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Inspecting a seasonal ARIMA model with a random

period

Abdelhakim Aknouche� Nadia Rabehiy

Abstract

This work proposes a class of seasonal autoregressive integrated moving average

models whose period is an independent and identically distributed random process val-

ued in a �nite set. The causality, invertibility, and autocovariance shape of the model

are �rst revealed. Then, the estimation of the parameters which are the model coe¢ -

cients, the innovation variance, the probability distribution of the period, and the (un-

observed) sample-path of the period, is carried out using the expectation-maximization

algorithm. In particular, a procedure for random elimination of seasonality is proposed.

An application of the methodology to the annual Wolfer sunspot numbers is provided.

Keywords: Seasonal ARIMA models, irregular seasonality, random period, non-

integer period, SARIMAR model, EM algorithm.

1 Introduction

Numerous time series observed in empirical studies (e.g. physics, environmental sciences, eco-

nomics, and �nance) are characterized by similar patterns recurring at regular time-periods.

This feature, called conventionally seasonality, or more generally periodicity is mainly caused

by natural factors, institutional and organizational measures, cultural traditions, or religious
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rituals (Granger, 1979; Hylleberg, 1992). There is currently a wide range of models ded-

icated to the representation of seasonality whose main objectives are forecasting, control,

deseasonalization, smoothing, and �ltering (see e.g. Brockwell and Davis, 1991; McLeod

and Hipel, 2005; Box et al, 2008; Ghysels and Osborn, 2001; Franses and Paap, 2004, Hurd

and Miamee, 2008; Bittanti and Colaneri, 2009 and the references therein). These models,

also called seasonal or periodic, can be classi�ed into two general categories: deterministic

seasonality models and stochastic seasonality models (see e.g. Ghysels and Osborn, 2001).

Models in the �rst category are expressed through deterministic periodic functions of time

perturbed by innovation processes, implying that any current shock in the data does not

a¤ect future evolutions. In the second category, however, the models consist of parametric

stochastic di¤erence equations involving lagged values of the underlying process and/or the

innovation. Thus, the model consists at any time of an accumulation of past shocks, so

present shocks a¤ect more or less the future evolution, depending on the position of the

parameters inside the stability/instability domain.

Among stochastic seasonality models, there are in particular i) linear seasonal models with

time-invariant coe¢ cients (Box-Jenkins SARIMA model, Box et al, 2008), ii) linear periodic

models with periodically time-varying coe¢ cients (periodic ARMA models, e.g. Tiao and

Grupe, 1980; McLeod and Hipel, 2005; Hurd andMiamee, 2007; Bittanti and Colaneri, 2009),

and iii) non-linear seasonal/periodic models such as seasonal GARCH, periodic GARCH,

periodic stochastic volatility, periodic Markov switching autoregression (see Ghysels and

Osborn, 2001; Franses and Paap, 2004; Aknouche and Guerbyenne, 2009; Bibi and Aknouche,

2010; Aknouche et al, 2022). Periodic B-spline models, Fourier approximation-based models,

and wavelet-based periodic models are typical examples of deterministic seasonality models

(e.g. Tsiakas, 2006; Tesfaye et al, 2011; Franses and Paap, 2011; Rossi and Fantazani, 2015;

Ziel et al, 2015; Ziel et al, 2016; Ambach and Croonenbroeck, 2015; Ambach and Schmid,

2015).

For all these models, a central role is played by the period which represents the portion of

time after which the pattern of the phenomenon is more or less repeated. Almost invariably,
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the period of a model is supposed constant, re�ecting the well-established �nding that the

causes of seasonality occur regularly over time, even though their e¤ects may be delayed

and hence occur irregularly. Thus, the assumption of period constancy might be restrictive

for quasi-periodic phenomena whose pattern is certainly repeated, but after non-equidistant

time intervals. Notable examples are climate changes, business cycles, recurrent strikes,

moving holidays, seasonal breaks, calendar variations, etc. The combination of these factors

might cause a phenomenon to repeat multiple patterns over di¤erent time-intervals, lead-

ing to irregular but frequency stable cyclical �uctuations. For constant period seasonality

models, this "period shift" is only supported by the model innovation and therefore remains

unexplained.

The best-known example of a "visually" periodic time series with a varying period is

the annual Wolfer sunspot numbers (Waldmeier, 1961), better known as "sunspot data"

(Box et al, 2008, series E). The seasonal �uctuation of sunspot data has been the subject of

signi�cant study since the work of Box and Jenkins (1976, series E) and continues to attract

interest. It has been recognized that this series can be a¤ected by a varying periodicity

(Hipel and McLeod, 2005, Chapter 5). Examining the series of sunspots (see Figure 5.1),

it turns out that the most frequent intervals between three successive turning points are 11

and 12 years. This irregular cyclicity is often caused by so many unidenti�able factors that

the best way to explain it is to consider it as generated by a random mechanism having a

certain probabilistic law.

Thus, giving the period a random aspect, that is to say, the period is itself a stochastic

process, allows great �exibility in modeling both regular and irregular cyclicity. This signi�-

cantly eases the burden on model innovation and reduces it of a part considered unexplained

in traditional seasonal models.

Several structures can be assigned to the probabilistic evolution of the period. In partic-

ular, three usual dependence mechanisms can be considered. The �rst one is an endogenous

threshold structure where the period transition depends on the past of the observed process.

The second one is an unobservable Markov switching evolution in which the period follows
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an unobserved Markov chain. The third structure is a special case of the second one and

consists of an independent and identically distributed switching (iid), which implies a purely

random character of the period. The �rst structure is quite arbitrary and it seems di¢ cult

to �nd a suitable relationship between the period and the past of the observed process. The

second structure can be useful, but since the Markov chain is generally assumed to be sta-

tionary and ergodic, this assumption only seems appropriate for long time series. The third

structure is consistent with the hypothesis of a purely random period.

This paper proposes inspecting a new class of time series models with purely random

period. We restrict ourself to the class of seasonal ARMA models with time-invariant coef-

�cients. Speci�cally, we propose a seasonal autoregressive moving average model in which

the period is an unobserved iid process fSt; t 2 Zg valued in a �nite set of possible periods�
S(1); :::; S(K)

	
. We call the model SARMAR. For example, f11; 12; 13g could be suitable

for monthly series, and for quarterly series, the set f3; 4; 5g could be considered. Of course,

a period identi�cation procedure based on the frequency of three successive turning points

could be introduced.

Section 2 de�nes the SARMAR model and the corresponding assumptions to which it is

subject. Special cases concerning the seasonal random period autoregressive (SARR) model,

the seasonal random period moving average (SMAR) model, and the �rst-order SARMAR

are studied in some detail. In Section 3, the model parameters are estimated using the EM

algorithm. Speci�c examples are provided. In addition, a procedure for random elimina-

tion of seasonality is provided and the SARIMAR (SARIMA with a random period) model

is introduced. A simulation study is conducted in Section 4 while Section 5 presents an

empirical example regarding the Wolfer number of sunspots. The forecasting ability of the

proposed model is compared to a known benchmark. Additional comments and perspectives

are presented in the concluding Section.
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2 Seasonal random period autorgressive moving aver-

age model

2.1 General presentation

Before de�ning the model in its general form, we need �rst to consider a random backward

shift operator. Let fSt; t 2 Zg be an integer-valued random sequence and let the operator

g : Z! Z be given by

g (t) = t� St. (2.1a)

De�ne the sequence
�
g(l) (t)

�
l
by

g(l) (t) =

8<: t if l = 0

g
�
g(l�1) (t)

�
if l � 1:

(2.1b)

For example, the �rst four terms of the sequence
�
g(l) (t)

�
are respectively: g(0) (t) = t;

g(1) (t) = t�St, g(2) (t) = t�St�St, and g(3) (t) = t�St�St�St . Now de�ne a second sequence

of random backward shift operators
�
h(l) (t)

�
l
: Z! Z by h(0) (t) = g(0) (t) and

h(l) (t) = g(0) (t) +
lX

j=1

�
g(j) (t)� t

�
, l � 1: (2.1c)

The �rst four terms of the sequence
�
h(l) (t)

�
l
are: h(0) (t) = t; h(1) (t) = t� St, h(2) (t) =

t� St � St�St, and h(3) (t) = t� St � St�St � St�St�St .

When the sequence fSt; t 2 Zg is non-random and stationary, say St = S for all t (for

some positive integer S), then

h(l) (t) = t� lS;

is nothing but the standard seasonal backward shift operator

LlSYt := Yt�lS = Yh(l)(t);

where L is the backward shift operator given by LYt = Yt�1 (e.g. Box et al, 2008).

5



Having de�ned the random backward shift h(l) (t), we can now consider our random

period model. A seasonal autoregressive moving average model with a random period

(SARMARSt(p; q)) satis�es the following recursion

Yt = �1Yh(1)(t) + :::+ �pYh(p)(t) + "t � �1"h(1)(t) � :::� �1"h(q)(t); t 2 Z; (2:2)

where the following assumptions are considered.

A1: f"t; t 2 Zg is iid, unobserved, with zero mean and variance �2.

A2: fSt; t 2 Zg is iid, unobserved, and valued in S =
�
S(1); :::; S(K)

	
� N� := f1; 2; :::g

with a probability distribution f�1; :::; �Kg such that P
�
St = S

(k)
�
= �k where

KX
k=1

�k = 1

and �k � 0, 1 � k � K.

A3: f"t; t 2 Zg and fSt; t 2 Zg are mutually independent.

Thanks to the iid property of fSt; t 2 Zg in A2, we have

P
�
St = S

(k); St�St = S
(j)
�
= P

�
St = S

(k)
�
P
�
St�St = S

(j)jSt = S(k)
�

= P
�
St = S

(k)
�
P
�
St�S(k) = S

(j)jSt = S(k)
�

= P
�
St = S

(k)
�
P
�
St�S(k) = S

(j)
�
= �k�j

= P
�
St = S

(k)
�
P
�
St�St = S

(j)
�
;

so that St and St�St are independent. More generally,

P
�
St = S

(k1); St�St = S
(k2); :::; g(p) (t) = S(kp)

�
= �k1�k2 � � ��kp :

The following subsections study in details three speci�c instances of the SARMARSt (p; q)

model (2:2), namely the seasonal random period autoregressive model (SARRSt(p)), the sea-

sonal random period moving average model SMARSt(q), and the �rst-order SARMARSt(1; 1)

model.
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2.2 Seasonal random period autorgressive model

The SARMARSt(p; q) model (2:2) reduces when q = 0 to the following seasonal random

period AR model (SARRSt(p) in short)

Yt = �1Yh(1)(t) + :::+ �pYh(p)(t) + "t; t 2 Z; (2.3)

Under the same assumptions A1-A3, the conditional probability density function (pdf)

of the SARRSt (p) model (2:3) is given by

fYt (ytjFt�1) =
KX
k1=1

� � �
KX
kp=1

�k1 ����kp
�

f"

�
yt��1yh(t)��2yh(2)(t)�:::��pyh(p)(t)

�

�
; t 2 Z; (2.4)

where f" is the pdf of "t and Ft denotes the �-algebra generated by fYt�u; u � 0g.

For instance, the �rst-order SARRSt(1) (we take �1 = �) and the second-order SARRSt(2)

are, respectively, as follows

Yt = �Yt�St + "t

Yt = �1Yt�St + �2Yt�St�St�St + "t.

To study the existence of a stationary solution to equation (2:3), de�ne

Zt = (Yh(0)(t); Yh(1)(t); :::; Yh(p�1)(t))
0;

Bt = ("t; 0; :::; 0)
0 ;

and

A =

0BBBBBBBBB@

�1 �2 � � � �p�1 �p

1 0
... 0 0

0 1
... 0 0

0 0
. . . 0 0

0 0 � � � 1 0

1CCCCCCCCCA
:

Then, model (2:3) can be cast in the following stochastic recurrence equation (SRE)

Zt = AZt�1 +Bt; t 2 Z. (2.5)
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Let us denote by � (A) the spectral radius of the matrix A, i.e. the maximum eigenvalue

of A in modulus.

Proposition 2.1 Equation (2:3) admits a unique strictly stationary solution satisfying

E (Y 2t ) <1 if and only if

� (A) < 1. (2.6)

The unique stationary solution is ergodic and is given by

Zt =

1X
j=0

AjBh(j)(t); t 2 Z (2.7)

where the series in (2:7) converges absolutely almost surely (a.s.) and in mean square.

Proof Standard SRE theory (e.g. Bougerol and Picard, 1992) shows that a necessary and

su¢ cient condition for equation (2:5) to have a unique (causal) strictly stationary solution

given by (2:7) is that (2:6) is satis�ed. Since E ("2t ) is by the model�s de�nition �nite then

the unique stationary solution (2:7) has a �nite second moment, where the series in (2:7)

also converges in mean square. �
Condition (2:6) is therefore the same as the stationarity condition of a standard SARMA

model with a constant period. It is also the same condition for the general SARMAR model

(2:1). Furthermore, (2:6) is also necessary and su¢ cient for the existence of a �nite moment

of order r provided that E (j"tjr) <1.

Under (2:6), the mean of the process is

E(Yt) = 0;

while the autocovariance function, 
 (l) = E (YtYt�l), satis�es the following recurrence


 (l) =

pX
j=1

�jE
�
Yh(j)(t)Yt�l

�
(2.8a)

where

E
�
Yh(j)(t)Yt�l

�
=

KX
k1=1

KX
k2=1

: : :

KX
kj=1

�k1�k2 : : : �kj

�
l � S(k1) � S(k2) � : : :� S(kj)

�
: (2.8b)
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Combining (2:8a) and (2:8b), we obtain the following extended Yule-Walker equations


 (l) =

pX
j=1

�j

KX
k1=1

KX
k2=1

: : :
KX
kj=1

�k1�k2 : : : �kj


 
l �

jX
i=1

S(ki)

!
+ �l0�

2, (2.9)

where

�l0 =

8<: 1 if l = 0

0 if l 6= 0:
In particular, the variance of fYt; t 2 Zg has the following expression


 (0) =

pX
i=1

pX
j=1

�i�jE
�
Yh(i)(t)Yh(j)(t)

�
+ �2.

It is well known that the sample autocorrelation of a seasonal ARMA model is char-

acterized by signi�cant peaks at lags multiple of S. In contrast, the sample autocorrela-

tion function of the SARRSt (p) model shows signi�cant peaks at the lags
Pk

j=1 S
(ij) for all

k 2 f1; :::; Kg, S(ij) 2 S. For example when K = 2, signi�cant peaks are observed at the

lags: S(1), S(2), 2S(1), 2S(2), S(1) + S(2); 2S(1) + S(2)...

Finally, the one-step ahead forecast of Yt given Ft�1 is given by

�t : = E (YtjFt�1) (2:10)

=
KP
k1=1

: : :
KP
kp=1

�k1 : : : �kp

�
�1Yt�S(k1) + �2Yt�S(k1)�S(ik2) + ::::+ �pYt�S(k1)�:::�S(kp)

�
:

2.2.1 The �rst-order SARRSt (1)

When p = 1, the SARRSt(1) model (2:3) becomes

Yt = �Yt�St + "t (2:11)

=

8>>>>>><>>>>>>:

�Yt�S(1) + "t with probability �1

�Yt�S(2) + "t with probability �2
...

�Yt�S(K) + "t with probability �K

with a conditional pdf given by

fYt (ytjFt�1) =
KX
k=1

�k
�
f"

�
yt��Yt�S(k)

�

�
; t 2 Z: (2.12)
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We thus recognize the conditional density of a mixture of K seasonal autoregressive

processes. Each Yt is computed from one of the K possible SAR(1) models of period S(k)

with probability �k (1 � k � K). Model (2:11) resembles the standard �rst-order seasonal

SAR(1). However, here the period is no longer constant, but is a random process fSt; t 2 Zg

taking values in the set S. A each time t, the term Yt equals �Yt�S(k) + "t with a probability

�k.

Figure 2.1 (panels (a) and (b)) shows the time plot and the sample autocorrelation func-

tion of a simulated SARRSt(1) series with sample size n = 110. The period St varies across

the set S = f2; 12g with probabilities �1 = P (St = 2) = 0:3 and �2 = P (St = 12) = 0:7.

The autoregressive coe¢ cient is � = 0:8 and the innovation "t has a standard Gaussian dis-

tribution. For a standard seasonal ARS (1) model with a constant period, it is well-known

that the sample autocorrelations is only signi�cant at multiple values of the period S. In

contrast, the sample autocorrelation (Figure 2.1, panels (b)) of the SARRSt(1) shows signif-

icant peaks at the lags 2, 4, 12, 14, 24, 26, etc. This autocorrelation feature could be used

from real series to identify possible values of the random period St.

Figure 2.2 (panels (a) and (b)) shows the same elements as Figure 2.1 for another sim-

ulated SARRSt(1) series with sample size n = 500 and a random period St 2 S = f5; 6g

with a probability �1 = P (St = 5) = 0:5. The remaining parameters are the same as the

generating model in Figure 2.1. It can be seen that the sample autocorrelation function is

signi�cantly non-zero at the lags: l 2 f1; 5; 6; 10; 11; 12; 16; 17; 18; :::g, which is consistent

with the shape of autocorrelation function given by (2:14).
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Figure 2.1. (a) Simulated SARRSt(1) series n = 120. (b) Sample autocorrelation.

0 50 100 150 200 250 300 350 400 450 500
­50

­40

­30

­20

­10

0

10

20

30

40

Simulated First order Saisonal AR with random period
SARR(1)

0 2 4 6 8 10 12 14 16 18 20
­0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function (ACF)

(a) (b)

Figure 2.2. (a) Simulated SARRSt(1) series with n = 500. (b) Sample autocorrelation.

As seen above, the stationarity condition for the model (2:11) is analogous to that of a

seasonal autoregressive with a constant period. Model (2:11) is strictly stationary (and also

causal) if and only if j�j < 1. In this case, the solution of (2:11) admits the following causal

representation

Yt =
1X
j=0

�j"h(j)(t): (2:13)

Under the stationarity condition j�j < 1, still E (Yt) = 0 while the variance 
 (0) and the
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autocovariance 
 (l) of order l > 0 take the form


 (0) = �2

1��2 (2:14a)


 (l) =

KX
k=1

�k�

�
l � S(k)

�
; l > 0: (2:14b)

so that the autocorrelation function is given by

� (l) =
KX
k=1

��k�
�
l � S(k)

�
:

Furthermore, the one-step ahead forecast of Yt given by (2:10) becomes

�t := E (YtjFt�1) =
KP
k=1

�k�1yt�S(k) .

2.2.2 The second-order SARRSt (2)

When p = 2 in (2:3), the SARRSt (2) is given by

Yt = �1Yt�St + �2Yt�St�St�St + "t t 2 Z; (2:15)

where f"t; t 2 Zg and fSt; t 2 Zg still satisfy the assumptions A1-A3. The distribution of

fSt; t 2 Zg in A2 means that

P
�
St = S

(k)
�
= �k and P

�
St�S(k) = S

(j)
�
= �j,

where
PK

k=1 �k = 1, and �k � 0 (1 � k � K).

Thus, the conditional pdf given by (2:2) becomes for the SARRSt (2) model as follows

fYt (ytjFt�1) =
KP
k=1

KP
j=1

�k�j
�
f"

�
yt��1yt�S(k)��2yt�S(k)�S(j)

�

�
, t 2 Z. (2:16)

The stationarity condition and the autocovariance function do not take a simpli�ed ex-

pression as in the case SARRSt(1) and have the same form as the general case.

Finally, the one-step ahead forecast is given by

�t =
KP
k=1

KP
j=1

�k�j (�1yt�S(k) + �2yt�S(k)�S(j)) : (2.17)
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2.3 Seasonal random period moving average model

When p = 0, the SARMARSt(0; q) model, called random period seasonal moving average

(SMARSt(q)), is given by

Yt = "t � �1"h(1)(t) � :::� �q"h(q)(t); t 2 Z; (2:18)

and is subject to the assumptions A1-A3. Under these assumptions, the conditional distri-

bution of model (2:18) has the form

fYt (ytjFt�1) =
KX
j1=1

� � �
KX
jq=1

�j1�j2 ����jq
�

f"

�
yt��1"h(1)(t)(k)�:::��q"h(q)(t)(k)

�

�
; t 2 Z; (2.19)

where

"h(j)(t) (k) = yt + �1"h(j�1)(t) (k) + :::+ �q"h(j�q)(t) (k) :

Clearly, (2:19) is a mixture of seasonal moving average processes (see also Aknouche and

Rabehi, 2010), where each yt is chosen from theK seasonal models of period S(k) (1 � k � K)

with probability �k.

Whatever the value of the coe¢ cients
�
�j
�
j
, the unique solution of (2:18) is strictly

stationary and also second-order stationary due to the iid assumptions on f"t; t 2 Zg and

fSt; t 2 Zg which are of �nite variance. The stability condition to be studied for model (2:18)

is rather the invertibility.

Put Wt = ("h(0)(t); "h(1)(t); :::; "h(q�1)(t))
0,

C =

0BBBBBBBBB@

�1 �2 � � � �q�1 �q

1 0
... 0 0

0 1
... 0 0

0 0
. . . 0 0

0 0 � � � 1 0

1CCCCCCCCCA
;

and Dt = (Yt; 0; :::; 0)
0. Then model (2:18) can be rewritten in following SRE

Wt = CWt�1 +Dt; t 2 Z. (2.20)
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The invertibility condition for model (2:18) is now obtained.

Proposition 2.2 Equation (2:18) is invertible in the sense

Wt =
1X
j=0

CjDh(j)(t); (2.21)

where the latter series converges a.s., if and only if

� (C) < 1. (2.22)

In addition, the series in (2:21) also converges in mean square.

Proof Using standard SRE theory again, a necessary and su¢ cient condition for equation

(2:20) to have a solution given by (2:21) is that exponential top Lyapunov exponent � (C)

satis�es (2:22) (Bougerol and Picard, 1992). SinceE ("2t ) <1, the unique stationary solution

(2:21) has a �nite second moment, where the series in (2:21) converges in mean square. �
The invertibility condition (2:22) is also the same as the invertibility condition of a

constant period SARMA(p; q) model. It is also the same invertibility condition for the

general SARMARSt (p; q) model (2:2).

2.3.1 First-order SMARSt(1)

When q = 1, the SMARSt(1) satis�es the following equation

Yt = "t � �"t�St t 2 Z; (2:23a)

with a conditional pdf fYt (ytjFt�1) having the form

fYt (ytjFt�1) =

8><>:
KP
k=1

�k
�
f"

�
"t(k)
�

�
"t (k) = yt + �"t�S(k) (k) ; 1 � k � K;

t 2 Z: (2:23b)

Model (2:23) is invertible if and only if j�j < 1. In this case, "t admits the following

invertible representation

"t =
1X
j=0

�jYh(j)(t):
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The SMARSt(1) has zero mean and an autocovariance function given by


 (l) =

8>>><>>>:
�2 + �2�2 if l = 0

���k�2 if l = S(k), 1 � k � K

0 otherwise.

(2.24)

The autocorrelation function therefore becomes

� (l) =

8>>><>>>:
1 if l = 0
���k
1+�

if l = S(k), 1 � k � K

0 otherwise.

Note that the only non-zero values of the SMARSt(1) autocorrelations are found at lags

S(1); :::; S(K).

2.3.2 Second-order SMARSt (2)

The SMARSt(2) model satis�es the following equation

Yt = "t � �1"t�St � �2"t�St�St�St ; t 2 Z; (2:25a)

with a conditional pdf

fYt (ytjFt�1) =

8><>:
KP
k=1

�k
�
f"

�
"t(k)
�

�
"t (k) = yt + �1"h(t) (k) + �2"h(2)(t) (k) , 1 � k � K;

(2:25b)

It is invertible if and only if

�

0@ �1 �2

1 0

1A < 1;

and admits the following invertible representation

Wt =

1X
j=0

CjDh(j)(t):

The mean of Yt is zero and the autocorrelation function is

� (l) =

8>>><>>>:
1 if l = 0
�k(��1+�1�2)
1+�21+�

2
2

if l = S(k), 1 � k � K

0 if l = S(ik) + S(ij); ij; ik 2 f1; :::; Kg :

(2.26)

15



According to (2:26), it turns out that the only non-zero autocorrelation values are foud

at the lags which are the realizations taken by the random variable

St + St�St 2
�
S(1); :::; S(K); S(k1) + S(k2); 1 � k1; k2 � K

	
:

For instance when K = 2,

St + St�St 2
�
S(1); S(2); 2S(1); 2S(2); S(1) + S(2)

	
:

2.4 First-order SARMARSt(1; 1)

A special case of (2:2) is the �rst-order SARMARSt(1; 1) process given by the following

representation

Yt = �Yt�St + "t � �"t�St ; t 2 Z;

with a conditional pdf

fYt (ytjFt�1) =

8><>:
KP
k=1

�k
�
f"

�
"t(k)
�

�
"t (k) = Yt � �Yt�S(k) + �"t�S(k) (k) , 1 � k � K:

The SARMAR(1; 1) model admits a stationary solution given by

Yt =
1X
j=0

�
�j + ��j�1

�
"h(j)(t) + "t

if and only if j�j < 1. It invertible if and only if j�j < 1 with the invertible representation

"t = Yt +

+1X
j=1

�
�j � ��j�1

�
Yh(j)(t):

The model has a mean zero, a variance 
 (0) = (1�2��+�2)�2

(1��2)
, and an autocovariance

function


 (l) =

8>><>>:
KP
k=1

�k�

�
l � S(k)

�
� �k��2 if l = S(k)

KP
k=1

�k�

�
l � S(k)

�
otherwise.
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3 Parameter estimation via the EM algorithm

Based on a series y := (y1; y2; :::; yn) generated from (2:2), we consider estimating the

SARMARSt(p; q) model using the (Gaussian) quasi-maximum likelihood method through

the EM (expectation-maximization) algorithm (Dempster et al, 1977; McLaclahan and Peel,

2000; Wong and Li, 2000-2001). The model parameters to be estimated are the autore-

gressive coe¢ cients �1; :::; �p, the innovation variance �
2, the distribution f�1; :::; �K�1g of

fSt; t 2 Zg as well as the unobservable sample-path S1; S2; :::; Sn of the period process. The

estimation is considered under the stability conditions (2:6) and (2:22). As for the mix-

ture autoregression (MAR, cf. Wong and Li, 2000; Aknouche and Rabehi, 2010; Aknouche,

2013), it will be seen that the estimators in the M-step can be obtained explicitly in the

pure SARR model, due to the linearity in parameters of the maximization criterion. In the

case of a moving average component, the M-step estimates do not have a closed form and

are obtained iteratively.

To simplify the presentation, we �rst show the EM calculations on the simple SARRSt(1)

model, then, on the SARRSt(2) model, then, on the general SARRSt(p) model, and �nally

on the SARMARSt(1; 1) model. We also provides a procedure for random elimination of

seasonality leading to a SARIMAR representation.

3.1 EM algorithm for the SARRSt (1)

Since the SARRSt (1)model (2:11) is an iid mixture ofK seasonal autoregressions (SARS(k)(1)),

the value of St (1 � t � n) in the mixture set S is ignored/unobservable. Let (zt; 1 � t � n)

be a sequence of latent variables indicating the occurrences of St in S (1 � t � n). It is

expressed via the following binary K-vector

zt (k) =

8<: 1 if St = S(k)

0 otherwise.
(3:1)

Denote by � = (�0; �; �2)0 the model (constant) parameters where � = (�1; :::; �K�1)
0.
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Then the complete (log-) likelihood function lc (�) of the model is given by8><>: lc (�) := l(�jy; z) =
nP
t=1

KP
k=1

zt (k)
�
log �k � log

p
2�� � "2t (k)

2�2

�
"t (k) = yt � �yt�S(k) :

(3:2)

The EM algorithm consists of two steps: the E-step and the M-step. At the ith iteration of

the E-step, the parameter estimate �(i�1) = (�(i�1)0; �(i�1); �(i�1)2)0 being obtained, zt (k) is

estimated by its expected value � (i)t (k) conditional on y as follows

�
(i)
t (k) := E�(i�1) (zt (k) jy) =

�
(i�1)
k

�(i�1)
f"

�
"
(i�1)
t (k)

�(i�1)

�
KP
k=1

�
(i�1)
k

�(i�1)
f"

�
"
(i�1)
t (k)

�(i�1)

� ; 1 � k � K; (3:3)

where "(i�1)t (k) = yt � �(i�1)yt�S(k) .

At the ith iteration of the M-step, the retained estimate � (i)t (k) is replaced by zt (k) in

the complete log-likelihood, giving lc(�jy; � (i)). The latter is maximized over � to obtain the

M-step estimate �(i). The two steps are alternatively iterated until convergence. Calculating

the �rst derivatives of the complete log-likelihood with respect to each parameter gives the

normal equations 8>>>>>><>>>>>>:

@lc
@�k

=
nP
t=1

zt(k)
�k

� zt(K)
�K

; 1 � k � K � 1

@lc
@�2

=
nP
t=1

KP
k=1

zt (k)
�
� 1
�
+

"2t (k)

�3

�
@lc
@�
=

nP
t=1

KP
k=1

zt(k)yt�S(k)"t(k)

�2

(3:4)

whose explicit solutions in terms of �(i)k , �
(i)2, and �(i) (while replacing zt (k) by �

(i)
t (k)) are

given by

�
(i)
k = 1

n�m

nP
t=1

�
(i)
t (k) (3:5a)

�(i)2 =

nP
t=1

KP
k=1

�
(i)
t (k)

�
"
(i�1)
t (k)

�2
nP
t=1

KP
k=1

�
(i)
t (k)

(3:5b)

�(i) =

nP
t=1

KP
k=1

�
(i)
t (k)ytyt�S(k)

nP
t=1

KP
k=1

�
(i)
t (k)y2

t�S(k)

(3:5c)

18



where m = max
1�k�K

�
S(k)

�
.

3.2 EM algorithm for the SARRSt (2) model

The parameter � has now the form � = (�0; �1; �2; �
2)0. Similarly to (3:1), we introduce a

sequence of latent binary K � 2-matrices

zt (k; j) =

8<: 1 if St = S(k) and St�S
t�S(k)

= S(j)

0 otherwise.
(3:6)

The complete log-likelihood now has the form

lc (�) =
nP
t=1

KP
k=1

KP
j=1

zt (k; j)
�
log �k + log �j � log

p
2�� � ("t(k;j))

2

2�2

�
"t (k; j) = yt � �1yt�S(k) � �2yt�S(k)�S(j) :

(3.7)

The zt (k; j) are estimated in the E-step by �
(i)
t (k; j) which are given by

�
(i)
t (k; j) := E�(i�1) (zt (k; j) jy) =

�
(i�1)
k �

(i�1)
j

�(i�1)
f"

�
"
(i�1)
t (k;j)

�(i�1)

�
KP
k=1

KP
j=1

�
(i�1)
k �

(i�1)
j

�(i�1)
f"

�
"
(i�1)
t (k;j)

�(i�1)

� , 1 � k; j � K; (3:8)

where

"
(i�1)
t (k; j) = yt � �(i�1)1 yt�S(k) � �

(i�1)
2 yt�S(k)�S(j) :

For the M-step, the �rst derivatives @lc
@�k
; @lc
@�2
; @lc
@�1
, and @lc

@�2
are given by8>>>>>>>>>>><>>>>>>>>>>>:

@lc
@�k

=
nP
t=1

KP
j=1

zt(k;j)
�k

� zt(K;j)
�K

; 1 � k � K � 1

@lc
@�2

=
nP
t=1

KP
k=1

KP
j=1

zt (k; j)
�
� 1
�
+ "t(k;j)

2

�3

�
@lc
@�1

=
nP
t=1

KP
k=1

KP
j=1

zt(k;j)
�2

yt�S(k)"t (k; j)

@lc
@�2

=
nP
t=1

KP
k=1

KP
j=1

zt(k;j)
�2

yt�S(k)�S(j)"t (k; j) :

(3.9)

Solving the above normal equations (replacing zt (k; j) by �
(i)
t (k; j)), we �nd the following
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ith M-step estimate �(i) = (�(i)0; �(i)1 ; �
(i)
2 ; �

(i)2)0 such that

�
(i)
k = 1

n�2m

nP
t=1

KP
j=1

�
(i)
t (k; j) ; 1 � k � K � 1 (3:10a)

�(i)2 =

nP
t=1

KP
k=1

KP
j=1

�
(i)
t (k;j)

�
"
(i�1)
t (k;j)

�2
nP
t=1

KP
k=1

KP
j=1

�
(i)
t (k;j)

(3:10b)

�
(i)
1 =

nP
t=1

KP
k=1

KP
j=1

�
(i)
t (k;j)ytyt�S(k)�S(j)��

(i)
2

nP
t=1

KP
k=1

KP
j=1

�
(i)
t (k;j)y2

t�S(k)�S(j)

nP
t=1

KP
k=1

KP
j=1

�
(i)
t (k;j)y

t�S(k)yt�S(k)�S(j)

(3:10c)

�
(i)
2 = A�B0@ nP

t=1

KP
k=1

KP
j=1

�
(i)
t (k;j)y

t�S(k)yt�S(k)�S(j)

1A2

�
nP
t=1

KP
k=1

KP
j=1

�
(i)
t (k;j)y2

t�S(k)

nP
t=1

KP
k=1

KP
j=1

�
(i)
t (k;j)y2

t��S(k)�S(j)

(3:10d)

where

A =

 
nP
t=1

KP
k=1

KP
j=1

�
(i)
t (k; j) yt�S(k)yt

! 
nP
t=1

KP
k=1

KP
j=1

�
(i)
t (k; j) yt�S(k)yt�S(k)�S(j)

!

B =

 
nP
t=1

KP
k=1

KP
j=1

�
(i)
t (k; j) y

2
t�S(k)

! 
nP
t=1

KP
k=1

KP
j=1t

�
(i)
t (k; j) ytyt�S(k)�S(j)

!
:

3.3 EM algorithm for the general SARRSt (p) model

The parameter � to estimate is now � = (�0; �1; :::; �p; �
2)0. As for the SARRSt(2) model,

de�ne the latent variable zt (1 � t � n), a binary K � p-matrix of the form

zt (k1; k2; : : : ; kp) =

8>>>>>>>>><>>>>>>>>>:
1 if

h(1) (t) = t� S(k1)

h(2) (t) = t� S(k1) � S(k2)
...

h(p) (t) = t� S(k1) � S(k2) � � � � � S(kp)

0 otherwise.

(3:11)

Thus, the complete log-likelihood becomes8>><>>:
lc (�) =

nP
t=1

KP
k1=1

: : :
KP
kp=1

zt (k1; k2; : : : ; kp)
�
log �kj � log

p
2�� � "2t (k1;k2;:::;kp)

2�2

�
"t (k1; k2; : : : ; kp) = yt �

pP
j=1

�jyh(j)(t):
(3:12)
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At the ith iteration of the E-step, zt (k1; k2; : : : ; kp) is estimated by

�
(i)
t (k1; k2; : : : ; kp) : = E�(i�1) (zt (k1; k2; : : : ; kp) jy)

=

�k1
�k2

:::�kp

�(i�1)
f"

 
"
(i�1)
t (k1;k2;:::;kp)

�(i�1)

!
nP
t=1

KP
k1=1

KP
k2=1

:::

KP
kp=1

�k1
�k2

:::�kp

�(i�1)
f"

 
"
(i�1)
t (k1;k2;:::;kp)

�(i�1)

! (3.13)

where "(i�1)t (k1; k2; : : : ; kp) = yt �
pP
j=1

�
(i�1)
j yh(j)(t).

Likewise, the �rst derivatives of the complete log-likelihood, @lc
@�kj

, @lc
@�l
, and @lc

@�2
are given

for all 1 � kj� K � 1 and 1 � l � p by

@lc
@�kj

=
nP
t=1

KP
k1=1

: : :
KP

kj�1=1

KP
kj+1=1

: : :
KP
kp=1

zt(k1;:::;kj�1;kj ;kj+1;:::;kp)
�kj

� zt(k1;:::;kj�1;K;kj+1;:::;kp)
�K

(3:14a)

@lc
@�2

=
nP
t=1

KP
k1=1

: : :
KP
kp=1

zt (k1; : : : ; kp)
�
� 1
�
+

"2t (k1;:::;kp)

�3

�
(3:14b)

@lc
@�l

=
nP
t=1

KP
k1=1

: : :
KP
kp=1

zt (k1; : : : ; kp)
"t(k1;:::;kp)

�2
yh(l)(t). (3:14c)

Solving the normal equations corresponding to (3:14), we obtain the M-step estimates

�
(i)
kj
and �(i)2

�
(i)
kj

= 1
n

nP
t=1

KP
k1=1

: : :
KP

kj�1=1

KP
kj+1=1

: : :
KP
kp=1

�
(i)
t (k1; : : : ; kp) , 1 � kj � K � 1.

�(i)2 =

nP
t=1

KP
k1=1

:::

KP
kp=1

�
(i)
t (k1;:::;kp)

�
"
(i�1)
t (k1;:::;kp)

�2
nP
t=1

KP
k1=1

:::

KP
kp=1

�
(i)
t (k1;:::;kp)

.

The M-step estimates �(i)l (1 � l � p), are obtained are obtained in the same way as

(3:10) via the resolution of the following system of p linear equations

@lc
@�l
= 0;

with p variables �(i)l ; 1 � l � p.
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3.4 EM algorithm for the SARMAR(1; 1) model

For the SARMARSt(1; 1) model, the parameter is � = (�
0; �; �; �2)0. Let the latent variable

zt (1 � t � n) be de�ned as in (3:1) for the SARRSt(1) model. The complete log-likelihood

function is

lc (�) =

8><>:
nP
t=1

KP
k=1

zt (k)
�
log �(k) � log

p
2�� � "2t (k)

2�2

�
;

"t (k) = yt � �yt�S(k) + �"t�S(k) :

At the ith iteration of the E-step, we obtain

�
(i)
t (k) :=

�
(i�1)
k

�(i�1)
f"

�
"
(i�1)
t (k)

�(i)

�
KP
k=1

�
(i�1)
k

�(i�1)
f"

�
"
(i�1)
t (k)

�(i�1)

� ; 1 � k � K
where "(i�1)t = yt � �(i�1)yt�S(k) + �(i�1)"t�S(k) .

At the M-step, solving the normal equation corresponding to @lc
@�k
and @lc

@�
; we obtain the M-

estimates

�
(i)
k = 1

n

nP
t=1

�
(i)
t (k) , 1 � k � K � 1

�(i)2 =

nP
t=1

KP
k=1

�
(i)
t (k)

�
"
(i�1)
t (k)

�2
nP
t=1

KP
k=1

�
(i)
t (k)

:

For the remaining parameters � = (�; �)0, the scores are given by the recurrence relations8><>:
@lc
@�
= �

nP
t=1

KP
k=1

zt(k)
�2

@"t(k)
@�
"t (k)

@"t(k)
@�

= �yt�Sk + �
@"
t�Sk
@�8><>:

@lc
@�
= �

nP
t=1

KP
k=1

zt(k)
�2

@"t(k)
@�

"t (k)

@"t(k)
@�

= "t�Sk + �
@"
t�Sk
@�

As the normal equations @lc
@�
= 0 and @lc

@�
= 0 do not have a closed-form solution, we call

for a Fisher-Scoring procedure to estimate �.
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Starting from an initial value �(i)0 (at the ith iteration of the EM algorithm), the Fisher-

Scoring algorithm iterates �(i)l over l as follows

�
(i)
l+1 = �

(i)
l +

�
Ic

�
�
(i)
l ;y

���1
G
�
�
(i)
l ;y

�
where G (�;y) = @lc

@�
is the gradient of lc and Ic (�;y) = � @2lc

@�@�0 is the complete Fisher infor-

mation relatively to the subparameter �. The latter recursion is repeated until convergence.

3.5 Random elimination of seasonality and the SARIMAR model

When a series has non-stationary seasonal behavior, it is well-known that the seasonal dif-

ference operator can eliminate the seasonality. This seasonal operator is given by

�SYt =
�
1� LS

�
Yt

= Yt � Yt�S:

Based on the random period sequence fSt; t 2 Zg, we now de�ne the following random

seasonal di¤erence operator as

�StYt =
�
1� LSt

�
Yt (3.15)

= Yt � Yt�St,

where fSt; t 2 Zg is subject to A2. Since St 2
�
S(1); :::; S(K)

	
is random and has a proba-

bility distribution (�k)1�k�K , the e¤ective random elimination of seasonality passes �rst by

estimating that distribution and thus by using the EM algorithm. The following procedure

illustrates the random elimination of seasonality on the simple case S =
�
S(1); S(2)

	
. The

general case is made in the same lines.

Algorithm 3.1 (Random deseasonalization)

(0) Start with initial values for �(0) =
�
�
(0)
1 ; �

(0)
2

�
(say

�
�
(0)
1 ; �

(0)
1

�
=
�
1
2
; 1
2

�
) and �2(0) =�

�
2(0)
1 ; �

(0)
2

�
.

Fix I to be a large enough integer and specify f" (e.g. f" is the standard normal density).

(1) For i = 1; :::I, repeat:
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(1.1) � (i)t (k) =

�k
�
f"

 
yt�yt�S(k)

�

!
KP
k=1

�k
�
f"

 
yt�yt�S(k)

�

! , k = 1; 2.

(1.2) b�(i)k = 1
n�m

nP
t=1

�
(i)
t (k), k = 1; 2, where m = max

1�k�2
(S(k)).

(1.3) b�2(i) =
nP
t=1

KP
k=1

�
(i)
t (k)

�
yt�yt�S(k)

�2
nP
t=1

KP
k=1

�
(i)
t (k)

:

(2) For t 2 fm; :::; ng,

If � (I)t (1) > 0:5 then �StYt = Yt � Yt�S(1).

If � (I)t (1) � 0:5 then �StYt = Yt � Yt�S(2).

(3) Return f�StYt; m � t � ng. �
Finally, note that the case K = 2 with S(1) = 1 and S(2) = S (e.g. S = 12 for monthly

series) is particularly important since the random di¤erence �St will consist of a "random-

ization" of the (stochastic) trend operator rYt = Yt � Yt�1 and of the seasonality operator

rSYt = Yt � Yt�S. It therefore constitutes an alternative to the SARIMAS(p; d; q)(P;D;Q)

model

� (L) �
�
LS
�
rdrD

S Yt = � (B)�
�
LS
�
"t (3.16)

(with obvious notation; see Box et al, 2008) in which there is rather a "superposition" of the

stochastic trend operator r and the seasonality operator rS.

Thus when �StYt given by (3:15) has the SARMARSt(p; q) representation (3:2) then

analogously to the SARIMA model (3:16) (with P = D = Q = 0) we call the process (Yt)

SARIMARSt (p; 1; q).

4 Simulation study

The �nite-sample behavior of the EM algorithm is examined via a simulation study. The

models considered are the SARRSt(1) and SARRSt(2) models with K = 2 and St 2 S =

f11; 12g for the SARRSt(1) (cf. Table 4.1) and St 2 S = f10; 11g (cf. Table 4.2) These

choices are motivated by their resemblance to the �tted model in the real application. For
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each model, 1000 Monte Carlo replications with a sample size n = 100 are generated for

which the EM algorithm is run. The estimated probability b�2 associated to the period S(2)
does not appear in Tables 4.1-4.2 since it is equal to 1�b�1. In both tables (Tables 4.1-4.2) we
keep the true values of parameters as initial values for the estimation of the latent variable in

the E-step of the EM algorithm. Unreported simulations (available from the authors) showed

that the e¤ect of the initial values on the quality of estimates is not really signi�cant.

�1 � �

True value 0:6000 �0:9000 1:0000

Mean of estimates 0:6006 �0:8781 0:9946

Empirical standard error 0:0689 0:1056 0:0861

�1 � �

True value 0.4000 0.9000 1.0000

Mean of estimates 0:4009 0:8770 1:0001

Empirical standard error 0.0622 0.0912 0.0829

�1 � �

True value 0:2000 0:1000 4:0000

Mean of estimates 0:1993 0:1029 3:9602

Empirical standard error 0:0039 0:1179 0:3001

�1 � �

True value 0.4000 0.7000 1.0000

Mean of estimates 0:4041 0:6776 0:9979

Empirical standard error 0.0755 0.1117 0.0861

Table 4.1 Performance of EM estimates for the SARRSt(1) model.

For the SARRSt(1) model, it can be seen that for all the parameters, the estimates are

good in terms of bias and standard errors, despite the small sample size. For larger sample

sizes, the results are more and more accurate, but they are not reported here.

Regarding the SARRSt(1) model, the same conclusions can be drawn. The means of

25



estimates are near to the true values with small empirical standard deviations.

�1 �1 �2 �

True value 0.1000 0.8000 0.2500 1.0000

Mean of estimates 0.1018 0.7921 0.2412 0.9808

Empirical standard error 0.0427 0.0955 0.1133 0.0897

�1 �1 �2 �

True value 0:2000 �0:3000 0:7000 5:0000

Mean of estimates 0:1999 �0:2936 0:7807 4:9295

Empirical standard error 0:0372 0:0865 0:0964 0:4702

�1 �1 �2 �2

True value 0.2000 0.2500 0.6000 5.0000

Mean of estimates 0:1971 0:2368 0:5663 4:9514

Empirical standard error 0.0421 0.1153 0.1278 0.5154

Table 4.2 Performance of EM estimates for the SARRSt(2) model.

5 Application to the sunspot data

Observing solar activity is essential, given the consequences it could have on telecommunica-

tions and the conduct of space experiments. Solar irruptions, called sunspots, also have an

impact on the variation in the global temperature of the earth, hence the need to integrate

them into the study of climate change. It was Yule (1927) who �rst modeled the number

of sunspots using an AR(2), and long before him, Schwabe (1843) noticed the existence of

a cycle of 10 years. Other works gave rise to di¤erent cycle periods varying from 9 to 13

years. McLeod and Hipel (2005) argued that the annual Wolfer sunspot numbers from 1770

to 1869 (Waldmeir, 1961) could be characterized by a random periodicity; hence our choice
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to apply the SARRSt(2) model to this series (cf. Figure 5.1).
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Figure 5.1. (a) Box-Cox transformed Sunspots data from 1770 to 1869;

(b) histogram; (c) sample autocorrelation.

Box and Jenkins (1976) proposed to model sunspot data by a (constrained) AR(9).

McLeod and Hipel (2005) took up this application and presented the following model which

gave better out-of-sample forecasts

�
1� 1:325L+ 0:605L2 � 0:130L9

�
(Wt � 10:718) = "t (5:1)

where Wt =
�
1
0:5

� �
(Yt + 1)

0:5 � 1
�
is the Box-Cox transformation operated on the original

series Yt of the number of sunspots. This transformation ensures homoskedasticity and

confers normality to the transformed series.

We therefore propose to �t the SARRSt (2) model to sunspot data with St 2
�
S(1); S(2)

	
such that S(1) = 11 and S(2) = 12. The reason for this choice is that, as pointed out

above, the most frequent three successive turning points of the series are 11 and 12. We �rst

consider the �rst di¤erence transformation Zt = �Yt on the Box-Cox transformed sunspot

series. The we run the EM algorithm on the series fZt; t 2 Zg giving the following estimated
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SARRSt(2) model

Zt = 0:4442Zt�St + 0:1965Zt�St�St�St t 2 Z (5:2)

b� = 2:4654; b� = (0:8944; 0:1056)
We then compare the out-of-sample ability of the SARRSt(2) model to the model of

Hipel and McLeod (2005). Speci�cally, we consider the sunspot series truncated from is last

ten observations and estimate the two competing models on the truncated series with 90

observations. We compute for each model, the mean square error given by

MSE = 1
n

nX
t=1

(yt � byt)2 ;
where byt is the estimated conditional mean computed for each model (cf. Figure 5.2).
The MSE of the SARRSt(2) forecasts equals 0.2636 and is signi�cantly lower than 0.5010,

the MSE obtained by the (constrained) AR(9) of Hipel and McLeod (2005).
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Figure 5.2. Out-of-sample forecast comparison

between the SARRSt (2) and the constrained AR(9).

5.1 Conclusion

This work proposes an extension of the Box-Jenkins SARIMA model to the case where the

period is a random iid sequence. Considering the period as random gives rise to �exible

modeling of seasonality, particularly for quasi-periodic phenomena whose period evolves.
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The proposed SARIMAR model can also represent constant period time series with signi�-

cant autocorrelations for lags that are adjacent to multiples of the period. Finally, for the

SARIMAR model, the mean of the period is allowed to be non-integer so this scenario is

a complementary approach to seasonal models with non-integer periods introduced by De

Livera et al (2011); see also Aknouche et al (2018).

The SARIMAR model could be expanded in many directions. First, the parameter �

could be made dependent on St, making the model more �exible. Second, the spectral

density of a SARMARSt(p; q) and its estimates are useful for studying the properties of the

model from the spectral domain perspective. Third, the problem of identifying the number

of periods K and the di¤erent periods S(1); :::; S(K) can be considered. In particular, we have

seen how the shape of the sample autocorrelation function can be indicative of the model

orders, but the classic AIC and BIC information criteria might also be adapted. Fourth, the

case where the period has a dependent structure seems to be an interesting area of study. In

particular, the sequence fSt; t 2 Zgmight be a non-independent Markov chain (cf. Aknouche

and Francq, 2022), or depend on the past of the observed process. Finally, periodic models

with random periods could be introduced.
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