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Abstract

We show that the theorems in Hansen (2021b) (Econometrica, forthcoming) are not new

as they coincide with classical theorems like the good old Gauss-Markov or Aitken Theorem,

respectively.

1 Introduction

Hansen (2021b) contains several assertions from which he claims it would follow that the linearity

condition can be dropped from the Gauss-Markov Theorem or from the Aitken Theorem. We

show that this conclusion is unwarranted, as his assertions on which this conclusion rests turn out

to be only (intransparent) reformulations of the classical Gauss-Markov or the classical Aitken

Theorem, into which he has reintroduced linearity through the backdoor.

The present paper is mainly pedagogical in nature. In particular, the results will not come as

a surprise to anyone well-versed in the theory of linear models and familiar with basic concepts of

statistical decision theory, but � given the confusion introduced by Hansen (2021b) � the paper

will bene�t the econometrics community.

One important upshot of the present paper is that one should not follow Hansen�s plea to

drop the linearity condition in teaching the Gauss-Markov Theorem or the Aitken Theorem.

Depending on which formulation of the Gauss-Markov Theorem one starts with (Theorem 3.1 or

3.2), dropping linearity form the formulation of that theorem at best leads to a result equivalent

to the usual Gauss-Markov Theorem, and at worst leads to an incorrect result. The same goes

for the Aitken Theorem. Unfortunately, in heeding his own advice Hansen has included an

incorrect formulation of the Gauss-Markov Theorem in his forthcoming text-book (Theorem 4.4.

in Hansen (2021a)).

�We would like to thank Abram Kagan for answering an inquiry and pointing us to the reference Kagan and
Salaevskii (1969). Address correspondence to Benedikt Pötscher, Department of Statistics, University of Vienna,
A-1090 Oskar-Morgenstern Platz 1. E-Mail: benedikt.poetscher@univie.ac.at.
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2 The Framework

As in Hansen (2021b) we consider throughout the paper the linear regression model

Y = X� + e (1)

where Y is of dimension n � 1 and X is a (non-random) n � k design matrix with full column

rank k satisfying 1 � k < n.1 It is assumed that

Ee = 0 (2)

and

Eee0 = �2�; (3)

where �2, 0 < �2 < 1, is unknown and � is a known symmetric and positive de�nite n � n

matrix (Ee0e <1). This model implies a distribution F for Y , which depends on X, �, and the

distribution of e, in particular on �2 and �. Now de�ne F2(�) as the class of all such distributions

F when � varies through Rk and the distribution of e varies through all distributions compatible

with (2) and (3) for the given � (and arbitrary �2, 0 < �2 <1). Of course, F2(�) depends on

X, but we suppress this in the notation. We furthermore introduce the set F2 as the larger class

where we also vary � through the set of all symmetric and positive de�nite n � n matrices. In

other words,

F2 =
S

�

F2(�);

where the union is taken over all symmetric and positive de�nite n � n matrices.2 Again, F2

depends on X, but this dependence is not shown in the notation. The set F02 de�ned in Hansen

(2021b) is nothing else than F2(In), where In denotes the n�n identity matrix. In the following

EF (V arF , respectively) will denote the expectation (variance-covariance matrix, respectively)

taken under the distribution F . A word on notation: Given F 2 F2, there is a unique �, denoted

by �(F ), and a unique �2�, denoted by (�2�)(F ), compatible with the distribution F .

Remark 2.1. (Ambiguity in the de�nition in Hansen (2021b)) Hansen (2021b) also de�nes a

set F2, unfortunately somewhat ambiguously: Taking the �rst sentence mentioning his set F2

literally, his set would coincide with our F2(�). The two sentences following that sentence,

however, intimate that his set F2 was intended to coincide with our set F2. This is con�rmed

by an inspection of his proofs; furthermore, if one would interpret his set F2 to mean our F2(�),

then the relation F02 � F2 given below (4) in Hansen (2021b) (which in our notation would

become F2(In) � F2(�)) could not hold (except for � proportional to In). In the following we

hence interpret Hansen�s set F2 to coincide with our de�nition of F2. In a remark further below

1We make the assumption k < n in order to use exactly the same framework as in Hansen (2021b).
2Note that F2(�1)\F2(�2) = ; i¤ �1 and �2 are not proportional. And F2(�1) = F2(�2) i¤ �1 and �2 are

proportional.
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we discuss what happens if one would adopt the interpretation of Hansen�s F2 as coinciding with

our F2(�).

3 The Gauss-Markov Case

To focus the discussion, we �rst treat the situation of a regression model with homoskedastic

and uncorrelated errors, i.e., we assume that in (3) we have

� = In: (4)

Let �̂OLS = (X
0X)�1X 0Y denote the ordinary least-squares estimator. The classical Gauss-

Markov Theorem then reads as follows. Recall that a linear estimator is of the form AY , were

A is a (nonrandom) k � n matrix. Also recall that F02 = F2(In).

Theorem 3.1. If �̂ is a linear estimator that is unbiased under all F 2 F
0
2 (meaning that

EF �̂ = �(F ) for every F 2 F
0
2), then

V arF (�̂) � V arF (�̂OLS)

for every F 2 F02. [Here � denotes Loewner order.]

The theorem can equivalently be stated in the following more unusual form, which is the form

chosen by Hansen (see Theorem 1 in Hansen (2021b)).3

Theorem 3.2. If �̂ is a linear estimator that is unbiased under all F 2 F2 (meaning that

EF �̂ = �(F ) for every F 2 F2), then

V arF (�̂) � V arF (�̂OLS) (5)

for every F 2 F02.

In the latter theorem the unbiasedness is requested to hold over the larger class F2 of dis-

tributions rather than only over F02. Of course, this is immaterial here and the two theorems

are equivalent, because the estimators are required to be linear in both theorems and thus their

expectation depends only on the �rst moment of Y and not on the second moments at all. While

the di¤erence in the unbiasedness conditions is immaterial in the preceding theorems, it is worth

pointing out that the unbiasedness condition as given in Theorem 3.2 requires that an estimator

is not only unbiased in the underlying model with uncorrelated and homoskedastic errors one

is studying, but also requires unbiasedness under correlated and/or heteroskedastic errors (i.e.,

3As formulated in Hansen (2021b), his Theorem 1 has �2(X0X)�1 instead of V arF (�̂OLS) on the r.h.s. of the
inequality. Taken literally this leaves �2 unspeci�ed. To obtain a mathematically well-de�ned statement �2 needs
to be interpreted as �2(F ), the variance of the data under F , the distribution under which the variance-covariance
matrices of the estimators are computed.
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under structures that are �outside� of the model that is being considered). Why one would want

to impose such a requirement when the underlying model has uncorrelated and homoskedastic

errors is at least debatable. However, we stress once more that in the context of the preceding

two theorems this does not matter.

We next discuss what happens if one eliminates the linearity condition in the two equivalent

theorems. Dropping the linearity conditions leads to the following assertions, which will turn

out to be no longer equivalent to each other:4

Assertion 1: If �̂ is an estimator (i.e., a Borel-measurable function of Y ) that is unbiased

under all F 2 F02 (meaning that EF �̂ = �(F ) for every F 2 F
0
2), then

V arF (�̂) � V arF (�̂OLS)

for every F 2 F02.

Assertion 2: If �̂ is an estimator that is unbiased under all F 2 F2 (meaning that EF �̂ =

�(F ) for every F 2 F2), then

V arF (�̂) � V arF (�̂OLS)

for every F 2 F02.

Not unexpectedly, Assertion 1 is incorrect in general.5 This is known. For the bene�t of the

reader we provide some counterexamples and attending discussion in the appendix. In particular,

we see that in the classical Gauss-Markov Theorem as it is usually formulated (i.e., in Theorem

3.1) one can not eliminate the linearity condition in general!

Concerning Assertion 2, note that it coincides with Theorem 5 in Hansen (2021b) (his �modern

Gauss-Markov Theorem�).6 Obvious questions now are (i) whether Assertion 2 (i.e., Theorem 5

in Hansen (2021b)) is correct, and (ii) if so, what is the reason for Assertion 2 to be correct while

Assertion 1 is incorrect although in both assertions the linearity condition has been dropped. The

answer to the latter question lies in the fact that Assertion 2 is requiring a stricter unbiasedness

condition, namely unbiasedness over F2 rather than only unbiasedness over F
0
2. While the two

unbiasedness conditions e¤ectively coincide for linear estimators as discussed before, this is no

longer the case once we leave the realm of linear estimators. Hence, the (potential) correctness

of Assertion 2 (i.e., of Theorem 5 in Hansen (2021b)) must crucially rest on imposing the stricter

unbiasedness condition, which not only requires unbiasedness under the model considered (re-

gression with homoskedastic and uncorrelated errors), but oddly also under structures �outside�

of the maintained model (namely under heteroskedastic and/or correlated errors). Note that

the class of competitors to �̂OLS �guring in Assertion 1 is, in general, larger than the class of

competitors appearing in Assertion 2.

4 It is understood in both assertions that only estimators �̂ are considered for which all appearing expressions
EF �̂ and V arF (�̂) are well-de�ned.

5 I.e., there exist design matrices X such that the assertion is false.
6The same caveat as expressed in Footnote 3 also applies to the formulation of Theorem 5 in Hansen (2021b).
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Having understood what distinguishes Assertion 2 (i.e., Theorem 5 in Hansen (2021b)) from

Assertion 1, the question remains whether the former is indeed correct, and if so, what its scope

is, i.e., how much larger than the class of linear (unbiased) estimators the class of estimators

covered by Assertion 2 (i.e., by Theorem 5 in Hansen (2021b)) is. We answer this now: As

we shall show in the subsequent theorem, the only estimators �̂ satisfying the unbiasedness

condition of Assertion 2 (i.e., Theorem 5 in Hansen (2021b)) are linear estimators! In other

words, Hansen�s Theorem 5 (i.e., his �modern Gauss-Markov Theorem�) is nothing else than the

good old(fashioned) Gauss-Markov Theorem (i.e., Theorem 3.1 above), just stated in a somewhat

unusual and intransparent way! [Note that the word �linear� does not appear in the formulation

of Hansen�s Theorem 5, but that linearity of the estimators is introduced indirectly through

a backdoor provided by the stricter unbiasedness condition.] While Hansen�s Theorem 5 thus

turns out to be correct, it is certainly not new!7 Theorem 6 in Hansen (2021b) is a special case

of his Theorem 5 for the location model, and thus is also not new.8 What has been said also

serves as a reminder that one has to be careful with statements such as �best unbiased equals

best linear unbiased�. While this statement is incorrect in the context of Assertion 1 in general,

it is trivially correct in the context of Assertion 2 (i.e., of Theorem 5 in Hansen (2021b)) as a

consequence of the subsequent theorem.

An upshot of the preceding discussion is that � despite a plea to the contrary in Hansen

(2021b) � one should not drop �linearity� from the pedagogy of the Gauss-Markov Theorem.

There is nothing to gain and a lot to lose: It will lead to an incorrect assertion, if one starts from

the usual formulation of the classical Gauss-Markov Theorem (i.e., from Theorem 3.1); otherwise

(i.e., if one starts from Theorem 3.2), it will lead to a correct, but rather intransparent, asser-

tion that is in fact equivalent to the classical Gauss-Markov Theorem. Unfortunately, Hansen

has fallen victim to his own advice as the Gauss-Markov Theorem (Theorem 4.4) given in his

forthcoming text-book Hansen (2021a) is incorrect in general (as it coincides with Assertion 1).

Theorem 3.3. If �̂ is an estimator (i.e., a Borel-measurable function of Y ) that is unbiased

under all F 2 F2 (meaning that EF �̂ = �(F ) for every F 2 F2), then �̂ is a linear estimator

(i.e., �̂ = AY for some k � n matrix A).9 ,10

We give a �rst "proof" based on Theorem 4.3 in Koopmann (1982) also reported as Theorem

2.1 in Gnot et al. (1992), but see the discussion below.

A �rst "proof": The unbiasedness assumption of the theorem obviously translates into

EF �̂ = �(F ) for every F 2 F2(�); (6)

for every symmetric and positive de�nite � of dimension n� n; specializing to the case � = In,

7We have not checked whether the proofs in Hansen (2021b) are correct or not.
8 In contrast, Theorem 6 in the version of Hansen (2021b) available at the Econometrica website (i.e., Version

September 2021) is a special case of Assertion 1. Example A.1 in the appendix shows that this theorem is false.
9By unbiasedness, such an A must then also satisfy AX = In.
10Curiously, the result by Koopmann (1982) in question is actually mentioned in Section 1 of Hansen (2021b).
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we, in particular, obtain11

EF �̂ = �(F ) for every F 2 F2(In): (7)

Condition (7), together with Theorem 4.3. in Koopmann (1982) (see also Theorem 2.1 in Gnot

et al. (1992)12), implies that �̂ is of the form

�̂ = A0Y + (Y 0H0
1Y; : : : ; Y

0H0
kY )

0; (8)

where A0 satis�es A0X = In and H
0
i are matrices satisfying tr(H

0
i ) = 0 and X 0H0

iX = 0 for

i = 1; : : : ; k. It is easy to see that we may without loss of generality assume that the matrices

H0
i are symmetric (otherwise replace H

0
i by (H

0
i +H

00
i )=2). Inserting (8) into (6) yields

EF
�
A0Y + (Y 0H0

1Y; : : : ; Y
0H0

kY )
0
�
= �(F ) for every F 2 F2(�);

and this has to hold for every symmetric and positive de�nite �. Standard calculations involving

the trace operator and division by �2 now give

(tr(H0
1�); : : : ; tr(H

0
k�))

0 = 0 for every symmetric and positive de�nite �: (9)

For every j = 1; : : : ; n, choose now a sequence of symmetric and positive de�nite matrices �
(j)
m

(each of dimension n�n) that converges to ej(n)ej(n)
0 as m!1, where ej(n) denotes the j-th

standard basis vector in Rn (such sequences obviously exist). Plugging this sequence into (9),

letting m go to in�nity, and exploiting properties of the trace-operator, we obtain

(ej(n)
0H0

1ej(n); : : : ; ej(n)
0H0

kej(n))
0 = 0 for every j = 1; : : : ; n.

In other words, all the diagonal elements of H0
i are zero for every i = 1; : : : ; k. Next, for every

j; l = 1; : : : ; n, j 6= l, choose a sequence of symmetric and positive de�nite matrices �
fj;lg
m (each

of dimension n� n) that converges to (ej(n) + el(n))(ej(n) + el(n))
0 as m!1 (such sequences

obviously exist). Then exactly the same argument as before delivers

((ej(n) + el(n))
0H0

1 (ej(n) + el(n)); : : : ; (ej(n) + el(n))
0H0

k(ej(n) + el(n)))
0 = 0 for every j 6= l.

Recall that the matrices H0
i are symmetric. Together with the already established fact that the

diagonal elements are all zero, we obtain that also all the o¤-diagonal elements in any of the

matrices H0
i are zero; i.e., H

0
i = 0 for every i = 1; : : : ; k. This completes the proof.

13
�

11 Instead of In we could have chosen any other symmetric and positive de�nite n� n matrix �0 instead.
12Note that X� in that reference runs through all possible g-inverses of X.
13A slightly di¤erent version of the �rst "proof" can be obtained as follows. Theorem 4.3 in Koopmann (1982)

shows for every given (�xed) � that any �̂ satisfying (6) is of the form AY +(Y 0H1Y; : : : ; Y 0HkY )
0 where AX = In,

the Hi�s satisfy tr(Hi�) = 0, and X0HiX = 0 for i = 1; : : : ; n. Again it is easy to see that we may assume the
matrices Hi to be symmetric. Note that the matrices A and Hi �owing from Theorem 4.3 in Koopmann (1982)
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Theorem 4.3. in Koopmann (1982) is proved by reducing it to Theorem 3.1 (via Theorems 3.2,

4.1, and 4.2) in the same reference. Unfortunately, a full proof of Theorem 3.1 is not provided

in Koopmann (1982), only a very rough outline is given. Thus the status of Theorem 4.3 in

Koopmann (1982) is not entirely clear. For this reason we next give a direct proof which does

not rely on any result in Koopmann (1982).14

A direct proof: For every m 2 N, every V = (v1; : : : ; vm) 2 R
n�m and � 2 (0; 1)m such

that
Pm

i=1 �i = 1, de�ne a probability measure via

�V;� :=
mX

i=1

�i�vi ;

where �z denotes unit point mass at z 2 R
n. The expectation of �V;� equals V �, and its

covariance matrix equals V diag(�)V 0� (V �)(V �)0. Denote the expectation operator w.r.t. �V;�

by EV;�. Note that in case V � = 0 and rank(V ) = n the measure �V;� has expectation zero and

a positive de�nite variance-covariance matrix; thus, �V;� corresponds to an F 2 F2 which has

�(F ) = 0. From the unbiasedness assumption imposed on �̂ we obtain that

V � = 0 and rank(V ) = n implies 0 = EV;�(�̂) =
mX

i=1

�i�̂(vi): (10)

Step 1: Fix z 2 R
n and de�ne �(1) = 2�1(n�1; : : : ; n�1)0 2 R

2n, �(2) = 2�1((n +

1)�1; : : : ; (n + 1)�1)0 2 R2(n+1), V1 = (In;�In) and V2 = (In;�In; z;�z). Clearly V1�
(1) =

V2�
(2) = 0 and rank(V1) = rank(V2) = n. Furthermore,

�V2;�(2) =
n

n+ 1
�V1;�(1) +

1

2(n+ 1)
(�z + ��z): (11)

Applying (10) with EV2;�(2) and EV1;�(1) now yields 0 = �̂(z) + �̂(�z), i.e., we have shown that

�̂(�z) = ��̂(z) for every z 2 Rn; (12)

in particular �̂(0) = 0 follows.

Step 2: Let y and z be elements of Rn. De�ne the matrix

A(y; z) = ((y1 + z1)e1(n); : : : ; (yn + zn)en(n));

in principle could depend on �. The following argument shows that this is, however, not the case: If �̂ had
two distinct linear-quadratic representations, then the di¤erence of these two respresentations would be a vector
of multivariate polynomials (at least one of which is nontrivial) that would have to vanish everywhere, which
is impossible since the zero-set of a nontrivial multivariate polynomial is a Lebesgue null-set. Given now the
independence (from �) of the matrices Hi, one can then exploit the before mentioned relations tr(Hi�) = 0 in
the same way as is done following (9) in the main text.
14Alternatively, one could try to provide a complete proof of the result in Koopmann (1982). We have not

pursued this, but have chosen the route via a direct proof of Theorem 3.3.
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where ei(n) denotes the i-th standard basis vector in R
n, and set

V = (A(y; z);�y;�z; In;�In) and � = (3n+ 2)�1(1; : : : ; 1)0 2 R3n+2:

Then, we obtain V � = 0 and rank(V ) = n. Using (10) and (12) it follows that

0 =
nX

i=1

�̂((yi + zi)ei(n)) + �̂(�y) + �̂(�z);

which by (12) is equivalent to

�̂(y) + �̂(z) =
nX

i=1

�̂((yi + zi)ei(n)): (13)

Using (13) with y replaced by y + z and z replaced by 0 yields

�̂(y + z) + �̂(0) =
nX

i=1

�̂((yi + zi)ei(n)):

Since �̂(0) = 0 as shown before, we obtain

�̂(y) + �̂(z) = �̂(y + z) for every y and z in Rn: (14)

That is, we have shown that �̂ is additive, i.e., is a group homomorphism between the additive

groups Rn and Rk. By assumption it is also Borel-measurable. It then follows by a result due to

Banach and Pettis (e.g., Theorem 2.2 in Rosendal (2009)) that �̂ is also continuous. Homogeneity

of �̂ now follows from a standard argument, dating back to Cauchy, so that �̂ is in fact linear.

We give the details for the convenience of the reader: Relation (14) (which contains (12) as a

special case) implies �̂(lz) = l�̂(z) for every integer l. Replacing z by z=l (l 6= 0) in the latter

relation gives �̂(z)=l = �̂(z=l) for integer l 6= 0. It immediately follows that �̂(pz=q) = (p=q)�̂(z)

for every pair of integers p and q (q 6= 0). Let c 2 R be arbitrary. Choose a sequence of rational

numbers cs that converges to c. Then by continuity of �̂

�̂(cz) = lim
s!1

�̂(csz) = lim
s!1

�
cs�̂(z)

�
=
�
lim
s!1

cs

�
�̂(z) = c�̂(z):

This concludes the proof. �

Remark 3.4. (Ambiguity in the de�nition in Hansen (2021b) continued) If Hansen�s F2 would be

interpreted as coinciding with our F2(�) (here with � = In because of (4)) then the formulations

of Theorems 3.1 and 3.2 as well as the formulations of Assertions 1 and 2 would coincide. In

particular, with such an interpretation of Hansen�s F2 his Theorem 5 would be false.
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4 The Aitken Case

In this section we drop the assumption (4), i.e., � in (3) need not be the identity matrix. We make

a preparatory remark: Similarly to observations made in Section 3 (see Footnote 3), the rendition

of Aitken�s Theorem (for linear estimators) as given in Theorem 3 in Hansen (2021b) needs some

interpretation to convert it into a mathematically well-de�ned statement: The product �2�, on

which the r.h.s. of the inequality in that theorem depends, is unspeci�ed (note that �2 and �

enter the expression only via the product), and needs to be interpreted as (�2�)(F ), the variance-

covariance matrix of the data under the relevant F w.r.t. which the variance-covariances in this

inequality are taken. The same comment applies to Theorem 4 in Hansen (2021b).

Aitken�s Theorem as usually given in the literature reads as follows. Let �̂GLS = �̂GLS(�) =

(X 0��1X)�1X 0��1Y denote the generalized least-squares estimator using the known matrix �.

Linear estimators are of the form �̂ = AY where A is a (nonrandom) n� k matrix.

Theorem 4.1. Let � be an arbitrary known symmetric and positive de�nite n� n matrix. If �̂

is a linear estimator that is unbiased under all F 2 F2(�) (meaning that EF �̂ = �(F ) for every

F 2 F2(�)), then

V arF (�̂) � V arF (�̂GLS)

for every F 2 F2(�).

Similar as in Section 3, due to linearity of the estimators, an equivalent version of the the-

orem is obtained if the unbiasedness requirement is extended to all of F2. This is precisely

what happens in Theorem 3 in Hansen (2021b), his rendition of the Aitken Theorem (for linear

estimators). Note that the subsequent theorem is obviously equivalent to Theorem 3 in Hansen

(2021b) and perhaps is more transparent. [To see the equivalence, note that the all-quantor over

� in Theorem 4.2 can be "absorbed" by replacing F2(�) with F2 provided the quantity �
2�

appearing in the expression V arF (�̂GLS) = �
2(X 0��1X)�1 = (X 0(�2�)�1X)�1 in (15) below is

understood as (�2�)(F ), as is necessary anyways for Theorem 3 in Hansen (2021b) to formally

make sense as noted earlier.]

Theorem 4.2. Let � be an arbitrary known symmetric and positive de�nite n � n matrix. If

�̂ is a linear estimator that is unbiased under all F 2 F2 (meaning that EF �̂ = �(F ) for every

F 2 F2), then

V arF (�̂) � V arF (�̂GLS) (15)

for every F 2 F2(�).

Dropping linearity in both theorems now leads to two assertions.

Assertion 3: Let � be an arbitrary known symmetric and positive de�nite n � n matrix.

If �̂ is an estimator that is unbiased under all F 2 F2(�) (meaning that EF �̂ = �(F ) for every

F 2 F2(�)), then

V arF (�̂) � V arF (�̂GLS)
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for every F 2 F2(�).

Assertion 4: Let � be an arbitrary known symmetric and positive de�nite n � n matrix.

If �̂ is an estimator that is unbiased under all F 2 F2 (meaning that EF �̂ = �(F ) for every

F 2 F2), then

V arF (�̂) � V arF (�̂GLS)

for every F 2 F2(�).

Assertion 3 is again incorrect in general for reasons similar to the ones given for Assertion 1

in the previous section. Assertion 4 is equivalent to Theorem 4 in Hansen (2021b) (his �modern

Aitken Theorem�); this is seen in the same way as the equivalence of Theorem 4.2 above with

Theorem 3 in Hansen (2021b). Assertion 4 is indeed correct, but again not new, as the class of

estimators �guring in Assertion 4 coincides with the class of linear estimators as a consequence

of Theorem 3.3 above. Furthermore, a comment like Remark 3.4 also applies here. We conclude

this section by noting that the rendition of Aitken�s Theorem in the text-book Hansen (2021a)

(Theorem 4.5) is ambiguously formulated, making it di¢cult to decide whether it coincides with

the (incorrect) Assertion 3 or with Assertion 4, which is (trivially) correct.

5 Independent Identically Distributed Errors

We round-o¤ the discussion by brie�y considering in this section what happens if we add the

condition

e1; : : : ; en are i.i.d. (16)

to the model where ei denotes the i-th component of e. Let F
iid
2 be the subset of F 0

2 corresponding

to distributions F that result from (1), (2), (3), and (16). In particular, we ask what is the status

of the following assertion which is analogous to Assertion 1.

Assertion 5: If �̂ is an estimator that is unbiased under all F 2 Fiid2 (meaning that EF �̂ =

�(F ) for every F 2 Fiid2 ), then

V arF (�̂) � V arF (�̂OLS)

for every F 2 Fiid2 .

Note that Assertion 5 di¤ers from Assertion 1 in two respects: (i) the set of competitors to

�̂OLS , i.e., the set of unbiased estimators in Assertion 5 is potentially larger than the correspond-

ing set in Assertion 1, and (ii) the set of distributions F for which the variance inequality has

to hold has gotten smaller compared to Assertion 2. Hence, the truth-status of Assertion 1 does

not inform us about the corresponding status of Assertion 5.

Fortunately, Example A.2 in the appendix comes to the rescue and shows that Assertion 5

is incorrect in general (meaning that a design matrix can be found such that it is false). This is

so since the nonlinear estimator constructed in that example is a fortiori unbiased under Fiid2 ,
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and since the o¤ending F found in that example in fact belongs to Fiid2 . However, in the special

case of the location model Assertion 5 is actually true. This follows directly from Theorem 5 in

Halmos (1946). [Recall that, in contrast, Assertion 1 is false in the case of a location model; cf.

Example A.1 in the appendix.]

If one restricts the distributions to the set Fiid;ac2 � Fiid2 of distributions such that errors are

not only i.i.d. but also are absolutely continuous, then in the location case the corresponding

analogon to Assertion 5 is also true, see Example 4.2 in Section 2.4 of Lehmann and Casella

(1988).

A nice result is due to Kagan and Salaevskii (1969): Suppose we restrict to i.i.d. errors in our

regression model, but where now the distribution of the errors, G say, is known. Suppose also

that n � 2k+1 and that the design matrix has no rows of zeroes. Then, if �̂OLS is best unbiased

in this model, the distribution G must be Gaussian. [Kagan and Salaevskii (1969) actually prove

a more general result.] A related result for the location model with independent (not necessarily

identically distributed) errors is given in Theorem 7.4.1 of Kagan et al. (1973).

There is probably more in the mathematical statistics literature we are not aware of, but this

is what a quick search has turned up.

A Appendix: Counterexamples

Here we provide various counterexamples to Assertion 1. They all rest on the following lemma

which certainly is not original as similar computations can be found in the literature, see, e.g.,

Gnot et al. (1992) and references therein. Counterexamples can also be easily derived from

results in the before mentioned papers. In this appendix we always maintain the model from

Section 2 and assume that (4) holds.

Lemma A.1. Consider the model as in Section 2, additionally satisfying (4).

(a) De�ne estimators via

�̂� = �̂OLS + �(Y
0H1Y; : : : ; Y

0HkY )
0 (17)

where the Hi�s are symmetric n � n matrices and � is a real number. Suppose tr(Hi) = 0 and

X 0HiX = 0 for i = 1; : : : ; k. Then EF (�̂�) = �(F ) for all F 2 F
0
2.

(b) Suppose the Hi�s are as in Part (a). If CovF (c
0�̂OLS ; c

0(Y 0H1Y; : : : ; Y
0HkY )

0) 6= 0 for

some c 2 Rk and for some F 2 F02, then there exist an � 2 R
n such that

V arF (c
0�̂�) < V arF (c

0�̂OLS); (18)

in particular, �̂OLS then does not have smallest variance-covariance matrix (w.r.t. Loewner or-

der) in the class of all estimators that are unbiased under all F 2 F02.

(c) Suppose the Hi�s are as in Part (a). For every c 2 R
k and for every F 2 F02 under which
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�(F ) = 0 we have

CovF

�
c0�̂OLS ; c

0(Y 0H1Y; : : : ; Y
0HkY )

0
�
=

nP

j=1

nP

l=1

nP

m=1
dj

�
kP

i=1

cihlm(i)

�
E(ejelem); (19)

where d = (d1; : : : ; dn)
0 = X(X 0X)�1c and hlm(i) denotes the (l;m)-th element of Hi.

(d) Suppose the Hi�s are as in Part (a). For every c 2 R
k and for every F 2 F02 under which

(i) �(F ) = 0 and under which (ii) the coordinates of Y are independent (equivalently, the errors

ei are independent)

CovF

�
c0�̂OLS ; c

0(Y 0H1Y; : : : ; Y
0HkY )

0
�
=

nP

j=1

dj

�
kP

i=1

cihjj(i)

�
E(e3j ): (20)

Proof: The proof of Parts (a), (c), and (d) is by straightforward computation. Since

V arF (c
0�̂�) = V arF (c

0�̂OLS) + 2�CovF

�
c0�̂OLS ; c

0(Y 0H1Y; : : : ; Y
0HkY )

0
�

+�2V arF (c
0(Y 0H1Y; : : : ; Y

0HkY )
0);

the claim in (b) follows immediately as the �rst derivative of V arF (c
0�̂�) w.r.t. � and evaluated

at � = 0 equals 2CovF

�
c0�̂OLS ; c

0(Y 0H1Y; : : : ; Y
0HkY )

0
�
. Hence, whenever this covariance is

non-zero, we may choose � 6= 0 small enough such that (18) holds. �

We now provide a few counterexamples that make use of the preceding lemma.

Example A.1. Consider the location model, i.e., the case where k = 1 and X = (1; : : : ; 1)0.

Choose H1 as the n � n matrix which has h11(1) = �h22(1) = 1 and hij(1) = 0 else. Then the

conditions on H1 in Part (a) of Lemma A.1 are satis�ed, and hence �̂� is unbiased under all

F 2 F02. Setting c = 1, we �nd for the covariance in (20)

n�1(EF (e
3
1)� EF (e

3
2)) 6= 0

for every F 2 F02 under which �(F ) = 0, the errors ei are independent, and EF (e
3
1) 6= EF (e

3
2)

hold. Such distributions F obviously exist.15 As a consequence, �̂OLS is not best unbiased in

the class of all estimators �̂ that are unbiased under all F 2 F02. In particular, Assertion 1 is

false for this design matrix.

For the argument underlying the preceding example it is key that the errors are not i.i.d. under

the relevant F . In fact, in the location model (i.e., X = (1; : : : ; 1)0) we have V arF (�̂OLS) �

V arF (�̂�) for every real �, for every choice of H1 as in Part (a) of Lemma A.1, and for every

F 2 F02 under which the errors ei are i.i.d., since then CovF

�
�̂OLS ; Y

0H1Y
�
= 0 as is easily

seen. For other design matrices X the argument, however, works even for i.i.d. errors as we show

in the subsequent example. Cf. Section 4.1 of Gnot et al. (1992) for related results and more.

15E.g., choose e2; : : : ; en i.i.d. N(0; �2) and e1 independent from e2; : : : ; en with mean zero, variance �2, and
third moment not equal to zero.
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Example A.2. Consider the balanced one-way layout for k = 2 and n = 4. That is, X has

�rst column equal to (1; 1; 0; 0)0 and second column equal to (0; 0; 1; 1)0. Set c = (1; 0)0. Then

d = (1=2; 1=2; 0; 0)0. Choose, e.g., H1 = H2 as the 4� 4 matrix made up of 2� 2 blocks, where

the o¤-diagonal blocks are zero, the �rst and second diagonal block, respectively, are given by

 
1 �1

�1 1

!

;

 
�1 1

1 �1

!

:

Then the conditions on Hi in Part (a) of Lemma A.1 are satis�ed, and hence �̂� is unbiased

under all F 2 F02. For the covariance in (20) we �nd

(EF (e
3
1) + EF (e

3
2))=2

under any F 2 F02 under which �(F ) = 0 and the errors ei are independent. If F is chosen

such that the errors are furthermore i.i.d. and asymmetrically distributed, the expression in the

preceding display reduces to EF (e
3
1) 6= 0. Such distributions F obviously exist. As a consequence,

�̂OLS is not best unbiased in the class of all estimators �̂ that are unbiased under all F 2 F02.

In particular, Assertion 1 is false for this design matrix.

Many more counterexamples can be generated with the help of Lemma A.1 as outlined in the

subsequent remark.

Remark A.2. (i) Suppose X admits a choice of Hi satisfying the conditions in Part (a) of

Lemma A.1 and a c 2 Rk such that
Pn

j=1 dj
Pk

i=1 cihjj(i) 6= 0. Then the covariance in (20) is

not zero if F in Part (d) of the lemma is chosen to correspond to asymmetrically distributed

i.i.d. errors. Part (b) of the lemma can then be applied. In case Hi = H for all i = 1; : : : ; k,

these conditions further reduce to
Pn

j=1 djhjj 6= 0 and
Pk

i=1 ci 6= 0.

(ii) Suppose X admits a choice of Hi satisfying the conditions in Part (a) of Lemma A.1 and

a c 2 Rk such that for an index j0 it holds that dj0
Pk

i=1 cihj0j0(i) 6= 0. Then the covariance in

(20) is not zero if F in Part (d) of the lemma is chosen to correspond to independent errors with

EF (e
3
j0
) 6= 0 and EF (e

3
j ) = 0 for j 6= j0. Again Part (b) of the lemma can then be applied. In

case Hi = H for all i = 1; : : : ; k, these conditions further reduce to dj0hj0j0 6= 0 and
Pk

i=1 ci 6= 0.

(iii) Part (c) of Lemma A.1 allows for further examples to be generated, where now the errors

need not be independently distributed under the relevant F .

One certainly could set out to characterize those design matrices X for which a counterex-

ample to Assertion 1 can be constructed with the help of Lemma A.1. We do not pursue this

here. In particular, we have not investigated whether for any n� k design matrix X with k < n

one can construct an estimator �̂� as in the lemma that satis�es (18) for some c 2 R
k and for

some F 2 F02.

13



References

Gnot, S., Knautz, G., Trenkler, G. and Zmyslony, R. (1992). Nonlinear unbiased esti-

mation in linear models. Statistics, 23 5�16.

Halmos, P. R. (1946). The theory of unbiased estimation. Ann. Math. Statist., 17 34�43.

Hansen, B. E. (2021a). Econometrics. Princeton University Press, forthcoming. Version August

18, 2021.

Hansen, B. E. (2021b). A modern Gauss-Markov theorem, December 2021. Forthcoming in

Econometrica.

Kagan, A. M., Linnik, Y. V. and Rao, C. R. (1973). Characterization problems in math-

ematical statistics. Wiley Series in Probability and Mathematical Statistics, John Wiley &

Sons, New York-London-Sydney.

Kagan, A. M. and Salaevskii, O. (1969). The admissibility of least-squares estimates is an

exclusive property of the normal law. Mat. Zametki, 6 81�89.

Koopmann, R. (1982). Parameterschätzung bei a priori Information. Vandenhoeck & Ruprecht,

Göttingen.

Lehmann, E. L. and Casella, G. (1988). Theory of Point Estimation. 2nd ed. Springer-Verlag.

Rosendal, C. (2009). Automatic continuity of group homomorphisms. The Bulletin of Symbolic

Logic, 15 184�214.

14


