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Abstract

We study cost-sharing rules in network problems where agents seek to ship

quantities of some good to their respective locations, and the cost on each arc is

linear in the flow crossing it. In this context, Core Selection requires that each

subgroup of agents pay a joint cost share that is not higher than its stand-alone

cost. We prove that the demander rule, under which each agent pays the cost of her

shortest path for each unit she demands, is the unique cost-sharing rule satisfying

both Core Selection and Merge Proofness. The Merge Proofness axiom prevents

distinct nodes from reducing their joint cost share by merging into a single node.

An alternative characterization of the demander rule is obtained by combining Core

Selection and Cost Solidarity. The Cost Solidarity axiom says that each agent’s cost

share should be weakly increasing in the cost matrix.
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1 Introduction

Shortest path games (Rosenthal, 2013; Bahel and Trudeau, 2014) are network games

where agents must ship their demands of some homogeneous good from a source point

to their respective locations. The cost on each arc of the network is linear in the total

demand crossing it, which gives rise to a cooperative game (with transferable cost) where

each coalition seeks to minimize the total cost of shipping the demands of its members.

An optimal network configuration is obtained when each agent i’s demand is shipped

through a shortest path to agent i, that is a path that achieves minimum cost among

all paths from the source to agent i. A natural way to share the cost is the demander

rule, which requires each agent i to pay the cost of her shortest path for each unit she

demands. It is known from Rosenthal (2013) that this cost allocation belongs to the core,

i.e., no subgroup of players can ship their respective demands (using only the connections

available in the subgroup) at a cost lower than their joint share under the demander rule.

The present work focuses on two consistency properties: Merge Proofness and Cost

Solidarity. The axiom Merge Proofness prevents any subgroup S of distinct agents from

reducing their joint share by merging. Such a merging manipulation typically results

in a shortest path problem with a lower total shipping cost (since it does not include

the internal shipping cost for agents in S), and it is profitable to the subgroup S if the

sum of their share in the resulting problem and their internal connection is lower than

their joint share in the original problem. Merge Proofness has been studied in many

different settings, such as bilateral monopolies (Horn and Wolinsky, 1988), bankruptcy

problems (de Frutos, 1999), cost-sharing problems (?), scheduling problems (Moulin,

2008), bipartite matching games (Hezarkhani, 2016), or minimum cost spanning tree

problems (Gómez-Rúa and Vidal-Puga, 2011, 2017). We also examine a stronger version

of Merge Proofness, which prevents any merging manipulation from negatively affecting

any agent not in S.

The axiom Cost Solidarity states that an agent’s cost share should be weakly increas-

ing in the cost matrix. Note that, following an increase in the unit cost for some arcs (all

else unchanged), Cost Solidarity says that no agent should have a lower cost share. If

this property is not satisfied, some agents may be incentivized to sabotage the shipping

operation and report higher costs to pay lower-cost shares. Cost solidarity generalizes

the well-known idea of cost monotonicity, and it has also been studied in minimum cost

spanning tree problems (Bergantiños and Vidal-Puga, 2007; Gómez-Rúa and Vidal-Puga,

2017).

We offer two characterizations of the demander rule. The first one, stated in Theorem
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5.1, asserts that the demander rule is the only cost allocation scheme satisfying Core

Selection and Merge Proofness. The second one, stated in Theorem 5.2, asserts that

the demander rule is the only cost allocation scheme satisfying Core Selection and Cost

Solidarity.

The paper is organized as follows. In Section 2, we set up the framework by defining

shortest-path problems and cost-sharing rules. In Section 3, we introduce some basic

properties of cost-sharing rules in shortest-path problems. In Section 4, we define the

demander rule and show that it satisfies the basic properties. In Section 5, we provide

our characterization results.

2 The model

Our framework is close to that of Bahel and Trudeau (2014) and Bahel et al. (2024).

The main differences stem from the fact that we consider here a variable set of agents

—whereas the set of agents in these previous papers is fixed. Let U = {1, 2, . . . } denote

the (infinite) set of potential agents. We consider problems where a (finite) number of

agents in U need to ship units of some commodity from a fixed point 0 to their respective

locations (0 is called the source). Let N denote the set of nonempty, finite subsets of U .

We use the symbol N to refer to a generic element of U , that is to say, N ∈ N .

To ease on notation, we will often write i instead of {i} and S \ i instead of S \ {i},
for any i ∈ S ⊆ N . Moreover, for any vector x ∈ RN and any subset S ⊆ N , we write

xS :=
∑
i∈S

xi.

A Shortest Path Problem (SPP ) is a tuple P = (N, c, x), where:

• N ∈ N is the set of agents who need to connect to the source 0;

• c = {c(i, j) : i ∈ N ∪ 0, j ∈ N, i 6= j} is a collection of non-negative numbers (often

referred to as a “cost matrix”) giving the unit cost of shipping demands through

each arc (i, j);

• x ∈ RN
+ is the demand vector: each agent i ∈ N has a demand xi ∈ R+ (of the

commodity) to ship from the source to her location.

The set of SPP with agent set N ∈ N will be denoted by PN , and P :=
⋃
N∈N PN .

Note that the source 0 is not an agent and that the unit costs c(i, j) need not be symmetric

—we may well have c(i, j) 6= c(j, i) for some i, j ∈ N . Whenever c(i, j) = c(j, i) holds for

all i, j ∈ N s.t. i 6= j, we say that the SPP has symmetric arcs.
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Definition 2.1 Given N ∈ N and i ∈ N , we call path (of length K) to agent i any

sequence p := (pk)k=0,....,K such that:

1. pk ∈ N , for k = 1, 2, . . . , K;

2. p0 = 0 and pK = i;

3. pk /∈ {p1, . . . , pk−1} whenever 2 ≤ k ≤ K.

Note that all paths p originate from the source 0 and cross any location pk only once.

Thus, the length of each path and the number of paths to any given i ∈ N are both finite.

We denote by PN(i, c) the set containing all paths to i. For simplicity, and as long as the

player set is clear, we write P(i, c) instead of PN(i, c). For any path p of length K, let

[p] refer to the set of players in the range of p, that is:

[p] := {j ∈ N : pk = j for some k = 1, . . . , K}.

Given P = (N, c, x), one can extend the cost function c to paths as follows: for any

path p (of length K) to agent i ∈ N , c(p) represents the cost of shipping one unit from

the source to agent i via the path p, i.e.,

c(p) :=
K∑
k=1

c(pk−1, pk).

For any i ∈ N , we call shortest path to i any path p̄i ∈ P(i, c) that solves the problem

minp∈P(i,c) c(p). Note that there exists a shortest path to any i ∈ N — since the set

P(i, c) is nonempty and finite — but it may not be unique.

Example 2.1 (Bahel et al. (2024)) Consider the SPP with symmetric arcs given by

P = (N, c, x), where N = {1, 2, 3}, x = (2, 0, 1) and the cost structure is depicted by

Figure 1. Hence, we have c(0, 1) = 200, c(3, 1) = c(1, 3) = 10, c(2, 1) = c(1, 2) = 70, and

so on.
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Figure 1: SPP with three agents.

One can see that there are 5 paths to agent 1, (0, 1), (0, 2, 1), (0, 3, 1), (0, 2, 3, 1),

(0, 3, 2, 1); and the shortest path to 1 is (0, 2, 3, 1), with cost c(0, 2, 3, 1) = 60 + 20 + 10 =

90. For agents 2 and 3, the costs of their respective shortest paths are c(0, 2) = 60 and

c(0, 2, 3) = 60 + 20 = 80.

The cooperative game (with transferable cost) associated with P can be formulated

by defining the cost of any nonempty coalition S ⊆ N as

CP (S) := min

{∑
j∈S

xj · c(pj) : pj ∈ P(j, c) and [pj] ⊆ S,∀j ∈ S

}
. (1)

That is the members of S pay the lowest possible cost of shipping their respective demands

when using only the connections available in S. In particular, CP (S) = 0 whenever there

is no demand to ship, i.e., xS = 0. We also adopt the convention that CP (∅) = 0. For the

problem P depicted in Example 2.1, CP (N) = 2 · c(0, 2, 3, 1) + 0 · c(0, 2) + 1 · c(0, 2, 3) =

180 + 80 = 260.

Definition 2.2 Given a shortest path problem P = (N, c, x), we have the following.

(i) An allocation is a profile of cost shares, y ∈ RN , such that yN = CP (N). Let A(P )

be the set containing all cost allocations in P .

(ii) The core of P is the set

Core(P ) := {y ∈ A(P ) : yS ≤ CP (S),∀S ( N} .

An allocation y is called stable if y ∈ Core(P ).

The above definition says that a cost allocation splits the total cost of shipping the

respective demands between all agents in N . Remark that we allow for negative cost
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shares, which may be desirable in particular if we have agents who demand zero while

providing others with cheaper access to the source. Definition 2.2-(ii) is the standard

notion of stability: every coalition S should jointly pay at most its stand-alone cost

CP (S). Let us now define the solution concepts studied in this work.

Definition 2.3 A Cost Sharing Rule (CSR) is a mapping y : P →
⋃
N∈N RN that

assigns to each P ∈ PN a cost allocation y(P ) ∈ RN such that yN(P ) = CP (N).

In words, a CSR is a mechanism which, for any given problem P , allows to divide between

agents the total cost CP (N) of satisfying the respective demands (we refer to this property

as efficiency). In the following sections, we introduce a number of desirable properties

for a CSR.

3 Anonymous Demand Additive Core Selectors

Bahel et al. (2024) introduce some basic properties for cost sharing rules, which we

present in this section. Since SPP do not exhibit congestion externalities, each problem

P = (N, c, x) yields elementary problems of the form P j = (N, c, ej) (for every j ∈ N),

where ej ∈ RN is the vector of demands characterized by ejj = 1 and eji = 0, if i ∈ N \ j.
Let k, k′ ∈ U and N ∈ N with N ⊂ U \ {k, k′}. We define the bijection σkk′ :

N∪{0, k} → N∪{0, k′} by σkk′(k) = k′ and σkk′(i) = i otherwise. Given P = (N∪k, c, x),

P ′ = (N ∪ k′, c′, x′) ∈ P, we say that P and P ′ are kk′-equivalent if x′i = xσkk′ (i) for all

i ∈ N ∪ k and c(i, j) = c′(σkk′(i), σkk′(j)) for all i ∈ N ∪ k ∪ 0, j ∈ N ∪ k such that i 6= j.

Definition 3.1 A CSR y satisfies:

1. Core Selection if y(P ) ∈ Core(P ) for all P ∈ P.

2. Demand Additivity if y(P ) =
∑

j∈N xj · y(P j) for all P ∈ PN .

3. Anonymity if, for all k, k′ ∈ U , N ∈ N with N ⊂ U\{k, k′}, P = (N ∪ k, c, x) , P ′ =

(N∪k′, c′, x′) ∈ P such that P and P ′ are kk′-equivalent, we have yi(P ) = yσkk′ (i)(P
′)

for all i ∈ N ∪ k.

Bahel et al. (2024) define the family of CSR called Anonymous Demand Additive

Core Selectors (ADACS, for short).
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4 The demander rule

Following Bahel et al. (2024), we define the demander rule as follows:

Definition 4.1 The demander rule yd is the CSR defined as:

ydi (N, c, x) = xi · min
pi∈P(i,c)

c(pi)

for all (N, c, x) ∈ P and i ∈ N .

In other words, the demander rule requires each agent to pay the cost of her shortest

path for each unit demanded. Agents who demand zero pay nothing. As an illustration,

for the SPP depicted in Example 2.1, the demander rule yields the cost share yd =

(180, 0, 80).

The following result extends Theorem 4.1 in Bahel et al. (2024) —which is stated for

a fixed agent set– to the class of problems with a variable agent set.

Theorem 4.1 The demander rule yd is an ADACS.

Proof. It is straightforward to see that yd satisfies Anonymity. Since Demand Additivity

and Core Selection are defined for a fixed N ∈ N , these properties follow from Theorem

4.1 in Bahel et al. (2024).

5 Characterization results

In this section, we propose several characterization results for the demander rule. We

first introduce new axioms involved in these characterizations.

5.1 Merge Proofness

The first of these new axioms is Merge Proofness. This is an incentive compatibility

requirement. In essence, it says that agents (seeking to reduce their joint cost share)

should not benefit from merging and acting as a single agent. If a group of agents S

merge into the single agent s ∈ S (while every agent not in S remains the same) then we

have a new problem P s,S :=
(
N s,S, cs,S, xs,S

)
, which is defined as follows. First, the new

set of agents and their demands are respectively:

N s,S := (N \ S) ∪ {s} (2)
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and

xs,Si :=

{
xi if i ∈ N \ S
x(S) if i = s.

(3)

Note from (3) that agent s in the new problem inherits the aggregate demand of the

coalition S, and the demand of every other agent i ∈ N \ S remains unchanged. In

addition, the cost matrix cs,S of the new problem is given by

cs,S(i, j) :=


mink∈S c(i, k) if i ∈ (N \ S) ∪ 0 and j = s

mink∈S c(k, j) if i = s and j ∈ N \ S
c(i, j) if i ∈ (N \ S) ∪ 0 and j ∈ N \ S.

(4)

In the reduced problem, any node outside S will always use the best link available in

S to connect with s (and vice-versa). One can then state two versions of the property

requiring that merging should not be profitable.

Definition 5.1 A CSR y satisfies

1. Merge Proofness if, for all P ∈ P, S ( N and s ∈ S,∑
i∈S

yi(P ) ≤ ys
(
P s,S

)
+ CP (N)− CP s,S

(
N s,S

)
;

2. Strong Merge Proofness if, for all P ∈ P, S ( N , s ∈ S and i ∈ N \ S,

yi(P
s,S) ≤ yi(P ).

Strong Merge Proofness ensures that no other agent i /∈ S will be worse off in the reduced

problem if a group of agents S merge in advance to be treated as a single agent s. Given

that
∑

i∈S yi(P ) = CP (N)−
∑

i∈N\S yi(P ) and
∑

i∈N\S yi(P
s,S) = CP s,S(N s,S)− ys(P s,S)

must hold for every CSR y, it is not difficult to see that Strong Merge Proofness implies

Merge Proofness, which only requires that the agents in S do not pay a lower joint share

in the reduced problem (after accounting for their internal transaction costs CP (N) −
CP s,S(N s,S)).

Our first result of this section states that the demander rule satisfies Strong Merge

Proofness (hence, it also satisfies Merge Proofness).

Proposition 5.1 The demander rule yd satisfies Strong Merge Proofness.

Proof. Consider an SPP P = (N, c, x) and let p̄i = (p̄i0 = 0, p̄i1, . . . , p̄
i
Ki

= i) be a

shortest path (for the problem P ) to each i ∈ N , with Ki denoting the length of p̄i.
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Suppose that the players of coalition S ( N (with |S| ≥ 2) decide to merge into the node

s ∈ S; and consider the reduced problem P s,S defined by (2)-(4). Fix j ∈ N \ S and, in

the case where [p̄j] ∩ S 6= ∅, let

kjS := min{k ∈
{

1, . . . , Kj} : pjk ∈ S
}

and k̄jS := max{k ∈
{

1, . . . , Kj} : pjk ∈ S
}
.

Let Ps,S(j) be the set of paths to j in the problem P s,S. We can define a reduced path

p̃j ∈ Ps,S(j) (which is of length Kj − (k̄jS − k
j
S) if [p̄j] ∩ S 6= ∅) as follows.

p̃j =p̄j =
(
p̄j0, p̄

j
1, . . . , p̄

j
Kj

)
if [p̄j] ∩ S = ∅; (5)

p̃j =
(
p̄j0, p̄

j

kjS−1
, s, p̄j

k̄jS+1
, . . . , p̄jKj

)
otherwise.

To conclude the proof, remark from (4) and (5) that cs,S(p̃j) ≤ c(p̄j); and therefore

ydj (P
s,S) = xj · min

pj∈Ps,S(j)
cs,S(pj) ≤ xj · cs,S(p̃j) ≤ xj · c(p̄j) = ydj (P ).

Theorem 5.1 The demander rule yd is the only CSR that satisfies Merge Proofness and

Core Selection.

Proof. We have already proved that yd satisfies both properties. Conversely, letting y

be a CSR satisfying Merge Proofness and Core Selection, we must show that y = yd.

Let P = (N, c, x) be an SPP. Since yN(P ) = ydN(P ) = CP (N) (by efficiency of y and

yd), it is enough to prove that y ≥ yd, i.e., yi ≥ ydi for all i ∈ N . Fix i ∈ N . Let

i′ ∈ U \ N and consider a problem P ′ = (N ′, c′, x′) such that N ′ = N ∪ {i′}, x′j = xj

if j ∈ N \ i, xi = x′i + x′i′ and c′(j, k) = c(j, k) if j, k ∈ N \ i, c′(i, i′) = c′(i′, i) = 0,

c′(i, j) = c′(i′, j) = c(i, j) for all j ∈ N \ i. For each j ∈ N \ i, let p̄j be a shortest path

to agent j in the problem P ; and denote by p̄
′j the path obtained from p̄j by replacing

agent i with agent i′ (if i ∈ [p̄j]) and keeping all agents k ∈ [p̄j] \ i. Then, p̄
′j is a shortest

path to agent j in P ′. Hence, by the definition of the demander rule, the minimum cost

to satisfy the demands of agents in N \ i is

Υ =
∑
j∈N\i

ydj (P ) =
∑
j∈N\i

c(p̄j) =
∑
j∈N\i

c(p̄
′j) =

∑
j∈N\i

ydj (P
′).

Under Core Selection,

yi(P
′) +

∑
j∈N\i

yj(P
′) ≤ ydi (P

′) + Υ

and

yi′(P
′) +

∑
j∈N\i

yj(P
′) ≤ ydi′(P

′) + Υ
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so that

yi(P
′) + yi′(P

′) + 2
∑
j∈N\i

yj(P
′) ≤ ydi (P

′) + ydi′(P
′) + 2Υ. (6)

On the other hand, by efficiency,

yi(P
′) + yi′(P

′) +
∑
j∈N\i

yj(P
′) = ydi (P

′) + ydi′(P
′) + Υ. (7)

Combining (6) and (7), ∑
j∈N\i

yj(P
′) ≤ Υ. (8)

It is not difficult to check that CP (N) = CP ′(N ′). Hence, from Definition 5.1, Merge

Proofness gives

yi(P ) ≥ yi(P
′) + yi′(P

′) = yi(P
′) + yi′(P

′) +
∑
j∈N\i

yj(P
′)−

∑
j∈N\i

yj(P
′)

(8)

≥ yi(P
′) + yi′(P

′) +
∑
j∈N\i

yj(P
′)−Υ

(7)
= ydi (P

′) + ydi′(P
′) = ydi (P ).

Since this is true for each i ∈ N, we deduce y(P ) ≥ yd(P ) which, combined with yN(P ) =

ydN(P ), implies y(P ) = yd(P ).

Corollary 5.1 An ADACS y satisfies Merge Proofness if and only if it is the deman-

der rule yd.

The properties in Theorem 5.1 are independent.

• The average lexicographic value defined in Tijs et al. (2011) satisfies Core Selection

and fails Merge Proofness.

• For each P = (N, c, x) ∈ P, let M(P ) = {i ∈ N : xi = maxk∈N xk}. Consider the

CSR ym defined as

ymi (P ) =

{
CP (N)
|M(P )| if i ∈M(P )

0 if i /∈M(P )

for each P ∈ P. Then, ym satisfies Merge Proofness and fails Core Selection.

5.2 Cost solidarity

Definition 5.2 A CSR y satisfies Cost Solidarity if, for any P = (N, c, x), P ′ =

(N, c′, x), we have

[c(i, j) ≤ c′(i, j),∀i, j ∈ N ]⇒ [yi(P ) ≤ yi(P
′),∀i ∈ N ].
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Cost Solidarity says that no agent should be better off if the shipping costs increase on

some arcs of the network (all else equal).1 Combining Core Selection and Cost Solidarity

allows to state the following result.

Theorem 5.2 The demander rule yd is the only CSR that satisfies Core Selection and

Cost Solidarity.

Proof. It is not difficult to check that yd satisfies both Core Selection and Cost Solidarity.

Fix a CSR y satisfying Core Selection and Cost Solidarity. We show below that y(P ) =

yd(P ) for all P ∈ P. We proceed by induction on the size of

Ω(P ) =

{
i ∈ N : c(0, i) > min

p∈P(i,c)
c(p)

}
.

Assume first |Ω(P )| = 0, i.e., c(0, i) = minp∈P(i,c) c(p) for all i ∈ N . This means it

is optimal for each agent i to ship her demand directly from the source. Hence, the

associated cooperative game —defined in (1)– is additive. This implies that the core is

a singleton. Under Core Selection, y(P ) = yd(P ). Assume now y(P ′) = yd(P ′) whenever

|Ω(P ′)| < ω; and fix a problem P satisfying |Ω(P )| = ω. Let i ∈ Ω(P ). This means

that c(0, i) > c(p̄i) = minp∈P(i,c) c(p). Consider the problem P ′ = (N, c′, x) defined

by c′(0, i) = c(p̄i) and c′(j, k) = c(j, k) otherwise. Under Cost Solidarity, we deduce

yj(P ) ≥ yj(P
′) and ydj (P ) ≥ ydj (P

′) for all j ∈ N . Moreover, CP (N) = CP ′(N) because

c′(0, i) = c′(p̄i) = c(p̄i) = minp∈P(i,c) c(p) = minp∈P(i,c) c
′(p). Hence, y(P ) = y(P ′) and

yd(P ) = yd(P ′). By induction hypothesis, y(P ′) = yd(P ′), and hence y(P ) = yd(P ).

Corollary 5.2 An ADACS y satisfies Cost Solidarity if and only if it is the demander

rule yd.

Observe that the properties used in Theorem 5.2 are independent.

• The average lexicographic value defined in Tijs et al. (2011) satisfies Core Selection

and fails Cost Solidarity.

• The equal division rule ye, defined as yei (P ) = CP (N)
|N | for all P ∈ PN and all i ∈ N ,

satisfies Cost Solidarity and fails Core Selection.

1Cost Solidarity has been used in the literature on minimum cost spanning trees; see, for instance,

Bergantiños and Vidal-Puga (2007).
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