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Abstract

I argue interpretation of nonlinear difference-in-differences models depends
on the form of the parallel trends assumption. When they are assumed in the
natural scale of the dependent variable, the treatment effect is the interaction
effect (a cross-difference). If they are assumed in the transformed scale, it
is a single difference. I further note that assuming parallel trends in one
scale implies they do not hold in the other, except in special cases. Finally, I
consider log-linear (and related) difference-in-differences models and provide
a constant form of the treatment effect that is comparable across applications
with different parallel trends assumptions.
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1 Introduction

Difference-in-differences (DD) models are ubiquitous in modern empirical research

in economics and other social sciences, and their implementation in parametric,

nonlinear settings – such as in logit, probit, and semilogarithmic models – has

become an important tool for empirical researchers. While the use of nonlinear DD

models has become widespread, I argue the literature has not provided clarity on the

issue of their interpretation. In a linear context, interpretation is straightforward,

since a single parameter represents the object of interest in the model. In nonlinear

DD models, the object of interest involves more than one coefficient, but there

is ambiguity as to what the object of interest actually is. Two views have been

espoused in the literature. In the first, the object of interest takes the form specified

in Mullahy (1999) and Ai and Norton (2003) (jointly hereafter as M&AN): a cross-

difference of nonlinear conditional expectation functions. This approach is based

on treating the interaction effect between the treatment and group dummies as

the object of interest. An important implication of this view is that the “true”

DD result of a nonlinear model could be very different from the estimate of the

interaction coefficient, and need not have the same sign.1

The second view critiques the first view, and is voiced most strongly by Puhani

(2012), with Blundell et al. (2004), Blundell and Costa Dias (2009), and Lechner

(2011) (jointly hereafter as PBL) also making parts of the argument. They argue

1The papers by Mullahy and Ai and Norton discuss the interpretation of interaction terms

in nonlinear models, and never directly claim that the interaction term should be the object of

interest in a DD model; they only mention that interpretation of interaction terms is relevant for

DD models. Nevertheless, the field has widely interpreted their work – and particularly Ai and

Norton’s paper – as providing the correct interpretation of a nonlinear DD model. See Ryan et al.

(2015) for a recent example of this.
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that the object of interest specified by M&AN does not represent the treatment

effect. This view contends a much simpler object, consisting of a single difference

of nonlinear conditional expectation functions, represents the treatment effect and

should be considered the correct object of interest in nonlinear DD models. Impor-

tantly, Puhani notes that, for nonlinear models based on monotonically increasing

transformations, this approach implies that the sign of the treatment effect must be

the same as that of the coefficient on the interaction term, a convenient result for

empirical applications.

Whereas Puhani argued that the form he specified is only appropriate manner

to interpret nonlinear DD models, I propose that the two views described above

are not inconsistent. Instead, I argue both potentially represent treatment effects,

with the underlying difference between the two being the form in which the parallel

trends assumption is made. This leads to the view that the correct interpretation of

a nonlinear DD model depends on the context of the analysis and should be driven

by the form of the parallel trends assumption made by the analyst.

The rationale underlying my argument can be illustrated via example. Figure 1

presents two sets of averages for an outcome. The points connected by solid lines

are represented in the natural scale of the variable while those connected by dashed

lines are the same values in the log scale. The lines connect points from before

treatment to those after for both treated and control groups. In the natural scale,

the effect of the treatment given by DD is -630, while in the log scale it is 0.25. What

should an empirical researcher conclude if confronted by such an example? Is the

treatment effect positive or negative? Guided by intuition, most researchers likely

conclude that the right scale is the one in which the parallel trends assumption is

credible (perhaps informed by evidence from pre-trends). I formalize this intuition
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for nonlinear DD models, where, as in this example, dependent variables exist in

both natural and transformed scales. I show that if parallel trends are assumed to

hold in the natural scale of the outcome, then the treatment effect of a nonlinear

DD model takes the form specified by M&AN. Alternatively, if the parallel trends

are assumed in the transformed scale, then the form PBL detailed is the treatment

effect of interest. Moreover, since researchers commonly use pre-trends to provide

suggestive evidence towards the validity of the parallel trends assumption, they

could also be use pre-trends to suggest the proper manner to interpret a nonlinear

DD model.

Aside from M&AN and PBL, the closest related work to this one is that by

Kahn-Lang and Lang (2020), who argue that analysts’ understanding of the nature

of parallel trends in a given context (potentially via theoretical knowledge) should

play a role in their choice of functional form. Additionally, when a researcher choses

a nonlinear-DD functional form, it implies that he or she believes the counterfactual

trend is consistent with an interpretation given by PBL. My argument goes further

than theirs, as I argue that even conditional on choosing a nonlinear functional form,

a researcher still faces the choice of basing his or her interpretation on a parallel

trend assumption in either the natural or transformed scales. Thus, in contrast

to Kahn-Lang and Lang, I argue it is the researchers’ understanding of parallel

trends that determines how to interpret the model, not the functional form he or

she chooses.

The rest of this paper proceeds as follows. In the next section I derive the

treatment effect in the familiar case of the linear DD model to serve as a benchmark.

I then discuss the nonlinear case, deriving the treatment effect under both forms of

the parallel trends assumption: the natural scale first followed by the transformed
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scale. I also note that, except in special cases, when one assumes one form of parallel

trends, he or she implicitly rules out the other form. This implies practitioners

should take care not to inadvertently use both methods of interpretation in the

same analysis (which could happen when mixing model types). Following this, I

also consider the special case of log-linear DD models, noting there are multiple

ways to represent the treatment effect in percentage form in these models. I suggest

one that is constant whether assuming parallel trends in the natural or log-scales.

Standard use of this form would make for more convenient comparison of estimates

across projects. Finally, I discuss implications and conclude.

2 Linear model difference-in-differences

I introduce notation and important concepts via the familiar linear DD model,

y = αG+ βT + γGT + θ′X + u, (2.1)

where y is an observed outcome of interest, T is a dummy indicating periods (0 for

the first, 1 for the second), G indicates treatment (value 1) or control group (value

0), TG is the interaction of these, X is a vector of controls and a constant, and u is

an error term with zero conditional mean. Additionally, though it is not necessary

for a linear model, since it is common in nonlinear models that are my focus later

in this paper, like probit or logit, I also assume the error term is independent of X,

G, and T , and, hence, homoskedastic. Observations where both T = 1 and G = 1

(and hence TG = 1) are those that have received the treatment of interest. It may

be noted here that I use similar notation to that of Puhani.
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Equation (2.1) implies four conditional expectation functions (CEFs):

E[y|G = 1, T = 1, X] = α + β + γ + θ′X, (2.2)

E[y|G = 1, T = 0, X] = α + θ′X, (2.3)

E[y|G = 0, T = 1, X] = β + θ′X, and (2.4)

E[y|G = 0, T = 0, X] = θ′X. (2.5)

The goal of a DD research design is to estimate the average treatment effect on the

treated. For convenience, throughout this article I simply refer to the “treatment

effect”, but in all cases mean the average treatment effect on the treated. I define

this treatment effect using the potential outcomes framework as

E[y1|G = 1, T = 1, X]− E[y0|G = 1, T = 1, X], (2.6)

where the potential outcomes are given by y1 (treated) and y0 (untreated – the coun-

terfactual). For treated observations, the observed outcome is the treated potential

outcome. That is,

(y1|G = 1, T = 1, X) = (y|G = 1, T = 1, X) = α + β + γ + θ′X + u, (2.7)

and hence,

E[y1|G = 1, T = 1, X] = E[y|G = 1, T = 1, X] = α + β + γ + θ′X, (2.8)

For treated observations, the untreated potential outcome is unobserved, so the

key assumption of a DD research design – the parallel trends assumption – specifies
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how y0 is modeled when GT = 1. In particular, the parallel trends assumption

implies that

(y0|G = 1, T = 1, X)

= E[y|G = 0, T = 1, X] + (E[y|G = 1, T = 0, X]− E[y|G = 0, T = 0, X]) + u,

(2.9)

which implies

E[y0|G = 1, T = 1, X]

= E[y|G = 0, T = 1, X] + (E[y|G = 1, T = 0, X]− E[y|G = 0, T = 0, X])

= α + β + θ′X (2.10)

(having made use of equations 2.3 to 2.5). By modeling the potential outcome in

this fashion, I am asserting that the expected counterfactual is equal to the observed

average outcome of the control group plus the average pre-period group difference

in the outcome.

Equations (2.8) and (2.10) allow me to show that the treatment effect in a linear
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DD model is represented by the interaction term coefficient:

E[y1|G = 1, T = 1, X]−E[y0|G = 1, T = 1, X]

= E[y|G = 1, T = 1, X]− E[y|G = 0, T = 1, X]

− (E[y|G = 1, T = 0, X]− E[y|G = 0, T = 0, X])

= α + β + γ + θ′X − α− β − θ′X

= γ. (2.11)

3 Nonlinear difference-in-differences

In the nonlinear context, the dependent variable exists in two worlds: the natural

scale, given by y, and the transformed scale, given by Y . For a researcher considering

applying DD in a nonlinear scenario, there are two important choices to make. The

first is the choice of transformation between the two worlds, which I indicate by g(·),

where g(·) is a nonlinear, monotonic function. The second is the manner of applying

the parallel trends assumption. The first choice is well understood by researchers. To

illustrate the second, let PT (·) represent a function implementing the parallel trends

assumption. The key step of modeling the natural scale counterfactual outcome (y0)

in terms of actual (i.e., observed) outcomes can then be implemented in two ways:

PTA 1: y0 = PT (g(Y )), or

PTA 2: y0 = g(PT (Y )).

In PTA 1, the parallel trends assumption is applied in the natural scale, and the

nonlinear transformation is applied to the parallel trend assumption’s components.
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In the next subsection, I show that this first approach leads to a treatment effect

equal to the interaction effect and takes the form specified by M&AN.

In PTA 2, the parallel trends assumption is applied in the transformed scale, and

the results are then re-transformed back to the natural scale by the transformation

function. This is the approach followed by PBL in developing the form of the

treatment effect they propose, which I detail further below. The overall point I

make here, then, is that the manner in which a nonlinear DD model should be

interpreted is driven by the form in which the parallel trends assumption is made.

If in the natural scale, as in PTA 1 here, then the appropriate interpretation is given

by M&AN; if in the transformed scale, as in PTA 2, it is the one given by PBL.2

3.1 Parallel trends in the natural scale

A substantial portion of nonlinear DD models arise in situations where y is a

Bernoulli variable, and so I present my discussion in the context of a standard

threshold crossing model (though it could be adapted to other models, most no-

tably semilogarithmic ones). Y is taken to be latent, with

y = g(Y ) = 1{Y ≥ 0}, (3.1)

where 1{·} is the indicator function. Standard use of DD in nonlinear contexts

models the transformed dependent variable, Y , in the same way the natural scale

2Conceptually speaking, the two modeling approaches given here also apply in the standard

linear DD model. Practically speaking, though, there is no choice to be made between the two

because g(·) is the identity function in the linear case (as noted by Athey and Imbens, 2006), so

both approaches are identical in that context.

9



dependent variable is modeled in the linear context:

Y = α̃G+ β̃T + γ̃GT + θ̃′X + U, (3.2)

where U has the same assumptions as u and the parameters are marked with tildes

to distinguish them from the natural scale versions. This model and the Bernoulli

nature of y imply the CEF,

E[y|G, T,X] = Φ(α̃G+ β̃T + γ̃GT + θ̃′X), (3.3)

where Φ(·) is a monotonically increasing, nonlinear function. This can be further

broken down into

E[y|G = 1, T = 1, X] = Φ(α̃ + β̃ + γ̃ + θ̃′X), (3.4)

E[y|G = 1, T = 0, X] = Φ(α̃ + θ̃′X), (3.5)

E[y|G = 0, T = 1, X] = Φ(β̃ + θ̃′X), and (3.6)

E[y|G = 0, T = 0, X] = Φ(θ̃′X). (3.7)

It is typical in applications of threshold crossing models that Φ(·) is the condi-

tional distribution function corresponding to the distribution assumed for the error-

term. However, in principle an analyst could merely assume that Φ(·) is the link

function between the parameters in the transformed scale and E[y|G, T,X] without

making an explicit assumption about the distribution of the error term. Addition-

ally, one could notice here that Φ(·) 6= g(·) in standard models like probit and logit,

but they could be the same in other applications – and in fact they are the same in
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the semilogarithmic model (which I return to, below).

As Puhani noted, the treatment effect of interest in the nonlinear case is the

same as in the linear model case, and is given by expression (2.6). As argued above,

the treated potential outcome is observed when GT = 1, so

E[y1|G = 1, T = 1, X] = E[y|G = 1, T = 1, X]. (3.8)

I model the counterfactual outcome when GT = 1 by first applying PTA 1; that

is, the parallel trends assumption in the natural scale. This takes the form given

in equation (2.9). Taking the expectation (where the error term is still assumed to

have a zero conditional mean) shows this choice leads to the following CEF for the

counterfactual (the same as in the linear DD case):

E[y0|G = 1, T = 1, X]

= E[y|G = 0, T = 1, X] + (E[y|G = 1, T = 0, X]− E[y|G = 0, T = 0, X]). (3.9)

Combining equations (3.8) and (3.9), the treatment effect in the nonlinear DD

model is given by

E[y1|G = 1, T = 1, X]− E[y0|G = 1, T = 1, X]

= E[y|G = 1, T = 1, X]− E[y|G = 0, T = 1, X]

− (E[y|G = 1, T = 0, X]− E[y|G = 0, T = 0, X]). (3.10)

Applying the nonlinear transformation (via substitution of equations 3.4 to 3.7),
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this becomes

E[y1|G = 1, T = 1, X]− E[y0|G = 1, T = 1, X]

= Φ(α̃ + β̃ + γ̃ + θ̃′X)− Φ(β̃ + θ̃′X)− [Φ(α̃ + θ̃′X)− Φ(θ̃′X)]. (3.11)

So by assuming that parallel trends hold in the natural scale, I obtain a treatment

effect in equation (3.11) equal to the interaction term specified by M&AN. As they

note, this treatment effect is not constant and can be quite different from γ̃, including

having the opposite sign.3

Several authors have noted that applying the parallel trends assumption in the

natural scale as in equation (3.9) has a potential drawback: there is nothing restrict-

ing the conditional expectation of the potential outcome in equation (3.9) (Athey

and Imbens, 2006; Blundell and Costa Dias, 2009; Lechner, 2011). In models of

limited dependent variables, this could result in predictions for the counterfactual

outcome that are outside the theoretical limits of the dependent variable (such as

zero and one for probit or logit models). Thus, for limited dependent variables, the

parallel trends assumption cannot hold in all contexts.4 Nevertheless, it is clearly

the case that it could be a credible assumption in a large share of empirical applica-

3Lechner (2011, p. 199) discusses the potential use of an estimator in the form of equation (3.11)

without providing a justification for what drives the form or when one should use it. However,

he also writes (on p. 198), “Thus, we conclude that estimating a DiD model with the standard

specification of a nonlinear model would usually lead to an inconsistent estimator if the standard

common trend assumption is upheld.”
4This is only true to the extent that we believe the counterfactual outcome must obey the

theoretical bounds of the dependent variable. Since it is never observed, this restriction is an

assumption which cannot be evaluated. Further discussion of this issue would, perhaps, be quite

philosophical and outside the scope of this article.
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tions, to which a voluminous literature of such cases attests.5 Moreover, the cases

in which the parallel trends assumption is credible in the natural scale are precisely

those when infeasible predictions for the counterfactual outcomes are least likely to

be a problem, and if the bounds of the variable are unlikely to be respected in an

application, the parallel trends assumption is also unlikely to be credible. Thus, the

issue of whether the bounds of the dependent variable are respected in a particular

application is part of evaluating whether parallel trends are credible. If they are,

then researchers should not be deterred from using this method out of concern for

infeasible predictions.

3.2 Parallel trends in the transformed scale

To demonstrate the second nonlinear modeling method, PTA 2, it is helpful to

specify potential outcomes in the transformed scale, given by Y 0 and Y 1. These

relate to the natural scale via

y0 = 1{Y 0 ≥ 0} and (3.12)

y1 = 1{Y 1 ≥ 0}. (3.13)

The treated potential outcome is taken to be the same as the actual outcome in the

transformed scale when GT = 1, just as it is in the natural scale. So,

(Y 1|G = 1, T = 1, X) = α̃ + β̃ + γ̃ + θ̃′X + U, (3.14)

5Most often, this literature combines DD approaches with linear probability models.
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via equation (3.2). Next I apply the parallel trends assumption of equation (2.9) to

Y 0. That is, in the transformed scale. This gives

(Y 0|G = 1, T = 1, X)

= E[Y |G = 0, T = 1, X] + (E[Y |G = 1, T = 0, X]− E[Y |G = 0, T = 0, X]) + U

= α̃ + β̃ + θ̃′X + U, (3.15)

into which I have substituted the following CEFs implied by equation (3.2):6

E[Y |G = 1, T = 0, X] = α̃ + θ̃′X, (3.16)

E[Y |G = 0, T = 1, X] = β̃ + θ̃′X, and (3.17)

E[Y |G = 0, T = 0, X] = θ̃′X. (3.18)

Using equations (3.12) and (3.13) to re-transform the expressions for Y 1 and Y 0,

given in equations (3.14) and (3.15), back to the natural scale and taking expecta-

tions gives

E[y1|G = 1, T = 1, X] = Φ(α̃ + β̃ + γ̃ + θ̃′X) and (3.19)

E[y0|G = 1, T = 1, X] = Φ(α̃ + β̃ + θ̃′X). (3.20)

The average treatment effect when assuming parallel trends in the transformed scale,

6It is not crucial for my argument, but the equations (3.14) and (3.15) can be used to show

that the treatment effect on the latent outcome, E[Y 1|G = 1, T = 1, X]− E[Y 0|G = 1, T = 1, X],

is given by γ̃.
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therefore, is given by

E[y1|G = 1, T = 1, X]−E[y0|G = 1, T = 1, X] = Φ(α̃+β̃+γ̃+θ̃′X)−Φ(α̃+β̃+θ̃′X),

(3.21)

which is as specified by PBL. As Puhani notes, here the sign of the treatment effect

must be the same as that of γ̃, a fact implied by the monotonic and increasing

nature of Φ(·).

Unlike in the case of PTA 1, here the counterfactual outcome is restricted to

be within the range of Φ(·), so as long as Φ(·) is chosen to impose the appropriate

restrictions there is no possibility of the model producing infeasible predictions. But

as shown in this section, this advantage is only available when parallel trends must

hold in the transformed scale. Moreover, as I show next, use of PTA 2 also implies

something that must be true about the natural scale version of the counterfactual.

Thus, PTA 2 is only available to avoid the issue of infeasible outcomes in some

contexts, and doing so does not come without a cost.

3.3 The incompatibility of the two forms of parallel trends

As the above discussion shows, the scale in which the parallel trends assumption is

made implies two different models for the counterfactual outcome, y0. Expectations

implied by these are given by:

PTA 1 (Natural): E[y0|G = 1, T = 1, X] = Φ(β̃ + θ̃′X) + [Φ(α̃ + θ̃′X)− Φ(θ̃′X)]

PTA 2 (Transformed): E[y0|G = 1, T = 1, X] = Φ(α̃ + β̃ + θ̃′X).
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One of the implications of the nonlinearity of Φ(·) is that these two forms for the

CEF cannot be the same except in special cases. As can easily be seen,

Φ(α̃ + β̃ + θ̃′X) 6= Φ(β̃ + θ̃′X) + [Φ(α̃ + θ̃′X)− Φ(θ̃′X)], (3.22)

unless α̃ = 0, β̃ = 0, or both (Meyer, 1995; Ai and Norton, 2003; Angrist and

Pischke, 2009; Lechner, 2011; Puhani, 2012; Roth and Sant’Anna, 2021).7 Said

another way, the parallel trends assumption cannot hold in both the natural and

transformed scales of the dependent variable unless the treatment group in the pre-

period is the same on average as the control group, or there is no change over time

in the control group average, or both.

Since a parallel trends assumption is a linear function, it is quite intuitive that it

would not hold in general under nonlinear transformation. Nevertheless, this result

implies an important, practical trade-off for researchers: by assuming parallel trends

in one scale, the practitioner is explicitly ruling out parallel trends in the other,

save for the special cases mentioned. This cost is one that should be considered by

researchers when they chose parallel trends assumption, including when they are

trying to avoid the issue of infeasible outcomes.

This result also implies some pitfalls that researchers should be careful to avoid.

One case that should be treated with care is use of linear probability models. One

common scenario is a researcher using the linear probability model to implement a

DD research design, and then performing some robustness checks with a probit or

7Roth and Sant’Anna (2021) also show that another special case exists where parallel trends

could hold in both dimensions if a more general model is used that allows for mixture distributions

for the error term. In that case, the time and group effects exist within separate nonlinear functions

even when parallel trends are applied in the transformed scale.
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logit model. In using a linear probability model there is no transformed scale,8 so the

researcher must be making his or her parallel trends assumption in the natural scale.

When then turning to a nonlinear model, logical consistency would require that the

researcher base interpretation off of M&AN’s specification in equation (3.11) unless

he or she is prepared to argue one of the special cases detailed above prevails so that

parallel trends hold in both scales simultaneously. Conversely, if a researcher first

uses a probit or logit model with the interpretation suggested by PBL in equation

(3.21), thereby implying a transformed scale parallel trends assumption, turning

next to a linear probability model would potentially be inconsistent for the same

reason.

3.4 The special case of the exponential transformation

Next I consider the special case of the exponential transformation – that is, the

log-linear model – which is used in a large number of empirical applications. In this

model,

y = g(Y ) = exp(α̃G+ β̃T + γ̃GT + θ̃′X + U) and (3.23)

E[y|G, T,X] = E[Φ(Y )|G, T,X] = exp(α̃G+ β̃T + γ̃GT + θ̃′X)η, (3.24)

where η = E[exp(U)|G, T,X] = E[exp(U)].9 As noted above, in this case both g(·)

and Φ(·) are the same function. Traditionally exp(U) is assumed to be log-normally

distributed, but one could instead directly assume equation (3.24) without making

an explicit assumption about the distribution of exp(U).

8More accurately, the natural and transformed scales are the same in a linear probability model,

because g(·) is the identity function in that case.
9Recall that U is assumed to be independent, as is standard in nonlinear models.
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A convenient feature of this model is that the treatment effect of the nonlinear

DD model can be represented as a constant percentage, but there are multiple ways

to do this. Here I show one particular approach results in a constant object of

interest under either form of parallel trend assumption and that it is calculated

relative to an expectation of an actual outcome, not a potential one.10

Under the exponential transformation, the treatment effect when assuming nat-

ural scale parallel trends is given by

E[y1|G = 1, T = 1, X]− E[y0|G = 1, T = 1, X]

= exp(α̃ + β̃ + γ̃ + θ̃′X)η − exp(β̃ + θ̃′X)η − exp(α̃ + θ̃′X)η + exp(θ̃′X)η. (3.25)

Since in this model E[y|G = 0, T = 0, X] = exp(θ̃′X)η, a natural way to express this

treatment effect as a percentage would be to divide both sides by E[y|G = 0, T =

0, X]. Since y is observed, the resulting percentage could be easily compared to a

sample average of data for y to convert the treatment effect into its natural units.

However, if the expectations across periods are very different, the percentage calcu-

lated relative to E[y|G = 0, T = 0, X], a pre-period average, may give a misleading

impression of the size of the treatment effect.

An alternative would be to use E[y0|G = 1, T = 1, X], which produces an

easily understood expression for the treatment effect: a percentage in terms of the

expected counterfactual outcome. However, since y0 is not observed, a modeled

10Shang et al. (2018) propose an interpretation they call a “difference-in-semielasticity” for

interaction terms in log-linear and related models. While their estimand is constant, like those

I discuss, theirs does not represent a treatment effect. Their difference-in-semielasticity could be

understood in a DD context as first calculating the percentage growth over time for both groups

(relative to each group’s pre-period level) and then taking the difference of these.
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counterfactual mean would have to be used for benchmarking purposes as actual

data would be unavailable. More importantly, since E[y0|G = 1, T = 1, X] in this

case is comprised of a sum, the resulting percentage would not be constant and

would involve ratios of estimators. These would make inference more challenging

and would possibly create undesirable finite sample properties.

A better option would be to use E[y1|G = 1, T = 1, X], which produces

E[y1|G = 1, T = 1, X]− E[y0|G = 1, T = 1, X]

E[y1|G = 1, T = 1, X]

= 1− exp(−α̃− γ̃)− exp(−β̃ − γ̃) + exp(−α̃− β̃ − γ̃). (3.26)

This percentage has a natural interpretation as the treatment effect as a percentage

of the observed outcome. additionally, it is calculated relative to an expectation

on observable data, so an estimate of E[y|G = 1, T = 1, X] could be used to

convert the percentage to y’s actual units. Conveniently, this expression does not

depend on data, only estimates, which can easily be obtained using appropriate

(consistent) estimators for the coefficients. Moreover, standard errors also could be

easily obtained via the delta method.

So the expression above has several advantages, but in the context of my discus-

sion in this article, the most attractive aspect of representing the treatment effect

as in equation (3.26) is the above advantages are maintained when the treatment

effect is calculated as specified by PBL according to the alternative parallel trend

assumption of PTA 2:

E[y1|G = 1, T = 1, X]− E[y0|G = 1, T = 1, X]

E[y1|G = 1, T = 1, X]
= 1− exp(−γ̃). (3.27)
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Under transformed scale parallel trends, the treatment effect percentage can also be

conveniently represented relative to the counterfactual expectation via

E[y1|G = 1, T = 1, X]− E[y0|G = 1, T = 1, X]

E[y0|G = 1, T = 1, X]
= exp(γ̃)− 1. (3.28)

Given the difficulties involved with expressing this version under the M&AN form

of the treatment effect, however, I argue the standard use of (E[y1|G = 1, T =

1, X] − E[y0|G = 1, T = 1, X])/E[y1|G = 1, T = 1, X] across researchers would

offer an important advantage. Since parallel trends assumptions may vary across

contexts, if researchers use a consistent form of the percentage treatment effect, it

will be easier for estimates to be compared across projects, regardless of which form

the parallel trends assumption is made in each analysis. In short, I argue that,

for log-linear models, researchers should represent their treatment effects from DD

models by equation (3.26) when parallel trends are assumed in the natural scale and

equation (3.27) when assumed in the log-scale.

4 Conclusion

In this essay, I have attempted to reconcile the two views in the literature regarding

interpretation of nonlinear DD models and show the important role the form of the

parallel trends assumption plays. I argue for a simple rule: if parallel trends are

assumed to hold in the natural scale of the dependent variable, then interpretation

should be based on the form specified by M&AN; if they are assumed to hold in

the transformed scale, then the form given by PBL should be used. Moreover, I

note that when researchers decide the scale in which to make their parallel trends
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assumption, they should be careful to keep in mind that doing so implies parallel

trends do not hold in the other scale, except in special circumstances.

Given the above, empirical researchers should be careful about inadvertently

being inconsistent with their parallel trends assumptions. This issue is particularly

likely to arise when practitioners combine linear probability models with probit

or other nonlinear versions of discrete choice models. Mixing these models is not

necessarily a problem, though, researchers just need to make sure to interpret their

different models according to a consistent parallel trend assumption. The above rule

on interpretation can help them do that.

Additionally, while I caution researchers to keep in mind that parallel trends are

unlikely to hold in both scales, this fact can also be turned around and looked at

from a different perspective. It shows that when researchers encounter cases where

the parallel trends assumption is more credible in one scale and not the other –

perhaps due to evidence offered by pre-trends – this is not necessarily a problem.

The key is to interpret the result in a manner consistent with the credible version of

the parallel trends assumption. Said succinctly: a parallel trend assumption rarely

holds in multiple scales for reasons unrelated to its validity, so parallel trends not

holding under nonlinear transformation in some scenario is not itself an indictment

of the use of a DD model in that context.

Furthermore, my argument also suggests researchers have more freedom in choos-

ing models than would be suggested by PBL and Kahn-Lang and Lang (2020).

Since the method of interpretation is tied to the form of parallel trends assumed,

not the model functional form chosen, if a researcher believes parallel trends exist

in the natural scale of a variable, my argument implies he or she could still chose

a nonlinear-DD model. Further, the researcher is not required to assume parallel
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trends exist in the transformed scale when choosing a nonlinear model. Both cases

are possible as long as the analyst uses the proper method of interpretation. Thus,

one could use a probit model for a binary outcome exhibiting parallel trends in the

natural scale or a Poisson model for count data without assuming the parallel trend

has to hold in the log-scale.

Lastly, I also note that, in the special case of the semilogarithmic models, treat-

ment effects can be represented in convenient fashion, with the form offered by

(E[y1|G = 1, T = 1, X] − E[y0|G = 1, T = 1, X])/E[y1|G = 1, T = 1, X] offering

several advantages that accrue both to the individual researcher and the broader

scientific community. This suggests standard use of this form of the treatment effect

among researchers making use of the log-linear DD model.
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Figure 1: Hypothetical treatment and control group changes, presented in natural
and log scale.
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