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Abstract

This study introduces declining population and exhaustible resources into a semi-

endogenous growth model that explicitly incorporates firms’ optimization behav-

ior and investigates the relationship between the population growth rate and the

growth rate of the per capita output. The main results are as follows. First,

irrespective of whether the population growth rate is positive or negative, the

long-run growth rate of per capita output can be positive, depending on the

conditions. Second, when the population growth rate is positive, the long-run

growth rate of per capita output depends positively on the saving rate, although

the model belongs to the class of semi-endogenous growth without scale effects.

Keywords: exhaustible resources; declining population; endogenous growth: Hotelling’s

rule

JEL Classification: O13; O44; Q32; Q43

1 Introduction

This study investigates how exhaustible resources and declining populations affect

economic growth by building a semi-endogenous growth model. We integrate these

two fields of economic research. One is related to the relationship between exhaustible
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resources and economic growth, while the other is related to the relationship between

population decline and economic growth.

First, since the Club of Rome’s The Limits to Growth, it has been pointed out that

exhaustible resources such as petroleum and natural gas constrain economic growth

(Meadows et al., 1972). The global oil crisis of the mid-1970s raised interest in this

issue. Many economists have examined the effects of exhaustible resources on sus-

tainable economic development (Stiglitz, 1974a, 1974b; Solow, 1974; Dasgupta and

Heal, 1974). They concluded that if technological progress can overcome the scarcity

of resources, sustainable economic development is possible. Although technology has

advanced since the limits to growth, resources will run out if human beings continue

to extract them. Therefore, the depletion of resources is an important issue.

Second, Japan’s first postwar experience of a fall in population occurred in 2005,

with negative population growth rates following 2009 and 2011. Similarly, concerns

about population decline have been increasing in Italy and Germany (World Bank,

2013). Therefore, population decline is an urgent problem in developed economies.

At first sight, few countries seem to have experienced negative population growth.

However, we should consider the effects of the immigrants. If we consider the rate of

natural increase (i.e., the crude birth rate minus the crude death rate), several coun-

tries have experienced negative population growth. Indeed, according to the United

Nations (2013), the rates of natural population increase in 17 OECD countries were

negative between 2005 and 2010. The global population indeed continues to increase.

However, the population of developed countries does not grow as much. Contrarily,

some countries, such as Japan, experienced population decline. Table 1, taken from

the United Nations, World Population Prospects 2019, shows that population growth

will decelerate over time. Further, in developed countries, the population growth rate

will be harmful in the future, as shown by the blue shaded columns in Table 1.

[Table 1: Forecasts of population growth (Source: United Nations, World Population

Prospects 2019)]

Based on these observations, it is vital to investigate how exhaustible resources and

declining populations affect economic growth.

Our study incorporates exhaustible resources into an economic growth model and

investigates the relationship between population growth and per capita output growth.

Therefore, we can take Stiglitz (1974b).1) The final goods are produced by exhaustible

1) For initial contributions that consider the relationship between non-renewable resources and
economic development, see also Stiglitz (1974a), Solow (1974) and Dasgupta and Heal (1974).

2



resources, in addition to labor and capital. Under the assumption that the production

function has constant returns to scale, the saving rate is exogenously given. Further,

the population growth rate is exogenously given. He investigates the stability of the

steady-state and the per capita output growth along the balanced growth path. The

dynamical system comprises differential equations concerning the output–capital ra-

tio, the ratio of exhaustible resource inputs, and the stock of exhaustible resources.

The perfect foresight competitive economy is a saddle point; hence, the dynamics are

unstable unless the economy starts on the saddle path. However, this is a study before

the rational expectation hypothesis becomes mainstream. Accordingly, the dynam-

ics are varying because no mechanism locates the initial value on the saddle path.

Contrastingly, if the rational expectation is assumed, the initial value can be located

on the saddle path, and the dynamics become stable. Suppose that the economy is

steady, the per capita output growth rate is positive if the population growth rate is

less than a threshold value and negative if the population growth rate is more than the

threshold value. However, Stiglitz (1974b) only considers positive population growth

and not negative population growth.

Cigno (1981) incorporates an endogenous population growth rate into Stiglitz’s

(1974b) model and examines how the dynamics of the model change by this endoge-

nization of the population growth rate. He assumes that the population growth rate

increases per capita consumption and decreases in industrialization, as measured by

the capital-labor ratio. The results show that the endogenization of the population

growth rate can stabilize the steady-state. Like Stiglitz (1974b), Cigno (1981) assumes

positive population growth and does not consider negative population growth.

The studies mentioned above investigate neoclassical growth models with exoge-

nous technological progress and constant returns to scale production functions. In

contrast to these studies, some studies investigate endogenous growth models with

exhaustible resources.2)

Groth and Schou (2002) present a semi-endogenous growth model with increasing

returns to scale production function and show that even if non-renewable resources

constrain economic growth, per capita output can grow sustainably, provided that

the population growth rate is positive. The production function exhibits increasing

Malaczewski (2018) points out that capital stock and non-renewable resources are complementary
and not substitutes assumed in many former studies and presents a growth model in which capital
stock and non-renewable resources are complements.
2) Suzuki (1976) presents a growth model in which investment in research and development activity

by firms accumulates knowledge stock, which leads to technological progress. For endogenous growth
models that incorporate non-renewable resources into final goods production, see Barbier (1999) and
Cabo et al. . (2016).
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returns concerning capital stock and labor. In their model, increasing returns are

merely assumed and do not occur by some mechanism.3)

Bretschger (2013) presents an endogenous growth model in which both final goods

production and research and development activities require exhaustible resources. In

this model, population growth is endogenized and takes a positive value. The purpose

of this study is to show that the economy can grow even though it faces exhaustible

resources and population growth that seem unfavorable for per capita output growth.

The results show that if the scarcity of exhaustible resources is fully reflected in the

price of exhaustible resources, as resources are exhausted by their use, population

growth is compatible with using exhaustible resources. Population growth promotes

research and development activities and can offset the low increase caused by depleting

resources.

However, Groth and Schou (2002) and Bretschger (2013) do not consider negative

population growth.4)

First, few economic growth models consider population decline.5) Christiaans

(2011) is one of the few exceptions and presents a semi-endogenous growth model.

Wherein production exhibits increasing returns to scale due to a positive external-

ity effect of capital accumulation. It investigates whether positive per capita output

growth is possible when the population growth rate is negative.6) He reveals that the

long-run per capita output growth rate can be positive if the absolute value of the

negative population growth rate is considerable.

Sasaki (2015) builds a small open economy growth model with negative population

growth and investigates the relationship between trade patterns and economic devel-

opment. Sasaki and Hoshida (2017) introduce negative population growth into Jones’

3) Groth (2007) presents a growth model in which production exhibits increasing returns regarding
capital stock, labor, and non-renewable resources because of a positive externality effect arising from
capital accumulation. The results obtained are similar to those of Groth and Schou (2002).
4) Naso et al.. (2020) consider resource constraints and a decline in the population growth rate in

a two-sector growth model. In the manufacturing sector, labor and capital are factors of production,
while in the agricultural sector, labor, capital, and land are factors of production. Both the population
growth rate and sectoral TFP growth rates were endogenized. The resource constraint in their study
is the land, not exhaustible resources, and not a decline in population, but a decline in the growth
rate of the population is considered.
5) Ritschl (1985) shows that if negative population growth is considered in Solow’s (1956) model, a

negative saving rate is necessary for the steady-state per capita capital stock to be favorable.
6) Sasaki (2019) presents a Solow growth model with the CES production function that considers the

negative population growth rate. It further shows that the long-run growth rate of per capita output
is equal to the exogenously given technological progress rate. This is if the elasticity of substitution is
less than unity, which is reasonable in light of empirical studies. Christiaans (2017) built a two-sector
growth model with negative population growth in which labor moves from a rural sector to an urban
sector.
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(1995) semi-endogenous growth model. These studies find that per capita output can

grow sustainably even if population growth is negative.

Jones (2020) also investigated negative population growth in an endogenous growth

model. He builds a model whose growth engine is knowledge production by R&D and

examines the long-run consequences of population decline. When the fertility rate is

negative, two steady states exist. One is a steady-state where the population, knowl-

edge, and standard of living continue to increase exponentially. The other is a steady

state in which the population continues to decrease, and knowledge production and

living standards are stagnant. The crucial difference between his study and our study

lies in the treatment of capital accumulation. He emphasizes technological progress

driven by knowledge production and abstracts capital accumulation. In contrast, we

emphasize capital accumulation and abstract technological progress. One of our pur-

poses is to compare our results with the results of existing studies that assume a

constant saving rate, and hence, we focus on capital accumulation.

However, the studies mentioned above of negative population growth do not con-

sider exhaustible resources in production.

Considering these issues, Sasaki (2021) presents a growth model that considers

exhaustible resources and a declining population and investigates whether the long-

run growth rate of per capita output can be positive. This shows that even if the

population growth rate is negative, the long-run growth rate of per capita output is

positive as long as the absolute value of the population decline rate is relatively large.

His model is based on the semi-endogenous growth model of Groth and Schou (2002),

which considers exhaustible resources and positive population growth.

In Sasaki (2021), to make the input ratio of exhaustible resources a policy variable,

the input ratio of exhaustible resources is given exogenously. However, theoretical

models in this field usually use Hotelling’s rule obtained from firms’ dynamic profit

maximization to obtain the input ratio of exhaustible resources (Stiglitz, 1974b).

For this reason, the present study extends Sasaki (2021) to endogenize the input

ratio of exhaustible resources by deriving Hotelling’s rule and compares the results

obtained with those of Sasaki (2021). This study attempts to conduct a more de-

tailed analysis to consider firms’ dynamic optimization in a decentralized economy.

Our study proves that the ratio of inputs of exhaustible resources to the stock of ex-

haustible resources converges to a constant value. We also know that the input ratio

of exhaustible resources depends on the parameters of the model. In addition, we

find that the importance of the optimal input ratio of exhaustible resources differs

for a positive population growth case and a negative population growth case. Sasaki
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(2021) uses a fixed input ratio of exhaustible resources and assumes that it can take

the same value irrespective of the population growth rate. However, from our analysis,

the optimal input ratio of exhaustible resources is uniquely determined by the model

parameters.

Our study abstracts exogenous technological progress but instead considers increas-

ing returns to scale due to the externality of capital accumulation. Stiglitz (1974b)

considers positive population growth, but we consider negative population growth and

positive population growth. In Stiglitz (1974b), the smaller the population growth

rate, the more favorable is the per capita output growth. In our model, the smaller

the population growth rate, the better the per capita output growth if the population

growth rate is lower than a threshold value depending on the conditions.

The main results are as follows. When the population growth rate is more signifi-

cant than a threshold value that takes a negative value, the steady-state value of the

output–capital ratio is positive, and the long-run growth rate of per capita output is

positive, depending on the conditions. In addition, this growth rate is increasing in

the savings rate of households. In contrast, when the population growth rate is lower

than the threshold value, the steady-state value of the output–capital ratio is zero.

The long-run growth rate of per capita output is favorable depending on conditions,

even if the population growth rate is negative.

The remainder of this paper is organized as follows. Section 2 presents our model

and derives the optimal conditions to obtain the dynamical equations. Section 3

examines the model dynamics in detail, whereas Section 4 investigates the growth rate

of per capita output. Finally, Section 5 concludes the paper.

2 Firms’ profit maximization

Suppose an economy in which final goods are produced with capital, labor, and ex-

haustible resources. All the production factors were fully employed. There are three

economic agents in this economy: final goods-producing firms, resource extracting

firms, and households. Households own both absolute goods-producing firms and

resource-extracting firms. All the goods markets and factor markets are competitive.

Both final goods-producing firms and resource extracting firms maximize their prof-

its with the price of final goods, resources, and factor prices given. In what follows,

we specify the behavior of final goods-producing firms, resource extracting firms, and

households in order.
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2.1 Final goods-producing firms

The production function of a final representative goods-producing firm is given by

Yt = AK̄γ
t K

α
t L

β
t R

1−α−β
t , A > 0, 0 < α < 1, 0 < β < 1, 0 < γ < 1, α + β < 1, (1)

where Yt denotes output, A is the level of total factor productivity, K̄t, aggregate

capital stock, Kt, capital stock of the representative firm, Lt, inputs of labor, and Rt

are inputs of exhaustible resources. The variable K̄t captures the positive externality

due to capital accumulation. The parametric restriction 0 < γ < 1 shows that the

externality of capital is not very large. This production function has constant returns

to scale with respect to Kt, Lt, and Rt with K̄t given while increasing returns to scale

with respect to Kt, Lt, and Rt. At equilibrium, the relation K̄t = Kt holds, and then,

we obtain

Yt = AKα+γ
t Lβ

t R
1−α−β
t . (2)

We assume that α and γ satisfy the following restriction.

α + γ < 1. (3)

This implies that the production function decreases returns to scale concerning capital

stock, including capital externality, which is necessary for obtaining semi-endogenous

growth.

In addition, we assume that γ and β satisfy the following restriction:

γ < β. (4)

This restriction states that the labor share of income β is larger than the capital

externality γ, which is reasonable.7) As shown below, this assumption ensures the

existence of a steady state.

The representative final goods producing firm maximizes the total sum of the dis-

counted present value of net cash flow, which is given by

max

∫

∞

0

exp

(

−

∫ t

0

rs ds

)

(AKα
t K̄

γ
t L

β
t R

1−α−β
t − wtLt − It) dt, (5)

s.t. K̇t = It − δKt, K0 = given > 0, (6)

7) Graham and Temple (2006) use γ = 0.3 in their numerical simulations. The labor share of income
is usually assumed to be 2/3. Therefore, γ < β is realistic.
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where rt denotes the real rental price of capital, wt is the real wage rate, and pt is the

price of exhaustible resources in terms of final goods. Given that capital externality is

not internalized (the Marshallian externality), the representative final goods producing

firm maximizes the profit given by K̄t.

2.2 Resource extracting firms

Suppose that resource-extracting firms can extract exhaustible resources without costs.

Then, the representative resource-extracting firm maximizes the total sum of the dis-

counted present value of its revenue, which is given by:

max
Rt

∫

∞

0

DtptRt dt, (7)

s.t. Ṡt = −Rt, S0 = given > 0, (8)

where pt denotes the price of the extracted resources and St is the stock of exhaustible

resources.

2.3 Households

Households own both final goods-producing firms and resource-extracting firms. Sup-

pose that households lend and borrow funds to each other by trading bonds whose

return is rt. Suppose that the ownership of capital stock supports bonds. Let Bt

be the stock of bonds, and Ct be the consumption of households. Then, the budget

constraint of households is given by

Ḃt = rtBt + wtLt + ptRt − Ct. (9)

From the assumption of the representative household, the bond market clearing con-

dition leads to

Bt = Kt. (10)

Let s ∈ (0, 1) denote the savings rate of the households. Then, we obtain household

consumption.

Ct = (1− s)(rtBt + wtLt + ptRt). (11)

We assume that s is constant.
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2.4 Optimization conditions

For final goods producing firms, we set the Hamiltonian function as follows:

H
f
t = Dt(AK̄

γ
t K

α
t L

β
t R

1−α−β
t − wtLt − It − ptRt) + qft (It − δKt), (12)

where Dt = exp
(

−
∫ t

0
rs ds

)

, and qft is the co-state variable.

The first-order conditions for optimization are as follows:

∂Hf
t

∂Lt

= 0 =⇒ β
Yt

Lt

= wt, (13)

∂Hf
t

∂Rt

= 0 =⇒ (1− α− β)
Yt

Rt

= pt, (14)

∂Hf
t

∂It
= 0 =⇒ Dt = qft , (15)

−
∂Hf

t

∂Kt

= q̇ft =⇒ q̇ft = −Dtα
Yt

Kt

+ δqft .. (16)

From equation (15), we obtain q̇ft /q
f
t = Ḋt/Dt = −rt, and from equations (15) and

(16), we obtain

rt = α
Yt

Kt

− δ. (17)

The real rental price of capital is equal to the marginal product of capital minus the

capital depreciation rate.

For resource extracting firms, we set the Hamiltonian function as follows:

He
t = DtptRt − qetRt, (18)

where qet denotes the co-state variable.

The first-order conditions for optimization are as follows:

∂He
t

∂Rt

= 0 =⇒ Dtpt = qet , (19)

−
∂He

t

∂St

= q̇et =⇒ q̇et = 0. (20)
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From equations (19) and (20), we obtain Ḋt

Dt
+ ṗt

pt
= 0, from which Ḋt

Dt
= −rt, we obtain

ṗt
pt

= rt. (21)

The rate of change in the price of extracted resources is equal to the real rental price

of capital, known as Hotelling’s rule (Hotelling, 1931).

From equation (14), we obtain ṗt
pt

= Ẏt

Yt
− Ṙt

Rt
, and from this equation and equation

(21), we obtain the rate of change in exhaustible inputs as follows:

Ṙt

Rt

= −rt +
Ẏt

Yt

. (22)

If we obtain Ẏt

Yt
along the balanced growth path (BGP), we can find Ṙt

Rt
along the BGP.

Sasaki (2021) assumes that Rt = sRSt, where sR denotes a constant input ratio of

exhaustible resources. In this case, Ṙt

Rt
= −sR < 0 holds.

Because we have rt = α Yt

Kt
− δ, wt = β Yt

Lt
, pt = (1− α − β) Yt

Rt
, and Bt = Kt from

equations (17), (13), (14), and (10), respectively. By substituting these values into the

budget constraint of households given by equation (9), we obtain

K̇t = sYt − δKt. (23)

This is an equation of motion of capital stock.

3 Analysis of dynamics

For analysis of dynamics, we introduce the following new variables.

zt =
Yt

Kt

, xt =
Rt

St

, (24)

where zt denotes the output–capital ratio, and xt is the ratio of exhaustible resource

inputs to the stock of exhaustible resources. The time derivatives of zt and xt yield

żt = zt

(

Ẏt

Yt

−
K̇t

Kt

)

, (25)

ẋt = xt

(

Ṙt

Rt

−
Ṡt

St

)

. (26)
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We obtain Ẏt

Yt
, K̇t

Kt
, Ṙt

Rt
, Ṡt

St
from equations (2), (23), (22), and (8), respectively. Then,

substituting these values into equations (25) and (26), we obtain the differential equa-

tions of zt and xt as follows:

żt = −az2t + bzt, a ≡
s(β − γ) + α(1− α− β)

α + β
> 0, b ≡

βn+ (1− α− γ)δ

α + β
⋛ 0,

(27)

ẋt = (czt + b)xt + x2
t , c ≡

(α + γ)s− α

α + β
⋛ 0. (28)

If the population growth rate is positive, we obtain b > 0. In contrast, if the population

growth rate is negative and its absolute value is large, we obtain b < 0. In the following

analysis, we classify the cases according to the sign of b:

3.1 Case of b > 0

We have b > 0 if the following condition holds.

βn+ (1− α− γ)δ > 0. (29)

Note that this condition allows n < 0, even if n < 0, we obtain b > 0 as long as its

absolute value is small.

From żt = 0, we obtain

zt =
b

a
> 0. (30)

From ẋt = 0, we obtain

xt = −czt − b. (31)

The intersection of żt = 0 and ẋt = 0 exists on the (zt, xt)-plane, provided that the

following two conditions are simultaneously satisfied:

c < 0 =⇒ (α + γ)s < α, (32)

s < α. (33)

If s < α holds, then (α + γ)s < α also holds. Therefore, we obtain

s < α. (34)
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This restriction was also considered by Stiglitz (1974b) and Cigno (1981). If α cor-

responds to the capital share of income, the value α = 0.3 is reasonable. Since the

saving rate of households in developed countries is less than 0.3, this assumption is

realistic.

Under the above assumption, the steady state values are as follows:

z∗ =
βn+ (1− α− γ)δ

s(β − γ) + α(1− α− β)
> 0, (35)

x∗ =
(α− s)[βn+ (1− α− γ)δ]

s(β − γ) + α(1− α− β)
> 0. (36)

The steady-state input ratio of exhaustible resources x∗ is endogenously determined

by the savings rate, capital depreciation rate, population growth rate, and production

function parameters.

Proposition 1. Suppose that the parameters satisfy βn + (1 − α − γ)δ > 0. Then,

there exists a steady state z∗ > 0 and x∗ > 0 if s < α.

The initial values were considered. From zt =
AK

α+γ
t L

β
t R

1−α−β
t

Kt
and xt = Rt

St
, we

obtain

xt = φz
1

1−α−β

t , φ ≡ S−1
t (A−1K1−α−γ

t L−β
t )

1

1−α−β . (37)

We assume perfect foresight. Because only Rt is a jump variable, the initial values of

zt and xt must satisfy the following relation:

x0 = φz
1

1−α−β

0 , φ ≡ S−1
0 (A−1K1−α−γ

0 L−β
0 )

1

1−α−β . (38)

Figure 1 shows the phase diagram, from which we find that there exists the unique

saddle path along which an economy converges to the steady-state: the economy starts

at the intersection of equation (38) and the saddle path, and then, converges to the

steady-state.

3.2 Case of b < 0

We obtain b < 0 if the population growth rate n is negative and its absolute value is

large; that is,

βn+ (1− α− γ)δ < 0. (39)
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Figure 1: Phase diagram when b > 0 and s < α

The locus żt = 0 corresponds to the vertical axis. The intercept of locus ẋt = 0

is positive. The slope of the locus ẋt = 0 is positive when c < 0 and negative when

c > 0. Figure 2 shows the phase diagram when c < 0, while Figure 3 shows the phase

diagram when c > 0. In either case, there exists a saddle path along which an economy

converges to a steady state. The economy starts at the intersection of equation (38)

and the saddle path, and then converges to the steady state.

z∗∗ = 0, (40)

x∗∗ = −
βn+ (1− α− γ)δ

α + β
> 0. (41)

Proposition 2. Suppose that the parameters satisfy βn + (1 − α − γ)δ < 0. Then,

there exists a steady state z∗∗ = 0 and x∗∗ > 0.

4 Growth rate of per capita output

We investigate whether the growth rate of per capita output is positive. Let yt = Yt/Lt

denote the per capita output. Then, the growth rate of yt is as follows:

gy,t =
s(α + γ)− α(1− α− β)

α + β
zt −

α

α + β
n+

(1− α− β)− (α + γ)

α + β
δ. (42)
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Figure 2: Phase diagram when b < 0 and c < 0

z

O

x

�z = 0

�x = 0

x = �z

1

1����

P

E

Figure 3: Phase diagram when b < 0 and c > 0

14



The growth rate of per capita output along the BGP is obtained by substituting the

steady-state value of z, that is, equation (35) or equation (40) into equation (42).

Along with the BGP, z = Y
K

is constant, and hence, the growth rate of Yt is equal

to that of Kt, which is given by the growth rate of yt plus n. When the population

growth rate is negative, gY = gy + n can be damaging, even if the growth rate of yt is

positive.

4.1 Case of b > 0 and s < α

When z = z∗ > 0, by substituting equation (35) into equation (42), we obtain the

BGP growth rate of per capita output:

g∗y =
sγ − α(1− α− β)

s(β − γ) + α(1− α− β)
n+

(s− α)(1− α− β)

s(β − γ) + α(1− α− β)
δ. (43)

Taking the partial derivative of g∗y with respect to the saving rate s, we obtain

sgn
∂g∗y
∂s

= sgn α(1− α− β)[βn+ (1− α− γ)δ] > 0. (44)

Proposition 3. Suppose that the parameters satisfy βn + (1 − α − γ)δ > 0. Then,

an increase in households’ savings rate increases the BGP growth rate of per capita

output.

The BGP input ratio of the exhaustible resources is given by

Ṙ

R
=

Ṡ

S
= −

R

S
= −x∗

= −
(α− s)[βn+ (1− α− γ)δ]

s(β − γ) + α(1− α− β)
< 0. (45)

The condition under which g∗y > 0 holds is as follows:

[sγ − α(1− α− β)]n > −(s− α)(1− α− β)δ, (46)

Here, we focus on the size of the population growth rate to investigate whether g∗y > 0

is obtained.

First, when sγ > α(1 − α − β) holds, the condition under which g∗y > 0 holds is

15



given by

n > −
(s− α)(1− α− β)δ

sγ − α(1− α− β)
≡ Λ. (47)

Because s < α, we have Λ > 0. Accordingly, we check whether sγ > α(1 − α − β) is

compatible with s < α.

When s < α, we have Λ > 0. Then, for sγ > α(1 − α − β) to be compatible

with s < α, it is necessary that α+ β + γ > 1 holds, which states that the production

function exhibits increasing returns to scale with respect to labor and capital, including

capital externality. In this case, if n > Λ > 0, we obtain g∗y > 0.

Proposition 4. Suppose that the parameters satisfy βn+ (1− α − γ)δ > 0. Suppose

also that sγ > α(1 − α − β) holds. If the production function exhibits increasing

returns to scale with respect to labor and capital, including capital externality, and if

the population growth rate satisfies n > Λ (> 0), then the BGP growth rate of per

capita output is positive.

Second, when sγ < α(1− α− β) holds. the condition under which g∗y > 0 is given

by

n < −
(s− α)(1− α− β)δ

sγ − α(1− α− β)
≡ Λ. (48)

When s < α, we have that Λ < 0. Then, if α + β + γ > 1 holds, the restriction

sγ < α(1−α−β) is valid, whereas if α+β+γ < 1 holds, the restriction s < α is valid.

In this case, if the population growth rate lies within the range − (1−α−γ)δ
β

< n < Λ < 0,

we obtain g∗y > 0.

Proposition 5. Suppose that the parameters satisfy βn+(1−α−γ)δ > 0. Suppose also

that sγ < α(1− α− β) holds. Then, if (i), the production function exhibits increasing

returns to scale with respect to labor and capital, including capital externality. If sγ <

α(1 − α − β) holds, or if (ii), the production function exhibits decreasing returns to

scale with respect to labor and capital, including capital externality, and if s < α holds,

the BGP growth rate of per capita output is positive when the population growth rate

lies within the range −
(1−α−γ)δ

β
< n < Λ < 0.
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4.2 Case of b < 0

When z∗∗ = 0, by substituting equation (40) into equation (42), we obtain the BGP

growth rate of per capita output.

g∗∗y = −
α

α + β
n+

(1− α− β)− (α + γ)

α + β
δ. (49)

We see that g∗∗y is independent of s, which contrasts with the result for g∗y .

The input ratio of exhaustible resources is given by

Ṙ

R
= −x∗∗

=
βn+ (1− α− γ)δ

α + β
< 0. (50)

We investigate the condition under which g∗∗y > 0 holds.

First, when α + β + γ > 1, the growth rate of per capita output is positive if the

population growth rate satisfies the following condition:

n <
(1− α− γ)− (α + β)

α
δ. (51)

Second, when α+ β+ γ < 1, the growth rate of per capita output is positive if the

population growth rate satisfies the following condition:

n < −
1− α− γ

β
δ. (52)

Proposition 6. Suppose that the parameters satisfy βn + (1 − α − γ)δ < 0. Then,

(i) if the production function exhibits increasing returns to scale with respect to labor

and capital, including capital externality, and if the population growth rate satisfies

n < (1−α−γ)−(α+β)
α

δ, the BGP growth rate of per capita output is positive. In addition,

(ii) if the production function exhibits decreasing returns to scale with respect to labor

and capital, including capital externality, and if the population growth rate satisfies

n < −1−α−γ

β
δ, the BGP growth rate of per capita output is positive.

5 Conclusions

This study has built a semi-endogenous growth model that considers exhaustible re-

sources and a declining population to investigate whether the long-run growth rate of
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per capita output can be positive. We have explicitly considered the dynamic opti-

mization of firms and endogenized the input ratio of exhaustible resources to obtain

Hotelling’s rule.

Our results show that an economy converges to a steady-state irrespective of

whether the population growth rate is positive or negative. The output–capital ratio

and the input ratio of exhaustible resources remain constant. Even if the population

growth rate is negative, the long-run growth rate of per capita output is favorable

depending on the conditions. In addition, if the population growth rate is positive,

the long-run growth rate of per capita output depends positively on the saving rate

of households. However, our model belongs to the class of semi-endogenous growth

models.

For ease of analysis, we assume that the savings rate of households is fixed. How-

ever, it is more reasonable to think that the saving rate of households depends on other

economic factors, and hence, it should be endogenized. Building a growth model with

households’ dynamic optimization that considers exhaustible resources and a declining

population will be left for future research.
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Table 1: Forecasts of population growth
Medium variant

High-income
 countries

Middle-income
 countries

Low-income
countries

More developed
regions

Less developed
regions

2020-2025 0.31 0.89 2.58 0.13 1.14
2025-2030 0.25 0.77 2.38 0.07 1.02
2030-2035 0.19 0.66 2.19 0.03 0.91
2035-2040 0.12 0.56 2.04 -0.01 0.81
2040-2045 0.06 0.47 1.90 -0.04 0.71
2045-2050 0.01 0.38 1.75 -0.07 0.62
2050-2055 -0.02 0.29 1.61 -0.09 0.53
2055-2060 -0.05 0.21 1.47 -0.11 0.46
2060-2065 -0.06 0.14 1.33 -0.11 0.39
2065-2070 -0.06 0.09 1.21 -0.10 0.32
2070-2075 -0.05 0.04 1.08 -0.08 0.27
2075-2080 -0.04 -0.01 0.96 -0.05 0.21
2080-2085 -0.03 -0.04 0.85 -0.03 0.17
2085-2090 -0.02 -0.07 0.74 -0.01 0.13
2090-2095 -0.00 -0.10 0.64 0.00 0.09
2095-2100 0.01 -0.13 0.55 0.01 0.05

Soruce: United Nations, World Population Prospects 2019
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