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neously compete in these two dimensions. In equilibrium, experts may “cheat” by overstating

the severity of a consumer’s problem and recommending an unnecessary treatment, prices fol-

low distributions depending on the problem type and the treatment, and consumers employ

Bayesian belief updating about their problem types during search. Paradoxically, as search
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1 Introduction

In markets for expert services, such as auto repair, home improvements, healthcare, and

financial services, sellers often possess superior information about the service or product that

a consumer needs, even after the consumer’s purchase. A prevalent issue in these markets,

often referred to as credence-good or expert markets, is that expert sellers may “cheat” by

recommending unnecessary treatments to consumers with inflated prices. Consumers, aware

of this risk, may search multiple experts, hoping that competitive pressures would yield honest

recommendations and lower prices. But it can be costly to conduct search, and the impact of

search cost on market dynamics is not well understood, particularly when competition among

experts is based not only on price but also on the quality of their recommendations.

When sellers offer homogeneous products with known values to consumers, Stahl (1989)

provides a seminal analysis of oligopoly price competition under consumer sequential search.

As search frictions decrease, competition intensifies monotonically, and the classical Bertrand

outcome (marginal cost pricing) and Diamond outcome (monopoly pricing) are obtained as the

limiting cases of his model, respectively when search cost is zero and the fraction of consumers

with zero search cost is zero.1 In expert markets, if the nature of a consumer’s problem

were public information, competition could be analogous to that for homogeneous products.

However, because only the experts may learn a consumer’s problem and the appropriate

treatment, an expert’s recommendation and price can reveal information about whether he is

being honest, and a consumer may perform Bayesian belief updating about her problem during

search. This can substantially complicate the strategic choices of consumers and experts,

but—as we will show in this paper—they can be fruitfully analyzed in a model building on

Stahl (1989).

We consider an expert market in which each consumer has a problem that can be either

major or minor. A major treatment can fix both types of the problem, but a minor treatment

can only fix a minor problem. When visiting an expert, a consumer’s problem is learned by
1For differentiated products, a seminal contribution is Wolinsky (1986), in which market power also increases

with search friction but equilibrium price is above marginal cost even as search cost goes to zero, because

product differentiation also softens price competition.
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the expert, who can then offer the consumer a recommended treatment at a certain price.

At no time can a consumer observe her problem type, so the treatment by an expert is a

credence good.2 The consumer can either accept the offer or search other experts sequentially

for additional offers. The expert is obligated to solve the consumer’s problem if his offer is

accepted, and the treatment performed is verifiable by the consumer. However, there can be

higher profits from the major treatment than from the minor treatment, which provides an

incentive for experts to overstate the severity of a consumer’s problem and recommend the

major treatment—possibly with some probability—even for the minor problem. We extend

Stahl (1989) to study consumer search and expert competition in this environment, focusing

especially on how search frictions shape equilibrium expert behavior. As in Stahl (1989), we

assume that a fraction of the consumers are shoppers who have zero search cost to visit any

expert, whereas the rest of the consumers are searchers who must incur a positive search cost

to visit an expert.

In a symmetric perfect Bayesian equilibrium of the model, a shopper will purchase from

the expert who can solve her problem at the lowest price, whereas searchers will adopt an

optimal reservation price for each recommended treatment. The tension between attracting

the shoppers and exploiting the searchers implies that, as in Stahl (1989), experts will choose

treatment prices with mixed strategies, and they will always recommend the major treatment

for a major problem but may cheat by recommending the major treatment also for the minor

problem. Specifically, when search cost is above some threshold, initially experts will cheat

when facing the minor problem with a probability that is strictly between 0 and 1, which

we term as the hybrid equilibrium; whereas when search cost is high enough, the pooling

equilibrium prevails where experts will always recommend the major treatment. However,

when search cost is sufficiently small, the model has a unique separating equilibrium, where

experts always make honest recommendations for both problem types.

Therefore, the magnitude of search cost plays a critical role in shaping equilibrium expert
2For example, the air conditioner in a consumer’s car is not cooling. The problem could be either a faulty

compressor or inadequate refrigerant. Replacing the compressor will fix both types of the problem, but adding

refrigerant can only fix the latter. An auto mechanic will know what the problem is but the consumer does

not.
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behavior. The hybrid equilibrium exhibits especially complex interactions between experts’

cheating probability, prices, and consumer search, revealing a nuanced relationship between

experts’ cheating probability and search cost. In particular, an increase in experts’ cheating

probability negatively impacts consumers’ search benefit because it reduces the likelihood to

encounter an honest expert from another search, but it also positively impacts search benefit

because equilibrium prices and their dispersions are higher. Either effect may dominate, and

thus a consumer’s search benefit can be a decreasing, increasing, or non-monotonic function of

the cheating probability. Consequently, there exists a threshold of this probability such that

as search cost decreases, expert cheating rises (falls) if the equilibrium cheating probability

is below (above) this threshold.3 While this result may seem surprising at first glance, it

has the following simple intuition: When cheating is sufficiently common in the market (i.e.,

when the cheating probability is above the threshold), a marginal reduction in search cost

leads to relatively more competition for dishonest experts, motivating experts to behave more

honestly; but when cheating is not as common in the market, a marginal reduction in search

cost leads to relatively more competition for honest experts, motivating experts to behave less

honestly.4

It is also interesting that when search cost is small enough, despite experts’ information

advantage regarding the consumers’ problem type, the equilibrium outcome in our model

reduces to that in Stahl (1989). In this case, where the separating equilibrium prevails, the

expected profits for the two treatments are the same and experts always report consumers’

problems truthfully.5 Then, the equilibrium price distribution for each treatment has the
3The threshold is 1, 0, or strictly between 0 and 1 if search benefit is monotonically decreasing, monotonically

increasing, or first decreasing and then increasing in cheating probability, respectively. The result holds also

for the pooling and the separating equilibrium, if the “decreases” and “increases” are interpreted as “weakly

decreases” and “weakly increases”.
4The threshold of the cheating probability depends on the extra cost for the major treatment and the

number of sellers in the market, both of which can affect the relationship between a consumer’s search benefit

and the experts’ cheating probability.
5In the credence-goods literature, an important insight is that experts will not cheat if the price markups

for the two treatments are equalized (Emons, 1997; Dulleck and Kerschbamer, 2006). Our result generalizes

this insight to situations where prices follow mixed strategies and expected profits are equalized.
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same form as in Stahl (1989). Therefore, although competition in expert markets with search

cost generally works very differently from competition in other search markets, when search

friction is sufficiently small, competition can effectively discipline experts, and the market

operates as if consumers could observe their problem types. Furthermore, same as in Stahl

(1989), the prices for the two treatments both approach their respective marginal costs when

search cost approaches zero.

To the best of our knowledge, this is the first paper to study consumer search for both

recommendations and prices in expert markets. It contributes to the literature on credence

goods and expert markets by providing a framework to understand expert behavior when

consumers can conduct costly searches.6 The literature has studied how various mechanisms

may stop experts from cheating and improve efficiency, such as separating diagnosis from

treatment (e.g., Wolinsky, 1993), liability (e.g., Fong, 2005; Dulleck et al., 2011; Bester and

Dahm, 2018; Chen et al., 2022), and reputation (e.g., Schneider, 2012; Fong et al., forth-

coming). Several papers (Wolinsky, 1993, 1995; Pesendorfer and Wolinsky, 2003) have also

examined the role of second opinions and expert competition, but in these studies prices are

predetermined and observable to all consumers without costly search.7 Our model allows

experts to compete in—and consumers to search for—both recommendations and prices, and

we demonstrate that the interplays between consumer search and competition in these two

dimensions can substantially change how expert markets function. As we shall discuss later,

the equilibrium patterns of expert recommendations and prices that are revealed from our

analysis, especially those in the hybrid equilibrium, are broadly consistent with the (anec-

dotal) evidence that experts sometimes recommend unnecessary treatments and prices for a

treatment can vary widely in expert markets.
6The literature often considers products or services in expert markets as credence goods (e.g., Darby and

Karni, 1973; Taylor, 1995; Emons, 1997, 2001; Fong, 2005; Alger and Salanie, 2006; Liu, 2011). See Dulleck

and Kerschbamer (2006) for a review of the earlier literature, and Balafoutas and Kerschbamer (2020) for more

recent contributions.
7Obradovits and Plaickner (forthcoming) also study expert markets with costly consumer search. In their

model, consumers can seek treatment from an informed expert or purchase minor treatments from fringe firms,

with costly search.
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Our paper also contributes to the consumer search literature by studying search and com-

petition when only sellers can observe product features that match buyers’ needs. In the

extant literature, consumers either know the product value before price search for a homo-

geneous product (e.g., Stigler, 1961; Stahl, 1989; Janssen et al., 2011), or they also search

for a product’s value either under horizontal differentiation (e.g., Wolinsky, 1986; Anderson

and Renault, 1999; Haan and Moraga-González, 2011; Rhodes, 2011) or (additionally) under

vertical differentiation (e.g., Bar-Issac et al., 2012; Chen and Zhang, 2018, Moraga-González

and Sun, forthcoming). An exception is Chen et al. (2022), in which consumers search for

product matches without observing product quality before purchase, but in their model of

experience goods each seller offers only one product with a predetermined quality, there is

no role for product recommendation, and all sellers set the same deterministic price in equi-

librium. By contrast, in our model each seller may produce two products (either a major or

a minor treatment), and his choice of recommendation may interact with prices to influence

consumers’ search and purchase decisions. Our finding that changes in search cost can have

non-monotonic effects on prices is consistent with the results in the literature,8 but the chan-

nel through which this happens in our model is novel: lower search cost can increase false

recommendations, which in turn leads to higher prices.

Our paper is closely related to Janssen et al. (2011), in which sellers have identical but

stochastic production costs and the cost realization is unknown to consumers. In both papers,

consumers update their beliefs in a Bayesian fashion when sequentially searching sellers, and

in equilibrium all searchers purchase from their first-visited seller. One notable difference

between the two papers is that sellers’ production cost is unknown to consumers in Janssen

et al. (2011), while experts’ treatment cost is verifiable in our setting.9 Also, in our model
8While prices unambiguously increase in search cost in seminal papers such as Stahl (1989) and Wolinsky

(1986), later contributions have shown that reductions in search frictions can sometimes increase price for

homogeneous products (e.g., Chen and Zhang, 2011) or for differentiated products (e.g., Bar-Isaac, Caruana,

and Cuñat, 2012; Zhou, 2014; Moraga-González, Sandor, and Wildenbeest, 2017; Choi, Dai, and Kim, 2018;

Chen et al., 2022).
9The credence-goods literature has considered two alternative assumptions: the treatment is verifiable (e.g.,

Emons, 1997; Alger and Salanie, 2006; Chen et al., 2022), or non-verifiable (e.g., Wolinsky, 1993; Taylor,

1995; Fong, 2005; Liu, 2011). We adopt the former to focus on situations where an expert may be unethical
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experts choose treatment (i.e., product) recommendations, whereas no such choice is made

in Janssen et al. (2011); consequently, costs are exogenously determined in their model but

depend on the experts’ recommendation choice in ours. Moreover, Janssen et al. (2011)

focus on how production cost uncertainty matters for market outcomes and welfare, whereas

we emphasize the effects of search frictions on experts’ cheating behavior. These differences

make Janssen et al. (2011) especially suitable for retail markets such as gasoline, on which

their analysis offers important insights; whereas our setting is more relevant for expert markets

such as those for auto or home repairs, medical/dental treatment, and financial services.

In the rest of the paper, we present our model in Section 2, which also contains results

in the benchmark where consumers know their problem types so that for each treatment our

model reduces to a version of Stahl (1989)’s model. Section 3 analyzes the hybrid equilibrium.

Section 4 studies how changes in search cost and the number of competing experts may affect

the cheating probability and prices at the hybrid equilibrium. Section 5 characterizes the

separating and pooling equilibria, and provides the conditions for their existence. Section 6

concludes.

2 The Model

The market contains a unit mass of consumers and N ≥ 2 experts. Each consumer has a

problem that needs to be treated by an expert. A consumer’s problem can be one of two

types: major (i = M) or minor (i = m), each occurring with probability θ or 1 − θ. The

realization of the problem type (i) is independent across consumers. Any expert can solve the

consumer’s problem by a major treatment (T = TM ) for i ∈ {M,m} or by a minor treatment

(T = Tm) for i = m.10 We assume that each consumer is willing to pay at most Vi to have

problem i ∈ {M,m} solved, with VM ≡ V and Vm ≡ v. One natural interpretation of this

in recommending an unnecessary treatment, but he does not commit a crime (theft) by billing customers a

service that is not performed.
10This assumption of two problem types with two possible treatments is commonly made in the credence-

goods literature. We also maintain this assumption for analytical tractability. Liu and Ma (2021), however,

study a more general model in which a consumer’s problem types are a continuum, though their analysis

focuses on a monopoly expert.
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assumption is that if problem i is not treated, the consumer will suffer a loss of −Vi. The

costs of the treatments are ci for i = M,m, where cM = C > 0 and cm is normalized to 0.

We assume V − C ≥ v, so that an expert may potentially obtain a higher markup from the

major treatment, which provides an incentive for the expert to cheat: recommend TM when

only Tm is needed to treat a consumer’s problem.

Consumers, who do not know their problem types and initially also do not observe experts’

prices, may sequentially search experts in random order for recommendations and prices.

Following Stahl (1989), we assume that portion λ of consumers are shoppers who have zero

cost to visit any expert, whereas proportion 1 − λ of consumers are searchers who incur a

search cost s > 0 to visit any expert except for a first visit. Whether a consumer is a shopper

or a searcher is her private information.

The assumptions above aim to capture in a stylized way the key incentive issues in some

familiar expert markets, in which multiple experts all can treat a range of consumer problems,

without specialization for the treatment of a minor or a major problem alone. The experts

are able to diagnose the problem and recommend the required treatment, such as why an

air conditioner is not working and how to fix it, with price variations not only for different

treatments but also for the same treatment from different providers; and the experts may

sometimes recommend an unnecessary (more expensive) treatment. Some consumers—the

shoppers—will search all available sellers to find the lowest price to treat a problem, possibly

because they are “savvy” individuals who can access a price-comparison platform11 or because,

as argued in Stahl (1989), shoppers may enjoy searching for the lowest price; while other

consumers—the searchers—will visit an additional seller only if the expected search benefit

exceeds the search cost.12

11For example, consumers may submit home repair or other service requests on a platform (e.g., hellotoby.com

in Hong Kong and HomeAdvisor.com in the U.S.) to obtain price quotes simultaneously from multiple service

providers, but only some consumers may know how to access such a platform.
12Experimental and empirical evidence for expert service indicates that while some consumers conduct only

a single search, others engage in multiple searches (Mimra et al., 2016; Wagner and Wagner, 1999); and some

consumers may continue to search even after receiving a minor-treatment recommendation (Schneider et al.,

2021).
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An expert is obligated to solve a consumer’s problem if his offer is accepted, and the type of

treatment is verifiable, implying that an expert needs to incur cost C if he recommends a major

treatment (even to fix the minor problem). Since problem M can be solved only with TM , any

expert will always recommend TM for M. However, an expert may recommend either TM or Tm

for m. A strategy of expert j, j = 1, ..., N, can thus be denoted by γj =
(
F ij (p) ,F j (q) , αj

)
,

where F ij (p) is j′s price distribution for TM when i ∈ {M,m} , F j (q) is j′s price distribution

for Tm when i = m, and αj is j′s probability to recommend TM when i = m. Notice

that we allow experts to choose pure strategies in prices, in which case mixed-strategy price

distributions F ij (p) and F j (q) would degenerate to singletons.

Upon visiting the tth expert in her random search, if the expert recommends TM , a con-

sumer holds the belief that her problem is M or m respectively with probabilities µt and

1− µt, for t = 1, ..., N, where µt may also depend on the expert’s price for TM and on offers

from previously-visited experts (if t > 1). Because an expert cannot solve a major problem

with Tm, a consumer will hold belief µt = 0 once she has received recommendation Tm. A

shopper’s strategy is to search all experts and then decide which expert’s offer to accept (if she

accepts an offer at all). As in Stahl (1989) and Janssen et al. (2011), each searcher follows a

reservation price strategy, which specifies a pair of reservation prices (r (µt) , rm) for (TM , Tm)

in her tth visit under belief µt: she will accept recommendation TM at price p ≤ r (µt) , and

she will accept recommendation Tm at price q ≤ rm. Clearly, r (µt) ≤ V and rm ≤ v. Notice

that r (µt) is generally a function of µt. As we shall argue later, a reservation price strategy

will indeed be optimal for the searchers, given the optimal strategy of the experts.

The timing of the game is as follows: First, experts simultaneously choose their strategies.

Next, shoppers search all experts, while searchers may sequentially search experts. When

seeing a consumer and learning her problem, expert j offers his recommendation and price

to the consumer according to γj . The consumer may (a) accept the offer, (b) search another

expert, (c) possibly return to accept the offer from a previously-visited expert with no addi-

tional search cost, or (d) exit the market without receiving a treatment. The game ends if

(a), (c), or (d) occurs for every consumer.13

13Notice that although a consumer can observe two prices respectively for major and minor treatments when
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By assumption, an expert cannot publicly commit to treating only one problem before

being visited by consumers. This, together with experts and consumers both being ex ante

identical, allows us to focus on symmetric perfect Bayesian equilibrium (PBE) where all

experts choose the same strategy and so do all consumers.14 We can thus simplify notations

by writing γj as γ. A PBE of our game is a profile of strategies by the experts and consumers,

together with consumer beliefs, that satisfies:

(i) For j = 1, ..., N, given each consumer’s strategy and all other experts’ strategies, γ

maximizes expert j’s expected profit and j has no incentive to change his strategy upon

seeing any consumer.

(ii) Given γ for j = 1, ..., N, each consumer chooses her strategy to maximize her expected

surplus under her belief. Clearly, the optimal strategy for any shopper is to accept the offer

from the expert with the lowest price, provided that this is better than no treatment (which—

as it will become clear—must be true in equilibrium). Our equilibrium analysis will thus focus

on the optimal strategy of the searchers, for whom the PBE imposes two requirements: given

her belief and the experts’ strategies, each searcher chooses her reservation price optimally,

and it is indeed optimal for each searcher to follow a reservation price search strategy.

(iii) Consumers’ beliefs are derived from the Bayes’ rule along the equilibrium path. As

argued in Janssen et al. (2011), a “reasonable” assumption for off-equilibrium beliefs, which

we shall also make, is the following: if p∗ is an equilibrium price, then when a consumer

observes an off-equilibrium price p′ in a small neighborhood of p∗, i.e., p′ ∈ (p− ϵ, p+ ϵ), her

belief about the type of her problem associated with p′ would be the same as that with p∗,

i.e., µt(p
′) = µt(p

∗).15 This assumption will play an important role in the construction of our

visiting an expert, the expert will recommend only one treatment and is obligated to solve the consumer’s

problem if the recommended offer is accepted.
14If experts could make public commitments before consumers search, then experts might specialize in only

treating the minor or the major problem, which could remove their cheating incentive (Wolinsky, 1993). In

practice, an expert often treats a range of problems with different levels of severity, possibly due to reasons

such as lacking commitment ability and economies of scope in product offerings.
15As pointed out in Janssen et al. (2017), the reservation price equilibria in Janssen et al. (2011) may

not exist and whenever they exist, they require out-of-equilibrium beliefs that may be inconsistent with D1

criterion. In our paper, the possibility of having a separating equilibrium helps avoid the non-existence problem,
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PBE, a key feature of which is that prices for both treatments are non-deterministic; however,

as we will explain later, any PBE of our model must involve some randomization in prices for

the minor treatment (Tm) under any off-equilibrium beliefs.

Our model may have three types of equilibria, in which experts always recommend TM if

i = M but differ in their recommendation for i = m: (i) a hybrid equilibrium where experts

recommend TM for m with probability α ∈ (0, 1); (ii) a separating equilibrium where experts

always recommend Tm for m (i.e., α = 0); and (iii) a pooling equilibrium where experts

always recommend TM for m (i.e., α = 1). These equilibria may prevail in different regions

of parameter values, and in each of them experts always adopt mixed strategies in prices,

choosing prices from non-degenerate probability distributions. We will focus on the hybrid

equilibrium but will also provide results for the separating and pooling equilibria. It seems

more plausible that experts may sometimes—but not always—behave dishonestly in their

recommendations, and we will discuss some (anecdotal) evidence consistent with the hybrid

equilibrium after characterizing its main features in the next section.16

We conclude this section by considering a benchmark where each consumer can observe

her i = {M,m}.

Benchmark: Problem Types are Observable to Consumers

In this case, there is no possibility of expert cheating. For each i ∈ {M,m} , our model is

then the same as that in Stahl (1989). Following Stahl (1989), there is a unique symmetric

equilibrium where experts price according to price distribution Fi (p) for i = {M,m} and

consumers search with reservation price roi ≤ Vi for Ti. The equilibrium can be derived as

follows.

First, notice that, as in Stahl (1989), there can be no symmetric equilibrium where experts

adopt a pure strategy. Suppose that, to the contrary, in equilibrium p = p∗ for TM . Then,

if p∗ > C, an expert can profitably deviate by lowering his price slightly to attract all the

and consistency is not an issue because each seller has identical costs to provide the major treatment to both

consumer types so that D1 has no bite here.
16Another motivation for our focus on the hybrid equilibrium is that it is more robust, in the sense that it

is the only equilibrium if treatment is non-verifiable (see our discussion at the end of section 5 about how our

results might change if treatment were not verifiable).
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shoppers; while if p∗ = C, an expert can profitably deviate by slightly raising the price which

will be accepted by any searcher (who has a search cost s > 0). Similarly a deterministic price

q = q∗ for Tm cannot be sustained in equilibrium. Next, Fi (p) must be atomless, as any price

associated with a probability mass will also induce profitable deviations. Moreover, the upper

bound of Fi (p) is roi for i = M,m, the reservation price of searchers in their sequential search.

For i ∈ {M,m} and for any price p generated from Fi (p) , in equilibrium

(p− ci)

[
1− λ

N
+ λ (1− Fi (p))

N−1

]
= (roi − ci)

1− λ

N
,

where (1− Fi (p))
N−1 is the probability that an expert can sell to a shopper and roi is the

highest price in the support of Fi (p) . The equilibrium price distribution is

Fi (p) = 1−
[
(roi − p) (1− λ)

(p− ci)λN

] 1
N−1

with p ∈ [boi , r
o
i ] , (1)

where boM =
roM (1−λ)+CλN

λN+1−λ and bom = rom(1−λ)
λN+1−λ .

Define roM as the solution to ∫ roM

boM

(roM − p) dFM (p) = s. (2)

We can rearrange the term on the left-hand side in the above equation, which is the search

benefit—a consumer’s benefit from another search—as∫ roM

boM

(roM − p) dFM (p) = roM +

∫ roM

boM

pd[1− FM (p)].

Define x = 1− FM (p), and rewriting p as a function of x by (1), the search benefit under

FM (p) becomes

roM +

∫ roM

boM

pd[1− FM (p)] = (roM − C)(1− ϕ), (3)

where

ϕ ≡
∫ 1

0

1− λ

λNxN−1 + 1− λ
dx < 1, (4)

and ϕ is a constant for given λ and N. Notice that ϕ is lower when λ is higher or N is lower;

and ϕ → 0 when λ → 1 while ϕ → 1 when λ → 0.
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Throughout the paper, we assume:

s ≤ s̄ ≡ (1 − ϕ) [θV + (1 − θ)v − C]. (5)

For given V and v, from (3), roM = C + s
1−ϕ

≤ θV + (1 − θ)v < V . As it will

become clear later, when s ≤ s̄, the consumer’s reservation price is no higher than her expected

willingness-to-pay for TM , even in all equilibria of our model where problem types are not

observable to consumers.

Furthermore, let rom = min {v, ω} , where ω solves∫ ω

ω(1−λ)
λN+1−λ

(ω − p) dFm (p) = s (6)

or ω = s
1−ϕ

. Then rom uniquely exists. The unique equilibrium Fi (p) is characterized by

(1), (2) and (6). Notice that search benefit is strictly increasing in reservation prices roM for

TM and rom for Tm, which implies that it is optimal for searchers to adopt a reservation price

strategy under both TM and Tm. The above discussion can be summarized in the following

result that is due to Stahl (1989):

Proposition 0 (Stahl, 1989) Suppose that the problem types are observable to consumers.

For s ≤ s̄, there exists a unique symmetric equilibrium such that each expert’s equilibrium

strategy is to recommend Ti and price according to Fi (p) for i = M,m. Searchers sequentially

sample experts with reservation prices roi ≤ Vi for Ti.

We next return to the equilibrium analysis of our main model in which consumers do not

observe their problem types.

3 Hybrid Equilibrium: Probabilistic Cheating

When only experts can privately learn a consumer’s problem, they may cheat by recommend-

ing TM even when i = m. This section analyzes the hybrid equilibrium where each expert

cheats with probability α ∈ (0, 1) .

As in the benchmark case, here there is also no equilibrium in which experts choose

deterministic prices. To see this, consider a candidate equilibrium where the price is q = q∗
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for Tm and p = p∗ for TM . Then, given that TM can fix both types of the problem and

C > 0, clearly q∗ ≤ p∗. Next, any q∗ > 0 cannot be supported in equilibrium because an

expert can profit from a deviation to a slightly lower price, while q∗ = 0 also cannot be

supported in equilibrium because an expert can profitably deviate to a slightly higher price.

Furthermore, this argument holds for any off-equilibrium belief, not just under our assumption

that consumers maintain the equilibrium belief about the problem type (which in this case is

i = m) for small price deviations, because even for a small upward price deviation at q∗ = 0,

the deviating seller could sell to all the searchers who visit it—under any belief they may

have—given that they have search cost s to visit another expert.

Next, consider the candidate equilibrium price p = p∗ for TM . With all experts recom-

mending TM with probability 1 if i = M and with probability α if i = m, each shopper, after

seeing the recommendations from all experts, will form certain belief along the equilibrium

path about the probability that her i = M . Clearly, some consumers must be willing to pay

p∗ for TM in order for p∗ to be an equilibrium price. Then, if p∗ > C, an expert can deviate

to a slightly lower price, for which consumers will still have the same belief as before under

our assumption. It follows that the deviation is profitable to the expert by attracting all

shoppers who would have purchased from other experts under p∗, and the deviation would

not reduce the expert’s demand from searchers. On the other hand, if p∗ = C, an expert can

profitably deviate to a slightly higher price to sell to searchers for whom he happens to be the

first expert they visit.17 Notice that our off-equilibrium belief assumption is important for the

non-existence of deterministic prices for TM : if, for example, the belief is i = m for a deviating

price (slightly) below p∗ > C, the searchers who would have purchased from the deviating

seller may no longer do so, because the deviating price might exceed their reservation price

for Tm, which could make the deviation unprofitable.

In a potential symmetric mixed-strategy equilibrium, suppose that experts choose p ac-

cording to distribution F (p) when recommending TM for i = M, choose p according to

distribution G (p) when recommending TM for i = m, and choose q according to distribution
17For TM , the experts may also choose a deterministic price p1 when i = M and p2 when i = m. From

arguments similar to the above, there can be no deterministic equilibrium prices p∗1 or p∗2.
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H (q) when recommending Tm for i = m. From familiar arguments, the equilibrium price

distributions are atomless.

Suppose that all searchers’ reservation price for Tm is rm = min{v, ω}, where ω is defined

in (6). We construct the equilibrium under the assumption that v < ω and will later show

that v ≥ ω is not consistent with any hybrid equilibrium.18 Because a searcher can return

to a previously-searched expert without cost, in equilibrium her reservation price for TM or

Tm under a certain belief must not increase in t. Let µ ≡ µ1 ∈ [0, 1] , and let {r (µ) , rm}

be the searchers’ reservation prices for {TM , Tm} in their first round of search. As we shall

confirm later, in equilibrium consumers will indeed hold stationary belief µt = µ for all t

and searchers will adopt a reservation-price search strategy. Then, the upper bound B of

distributions F (p) and G (p) must be r ≡ r (µ) , and the upper bound of H (q) must be rm.

To see this, suppose to the contrary that B ̸= r. If B > r, then price p = B will not yield

any sale to searchers during their first and possible future rounds of searches, and it will also

not yield any sales to shoppers. By deviating to B = r, an expert will have a positive profit

and hence the deviation is profitable. If B < r, since there is zero probability that B is the

lowest price, an expert can profitably raise p = B to p = r, for which he will not lose any

sales to shoppers but will have a higher profit from searchers who visit him and who will pay

r instead of B < r. A similar argument establishes that the upper bound of H (q) must be

rm when the recommended treatment is Tm (noticing rm = v). Therefore, in equilibrium all

searchers will purchase at their first visit.

In subsection 3.1 below, we derive the equilibrium price distributions and cheating prob-

ability α, given the consumers’ strategies. In subsection 3.2, we then derive the optimal

consumer strategy under the equilibrium expert strategy and fully characterize the hybrid

equilibrium.
18In equilibrium, consumers will correctly infer that they have a minor problem when receiving the Tm

recommendation, but because in another search they may encounter a dishonest expert who recommends TM ,

which lowers their search benefit, their reservation price is weakly higher under asymmetric information than

that under full information.
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3.1 Price Distributions and Cheating Probability

We start by deriving the equilibrium price distributions, given that shoppers will purchase

from the lowest-priced expert and searchers will search with reservation prices (r, rm) for

(TM , Tm). We consider in turn the cases where a consumer has a major problem (i = M) and

where she has a minor problem (i = m).

First, suppose that i = M. Then, upon seeing the consumer, any expert will recommend

TM with a price p randomly drawn from F (p). To determine F (p) , notice that an expert

earns the same expected profit for any p ∈ [bf , r] in the symmetric mixed strategy equilibrium:

(p− C)

[
1− λ

N
+ λ (1− F (p))N−1

]
= (r − C)

1− λ

N
,

where the expert can sell only to searchers if he sets p = r. Thus, the equilibrium price

distribution is

F (p) = 1−
[
(r − p) (1− λ)

(p− C)λN

] 1
N−1

with p ∈ [bf , r] , (7)

where bf = r(1−λ)+CλN
λN+1−λ . We have F (r) = 1, F (bf ) = 0, and the probability density is

f (p) =
1

N − 1

[
(r − p) (1− λ)

(p− C)λN

] 1
N−1

−1 r − C

(p− C)2

(
1− λ

λN

)
. (8)

Notice that the price distribution has the same form as that for i = M when consumers

can observe their problem types. However, the equilibrium r (to be derived) will differ from

roM in the benchmark case, because in optimally choosing r a consumer will now take into

account the possibility that an expert may cheat by recommending TM even when i = m.

Next, suppose that i = m. For such a consumer, an expert will recommend TM with

probability α under a price p that is randomly drawn from G (p) . The expert earns equal

profits from offering TM to such consumers with any price p drawn from G (p) if

(p− C)

[
1− λ

N
+ λαN−1 (1−G (p))N−1

]
= (r − C)

1− λ

N
,

where 1−λ
N of the m-type searchers will first visit the expert and will pay for TM at p ≤ r,

while αN−1 (1−G (p))N−1 is the probability that the expert can sell to a shopper with i = m
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when other experts also cheat and price higher. Hence, G (p) is given by

G (p) = 1− 1

α

[
(r − p) (1− λ)

(p− C)λN

] 1
N−1

for p ∈ [bg, r] , (9)

where bg = r(1−λ)+CαN−1λN
1−λ+αN−1λN

. Moreover, G (r) = 1, G (bg) = 0, and the probability density is

g (p) =
1

α

1

N − 1

[
(r − p) (1− λ)

(p− C)λN

] 1
N−1

−1 r − C

(p− C)2

(
1− λ

λN

)
. (10)

Next, with i = m, any expert will recommend Tm with probability 1 − α under a price

q randomly drawn from H (q) . An expert earns equal profits from recommending Tm to

consumers with i = m under any price q drawn from H (q) if

q

{
1− λ

N
+ λ [α+ (1− α) (1−H (q))]N−1

}
= v

(
1− λ

N
+ λαN−1

)
,

where we have further assumed that v < bg so that prices under G (p) by experts who cheat

are all higher than v.19 Thus,

H (q) =
1

1− α

{
1−

[
v(1− λ+ λNαN−1)− (1− λ)q

λNq

] 1
N−1

}
with q ∈ [bh, v] , (11)

where bh = 1−λ+λNαN−1

1−λ+λN v. Moreover, H (v) = 1, H (bh) = 0, and the probability density is

h (q) =
1

1− α

[
v(1− λ+ λNαN−1)

λNq
− 1− λ

λN

] 1
N−1

−1
v(1− λ+ λNαN−1)

(N − 1)λNq2
.

Finally, the experts must earn the same expected profit from recommending either TM or

Tm for i = m, 20 and hence v
(
1−λ
N + λαN−1

)
= (r − C) 1−λ

N , which implies that r and α are

positively related in the following way:

r =
1− λ+ λNαN−1

1− λ
v + C ≡ r̃ (α) . (12)

Intuitively, from an expert’s point of view, a higher r provides a higher incentive to recommend

TM for i = m, corresponding to a higher α.

We summarize the price distributions, their properties, and the cheating probability for

given r at a hybrid equilibrium as follows:
19As we will see shortly in Lemma 1, this assumption is always satisfied in equilibrium.
20Recall that in equilibrium all searchers will accept the first offer received. Hence, searchers with the

minor problem will not have different search experiences that may affect their acceptance probability for major

treatment.

16



Lemma 1 In a hybrid equilibrium, the price distributions F (p) , G (p) , and H (q) are given

by (7), (9), and (11), with the following properties: (i) bf < bg with F (bg) = 1 − α; (ii)

g (p) = 1
αf (p) for p ∈ [bg, r] ; (iii) h (q) = 1

1−αf (q + C) for q ∈ [bh, v] ; and (iv) bg = v + C

and bf = bh + C. Furthermore, α is determined by (12) for given r.

Proof. See the appendix.

Part (i) in Lemma 1 implies that when a consumer receives a recommendation for TM at a

price p ∈ [bf , bg), she can infer that the expert has made an honest recommendation: i = M,

whereas when she receives a recommendation for TM at a price p ∈ [bg, r], the true state can

be either i = M or i = m.

Part (ii) in Lemma 1 implies that when TM is being recommended at price p ∈ [bg, r],

density g (p) is larger than f (p) with g (p) = 1
αf (p) . However, since an expert will recommend

TM when i = m only with probability α, from the Bayes’ rule a consumer’s posterior belief

when receiving recommendation TM under a price p ∈ [bg, r] is the same as her prior belief:

µ(p) =
θf(p)

θf(p) + (1− θ)αg(p)
= θ for p ∈ [bg, r]. (13)

Interestingly, under recommendation TM , a lower price, p ∈ [bf , bg), signals that the problem

is indeed M, whereas a higher price, p ∈ [bg, r], does not provide useful information. This is

because if an expert chooses to cheat—recommending TM when i = m—he is unlikely to sell

to shoppers and would thus rather charge a higher price to earn a higher profit when selling

to searchers.

Part (iii) suggests that the price density function h (q) for Tm under i = m is a shift to the

left by C from the density function f (p) for TM under i = M on [bf , bg] . Part (iv) is based

on the idea that when an expert recommends TM with a price p ∈ [bg, r], a searcher’s belief is

µ = θ (as indicated in (ii) above), and hence her reservation price r for TM is the same under

both F (p) and G (p) . Therefore, both bg and bf are determined by the same r satisfying (12)

that makes the expert indifferent between recommending TM and Tm for i = m.

Figure 1 below illustrates the relations between F (p) , G (p) , and H (q) .
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Figure 1: Price distributions.

3.2 Optimal Consumer Search

We now characterize optimal consumer search given the experts’ strategy described in the

previous subsection. From the analysis of price distributions for our proposed equilibrium, a

consumer’s beliefs after receiving experts’ offers of treatment and prices can be summarized

in the following.

Lemma 2 Upon receiving the offer from the tth expert that she visits, a consumer’s belief µt is

consistent with the experts’ equilibrium strategies when, for all t ≥ 1: (i) µt = 0 if at least one

of her visited experts recommends Tm with price q ≤ v; (ii) µt = 1 if at least one of her visited

experts recommends TM with price p ∈ [bf , bg); and (iii) µt =
θf(p1)...f(pt)

θf(p1)...f(pt)+(1−θ)αtg(p1)...g(pt)
= θ

if all her visited experts recommend TM with prices p1, ..., pt ∈ [bg, r] .

Since µt is either 0, 1, or θ, independent of t, we can simply denote a consumer’s belief by

µ. Thus, despite the dynamic nature of consumers’ Bayesian belief updating, their beliefs are

stationary given the experts’ equilibrium strategy, which substantially facilitates the analysis.

The analysis of our model is made tractable also by the observation that because sellers

will optimally choose not to price above the searchers’ reservation prices, in equilibrium all

searchers will purchase during their first visit when undertaking sequential searches. Given

α, the price distributions, and belief µ from Lemma 2, we can describe the optimal sequential

search rule of a searcher as follows. (1) She will accept an offer that recommends Tm with

price q ≤ v. (2) She will accept an offer that recommends TM with price p ≤ r = r (µ) , and
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r satisfies

µ

∫ r

bf

(r − p) dF (p) + (1− µ)α

∫ r

bg

(r − p) dG (p) + (1− µ) (1− α)

∫ v

bh

(r − q) dH (q) = s.

(14)

In the left-hand side of (14), which is the search benefit from visiting another expert, the first

term is the expected benefit from finding a lower price when i = M, the second term is the

expected benefit from finding a lower price when i = m but the expert recommends TM , and

the third term is the expected benefit from finding a lower price when i = m and the expert

recommends Tm. Equation (14) says that at the optimal r the search benefit is equal to the

search cost (s).

So far, given experts’ strategy, we have derived the searchers’ (stationary) reservation

prices, under the presumption that they follow a reservation price search strategy. We now

argue that given experts’ strategy, it is indeed optimal for searchers to adopt a reservation

price strategy, which would be true if the search benefit is increasing in a sampled price under

both Tm and TM . Suppose first that a searcher is recommended Tm. Then, her belief is µ = 0,

and at the current offer {Tm, q′}, her benefit from another search is

(1− α)

∫
q≤q′

(q′ − q)dH(q),

which clearly increases with the sampled price q′. Next, suppose that a searcher is recom-

mended TM . At the current offer {TM , p′} , the potential complication is that as the sampled

price p′ increases, a searcher’s belief may change. In particular, if a lower p′ were associated

with a lower µ, then the search benefit could be higher at a lower p′, because the lower µ asso-

ciated with p′ would imply that with another search, it could be more likely for the searcher

to encounter an honest expert that recommends Tm with a lower price. Fortunately, given the

experts’ strategy, µ is weakly higher for lower p′, which ensures that search benefit increases

in p′. Therefore, it is indeed optimal for searchers to adopt a reservation price search strategy

under both Tm and TM .21

21We may consider each shopper’s expected value from having her problem solved, which depends on her

belief about her problem type, as her reservation price: after searching all experts, she will purchase at the

lowest price if it does not exceed her reservation price. For convenience, we sometimes also say that each

shopper adopts a reservation price in search.
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Utilizing Lemma 1, noticing µ = θ when a searcher receives recommendation TM with a

price p ∈ [bg, r], we can simplify the left-hand side of equation (14) and rewrite the equation

when µ = θ as

τ (α) ≡
∫ r

bf

(r − p) dF (p) + (1− θ) (1− α)C = s, (15)

where r = r̃ (α) satisfies (12). The search benefit τ (α) in the above equation has an intuitive

interpretation. The first term, which we call the price benefit, is the benefit to a consumer

from finding a lower price if i = M. The second term, which we call the honesty benefit, is the

additional benefit from encountering an honest expert if i = m: the consumer then expects

to pay a price that is lower by C than under TM .

From (15),
∫ r

bf
(r − p) dF (p) ≤ s. It follows that roM ≥ r, where roM satisfies (2).22 There-

fore, if a consumer receives a recommendation for TM with a price p ∈ [bf , bg) < r, her updated

belief is µ = 1 and she will pay for TM without searching further. Also, since v < ω (as we

have assumed), the consumer will also pay for the treatment without further searching when

she is recommended Tm with a price q ∈ [bh, v] < r, under which her updated belief is µ = 0.

To solve the equilibrium, it remains to examine how α∗ is determined in (15), where r and

the price distributions are all functions of α. It is useful to note that an increase in α has two

opposing effects on the search benefit τ (α) :

dτ(α)

dα
=

∂τ(α)

∂α︸ ︷︷ ︸
lower honesty benefit(−)

+
∂τ(α)

∂r

∂r

∂α︸ ︷︷ ︸
higher price benefit(+)

. (16)

An increase in α has a negative direct effect on the search benefit: As α rises, experts are more

likely to cheat, which reduces the honesty benefit of search, as can be seen from the first term

of (16). On the other hand, an increase in α has a positive indirect effect on search benefit: As

α rises, so does r = r̃ (α) given by (12), which in turn stochastically increases the equilibrium

prices under TM and hence also the price benefit of search, as can be seen from the second

term of (16) where ∂τ(α)
∂r > 0 from (15). We next show that, depending on parameter values,

22Hence, if a consumer can observe her type, she will search with a higher reservation price for TM than

when she is recommended TM but cannot observe whether her type is indeed i = M. In the latter case, there is

a chance that her true type is i = m and she will receive a lower price if encountering an honest expert, which

motivates her to lower the reservation price.
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τ (α) can be a monotonically decreasing, monotonically increasing, or U-shaped function of

α. The result below refers to Ĉ and α̂ defined by

Ĉ =
(1− ϕ)λN(N − 1)

(1− θ)(1− λ)
v, α̂ =

(
C(1− θ)(1− λ)

vλN(N − 1)(1− ϕ)

) 1
N−2

, (17)

where ϕ < 1 is given by (4) and α̂ is defined only if N > 2.

Lemma 3 The search benefit function in (15) can be written as

τ(α) = (1− ϕ)
1− λ+ λNαN−1

1− λ
v + (1− θ)(1− α)C. (18)

For all α ∈ (0, 1): when C ≥ Ĉ, τ (α) monotonically decreases; when C < Ĉ, τ (α) monotoni-

cally increases if N = 2, but it first decreases and then increases—minimizing at α̂ ∈ (0, 1)—if

N > 2.

Proof. See the appendix.

To see the intuition about how τ (α) varies, we notice first that the honesty benefit is

higher if C is larger (and it is independent of N). The price benefit is independent of C but

depends on the number of competing experts. Therefore, if C is sufficiently large (C ≥ Ĉ for

given N), then when α increases, the reduction of the honesty benefit dominates, and hence

τ (α) is decreasing for any N ≥ 2, as illustrated in panel 2(a) of Figure 2.

Second, similar to Stahl (1989), the price benefit of search is high when prices are (stochas-

tically) high. When α is higher, so are r = r̃ (α) and prices. Hence, when C < Ĉ and as

α increases, the price benefit of search dominates the reduction of honesty benefit either if

N = 2 or if N > 2 and α > α̂, so that τ (α) is increasing; but the price benefit is dominated

if N > 2 and α < α̂, so that τ (α) is decreasing. In Figure 2, panels 2(b) illustrates the case

where C < Ĉ and N = 2, whereas the bottom two panels illustrate the other cases, with 2(c)

corresponding to the case where τ (0) < τ (1) and 2(d) to the case where τ (0) > τ (1) . Notice

that when C < Ĉ, the shape of τ (α) depends on N, because N affects the equilibrium price

distribution and hence also the price benefit of search.
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Figure 2: Search benefit τ(α) varies with α. (Parameter values: λ = 0.3, θ = 0.5, v = 0.8.)

We are now in a position to fully characterize the hybrid equilibrium. Define

ŝ ≡ min
α∈[0,1]

τ (α) . (19)

By Lemma 3, when C ≥ Ĉ, τ (α) decreases in α and thus ŝ = τ(1); when C < Ĉ and N = 2,

τ (α) increases in α and thus ŝ = τ(0); but when C < Ĉ and N > 2, τ (α) is minimized at

α̂ ∈ (0, 1) and thus ŝ = τ (α̂).

Proposition 1 Suppose that ŝ < s < max {τ (0) , τ (1)} . There exists a hybrid equilibrium,

where α∗ ∈ (0, 1) and r∗ satisfy (12) and (15). Moreover, α∗ is unique if C ≥ Ĉ or if C < Ĉ

and N = 2; while α∗ may have either one or two values if C < Ĉ and N > 2. Each expert’s

equilibrium strategy is: for i = M, recommend TM and price from F (p); for i = m, recommend

TM and price from G (p) with probability α∗ but recommend Tm and price from H (q) with
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probability 1−α∗. Searchers sequentially search experts with reservation price r∗ for TM with

p ∈ [bg, r
∗] , roM for TM with p ∈ [bf , bg), and v for Tm.

Proof. See the appendix.

The hybrid equilibrium has several notable features. First, each expert randomizes be-

tween recommending TM and Tm for m, with the corresponding prices drawn from different

distributions. While probabilistic cheating is a familiar equilibrium feature in the credence-

goods literature, it is usually accompanied by random rejection of an expert’s offer by con-

sumers (as in the early contribution of Pitchik and Schotter, 1987). In our model, consumers

adopt pure strategies, and an expert’s indifference between honesty and dishonesty in equilib-

rium is due to the competition with other experts to balance the incentives to attract shoppers

and to exploit searchers. Second, a price in the interval [bf , bg) indicates that the problem is

M while a price in the interval [bg, r∗] indicates the problem is M only with prior belief θ.

Hence, a lower price for TM can be a signal that the expert is being truthful.23 This result

may seem surprising, but it actually has a simple intuition: if an expert chooses to recommend

TM when i = m, he is unlikely to sell to shoppers and thus prefers to charge a higher price

that would allow him to earn a higher profit when selling to searchers. Third, there is a gap

between H (q) and G (p): bg = v + C, so that the prices for TM when i = m are higher than

the prices for Tm by at least C. This is because under our assumption of verifiable treatment,

when recommending TM for m, an expert needs to incur C and will thus generally charge a

price that is higher by more than C than the price for Tm to compensate also for the reduced

probability of sale.

The hybrid equilibrium is consistent with anecdotal evidence that experts sometimes rec-

ommend unnecessary treatments and charge widely different prices for the same service. For

example, Emons (1997) cites reports in the U.S. and Germany that unnecessary repairs are

frequently—but not always—recommended to car owners by service providers, and the price

for similar auto bodywork at one shop can be as high as twice of that at another. Empirical
23When consumers lack information about product quality, a well-known result in the literature on pricing

under asymmetric quality information is that a high price can serve as a signal for high quality (e.g., Bagwell

and Riordan, 1991).
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studies have also found substantial price dispersions in expert markets, such as those for finan-

cial services including S&P 500 index funds (Hortaçsu and Syverson, 2004), mortgages (Allen

et al., 2014), and insurance products (Brown and Goolsbee, 2002). While these studies do

not focus on practices by experts to recommend unnecessary products to consumers in order

to profit from higher commissions and fees, casual observations suggest that such practices

are not uncommon, and future empirical work could investigate and potentially quantify the

prevalence of such practices for different products. The equilibrium suggests two additional

empirical predictions that can be potentially tested: (i) when a more expensive treatment is

recommended, a dishonest expert—whose recommended treatment is unnecessary—is more

likely to charge a higher price than an honest expert, and (ii) the price increase for the more

expensive treatment is more than its cost increase.

4 Comparative Statics of Search Frictions and the Number of

Experts

In this section, we provide some comparative statics with respect to search frictions and

the number of experts at the hybrid equilibrium, under the assumption that ŝ < s <

max {τ(0), τ(1)}. Subsections 4.1 and 4.2 respectively study how search frictions affect equilib-

rium cheating probability and prices, while subsection 4.3 analyzes how equilibrium cheating

probability is impacted by the number of experts in the market.

4.1 Search Frictions and Equilibrium Cheating Probability

We are interested in whether under lower search frictions, in the sense that s is lower or λ is

higher, competition by experts would reduce cheating in the market, with a lower α∗.

From (15) and (18), the equilibrium expert cheating probability (α∗) and search cost (s)

satisfy consumers’ optimal search rule: τ (α∗)− s = 0, or

Ψ(α∗, s) ≡ (1− ϕ)
v(1− λ+ λNα∗N−1)

1− λ
+ (1− θ)(1− α∗)C − s = 0.
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We have ∂Ψ
∂s = −1 < 0,

∂Ψ

∂λ
= −∂ϕ

∂λ

v(1− λ+ λNα∗N−1)

1− λ
+ (1− ϕ) v

Nα∗N−1

(1− λ)2
> 0

because ∂ϕ
∂λ < 0, and

∂Ψ

∂α∗ =
∂τ

∂α∗ = (1− ϕ)
vλN(N − 1)α∗N−2

1− λ
− (1− θ)C

may be either negative or positive, depending on the values of C and N. In particular,

(1) When C ≥ Ĉ (corresponding to the situation illustrated in 2(a) of Figure 2), ∂Ψ
∂α∗ < 0

and thus
∂α∗

∂s
= −

∂Ψ
∂s
∂Ψ
∂α∗

< 0 ,
∂α∗

∂λ
= −

∂Ψ
∂λ
∂Ψ
∂α∗

> 0.

(2) When C < Ĉ ≡ (1−ϕ)λN(N−1)
(1−θ)(1−λ) v and N = 2 (corresponding to the situation illustrated

in 2(b) of Figure 2), ∂Ψ
∂α∗ > 0 and thus

∂α∗

∂s
> 0,

∂α∗

∂λ
< 0.

(3) When C < Ĉ and N > 2 (corresponding to the situation illustrated in 2(c) and 2(d)

of Figure 2) with α̂ as defined in (17), we have

∂Ψ

∂α∗ < 0 and ∂α∗

∂s
< 0 if α∗ < α̂,

∂Ψ

∂α∗ > 0 and ∂α∗

∂s
> 0 if α̂ < α∗ < 1.

Cases (1) and (2) above provide sufficient conditions on exogenous parameter values under

which equilibrium cheating probability decreases or increases as search frictions become more

severe, summarized in the result below:

Lemma 4 At the hybrid equilibrium, if C ≥ Ĉ, then α∗ decreases as s rises or λ falls; while

if C < Ĉ and N = 2, then α∗ increases as s rises or λ falls.

The shape of the search benefit function, τ (α) , is crucial for understanding Lemma 4.

When C ≥ Ĉ, the loss in the honesty benefit of search from a higher α dominates so that

search benefit τ (α) monotonically decreases in α. Hence, when s increases, α∗ falls to restore

the condition that τ (α∗) = s. On the other hand, when C < Ĉ and N = 2, as α increases,
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the gain in the price benefit dominates the loss in the honesty benefit of search, so that τ (α)

increases. Then, when s increases, α∗ must also rise to restore optimal search.

Case (3) above provides additional sufficient conditions on the relation between equilibrium

cheating probability and search frictions, but it involves the value of the endogenous variable

α∗. It turns out that we can state the relation, based on the value of α∗, for all three cases

above in a way that contains clear economic intuition. To do this, we define

αc =

 min {α̂, N − 2} if C < Ĉ

1 if C ≥ Ĉ
, (20)

where 0 < αc < 1 if C < Ĉ and N > 2. Then, when C < Ĉ and either N = 2 or α∗ > α̂,

which is equivalent to α∗ > αc,

∂α∗

∂s
= −

∂Ψ
∂s
∂Ψ
∂α∗

> 0,
∂α∗

∂λ
= −

∂Ψ
∂λ
∂Ψ
∂α∗

< 0;

whereas if C ≥ Ĉ or if C < Ĉ but N > 2 and α∗ < α̂, which is equivalent to α∗ < αc,

∂α∗

∂s
< 0 ,

∂α∗

∂λ
> 0.

From Lemma 4 and Case (3) above, we then immediately have the the following:

Proposition 2 Suppose that α∗ ∈ (0, 1). Then, α∗ increases in s and decreases in λ if

α∗ > αc, but α∗ decreases in s and increases in λ if α∗ < αc.

Thus, at the hybrid equilibrium, if expert cheating in the market is pervasive enough

(α∗ > αc), increased competition due to lower search frictions can discipline experts, as one

might expect. However, if cheating is rare enough in the market (α∗ < αc), lower search

frictions actually increase expert cheating (i.e., α∗ rises).

To see the intuition for these results, first notice that as λ increases, there are more

shoppers in the market who will purchase from the lowest-priced seller, and offering Tm for

i = m is more likely to have the lowest price if more experts are currently cheating by offering

TM for m. Hence, if the cheating probability in the market is currently above a critical level

(α∗ > αc), a higher λ makes it relatively more attractive for an expert to be honest, decreasing
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equilibrium cheating probability α∗; whereas if the cheating activity is currently below the

critical level, competition for honest experts who offer Tm for m will be relatively more intense,

and a higher λ increases the attractiveness of cheating, leading to a higher α∗.24

Next, suppose that at a hybrid equilibrium associated with some (α∗, r∗) there is a marginal

decrease in search cost s. This will have similar effects on experts’ cheating as an increase in λ,

but through somewhat different mechanisms. When α∗ > αc, cheating is sufficiently common

in the market and search benefit increases in α. A decrease in s then leads to relatively more

competition for dishonesty experts, as reflected by a reduction in the searchers’ reservation

price for TM but not for Tm (i.e., r∗ falls but r∗m = v is unchanged). This motivates experts

to be more honest, resulting in a decrease in α∗. On the other hand, when α∗ < αc, cheating

is sufficiently uncommon in the market and search benefit decreases in α. A reduction in s

then leads to relatively more competition for honest experts who recommend Tm for m, as

reflected by a rise in r∗ while r∗m = v is unchanged, causing r∗m/r∗ to fall. This motivates

experts to cheat—recommending TM instead of Tm for m—more, resulting in an increase in

α∗.

As Proposition 2 suggests, search friction impacts expert behavior through complex in-

teractions between experts’ cheating probability, consumers’ reservation price in sequential

search, and experts’ prices. Importantly, price competition can change the relation between

search cost and expert cheating through the effects on consumer search benefit. Sulzle and

Wambach (2005) and Wolinsky (1993) have also explored this relationship and noted its pos-

sible non-monotonicity, but in these studies prices are (essentially) exogenously given and

there is no price dispersion for each treatment. As such, search benefit tends to be low either

when most experts are cheating or when they are honest, so that search benefit may be a con-

cave function of cheating probability, implying that as search cost rises, equilibrium cheating

probability can increase (decrease) when it is below (above) some critical level. In our model,
24The change in α∗ depends on both the optimal search condition given by (15) and the experts’ optimal

choice between honesty and dishonesty given by (12). Because the effect of λ is more pronounced if α is higher

in (12), when α is sufficiently high, an increase in λ would cause the the right-hand side of (12) to exceed

the endogenous r on the left-hand side, leading to a decrease in α that restores (12); otherwise, the opposite

change in α can occur.
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by contrast, the endogenous prices play a critical role in determining the benefit of search.

In particular, equilibrium price and price dispersion tend to be high when expert cheating is

high, so that search benefit can be high when cheating probability is high. Furthermore, when

the equilibrium cheating probability is low, a searcher who is recommended TM and main-

tains a posterior belief θ has a high expected search benefit. Therefore, roughly speaking,

search benefit is convex in cheating probability (as illustrated by Figure 2). Consequently,

as search cost rises, equilibrium cheating probability decreases (increases) when it is below

(above) some critical level.

4.2 Search Frictions and Equilibrium Prices

To examine the effects of search frictions on equilibrium prices, it is convenient to denote the

equilibrium price distribution when i = m as

Φ(p) =


(1− α)H (p) if p ∈ [bh, v]

1− α if p ∈ (v, bg)

1− α+ αG (p) if p ∈ [bg, r]

.

Since H(v) = 1, G(bg) = 0, and both H(p) and G(p) increase in p, Φ(p) is continuous and

weakly increases in p. Moreover, Φ(r) = 1 − α + αG(r) = 1, and Φ(bh) = (1 − α)H(bh) = 0.

Therefore, Φ(p;α) is a continuous c.d.f.

The following lemma is helpful for understanding the comparative statics on prices.

Lemma 5 Both F (p) and Φ(p) decrease in α.

Proof. See the appendix.

Lemma 5 indicates that equilibrium prices are increasing in α in the sense of first-order

stochastic dominance (FSD). Notice that F (p) and Φ(p) depend on s only through α from

(12) and (15). Thus, from Proposition 2, as s increases, α∗ and hence equilibrium prices are

higher if α∗ > αc but lower if α∗ < αc. We thus have:

Proposition 3 Suppose that prices are compared in the sense of FSD. Then, at a hybrid

equilibrium, as search cost increases, both equilibrium prices and cheating probabilities are

higher if α∗ > αc and both are lower if α∗ < αc.
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The effects of search cost on equilibrium prices and cheating probabilities are connected

in interesting ways: they either both fall or both rise as search friction increases. Intriguingly,

in an expert market, a reduction in search cost can hurt all consumers when the current

level of expert cheating is relatively low, because in this case lower search cost will increase

competition relatively more for honest experts and thus motivate experts to increase the

frequency of recommending TM for m, resulting in a higher α∗. This in turn reduces consumers’

search incentive, leading to higher equilibrium prices.

4.3 Effects of Changes in the Number of Experts

Consider first the effects of a change in the number of experts on the equilibrium cheating

probability. The analysis is complicated, partly because from Lemma 3 search benefit τ (α)

can be a monotonically increasing, monotonically decreasing, or U-shaped function of α,

depending on whether N = 2 or N > 2. To obtain clear statements about the relation

between α∗ and N, we treat N as a continuous variable and impose condition

1 +N lnα∗ < 0, (A1)

which ensures that τ (α) shifts down as N increases. The condition is equivalent to α∗ < e−
1
N

and is satisfied if, for example, N = 2 and α∗ < 0.61, N = 3 and α∗ < 0.72, N = 4 and

α∗ < 0.77, or N = 5 and α∗ < 0.82.

Proposition 4 Suppose (A1) holds. Then: (i) α∗ decreases in N if C ≥ Ĉ (N) or if

C < Ĉ (N), α∗ < α̂, and N ≥ 3.(ii) α∗ increases in N if C < Ĉ (N) and N = 2 or if

α∗ > α̂ and N ≥ 3.

Proof. See the appendix.

Condition (A1) ensures that τ (α) shifts down as N increases. On the other hand, from

Lemma 4 and the discussion leading to Proposition 2, (i) τ ′ (α) > 0 if C < Ĉ (N) and N = 2

or if α∗ > α̂ (when N ≥ 3), while (ii) τ ′ (α) < 0 if C ≥ Ĉ (N) or if C < Ĉ (N) and α∗ < α̂

(when N ≥ 3). Since α∗ satisfies τ (α∗) = s, an increase in N, which shifts down τ (α) , leads

to a higher α∗ in case (i) but to a lower α∗ in case (ii).
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The effects of changes in N on equilibrium prices are even more complex, because N

not only affects prices indirectly through α, but it also enters directly in the equilibrium

price distributions given by (7), (9) and (11). Nevertheless we are able to shed light on

how N impacts the equilibrium expected prices through numerical analysis. At the hybrid

equilibrium, let PM and Pm be the expected prices paid by a searcher when her problem type

is M or m, and let pM and pm be the expected prices paid by a shopper when her problem

type is M or m. We first have:

Lemma 6 PM = (r − C)ϕ + C, Pm = (r − C)ϕ + αC, pM = (r − C)ρ + C, and pm =

(r − C)ρ+ αNC, where ϕ is given by (4) and

ρ =

∫ 1

0

(1− λ)NxN−1

1− λ+ λNxN−1
dx. (21)

Proof. See the appendix.

Considering that equilibrium prices and expert cheating probability are simultaneously

determined, we illustrate their comparative statics with respect to N jointly in Table 1 below,

where λ = 0.3, θ = 0.5, and v = 1.

Table 1: Cheating Probability and Prices Change with N
C = 0.1 < Ĉ, s = 0.35 C = 3 ≥ Ĉ, s = 1.2

N α∗ PM Pm pM pm

2 0.118 0.895 0.807 0.814 0.715

3 0.469 1.059 1.007 0.855 0.765

4 0.634 1.205 1.169 0.874 0.790

5 0.719 1.339 1.311 0.884 0.803

N α∗ PM Pm pM pm

2 0.458 4.006 2.379 3.903 1.532

3 0.403 3.904 2.114 3.711 0.908

4 0.367 3.834 1.935 3.584 0.639

5 0.347 3.811 1.851 3.513 0.528

As indicated in Table 1, when C < Ĉ, α∗, PM , Pm, pM and pm all increase in N, while when

C ≥ Ĉ, they all decrease in N. Intriguingly, an increase in the number of sellers can increase

both expert cheating and prices. The intuition for this is somewhat similar to that in Stahl

(1989) where sellers compete only in prices: as N rises, an honest expert that offers Tm for

m is less likely to be the lowest-priced seller, which provides incentives for experts to increase
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cheating and raise prices. However, in our model experts also choose product offerings (i.e.,

recommendations), and the cheating incentive is influenced also by the values of both C (the

cost of TM ) and search cost (s).25 Therefore, unlike in Stahl (1989), where an increase in the

number of sellers always increases expected prices, here the cheating probability and expected

prices can both be lower as N increases. It is worth noting that our result differs sharply from

Wolinsky (1993), where the number of experts does not affect equilibrium cheating probability.

By considering consumer search and expert competition in both prices and recommendations,

our analysis yields new insight on how competition may affect expert behavior.

5 Separating and Pooling Equilibria

When search cost is sufficiently low or high, the model has equilibria that differ from the

hybrid equilibrium.

5.1 Separating Equilibrium

When search cost is sufficiently low, there is a separating equilibrium where all experts rec-

ommend Ti for i ∈ {M,m}. At the equilibrium, experts will recommend TM for i = M with

prices drawn from FM (p) given by (1), and searchers who are recommended TM will search

with reservation price roM given by (2); whereas experts will recommend Tm for i = m with

prices drawn from Fm (p) given by (1), and searchers who are recommended Tm will search

with reservation price rom = min{v, ω}.

To establish the equilibrium, it remains to show that no expert can benefit from choosing

T = TM for i = m. Suppose that a searcher with i = m, who is willing to pay p = roM for

TM , visits such a deviating expert and mistakenly believes that her problem is i = M. Since

other experts will still recommend Tm for i = m and price according to Fm (p) , resulting

in stochastically lower prices than under FM (p) , the deviating expert is less likely to sell to

shoppers than the other experts. This implies that the most profitable deviation is for the
25When C and s are high, prices for minor treatment (Tm) are relatively high and cheating has relatively

high opportunity costs, so that the increased competition due to an increase in N tends to reduce average

prices and boost expert honesty.
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deviating expert to offer T = TM for i = m with price p = roM . The expert’s profit under this

deviation is

(roM − C)
1− λ

N
,

whereas his profit when following the equilibrium strategy is

rom
1− λ

N
.

Hence, the separating equilibrium can be sustained if and only if

rom ≥ roM − C.

Proposition 5 If s ≤ v (1− ϕ) , there is a unique symmetric equilibrium in which experts

are honest (α∗ = 0). Equilibrium price distribution and optimal consumer search rules are

the same as in the case where consumers can observe i ∈ {M,m}.

Proof. See the appendix.

Although the market in our model has search frictions, Proposition 5 indicates that if

search cost is low enough, competition can effectively discipline experts so that they will all

behave honestly.26 Intuitively, as s becomes small enough, the price distribution H (q) shrinks

so that its upper bound becomes rm = ω, under which the expected profit under Tm is the

same as that under TM . Experts will then have no incentive to offer TM for m. Recall that ϕ

is lower when λ is higher or N is lower, and ϕ → 1 as λ → 0. Hence, the region of parameter

values under which the separating equilibrium prevails is larger when λ is higher or N is lower,

but the region vanishes as λ → 0. This confirms that the presence of shoppers who can search

without cost is essential for the existence of the separating equilibrium.

A key insight in the literature on credence goods is that experts will provide honest

recommendations if there are equal markups for TM and Tm. Our result extends this insight

to situations under mixed-strategy pricing with consumer search: the experts will behave
26Notice that in our model a fraction of consumers have no search cost. If all consumers have a positive

search cost, then the Diamond (1971) result holds: no matter how small the search cost is, experts will charge

the monopoly price θV + (1− θ) v, and the separating equilibrium does not exist.
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honestly when they expect to receive the same expected profit from TM and Tm for problem

m. Notice that from (18) and (19), min {τ (0) , τ (1) , ŝ} > v (1− ϕ) .

Proposition 5 also extends Stahl (1989) to expert markets: When s is sufficiently small,

experts will price and consumers will search in the same ways as in Stahl (1989), even though—

unlike in Stahl (1989)—here consumers do not observe the value of the service they receive.

Moreover, as s → 0, roM = C + s
1−ϕ and ω = s

1−ϕ approach C and 0, the respective marginal

costs for TM and Tm. Hence, same as in Stahl (1989), the Bertrand outcome is the limiting

case of our model of expert markets when search cost tends to zero.

5.2 Pooling Equilibrium

When search cost is high enough, experts will always cheat, which yields a pooling equilibrium

where experts always recommend TM and follow the same pricing strategy for i ∈ {M,m} .

Similar to the result in Lemma 1, experts would then price according to F (p) and G(p)

respectively for i = M and i = m, which have the same upper bound. Setting α = 1 in G (p),

we have bg = bf and G (p) = F (p) = FM (p). The equilibrium upper bound for the common

price distribution is then roM , as given by (2).

At the proposed pooling equilibrium, if an expert deviates to Tm when i = m, it can save

cost C and potentially capture all shoppers. The expert’s optimal deviating price in this case

is v, while he still prices according to FM (p) if i = M. If s is high enough, such a deviation

would not be profitable because the price reduction to v would be too large.

Proposition 6 If τ (1) ≤ s ≤ s̄ = (1−ϕ)[θV +(1−θ)v−C], there is a symmetric equilibrium

in which experts always recommend TM (i.e., α∗ = 1) and price according to FM (p) for

i ∈ {M,m}. All searchers will search with reservation price roM ≤ θV + (1− θ)v.

Proof. See the Appendix.

Intuitively, if s is high enough, search benefit is likely below s, which means that searchers

have low incentives to search. Then, experts will charge high prices for treatment TM (but a

price only up to v for treatment Tm). This motivates experts to always recommend TM for

m in equilibrium (α∗ = 1), resulting in the pooling equilibrium. As s decreases, consumers
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search more intensively, which imposes downward pressure to the prices for both treatments;

and when s is low enough, experts will cheat only with probabilities α∗ < 1, resulting in a

hybrid equilibrium. Notice that the hybrid equilibrium and the pooling equilibrium coexist if

τ (1) < s < τ (0) . When s is sufficiently low, v will not be a binding constraint for the price

of Tm, and recommending Ti for i ∈ {M,m} is then optimal for experts because they need

to incur C without getting a much higher price from TM than from Tm, making cheating not

profitable. However, there may be a (small) region of s for which a symmetric equilibrium

fails to exist. Notice that for given s, τ (1) ≤ s holds if λ is small enough. Hence, a pooling

equilibrium exists as λ approaches 0, and in this case the outcome in Stahl (1989) is also a

limiting case of our model.

Notice that in the interior regions of s and λ in which the separating or pooling equilibrium

exists, a marginal change in search frictions (either s or λ) has no effect on α∗, which is either

0 or 1. Hence, our results on the effects of search frictions on α∗, based on the hybrid

equilibrium, holds weakly at all equilibria of the model.

Finally, returning to the verifiability issue of treatment, we have assumed that an expert’s

treatment is verifiable to focus on situations where an expert may give biased or untruthful

recommendations but he does not engage in outright theft by billing a service that is not

performed. While both activities may occur in expert markets, we feel that our framework

is more suitable to analyze the former. Although the treatment needed for the consumer’s

problem is a credence good in nature, the actual treatment—such as a new compressor for

the air conditioner or a new dental crown placed on a tooth—is likely verifiable ex post, and

legal liability can be imposed on false treatment claims.

Nevertheless, if we modify our model to assume instead that treatment is non-verifiable,

then it can be shown that neither a separating nor a pooling equilibrium would exist,27 but a

hybrid equilibrium would. However, in this case the equilibrium price distributions for TM and

Tm under m will have no gap, because the experts would use treatment Tm, without incurring
27In this case, at a candidate separating equilibrium, an expert would always deviate to recommending TM

for m. At a candidate pooling equilibrium, TM and Tm would have same prices. This would lead to different

expected profits under M and m because only TM costs C, which would in turn invalidate the equilibrium.
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C, even when recommending TM for m.28 The waste of C to treat a minor problem is then

avoided. Therefore, within our framework, if s is sufficiently small, in equilibrium experts will

behave honestly when treatment is verifiable but not when it is unverifiable, whereas welfare

is the same under the two alternative assumptions because in neither case experts would

incur C for m. If s is higher, there is cheating in equilibrium under both assumptions. Not

surprisingly, experts are more likely to cheat and earn higher expected profits—but welfare is

weakly higher due to the avoidance of C for m—if treatment is not verifiable than when it is.

6 Conclusion

This paper has developed and analyzed a model of search and competition in expert markets.

We extend Stahl (1989) to introduce sellers’ private information about the appropriate treat-

ment/service for consumers. The model shows that, due to search cost, for the same problem

consumers may receive divergent recommendations and prices from different experts. Some

experts may cheat by recommending an unnecessary treatment, and the dishonest experts

also charge higher prices on average. Consumers search experts sequentially under Bayesian

belief updating and with an optimal reservation price for each recommended treatment. The

model further shows that search frictions can affect expert behavior non-monotonically: as

they decrease, expert cheating can fall if it already occurs frequently enough in the market,

but it can rise otherwise.

Despite the central importance of competition for economic efficiency, it is not surpris-

ing that competition may not work well when sellers possess superior product information

relative to consumers. A novel insight of this paper, however, is that search cost can be an

especially greater barrier to effective competition in expert markets. In fact, in our model

if search cost is below some critical level, competition will drive all experts to make honest

recommendations, and the equilibrium outcome coincides with that of Stahl (1989). Thus, a

clear way to achieve efficiency gains from competition in expert markets is to make consumer
28The analysis is lengthy but largely parallels the analysis when treatment is verifiable and also the analysis in

Janssen et al. (2011). We thus spare the readers from the detailed analysis under this alternative assumption.

An appendix that contains this detailed analysis is available upon request.
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search sufficiently convenient, even if it does not entirely eliminate search cost.29 However,

in practice, because search cost may often be relatively high and its (marginal) reductions

can—as we have shown—have non-monotonic effects, the role that competition plays in disci-

plining expert behavior is likely to be limited. This sentiment is echoed further by our finding

that increases in the number of competing experts can result in more cheating.

We have built on Stahl’s classical model of homogenous product as a first attempt to study

expert markets with consumer search. For future research, it would be desirable to consider

a setting with differentiated products such as in Wolinsky (1986). It is also desirable to relax

some of the assumptions in our model. For example, it would be interesting to study models in

which some consumers know which type of treatments they need (Jost et al., 2021), consumers

have more dispersed search costs (Stahl, 1996), or experts’ incentives to overprescribe services

depend on their queues (Chiu and Karni, 2021; Karni, 2022).

Although not considered in our model, many products in expert markets may not be pure

credence goods, in the sense that there is a (small) probability that a dishonest expert will

be found to have been untruthful. Extending our model to include such a possibility will

not change the analysis and results if consumers have no recourse ex post after detecting

an expert’s cheating, but it suggests that regulations can improve the performance of expert

markets. For instance, regulators may be able to promote or set higher standards for profes-

sional services, inspect or gather information about the works performed by experts, and warn

consumers about dishonest experts, especially when experts may interact with different con-

sumers over time but each individual consumer lacks the knowledge about them. Regulations

may also impose liabilities for experts who fail to fulfil obligations and for unethical practices

(as for instance in medical malpractices). By showing the limits to effective competition in

expert markets due to search frictions, our paper suggests the need for regulation in such

markets, even when they may appear to be highly competitive with numerous providers.
29In particular, digital platforms that enable consumers to easily make price and quality comparisons for

expert services can alleviate the adverse effects of search cost.
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APPENDIX

The appendix contains proofs for Lemmas 1, 3, 5, and 6, and Propositions 1, 4, 5, and 6.

Proof of Lemma 1. It suffices to prove properties (i)-(iv).

(i) Since bg decreases in α we have

bg =
r (1− λ) + CαN−1λN

1− λ+ αN−1λN
>

r (1− λ) + CλN

1− λ+ λN
= bf

for r > C. It is straightforward to also verify that F (bg) = 1− α from (7).

(ii) From comparing (8) and (10), we immediately have g (p) = 1
αf (p) for p ∈ [bg, r] .

(iii) From (11) and (12),

h (q) =
1

1− α

[
v(1− λ+ λNαN−1)

λNq
− 1− λ

λN

] 1
N−1

−1
v(1− λ+ λNαN−1)

(N − 1)λNq2

=
1

1− α

[
(r − q − C) (1− λ)

λNq

] 1
N−1

−1 (r − C) (1− λ)

(N − 1)λNq2

=
1

1− α
f (q + C) .

(iv) Substituting the r from (12) into

bg =
r (1− λ) + CαN−1λN

1− λ+ αN−1λN
and bf =

r (1− λ) + CλN

λN + 1− λ
,

we obtain bg = v + C and bf = bh + C.

Proof of Lemma 3. By the argument leading to (3) and from (12),∫ r

bf

(r − p) dF (p) = (r − C)(1− ϕ)

= (1− ϕ)
v(1− λ+ λNαN−1)

1− λ
.

Hence, the search benefit in (15) can be rewritten as (18), which is clearly positive. We then

have

τ ′(α) = −(1− θ)C + (1− ϕ)
λN(N − 1)αN−2

1− λ
v (22)

and

τ ′′(α) = (1− ϕ)
λN(N − 1)(N − 2)αN−3

1− λ
v ≥ 0,
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where the weak inequality holds strictly if N > 2. Hence, τ (α) is a (weakly) convex function.

When C ≥ Ĉ, τ ′(α) < 0 for all α ∈ (0, 1) . When C < Ĉ, τ ′(α) > 0 for all α ∈ [0, 1] if N = 2;

but if N > 2, τ(α) is minimized at

α̂ =

(
C(1− θ)(1− λ)

(1− ϕ)λN(N − 1)v

) 1
N−2

<

(
Ĉ(1− θ)(1− λ)

(1− ϕ)λN(N − 1)v

) 1
N−2

= 1.

Obviously α̂ > 0.

Proof of Proposition 1. The equilibrium strategies of the experts and consumers follow

directly from the construction of the equilibrium. Notice that, from (18), τ(α) > v(1 −

ϕ)1−λ+λNαN−1

1−λ > v(1−ϕ). Hence, for s > ŝ = minα∈[0,1] τ(α) > v(1−ϕ), ω = s
1−ϕ > v(1−ϕ)

1−ϕ =

v and r∗m = min{v, ω} = v. Thus, it suffices to show the existence and possible uniqueness of

(α∗, r∗). We consider in turn three possible cases.

(i) When C ≥ Ĉ, τ(α) decreases in α for all α ∈ (0, 1) by Lemma 3. For τ (1) = ŝ < s <

τ(0), there is a unique α∗ ∈ (0, 1) such that τ(α∗) = s, and the unique equilibrium r∗ is then

given by (12) with α = α∗.

(ii) When C < Ĉ, by Lemma 3, if N = 2, τ(α) monotonically increases, and hence for

τ(0) = ŝ < s < τ (1), there is a unique α∗ such that τ(α∗) = s, and the unique r∗ is then

given by (12) with α = α∗.

If N > 2, τ(α) first decreases and then increases, reaching its minimum at α̂ ∈ (0, 1) .

Then

ŝ = τ(α̂) = (1− θ)(1− α̂)C + (1− ϕ)
(1− λ+ λNα̂N−1)

1− λ
v > 0.

If min {τ(0), τ(1)} < s < max {τ(0), τ(1)} , there is a unique α∗ such that τ (α∗) = s; whereas

if ŝ < s < min {τ(0), τ(1)} , there are two values of α∗, α∗
1 ∈ (0, α̂) and α∗

2 ∈ (α̂, 1) , such that

τ (α∗
1) = s and τ (α∗

2) = s.

Proof of Lemma 5. First, from (12), r increases in α. From (7), ∂F (p)
∂r < 0 and thus

∂F (p)

∂α
=

∂F (p)

∂r

∂r

∂α
< 0.

Second,

1− α+ αG (p) = 1−
[
(r − p) (1− λ)

(p− C)λN

] 1
N−1

for p ∈ [bg, r],
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which decreases in r and thus decreases in α. From (11),

(1− α)H(q) = 1−
[
v(1− λ+ λNαN−1)

qλN
− 1− λ

λN

] 1
N−1

for q ∈ [bh, v],

which decreases in α.

Proof of Proposition 4. From (18), treating N as a continuous variable, we have

∂τ(α)

∂N
= − ∂ϕ

∂N

1− λ+ λNαN−1

1− λ
v +

λ(1 +N lnα)αN−1

1− λ
(1− ϕ)v. (23)

From (4),
∂ϕ

∂N
= −λ(1− λ)

∫ 1

0

xN−1(1 +N lnx)

(1− λ+NλxN−1)2
dx.

Since
∫
xN−1(1 +N lnx)dx = xN lnx, integrating by parts we have

∂ϕ

∂N
= −λ(1− λ)

{
xN lnx

(1− λ+NλxN−1)2

∣∣∣∣1
0

+ 2

∫ 1

0

N(N − 1)λxN−2xN lnx

(1− λ+NλxN−1)3
dx

}
.

By L’Hospital rule, limx→0 x
N lnx = 0 given that N ≥ 2. Thus,

∂ϕ

∂N
= −λ(1− λ)2

∫ 1

0

N(N − 1)λxN−2xN lnx

(1− λ+NλxN−1)3
dx > 0,

where the last inequality follows from the fact that lnx < 0 for x < 1. Thus, under A1,
∂τ
∂N < 0, which implies τ (α) shifts down as N increases.

From Lemma 3, when C < Ĉ (N) and N = 2, ∂τ
∂α > 0. It follows that α∗, where τ (α∗) = s,

increases as N increases. Moreover, when C < Ĉ (N) and N ≥ 3,

∂τ

∂α
< 0 if α∗ < α̂, and ∂τ

∂α
> 0 if α̂ < α∗ < 1.

Hence α∗ decreases in N if α∗ < α̂ but increases in N if α∗ ≥ α̂. Finally, when C ≥ Ĉ (N) ,

∂τ
∂α < 0, and thus α∗ decreases in N .

Proof of Lemma 6. For a searcher with i = M,

PM = E[F (p)] =

∫ r

bf

pdF (p) = (r − C)ϕ+ C.
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A searcher with i = m will buy at the first search with a price randomly drawn from Φ(p),

and the expected price he pays is:

Pm = E[Φ(p)] = α

∫ r

bg
pdG(p) + (1− α)

∫ v

bh

pdH(p)

=

∫ r

bg

pd[α− αG(p)] +

∫ v

bh

pd[1− (1− α)H(p)]

=

∫ α

0
C +

(r − C)(1− λ)

1− λ+ λNxN−1
dx+

∫ 1

α

(r − C)(1− λ)

1− λ+ λNxN−1
dx

= (r − C)ϕ+ αC.

For a shopper with i = M, he will purchase from the lowest price among all experts charging

a price from F (p) which follows a distribution:

F l(p) = 1− [1− F (p)]N .

Thus, a shopper with i = M pays an expected price

pM = E[F l(p)] =

∫ r

bf
pdF l(p) = −

∫ 1

0
pd
[
1− xN

]
=

∫ 1

0
NxN−1

(
(r − C)(1− λ)

1− λ+ λNxN−1
+ C

)
dx

=

∫ 1

0

(r − C)(1− λ)NxN−1

1− λ+ λNxN−1
dx+ C

∫ 1

0
NxN−1dx

= (r − C)

∫ 1

0

(1− λ)NxN−1

1− λ+ λNxN−1
dx+ C

= (r − C)ρ+ C.

Finally, for a shopper with i = m, he will purchase from the lowest price among all experts

charging a price from Φl(p) which follows distribution

Φl(p) =


1− [1− (1− α)H(p)]N if p ∈ [bh, v]

1− αN if p ∈ [v, bg]

1− [α(1−G(p))]N if p ∈ [bg, r]

.
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Thus, a shopper with i = m pays an expected price

pm = E[Φl(p)] =

∫ r

bg
pd
{
1− [α(1−G(p))]N

}
+

∫ v

bh

pd
{
1− [1− (1− α)H(p)]N

}
= −

∫ r

bg
pN [α(1−G(p))]N−1d[α(1−G(p))]−

∫ v

bh

pN [1− (1− α)H(p)]N−1d[1− (1− α)H(p)]

=

∫ α

0

[
(r − C)(1− λ)

1− λ+ λNxN−1
+ C

]
NxN−1dx+

∫ 1

α

[
(r − C)(1− λ)

1− λ+ λNxN−1

]
NxN−1dx

= (r − C)

∫ 1

0

(1− λ)NxN−1

1− λ+ λNxN−1
dx+ C

∫ α

0
NxN−1dx

= (r − C)ρ+ αNC.

Proof of Proposition 5. When v ≥ ω, rom = ω, which is determined by (6). Since

roM = C +
s

1− ϕ
and ω =

s

1− ϕ
,

experts receive the same profit from recommending TM or Tm when i = m. Hence recom-

mending Ti for i ∈ {M,m} is optimal for experts.

Notice that ω increases in s, and ω = v when s = v (1− ϕ) . Thus, if s > v (1− ϕ) ,

rom = min {v, ω} = v < roM − C. In this case, experts would deviate to recommending TM for

i = m with price roM .

Therefore, if s ≤ v (1− ϕ) and ω solves (6), then there is a symmetric separating equilib-

rium in which α∗ = 0, and the equilibrium is unique because Fi (p) is unique.

Proof of Proposition 6. At the proposed equilibrium, each expert’s profit is

(roM − C)
1− λ

N
.

If an expert deviates to offering Tm for i = m with p = v, his profit is

v(λ+
1− λ

N
).

Therefore, the equilibrium can be sustained if and only if

roM = C +
s

1− ϕ
≥ C +

1− λ+ λN

1− λ
v,
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or

s ≥ (1− ϕ)(1− λ+ λN)

1− λ
v = τ (1) .

In addition, to ensure the existence of the reservation price, we need roM ≤ θV + (1 − θ)v,

which is equivalent to

s ≤ (1− ϕ)[θV + (1− θ)v − C] = s̄,

which holds under assumption (5). Notice that τ (1) < s̄ when V is sufficiently large.
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