985-2003 ANN, Bayes Net, Decision Tree, Rough Sets 

Kim et al. (2019) South Korea 718 2007-2018 Genetic algorithms-rough sets 

Ly and Nguyen (2020) USA N/A 1993-2019 Decision Tree, Logit, Naive Bayes, Random Forest 

This table summarizes the relevant literature that uses machine learning algorithms in an IPO classification task. ANN stands for artificial neural networks and 
SVM for support vector machine. The number of IPO deals is not available (N/A) in the study of Ly and Nguyen (2020). 
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Table 2 

Topic extraction through LDA method for each separate section 
LDA Topic 1 Topic 2 Topic 3 Topic 4 

Risk Factors Future products Regulatory approval Financial operations  
Summary Common shares offering Financial data information   
Use of Proceeds Acquisition Development Dividends Credit 
MD&A Stock value development Revenue increase value Net sales  

This table summarizes the results of applying Latent Dirichlet Allocation (LDA) to the sections of the S-1 filing. LDA is 
conducted in each separate section of the S-1 filing (Risk Factors, Summary, Use of Proceeds, and MD&A). LDA 
identifies the most relevant topics (up to 4 in our case) of each separate section, and represents each topic by its most 
frequent words. Here we show our own labels of the topics, which reflect our own understanding of the meaning of each 
topic, based on the frequent words of each topic. 
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Table 3 

Summary statistics 
Variables Mean Median Std. Dev. Min Max 

First-day returns 31.1% 12.5% 59.7% -33.1% 697.5% 

Sales $451.9 $39.6 $3,149 $0 $104,589 

Positive EPS 0.39 0 0.49 0 1 
Share overhang 3.63 3.03 2.73 -0.16 68.18 
Venture capital 0.53 0.50 1 0 1 
Prior Nasdaq 15-day returns 1.12% 1.24% 5.38% -0.22% 0.25% 
Up-revision 10.5% 0% 20.1% 0% 220% 
Top-tier 0.78 1 0.42 0 1 
Days between S-1 and 1-trading day 115.9 86 111.4 21 1,659 
% Negative 1.36 1.38 0.30 0.50 2.27 

% Positive 0.75 0.75 0.15 0.37 2.08 

% Uncertain 1.35 1.36 0.20 0.76 2.04 

% Weak modal 0.70 0.71 0.18 0.26 1.36 

% Strong modal 0.51 0.50 0.11 0.21 1.23 

% Legal 0.75 0.72 0.20 0.34 2.29 

This table reports the summary statistics of our final (imbalanced) sample. The final (imbalanced) sample consists of 
2,481 IPOs from 1997 to 2016. First-day returns is the underpricing measure, and is calculated as the percentage 
change from the offer price to the closing price. Sales is the logarithm of firm annual sales in the 12 months prior to 
the IPO. Positive EPS is a dummy variable which equals to 1 if the IPO has positive earnings per share in the year 
before going public, and 0 otherwise. Share overhang is the amount of shares retained divided by the amount of 
shares in the IPO. Venture capital is a dummy variable which equals to 1 if the IPO is backed by venture capital, and 
0 otherwise. Prior Nasdaq 15-day returns is the buy and hold returns of the Nasdaq index 15 trading days before 
IPO date. Up-revision is the percentage upward revision from the mid-point of the filing range, if the offer price is 
higher than mid-point, and 0 otherwise. Top-tier is a dummy variable which equals to 1 if at least one underwriter 
has been classified as top-tier according to the rankings of Carter and Manaster (1990), Carter et al. (1998) and 
Loughran and Ritter (2004), and 0 otherwise. Days between S-1 and 1-trading day is the logarithm of days between 
S-1 filing date and first-trading day. Finally, % negative, % positive, % uncertain, % weak modal, % strong modal, 
and % legal are the sentiment scores of the S-1 filing, calculated using Loughran and McDonald’s (2011) word lists.  
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Table 4 

Out-of-sample performance using textual features and financial variables separately 
 SVM-linear SVM-RBF LOGIT RF MLP 

Panel A: S-1      

TF 0.505 0.500 0.565 0.580 0.600 
TF-IDF 0.505 0.465 0.600 0.600 0.585 
TF + bigrams 0.460 0.500 0.565 0.600 0.585 
TF-IDF + bigrams 0.460 0.460 0.620 0.600 0.595 

Panel B: 4 Sections      

TF 0.511 0.498 0.641 0.580 0.615 
TF-IDF 0.532 0.524 0.606 0.580 0.610 
TF + bigrams 0.567 0.494 0.649 0.602 0.641 
TF-IDF + bigrams 0.498 0.541 0.619 0.605 0.623 

Panel C: Risk Factors     

TF 0.502 0.502 0.615 0.576 0.602 
TF-IDF 0.500 0.532 0.589 0.597 0.597 
TF + bigrams 0.500 0.502 0.628 0.567 0.610 
TF-IDF + bigrams 0.472 0.502 0.589 0.602 0.597 

Panel D: Summary      

TF 0.517 0.522 0.616 0.625 0.612 
TF-IDF 0.547 0.522 0.612 0.616 0.612 
TF + bigrams 0.535 0.517 0.625 0.586 0.603 
TF-IDF + bigrams 0.547 0.517 0.608 0.621 0.616 

Panel E: Use of Proceeds 

TF 0.519 0.494 0.571 0.575 0.562 
TF-IDF 0.490 0.524 0.571 0.575 0.549 
TF+ bigrams 0.506 0.502 0.549 0.592 0.579 
TF-IDF + bigrams 0.472 0.455 0.571 0.571 0.588 

Panel F: MD&A      

TF 0.588 0.545 0.584 0.609 0.627 
TF-IDF 0.566 0.528 0.635 0.588 0.644 
TF + bigrams 0.575 0.532 0.588 0.631 0.627 
TF-IDF + bigrams 0.515 0.541 0.618 0.601 0.635 

Panel G: No textual data 

Economic variables 0.545 0.608 0.641 0.671 0.675 

This table reports the accuracy scores for our machine learning models, using textual information and financial 
variables separately as inputs. The final (imbalanced) sample consists of 2,481 IPOs from 1997 to 2016. The 
analysis is based on a balanced sample of 576 underpriced and 576 overpriced IPOs. To construct the textual 
features, we use the 20,000 most frequent words of the S-1 filing. We use 80% of our sample as the training set 
and the remaining 20% as the testing set. Panels A to F use only textual information as inputs. Panel A reports 
results when we use textual information from the entire S-1 filing, Panel B from the combination of the 4 
major sections, and Panels C to F from each separate section (Risk Factors, Summary, Use of Proceeds, and 
MD&A). Panel G reports results when we use only financial variables. The first two lines of each panel report 
results using only unigrams, while the last two lines report results using combinations of unigrams and 
bigrams. Bigrams are pairs of consecutive words represented as a single textual feature. We use the following 
machine learning models: linear support vector machines (SVM-linear), support vector machines with radial 
basis function kernel (SVM-RBF), logistic regression (LOGIT), random forest (RF), and multilayer perceptron 
(MLP). TF and TF-IDF are the two term weighting schemes. TF stands for the term frequency scheme 
normalized by document length, and TF-IDF for the term frequency-inverse document frequency scheme. 
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Table 5 

Out-of-sample performance using both textual features and financial variables as inputs 
 SVM-linear SVM-RBF LOGIT RF MLP 

Panel A: S-1      

TF 0.515 0.500 0.560 0.595 0.590 
TF-IDF 0.460 0.510 0.560 0.590 0.600 
TF + bigrams 0.505 0.505 0.560 0.600 0.590 
TF-IDF + bigrams 0.560 0.560 0.595 0.595 0.590 

Panel B: 4 Sections      

TF 0.545 0.502 0.623 0.606 0.593 
TF-IDF 0.580 0.502 0.593 0.610 0.589 
TF + bigrams 0.506 0.502 0.623 0.615 0.641 
TF-IDF + bigrams 0.602 0.511 0.602 0.597 0.590 

Panel C: Risk Factors      

TF 0.506 0.511 0.567 0.632 0.563 
TF-IDF 0.498 0.472 0.593 0.597 0.615 
TF + bigrams 0.506 0.502 0.575 0.545 0.584 
TF-IDF + bigrams 0.528 0.494 0.567 0.597 0.571 

Panel D: Summary      

TF 0.487 0.500 0.552 0.629 0.595 
TF-IDF 0.522 0.573 0.595 0.642 0.625 
TF + bigrams 0.530 0.504 0.491 0.612 0.582 
TF-IDF + bigrams 0.530 0.513 0.595 0.638 0.569 

Panel E: Use of Proceeds 

TF 0.541 0.489 0.562 0.627 0.558 
TF-IDF 0.519 0.532 0.524 0.627 0.545 
TF + bigrams 0.506 0.528 0.562 0.627 0.562 
TF-IDF + bigrams 0.506 0.481 0.554 0.609 0.541 

Panel F: MD&A      

TF 0.554 0.528 0.605 0.597 0.597 
TF-IDF 0.545 0.519 0.614 0.639 0.592 
TF + bigrams 0.515 0.502 0.597 0.627 0.609 
TF-IDF + bigrams 0.515 0.489 0.575 0.631 0.627 

This table reports the accuracy scores for our machine learning models, using both textual information and 
financial variables as inputs. The final (imbalanced) sample consists of 2,481 IPOs from 1997 to 2016. The 
analysis is based on a balanced sample of 576 underpriced and 576 overpriced IPOs. To construct the textual 
features, we use the 20,000 most frequent words of the S-1 filing. We use 80% of our sample as the training set 
and the remaining 20% as the testing set. Panels A to F report results for the entire S-1 filing, the combination 
of the 4 major sections, and from each separate section, respectively (Risk Factors, Summary, Use of Proceeds, 
and MD&A). The first two lines of each panel report results using only unigrams, while the last two lines 
report results using combinations of unigrams and bigrams. Bigrams are pairs of consecutive words 
represented as a single textual feature. We use the following machine learning models: linear support vector 
machines (SVM-linear), support vector machines with radial basis function kernel (SVM-RBF), logistic 
regression (LOGIT), random forest (RF), and multilayer perceptron (MLP). TF and TF-IDF are the two term 
weighting schemes. TF stands for the term frequency scheme normalized by document length, and TF-IDF for 
the term frequency-inverse document frequency scheme. 
. 
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Table 6 

Out-of-sample performance using both SVD-100 textual features and financial variables as 
inputs 

 SVM-linear SVM-RBF LOGIT RF MLP 

Panel A: S-1      

TFSVD100 0.525 0.530 0.630 0.700 0.655 
TF-IDFSVD100 0.580 0.575 0.665 0.725 0.670 
(TF + bigrams)SVD100 0.540 0.610 0.635 0.680 0.645 
(TF-IDF + bigrams)SVD100 0.630 0.610 0.670 0.720 0.700 

Panel B: 4 Sections      

TFSVD100 0.528 0.558 0.628 0.700 0.684 
TF-IDFSVD100 0.550 0.584 0.688 0.736 0.688 
(TF + bigrams)SVD100 0.571 0.545 0.658 0.701 0.667 
(TF-IDF + bigrams)SVD100 0.519 0.589 0.684 0.727 0.714 

Panel C: Risk Factors      

TFSVD100 0.506 0.506 0.658 0.680 0.654 
TF-IDFSVD100 0.580 0.589 0.632 0.658 0.653 
(TF + bigrams)SVD100 0.519 0.515 0.645 0.641 0.623 
(TF-IDF + bigrams)SVD100 0.580 0.558 0.645 0.684 0.628 

Panel D: Summary      

TFSVD100 0.664 0.565 0.711 0.694 0.694 
TF-IDFSVD100 0.655 0.582 0.655 0.698 0.707 
(TF + bigrams)SVD100 0.552 0.530 0.711 0.703 0.703 
(TF-IDF + bigrams)SVD100 0.599 0.586 0.681 0.703 0.668 

Panel E: Use of Proceeds      

TFSVD100 0.481 0.528 0.661 0.661 0.631 
TF-IDFSVD100 0.554 0.558 0.687 0.682 0.635 
(TF + bigrams)SVD100 0.562 0.549 0.644 0.691 0.652 
(TF-IDF + bigrams)SVD100 0.519 0.545 0.652 0.661 0.648 

Panel F: MD&A      

TFSVD100 0.519 0.575 0.644 0.652 0.661 
TF-IDFSVD100 0.562 0.554 0.682 0.700 0.674 
(TF + bigrams)SVD100 0.558 0.605 0.627 0.652 0.678 
(TF-IDF + bigrams)SVD100 0.545 0.519 0.674 0.717 0.704 

This table reports the accuracy scores for our machine learning models, using both textual information and 
financial variables as inputs. The final (imbalanced) sample consists of 2,481 IPOs from 1997 to 2016. The 
analysis is based on a balanced sample of 576 underpriced and 576 overpriced IPOs. To construct the textual 
features, we use the 20,000 most frequent words of the S-1 filing. The dimensions of textual features are 
further reduced to 100 using the singular value decomposition (SVD) dimensionality reduction technique. We 
use 80% of our sample as the training set and the remaining 20% as the testing set. Panels A to F report results 
for the entire S-1 filing, the combination of the 4 major sections, and from each separate section, respectively 
(Risk Factors, Summary, Use of Proceeds, and MD&A). The first two lines of each panel report results using 
only unigrams, while the last two lines report results using combinations of unigrams and bigrams. Bigrams are 
pairs of consecutive words represented as a single textual feature. We use the following machine learning 
models: linear support vector machines (SVM-linear), support vector machines with radial basis function 
kernel (SVM-RBF), logistic regression (LOGIT), random forest (RF), and multilayer perceptron (MLP). TF 
and TF-IDF are the two term weighting schemes. TF stands for the term frequency scheme normalized by 
document length, and TF-IDF for the term frequency-inverse document frequency scheme. 
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Table 7 

Out-of-sample performance using both text sentiment proportions and financial variables 
as inputs 

 SVM-linear SVM-RBF LOGIT RF MLP 

Panel A: S-1      

Negative 0.595 0.585 0.605 0.665 0.655 
Positive 0.535 0.560 0.625 0.680 0.665 
Uncertain 0.645 0.640 0.615 0.665 0.665 
Weak Modal 0.485 0.590 0.620 0.690 0.645 
Strong Modal 0.520 0.620 0.625 0.645 0.680 
Legal 0.585 0.570 0.620 0.690 0.675 

Panel B: 4 Sections 

Negative 0.574 0.638 0.660 0.698 0.689 
Positive 0.638 0.583 0.660 0.706 0.685 
Uncertain 0.626 0.630 0.655 0.702 0.681 
Weak Modal 0.660 0.613 0.660 0.698 0.685 
Strong Modal 0.583 0.664 0.655 0.685 0.689 
Legal 0.596 0.638 0.651 0.689 0.689 

Panel C: Risk Factors     

Negative 0.638 0.587 0.643 0.672 0.672 
Positive 0.609 0.609 0.660 0.677 0.677 
Uncertain 0.570 0.630 0.660 0.685 0.668 
Weak Modal 0.570 0.626 0.647 0.681 0.681 
Strong Modal 0.519 0.630 0.655 0.689 0.702 
Legal 0.532 0.549 0.643 0.685 0.706 

Panel D: Summary 

Negative 0.570 0.515 0.651 0.677 0.681 
Positive 0.523 0.532 0.660 0.677 0.681 
Uncertain 0.596 0.587 0.651 0.681 0.677 
Weak Modal 0.655 0.562 0.664 0.698 0.723 
Strong Modal 0.549 0.604 0.660 0.685 0.672 
Legal 0.502 0.570 0.664 0.672 0.668 

Panel E: Use of Proceeds 

Negative 0.519 0.655 0.660 0.689 0.664 
Positive 0.515 0.626 0.660 0.694 0.698 
Uncertain 0.549 0.553 0.647 0.685 0.677 
Weak Modal 0.609 0.587 0.655 0.664 0.702 
Strong Modal 0.651 0.626 0.664 0.694 0.689 
Legal 0.583 0.651 0.660 0.716 0.689 

Panel F: MD&A      

Negative 0.506 0.647 0.655 0.694 0.677 
Positive 0.451 0.562 0.660 0.685 0.689 
Uncertain 0.536 0.600 0.660 0.689 0.698 
Weak Modal 0.532 0.583 0.647 0.694 0.694 
Strong Modal 0.468 0.600 0.664 0.681 0.706 
Legal 0.562 0.591 0.655 0.685 0.681 

This table reports the accuracy scores for our machine learning models, using both lexicon-based sentiment 
features and financial variables as inputs. We use Loughran and McDonald’s (2011) word lists to classify 
words into negative, positive, uncertain, weak modal, strong modal, and legal categories. The final 
(imbalanced) sample consists of 2,481 IPOs from 1997 to 2016. The analysis is based on a balanced sample 
of 576 underpriced and 576 overpriced IPOs. We use 80% of our sample as the training set and the 
remaining 20% as the testing set. Panels A to F report results for the entire S-1 filing, the combination of 
the 4 major sections, and from each separate section, respectively (Risk Factors, Summary, Use of 
Proceeds, and MD&A). We use the following machine learning models: linear support vector machines 
(SVM-linear), support vector machines with radial basis function kernel (SVM-RBF), logistic regression 
(LOGIT), random forest (RF), and multilayer perceptron (MLP). 
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Table 8 

Overall conclusions of Table 7 
 S-1 4 Sections Risk Factors Summary Use of Proceeds MD&A 
Best lexicon weak modal 

and legal 
positive legal weak modal legal strong modal 

Best model RF RF MLP MLP RF MLP 
Best score 0.690 0.706 0.706 0.723 0.716 0.706 

This table summarizes the conclusions drawn from Table 7. Best lexicon represents the word lists of Loughran and 
McDonald (2011) that produces the highest accuracy score in each section of the IPO prospectus (entire S-1 filing, 
the 4 major sections combined, Risk Factors, Summary, Use of Proceeds, and MD&A). RF stands for the random 
forest model and MLP for the multilayer perceptron model. Best score represents the accuracy score achieved with 
the combination of best lexicon with the best model. 
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Appendices 

 
Table A1 

Out-of-sample performance using only SVD-100 textual features 
SVM-linear SVM-RBF LOGIT RF MLP 

Panel A: S-1      

TFSVD100 0.530 0.500 0.565 0.540 0.560 
TF-IDFSVD100 0.510 0.500 0.605 0.605 0.605 
(TF + bigrams)SVD100 0.505 0.500 0.570 0.570 0.580 
(TF-IDF + bigrams)SVD100 0.515 0.545 0.590 0.595 0.600 

Panel B: 4 Sections      

TFSVD100 0.494 0.515 0.580 0.628 0.580 
TF-IDFSVD100 0.511 0.515 0.602 0.619 0.610 
(TF + bigrams)SVD100 0.554 0.494 0.589 0.580 0.593 
(TF-IDF + bigrams)SVD100 0.563 0.619 0.602 0.645 0.602 

Panel C: Risk Factors     

TFSVD100 0.524 0.515 0.589 0.545 0.545 
TF-IDFSVD100 0.571 0.520 0.597 0.589 0.571 
(TF + bigrams)SVD100 0.515 0.532 0.602 0.541 0.602 
(TF-IDF + bigrams)SVD100 0.494 0.524 0.589 0.567 0.597 

Panel D: Summary      

TFSVD100 0.578 0.500 0.649 0.625 0.625 
TF-IDFSVD100 0.539 0.535 0.599 0.552 0.603 
(TF + bigrams)SVD100 0.547 0.500 0.616 0.586 0.642 
(TF-IDF + bigrams)SVD100 0.522 0.539 0.578 0.556 0.599 

Panel E: Use of Proceeds 

TFSVD100 0.500 0.506 0.562 0.562 0.554 
TF-IDFSVD100 0.485 0.485 0.558 0.541 0.558 
(TF + bigrams)SVD100 0.500 0.528 0.515 0.519 0.523 
(TF-IDF + bigrams)SVD100 0.554 0.567 0.545 0.532 0.562 

Panel F: MD&A      

TFSVD100 0.450 0.541 0.618 0.588 0.601 
TF-IDFSVD100 0.588 0.588 0.614 0.588 0.656 
(TF + bigrams)SVD100 0.524 0.537 0.618 0.592 0.622 
(TF-IDF + bigrams)SVD100 0.519 0.537 0.614 0.592 0.631 

This table reports the accuracy scores for our machine learning models, using only textual information as 
inputs. The final (imbalanced) sample consists of 2,481 IPOs from 1997 to 2016. The analysis is based on a 
balanced sample of 576 underpriced and 576 overpriced IPOs. To construct the textual features, we use the 
20,000 most frequent words of the S-1 filing. The dimensions of textual features are further reduced to 100 
using the singular value decomposition (SVD) dimensionality reduction technique. We use 80% of our sample 
as the training set and the remaining 20% as the testing set. Panels A to F report results for the entire S-1 filing, 
the combination of the 4 major sections, and from each separate section, respectively (Risk Factors, Summary, 
Use of Proceeds, and MD&A). The first two lines of each panel report results using only unigrams, while the 
last two lines report results using combinations of unigrams and bigrams. Bigrams are pairs of consecutive 
words represented as a single textual feature. We use the following machine learning models: linear support 
vector machines (SVM-linear), support vector machines with radial basis function kernel (SVM-RBF), logistic 
regression (LOGIT), random forest (RF), and multilayer perceptron (MLP). TF and TF-IDF are the two term 
weighting schemes. TF stands for the term frequency scheme normalized by document length, and TF-IDF for 
the term frequency-inverse document frequency scheme. 
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Table A2 

Out-of-sample performance using both SVD-100 textual features and financial variables 
as inputs after excluding crises years 

SVM-linear SVM-RBF LOGIT RF MLP 

Panel A: S-1      

TFSVD100 0.585 0.550 0.655 0.685 0.620 
TF-IDFSVD100 0.591 0.614 0.673 0.696 0.673 
(TF + bigrams)SVD100 0.573 0.585 0.614 0.684 0.632 
(TF-IDF + bigrams)SVD100 0.596 0.649 0.673 0.712 0.649 

Panel B: 4 Sections      

TFSVD100 0.607 0.532 0.672 0.685 0.677 
TF-IDFSVD100 0.652 0.602 0.716 0.705 0.706 
(TF + bigrams)SVD100 0.617 0.572 0.687 0.700 0.677 
(TF-IDF + bigrams)SVD100 0.637 0.632 0.687 0.712 0.682 

Panel C: Risk Factors     

TFSVD100 0.537 0.498 0.667 0.702 0.667 
TF-IDFSVD100 0.567 0.602 0.647 0.687 0.617 
(TF + bigrams)SVD100 0.493 0.577 0.662 0.617 0.662 
(TF-IDF + bigrams)SVD100 0.587 0.602 0.657 0.702 0.627 

Panel D: Summary      

TFSVD100 0.576 0.562 0.645 0.670 0.695 
TF-IDFSVD100 0.606 0.591 0.680 0.680 0.690 
(TF + bigrams)SVD100 0.552 0.562 0.655 0.714 0.700 
(TF-IDF + bigrams)SVD100 0.665 0.611 0.700 0.700 0.665 

Panel E: Use of Proceeds 

TFSVD100 0.512 0.527 0.685 0.690 0.631 
TF-IDFSVD100 0.507 0.562 0.685 0.704 0.621 
(TF + bigrams)SVD100 0.547 0.502 0.616 0.680 0.616 
(TF-IDF + bigrams)SVD100 0.581 0.557 0.645 0.670 0.611 

Panel F: MD&A      

TFSVD100 0.517 0.611 0.616 0.665 0.631 
TF-IDFSVD100 0.621 0.522 0.631 0.704 0.641 
(TF + bigrams)SVD100 0.567 0.552 0.601 0.700 0.675 
(TF-IDF + bigrams)SVD100 0.527 0.586 0.655 0.709 0.655 

This table reports the accuracy scores for our machine learning models, using both textual information and 
financial variables as inputs. The final (imbalanced) sample consists of 2,085 IPOs from 1997 to 2016. The 
analysis is based on a balanced sample of 503 underpriced and 503 overpriced IPOs, after we remove all IPOs 
from years 2000-2001 as the years of dot-com bubble, and from years 2008-2009 as the years of the financial 
crisis. To construct the textual features, we use the 20,000 most frequent words of the S-1 filing. The 
dimensions of textual features are further reduced to 100 using the singular value decomposition (SVD) 
dimensionality reduction technique. We use 80% of our sample as the training set and the remaining 20% as 
the testing set. Panels A to F report results for the entire S-1 filing, the combination of the 4 major sections, 
and from each separate section, respectively (Risk Factors, Summary, Use of Proceeds, and MD&A). The first 
two lines of each panel report results using only unigrams, while the last two lines report results using 
combinations of unigrams and bigrams. Bigrams are pairs of consecutive words represented as a single textual 
feature. We use the following machine learning models: linear support vector machines (SVM-linear), support 
vector machines with radial basis function kernel (SVM-RBF), logistic regression (LOGIT), random forest 
(RF), and multilayer perceptron (MLP). TF and TF-IDF are the two term weighting schemes. TF stands for the 
term frequency scheme normalized by document length, and TF-IDF for the term frequency-inverse document 
frequency scheme. 
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Table A3 

Out-of-sample performance using both SVD-100 textual features and financial variables as 
inputs with as 70/30 train-test split 

This table reports the accuracy scores for our machine learning models, using both textual information and 
financial variables as inputs. The final (imbalanced) sample consists of 2,481 IPOs from 1997 to 2016. The 
analysis is based on a balanced sample of 576 underpriced and 576 overpriced IPOs. To construct the textual 
features, we use the 20,000 most frequent words of the S-1 filing. The dimensions of textual features are 
further reduced to 100 using the singular value decomposition (SVD) dimensionality reduction technique. We 
use 70% of our sample as the training set and the remaining 30% as the testing set. Panels A to F report results 
for the entire S-1 filing, the combination of the 4 major sections, and from each separate section, respectively 
(Risk Factors, Summary, Use of Proceeds, and MD&A). The first two lines of each panel report results using 
only unigrams, while the last two lines report results using combinations of unigrams and bigrams. Bigrams are 
pairs of consecutive words represented as a single textual feature. We use the following machine learning 
models: linear support vector machines (SVM-linear), support vector machines with radial basis function 
kernel (SVM-RBF), logistic regression (LOGIT), random forest (RF), and multilayer perceptron (MLP). TF 
and TF-IDF are the two term weighting schemes. TF stands for the term frequency scheme normalized by 
document length, and TF-IDF for the term frequency-inverse document frequency scheme. 
 

  

SVM-linear SVM-RBF LOGIT RF MLP 

Panel A: S-1      

TFSVD100 0.542 0.510 0.631 0.683 0.651 
TF-IDFSVD100 0.546 0.590 0.647 0.711 0.659 
(TF + bigrams)SVD100 0.550 0.530 0.639 0.667 0.655 
(TF-IDF + bigrams)SVD100 0.635 0.558 0.655 0.711 0.659 

Panel B: 4 Sections      

TFSVD100 0.635 0.549 0.674 0.691 0.674 
TF-IDFSVD100 0.594 0.601 0.670 0.729 0.670 
(TF + bigrams)SVD100 0.563 0.556 0.670 0.684 0.660 
(TF-IDF + bigrams)SVD100 0.629 0.563 0.663 0.712 0.674 

Panel C: Risk Factors     

TFSVD100 0.516 0.502 0.630 0.682 0.641 
TF-IDFSVD100 0.633 0.557 0.651 0.706 0.667 
(TF + bigrams)SVD100 0.533 0.498 0.637 0.671 0.614 
(TF-IDF + bigrams)SVD100 0.561 0.574 0.661 0.678 0.647 

Panel D: Summary      

TFSVD100 0.524 0.531 0.703 0.703 0.676 
TF-IDFSVD100 0.610 0.579 0.655 0.707 0.662 
(TF + bigrams)SVD100 0.579 0.535 0.707 0.693 0.669 
(TF-IDF + bigrams)SVD100 0.593 0.559 0.662 0.745 0.645 

Panel E: Use of Proceeds 

TFSVD100 0.512 0.557 0.663 0.694 0.660 
TF-IDFSVD100 0.577 0.605 0.653 0.691 0.615 
(TF + bigrams)SVD100 0.526 0.553 0.650 0.715 0.640 
(TF-IDF + bigrams)SVD100 0.605 0.605 0.646 0.667 0.656 

Panel F: MD&A      

TFSVD100 0.643 0.570 0.653 0.650 0.691 
TF-IDFSVD100 0.581 0.646 0.670 0.700 0.680 
(TF + bigrams)SVD100 0.612 0.577 0.632 0.663 0.656 
(TF-IDF + bigrams)SVD100 0.567 0.605 0.684 0.691 0.663 
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Table A4 

Out-of-sample performance using both SVD-100 textual features and financial variables as 
inputs with a 75/25 train-test split 

SVM-linear SVM-RBF LOGIT RF MLP 

Panel A: S-1      

TFSVD100 0.528 0.542 0.609 0.679 0.639 
TF-IDFSVD100 0.582 0.599 0.662 0.712 0.662 
(TF + bigrams)SVD100 0.582 0.532 0.625 0.679 0.642 
(TF-IDF + bigrams)SVD100 0.552 0.649 0.666 0.709 0.649 

Panel B: 4 Sections      

TFSVD100 0.572 0.549 0.671 0.705 0.679 
TF-IDFSVD100 0.610 0.627 0.679 0.720 0.676 
(TF + bigrams)SVD100 0.543 0.546 0.668 0.691 0.662 
(TF-IDF + bigrams)SVD100 0.584 0.569 0.691 0.714 0.694 

Panel C: Risk Factors     

TFSVD100 0.568 0.513 0.657 0.666 0.643 
TF-IDFSVD100 0.550 0.571 0.637 0.692 0.652 
(TF + bigrams)SVD100 0.527 0.516 0.660 0.689 0.650 
(TF-IDF + bigrams)SVD100 0.579 0.582 0.634 0.709 0.657 

Panel D: Summary      

TFSVD100 0.546 0.552 0.690 0.687 0.678 
TF-IDFSVD100 0.592 0.560 0.649 0.681 0.649 
(TF + bigrams)SVD100 0.546 0.517 0.681 0.664 0.670 
(TF-IDF + bigrams)SVD100 0.609 0.555 0.670 0.690 0.684 

Panel E: Use of Proceeds 

TFSVD100 0.573 0.576 0.630 0.688 0.636 
TF-IDFSVD100 0.605 0.607 0.642 0.702 0.641 
(TF + bigrams)SVD100 0.530 0.579 0.639 0.682 0.639 
(TF-IDF + bigrams)SVD100 0.564 0.616 0.645 0.711 0.638 

Panel F: MD&A      

TFSVD100 0.547 0.570 0.662 0.702 0.667 
TF-IDFSVD100 0.570 0.639 0.671 0.745 0.662 
(TF + bigrams)SVD100 0.533 0.607 0.639 0.696 0.662 
(TF-IDF + bigrams)SVD100 0.613 0.610 0.665 0.708 0.676 

This table reports the accuracy scores for our machine learning models, using both textual information and 
financial variables as inputs. The final (imbalanced) sample consists of 2,481 IPOs from 1997 to 2016. The 
analysis is based on a balanced sample of 576 underpriced and 576 overpriced IPOs. To construct the textual 
features, we use the 20,000 most frequent words of the S-1 filing. The dimensions of textual features are 
further reduced to 100 using the singular value decomposition (SVD) dimensionality reduction technique. We 
use 75% of our sample as the training set and the remaining 25% as the testing set. Panels A to F report results 
for the entire S-1 filing, the combination of the 4 major sections, and from each separate section, respectively 
(Risk Factors, Summary, Use of Proceeds, and MD&A). The first two lines of each panel report results using 
only unigrams, while the last two lines report results using combinations of unigrams and bigrams. Bigrams are 
pairs of consecutive words represented as a single textual feature. We use the following machine learning 
models: linear support vector machines (SVM-linear), support vector machines with radial basis function 
kernel (SVM-RBF), logistic regression (LOGIT), random forest (RF), and multilayer perceptron (MLP). TF 
and TF-IDF are the two term weighting schemes. TF stands for the term frequency scheme normalized by 
document length, and TF-IDF for the term frequency-inverse document frequency scheme. 
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Table A5 

Out-of-sample performance of the 10,000 most frequent textual features using both SVD-100 
textual features and financial variables as inputs 

SVM-linear SVM-RBF LOGIT RF MLP 

Panel A: S-1      

TFSVD100 0.485 0.545 0.630 0.660 0.655 
TF-IDFSVD100 0.585 0.665 0.660 0.725 0.680 
(TF + bigrams)SVD100 0.510 0.600 0.630 0.690 0.665 
(TF-IDF + bigrams)SVD100 0.560 0.600 0.660 0.715 0.680 

Panel B: 4 Sections      

TFSVD100 0.550 0.545 0.628 0.705 0.649 
TF-IDFSVD100 0.641 0.615 0.693 0.718 0.684 
(TF + bigrams)SVD100 0.554 0.554 0.641 0.701 0.680 
(TF-IDF + bigrams)SVD100 0.606 0.532 0.688 0.718 0.675 

Panel C: Risk Factors     

TFSVD100 0.537 0.502 0.658 0.684 0.680 
TF-IDFSVD100 0.584 0.606 0.628 0.710 0.649 
(TF + bigrams)SVD100 0.563 0.515 0.662 0.680 0.641 
(TF-IDF + bigrams)SVD100 0.563 0.567 0.645 0.701 0.649 

Panel D: Summary      

TFSVD100 0.565 0.560 0.711 0.711 0.690 
TF-IDFSVD100 0.603 0.591 0.647 0.711 0.707 
(TF + bigrams)SVD100 0.530 0.513 0.716 0.716 0.728 
(TF-IDF + bigrams)SVD100 0.582 0.634 0.694 0.703 0.694 

Panel E: Use of Proceeds 

TFSVD100 0.481 0.528 0.665 0.695 0.635 
TF-IDFSVD100 0.554 0.558 0.687 0.682 0.631 
(TF + bigrams)SVD100 0.537 0.519 0.657 0.682 0.614 
(TF-IDF + bigrams)SVD100 0.562 0.554 0.644 0.678 0.635 

Panel F: MD&A      

TFSVD100 0.567 0.545 0.644 0.682 0.644 
TF-IDFSVD100 0.536 0.592 0.674 0.716 0.704 
(TF + bigrams)SVD100 0.560 0.575 0.631 0.682 0.670 
(TF-IDF + bigrams)SVD100 0.631 0.562 0.652 0.708 0.712 

This table reports the accuracy scores for our machine learning models, using both textual information and 
financial variables as inputs. The final (imbalanced) sample consists of 2,481 IPOs from 1997 to 2016. The 
analysis is based on a balanced sample of 576 underpriced and 576 overpriced IPOs. To construct the textual 
features, we use the 10,000 most frequent words of the S-1 filing. The dimensions of textual features are 
further reduced to 100 using the singular value decomposition (SVD) dimensionality reduction technique. We 
use 80% of our sample as the training set and the remaining 20% as the testing set. Panels A to F report results 
for the entire S-1 filing, the combination of the 4 major sections, and from each separate section, respectively 
(Risk Factors, Summary, Use of Proceeds, and MD&A). The first two lines of each panel report results using 
only unigrams, while the last two lines report results using combinations of unigrams and bigrams. Bigrams are 
pairs of consecutive words represented as a single textual feature. We use the following machine learning 
models: linear support vector machines (SVM-linear), support vector machines with radial basis function 
kernel (SVM-RBF), logistic regression (LOGIT), random forest (RF), and multilayer perceptron (MLP). TF 
and TF-IDF are the two term weighting schemes. TF stands for the term frequency scheme normalized by 
document length, and TF-IDF for the term frequency-inverse document frequency scheme. 
 
 


