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Abstract

In this paper a dynamic game is used to compare licensing of a cost
reduction innovations under lost profits (LP) and unjust enrichment
(UE), both damage rules used by courts in the calculation of damages
when a patent has been infringed.

The innovation, whose property right belongs to a firm (patent
holder) has a positive probability to be declared invalid in a court.
The market is composed by two homogeneous firms that compete in
quantities (Cournot).

Licensing by using royalty rates is preferred compared with fixed
fees, it is observable little licensing (just big innovations).

LP is not always better or worst than UE, but the major of the
cases consumers and society are better off under UE and in the major
of cases LP benefits more to the patent holder.

1 Introduction

One of the most important mechanisms made for to compensate and to
incentive innovation is the Patent System. In this system there is an authority
(i.e. the EPO in Europe) that gives rights of property on pieces of knowledge
to an agent, this rights are known as patents. Clearly not everything is
patentable and not every patent is important and just a small part of them
become important tools in market competence between firms.

Patents commonly are related with the exclusivity right to exploit the
commercial potential of a innovation trough a monopoly, but also it is possible
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obtains rewards trough licensing. Licensing is a settlement that permits to
a third part use the innovation. Commonly are used fixed fees, royalty rates
and auctions as payment mechanism in a licensing settlement.

There is a huge literature that have analyzed licensing under indisputable
property rights, known as ironclad property rights in the literature. But there
are reasons to believe that the patent system is not perfect and patents are
granted to inventions that do not meet the requirements of being a patentable
subject matter (is a machine, process, etc) with some utility for the society
being a novelty and a non obvious invention.

The mechanism of licensing has been widely studied. The common ap-
proach used was game theory. In this approach the patent holder and one
or several players are involve in a dynamic game of three stages: At the first
stage of the game, the patent holder decides how much ask for the licenses
and how many licenses he will offer. At the second stage potential licensees
decide to get the license of continues using the backstop technology 1. Finally
in the last stage, firms compete in the market2.

However, there are reasons to think that many of the patents have dis-
putable property rights, one reason is the big volume of applications received
by the patent authorities and the competence of examiners and the complex-
ity of the matter.

According to the EPO in 2003 were filed 123 700 applications3, where on
average a granted patent was published 47 months after the application was
received (at 2008), and finally the quantity of patents granted in 2008 was
58,819 patents4, being not so accurate it means than approximate 50% of
applications ends as european patents. If we assume that 21.1 per thousand
of patents are filed5 is expected around of 1,000 suits per year.

The fact that many patents could be declared invalid within a court pro-
cedure creates uncertainty over the property rights, a factor that plays a
important role in licensing , when property rights are probabilistic (meaning
disputable)threat points of patentees and potential licensees suffered mod-
ifications, and is expected also modifications in the behavior of firms, one

1The best technology available without the use of the innovation
2see Kamien and Tauman [2002] and Sen and Tauman [2007] for a survey about licens-

ing games under ironclad rights
3see Office [2004]
4see Office [2008]
5see Lanjouw and Schankerman [2004]
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observable result was the explosion of patent litigation in the last years 6.
When potential users decide infringe a patent, the patent holder could

enforce the property rights by using the legal system, in this arena the patent
holder will try to prove infringement and the infringers will try to invalid
the patent. If the patent holder is successful in to prove infringement, the
court could authorize the payment of damage payments and order another
actions in order to enforce the property rights, in such way that the patent
holder will be compensated by the infringement, so then the legal system has
a important role when licensing terms are defined. Commonly two liability
rules are used for to calculate damage payments: Lost Profits (LP) and
Unjust Enrichment (UE).

The impacts of this damages have been studied in different contexts as
vertical relationship and horizontal competition. In the case of vertical rela-
tionship Schankerman and Scotchmer [2001] have analyzed how liability rules
protect patents, they conclude that UE protect better the patent holder than
LP in the case of research tools, however in the case of cost reduction inno-
vations these results are reverse.

My work is very related with the work of Anton and Yao [2007] and Choi
[2009], In the case of Anton and Yao they explore the impacts of the LP rule
on competence and innovation, assuming a linear demand scheme and a non
drastic innovation, finishing their analysis concluding that infringement is a
dominant situation even under the use of different liability rules. In the other
fold Choi compares different liability rules assuming a drastic innovation and
a more general demand function.

The starting point of my research is the contribution developed by Wang
[1998], where he develops a duopoly model to study licensing under ironclad
patents under a Cournot scenario. In this model royalty rate scheme is
compared against fixed fee licensing for drastic and non-drastic innovations.
Under this base model I added the development made it by Anton and Yao
and Choi (AYC) to include probabilistic patents in a take or live it ex-ante
licensing situation. In a difference of AYC I use a simple linear demand with
homogeneous firms and homogeneous costs, this specification allow me to
study drastic and non-drastic innovations, also I compare the royalty rate
scheme against the fixed fee scheme assuming probabilistic patents.

My results show that surprisingly licensing it is not possible under UE
and just big innovation are licensed under the LP rule, for another side it is

6see Lemley and Shapiro [2005]
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showed that licensing using a royalty rate is better than a fixed fee scheme
front the point of view of the patent holder. Comparison analysis show also
that LP protect better the patentee for big innovations and small ones are
better protected by UE rule.

The document is organized as follows. In the section 2 are established the
assumptions and description of a licensing game. In the sections 3, 4 and 5
the game is solved. In section 6 a comparative analysis between LP and UE
is executed. In section 7 the conclusions and important remarks of this work
are analyzed. Proofs of the propositions are showed in the text and lengthy
proofs are treated in an appendix.

2 The Game

The game is a non cooperative game that involves two players: patent holder
(firm 1) and a competitor (firm 2), they produce the same good under fixed
marginal costs ci, with i = 1, 2.

Let p = a− q1 − q2 be the inverse linear demand function that both face,
where qi is the quantity offered by the firm i and 0 < ci < a < ∞. Let c
be the fixed marginal cost of the backstop technology (old technology). The
firm 1 has a patented a cost reduction innovation that reduces the marginal
cost from c to c − ǫ, where 0 < ǫ < c, then it produces under c1 = c − ǫ.

The another firm’s marginal cost c2 could be equal to c whether the firm
2 decides just use the old technology, or c2 should be equal to c − ǫ when
firm 2 uses the innovation. Where the last situation is achievable when the
patent holder grants a license to the competitor or when the Firm 2 infringes
the patent.

One useful expression is the relative size of the innovation,

γ =
ǫ

a − c

that is going to be used extensively along this document, without loss of
generality it is assumed that a − c = 1.

Let πs
i (qi, qj) = (1 + γ − q1 − q2)qi be the profit function associated with

the use of the new cost reduction technology by the firm i and let πi
i(qi, qj) =

(1 − q1 − q2)qi be the profit function associated with the use of the old
technology. Notice that the profit function for the patent holder is always
πs

1.
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At the very beginning of the game the patent holder decides whether to
license (L′) or not (N ′), if decides licensing offers a fixed fee (F ) or a royalty
rate(r), the offer is a take it or leave one.

In the second stage the competitor decides between three alternatives: 1)
accept the offer of the patent holder when is offered (L); 2) uses the backstop
technology (N ) and 3) Infringe the patent (I) (see Figure 1 abode).

In the last stage the firms decide the quantities offered in the market as
solution of a Cournot game. Once the competitor infringes the patent the
patent holder reacts by starting a process in a court, with the objective to
enforce its property rights.

The result of the trial is unknown, but there is a common knowledge
probability θ ∈ (0, 1) that the patent will be declared valid after the trial,
this parameter also reflects the strength of the patent.

When the patent holder shows the existence of infringement, the court
pass to calculate damage payments. In this work are considered two options:
at the first option the court calculates damages using LP and at the second
option the court calculates damages using the UE rule.
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Figure 1: Game tree (the royalty rate case)

In this case the payoffs are characterized through the actions of the com-
petitor, by example if the patent holder plays N ′ and the competitor plays
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N , the payoff obtained is the same that is obtained in the case when, the
patent holder plays L′ and asks a royalty rate r and the competitor plays
N ′, where in both situation players choose the same quantities.

Then by using this consideration the payoffs are:

1. In the case that the competitor plays N the payoff for the players are
πN

1 = πs
1(q1, q2) and πN

2 = πi
2(q1, q2), meaning that the patent holder

uses the innovation and the other firm uses the backstop technology (old
method of production).

2. When the competitor plays L the payoffs are πL
1 = πs

1(q1, q2) + L(q2)
and πL

2 = πs
2(q1, q2) − L(q2), where L(q2) = F when a fixed fee F is

offered labeled as L,F and L(q2) = rq2 when a royalty rate r is offered
in exchange of a license this case is labeled as L,R, because royalties
and fixed fees are endogenously determinated our two cases become
four for the inclusion of the liability rules, i.e. L,F ,LP means that
licensing has been played when a fixed fee has been offered and LP is
used as liability rule.

3. In the case that the competitor plays I the payoffs are πI
1 = πs

1(q1, q2)+
θD(q1, q2) and πI

2 = πs
2(q1, q2) − θD(q1, q2), where D is the damage

payment calculated using the LP or the UE rule, meaning that I,UE
represents played I when the UE rule is used.

The solution criterion for the game described above is the Sub-Game
Perfect Nash Equilibrium (SPNE),that is going to solve in the next tree
sections.

3 Competition Stage

Given a defined rule for the calculations of damages (LP or UE), a level of
technology chosen by the incumbent firm (N , I, L) and a licensing policy
defined by the patent holder (to offer or not a license to the competitor using
a fixed fee or a royalty rate), both firms compete by choosing quantities.
This section is devoted to calculate the payoffs under different scenarios as a
solution of the Cournot problem.

At the case when the competitor decides to use the backstop technology
(N ), the Nash Equilibrium (NE) is granted when
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(qN1 , qN2 ) =

{ (

1+2γ

3
, 1−γ

3

)

if 0 < γ < 1
(

1+γ

2
, 0

)

if 1 ≤ γ
(1)

As was noted by Arrow [1962] big innovations could permit to the patent
holder to reduce the price till levels below the competitive prices, meaning
that just the patent holder can remain in the market, this kind of innovations
are called drastic. In this particular setup an innovation is non-drastic if
0 ≤ γ < 1 and is defined drastic if γ ≥ 1.

Payoffs are

πN
1 =

{

(

1+2γ

3

)2
if 0 < γ < 1

(

1+γ

2

)2
if 1 ≤ γ

πN
2 =

{
(

1−γ

3

)2
if 0 < γ < 1

0 if 1 ≤ γ

(2)

A more complex situation emerges when the competitor infringes the
patent (I), once infringement is played the patent holder will try to enforce
the property rights by suing the incumbent firm. When the patent holder is
successful in the court (gains the trial), it is assumed here that the court will
calculate a damage payment based in the LP or UE rule.

πI
1 = (1 − q1 − q2 + γ)q1 + θD(q1, q2)

πI
2 = (1 − q1 − q2 + γ)q2 − θD(q1, q2)

(3)

Then the payoffs are characterized by eq.(3), notice that the first is the
part (1 − qi − qj + γ)qi is the profit gained by the sales and the second part
based on the damage payments θD(q1, q2).

Damages could be calculated in different ways, the most common way
to do it is using the LP rule or the UE rule. Both rules are based in a
profile scenario, this scenario is ”no infringement”, the idea behind LP is
to compensate the share of profit lost by the patent holder caused by the
infringement. In the case of UE, the profit excess above the competitor’s
profit relative to the ”no infringement” scenario is transfered to the patent
holder, this rule is also called disgorgement.

Basically UE and LP both need a comparison scenario of ”no infringe-
ment”, in our model πN

1 is used as the comparison payoff when LP is the
liability rule used by the court. The damage payment in this case is
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DLP = max
{

πN
1 − (1 − q1 − q2 + γ)q1, 0

}

(4)

When the court uses UE as liability rule, the damage (DUE) is calculated
in base to excess of profit for the competitor respect to πN

2 , then

DUE = max
{

(1 − q1 − q2 + γ)q2 − πN
2 , 0

}

(5)

The NE when damages are calculated by using the LP rule, and when the
incumbent firm decides to infringe the patent deserve a special treatment 7.

Lemma 1. The Cournot solution when competitor infringes and court uses
LP rule for calculate damages is,

(qI,LP
1 , qI,LP

2 ) =

{
(

1+2γ

3
, 1−γ

3

)

if γ < θ
3−2θ

(

1+γ

3−θ
, (1 − θ)1+γ

3−θ

)

if γ ≥ θ
3−2θ

(6)

, it produces

πI,LP
1 =











(

1+2γ

3

)2
if 0 < γ < θ

3−2θ

(1 − θ)
(

1+γ

3−θ

)2
+ θ

(

1+2γ

3

)2
if θ

3−2θ
≤ γ < 1

(1 − θ)
(

1+γ

3−θ

)2
+ θ

(

1+γ

2

)2
if γ ≥ 1

πI,LP
2 =











(

1+2γ

3

) (

1−γ

3

)

if 0 < γ < θ
3−2θ

(

1+γ

3−θ

)2 − θ
(

1+2γ

3

)2
if θ

3−2θ
≤ γ < 1

(

1+γ

3−θ

)2 − θ
(

1+γ

2

)2
if γ ≥ 1

(7)

When qI,LP
2 = qN2 eq. (6), the patent holder gets the same profit that

in the situation of no infringement but the competitor stays in a better
situations because enjoys a lower cost and produce the same quantity that
should be produced under no infringement, Anton and Yao [2007] calls this
equilibrium Passive Infringement, because the damage payment does not
reflect the effects of the infringement.

However, when γ > θ
3−2θ

, damage payments calculated with the lost profit
rule are positive in equilibrium, then in equilibrium a Active Infringement is
present.

7Interested readers could see Anton and Yao [2007] for a more detailed analysis for non
drastic innovation
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Lemma 2. The Cournot solution when competitor infringes and court uses
UE as liability rule is,

(qI,UE
1 , qI,UE

2 ) =

(

(1 − θ)
1 + γ

3 − θ
,
1 + γ

3 − θ

)

(8)

Results in the lemmas 1 and 2 cannot be considered trivial, because the
best replies that produces the NEs are non-smooth in both cases. Proofs of
this lemmas are considered in the appendix8.

using the lemma 1,

πI,UE
1 =

{

(

1+γ

3−θ

)2 − θ
(

1−γ

3

)2
if 0 < γ < 1

(

1+γ

3−θ

)2
if γ ≥ 1

πI,UE
1 =

{

(1 − θ)
(

1+γ

3−θ

)2
+ θ

(

1−γ

3

)2
if 0 < γ < 1

(1 − θ)
(

1+γ

3−θ

)2
if γ ≥ 1

(9)

When the incumbent firm decides to accept the offer of the patent holder
against a given fixed fee (F ) or a given royalty rate (r), the following NEs
are obtained. In the fixed fee case

(

qL,F
1 , qL,F

2

)

=

(

1 + γ

3
,
1 + γ

3

)

(10)

and finally for a given royalty rate (r)

(

qL,R
1 , qL,R

2

)

=

(

1 + γ + r

3
,
1 + γ − 2r

3

)

(11)

these results produce the following payoffs for the fixed fee case

πL,F
1 =

(

1+γ

3

)2
+ F

πL,F
2 =

(

1+γ

3

)2 − F
(12)

and

πL,R
1 =

(

1+γ+r

3

)2
+ r 1+γ−2r

3

πL,R
2 =

(

1+γ−2r

3

)2 (13)

for the royalty rate case.

8Anton and Yao [2007] have been proved the lemma 1 and have claim that the lemma
2 is truth, in the appendix I offer the proof for the lemma 2 and an alternative proof for
the lemma 1.
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4 Competitor’s Technology Stage

By assuming that the policy of the patent holder es know means a license
offer against a license fee (royalty rate or fixed fee), the next step for to
solve the game is to analyze the behavior of the competitor respect to the
technology choice,where the alternatives are. not infringe the patent N (use
the backstop technology). Infringe the patent I (use the new technology
without a permission of the patent holder). And accept to pay for the use
the new technology if a license is offered L

Because

Lemma 3. If the courts calculates damages using the LP rule or the UE
πI

2 ≥ πN
2 .

the competitor always prefer to infringe instead to use the backstop tech-
nology independently of the liability rule, even more this result could be
proved for more general specifications as different rates of efficiency in the
use of the innovation (see AY&Ch) .

The game at this point is not completely solve, the values of F and r are
unknown, then it is not possible to compare πI

2 against πF
2 or πR

2 , but instead
it is possible to know for which values of F and r, πF

2 ≥ πI
2 ( πR

2 ≥ πI
2 ) holds.

Let F be a fixed fee F > 0 such that πL,F
2 − πI

2 = 0, then

F =

(

1 + γ

3

)2

− πI
2 (14)

, notice that if F is negative there is no positive fixed fee that makes the
license option as good as infringe for the competitor, in the appendix is prove
that

Lemma 4. FLP ≥ 0 but F UE ≥ 0 just if γ ≥ δ1, where

δ1 =
12 − 5θ + θ2 − 2

√

(3 − θ)2(3 + θ)

6 − 7θ + θ2

.

In the case of the royalty rate, let r be a royalty rate r that makes
πL,R

2 − πI
2 = 0, then if exists

r =
1 + γ − 3

√

πI
2

2
(15)
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From eq. 2.12 and 2.13 ∂(πL,F
2 − πI

2 )/∂F < 0, ∂(πL,R
2 − πI

2 )/∂r < 0 and
πL,F = πL,R for F = r = 0 . It is possible to create a one to one function
between r and F , then by using the lemma 4

Lemma 5. In the LP case always exist a positive fixed fee F (or royalty rate
r) such that πL,F

2 ≥ πI,LP
2 (or πL,R

2 ≥ πI,LP
2 ).

However in the UE case the last statement is true just for γ > δ1.

5 Licensing Stage

In a take it or leave it bargaining the patent holder will ask for the fixed fee
that makes the competitor indifferent between take the license or to infringe.

From eq 2.12 it is observable that the patent holder will choose the greater
F that makes the competitor as good as in infringement then , F ⋆ = F .

In the case of the royalty rate from the eq 2.13 it is known that the profit
of the patent holder reach maximum at r = 1+γ

2
and πL,R

2 = 0, then r ≤ 1+γ

2
,

then the patent holder will ask r⋆ = r as a royalty rate in exchange of a
license, summarizing

Lemma 6. The patent holder will ask for F ⋆ = F as a fixed fee and r⋆ = r
as a royalty rate.

By using the definition of r (eq 2.15) in the payoff function πL,R
1 (eq 2.13),

the patent holder’s payoff is

πL,R
1 =

(

1 + γ

2

)2

− 5

4
πI

2 (16)

, from eq 2.14 it is known that πI
2 =

(

1+γ

3

)2 − F ⋆, then using this result
in the last equation produces

πL,R
1 =

(

1 + γ

2

)2

− 5

4

[

(

1 + γ

3

)2

− F ⋆

]

(17)

by using eq 2.12
πL,R

1 − πL,F
1 = F ⋆/4

, summarizing.

Proposition 1. The patent holder will prefer to license using a royalty rate
scheme instead or a fixed fee scheme.
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The final step for solve the game is to compare the situation of licensing
against the situation of no licensing. When patent holder does not offer
a license, the competitor begins to infringe the patent, so then the patent
holder has to compare πL

1 against πI
1 in order to offer or not a license. Then

by comparing this profits is observable that

Proposition 2. The patent holder will never license under UE. However
under LP a royalty rate’s license is offered if γ > δ2, where

δ2 =
θ(3 − 2θ) + 3

√

(3 − θ)2(2 − θ)

18 − 15θ + 4θ2

.

6 LP vs UE

Now at this point is possible to compare the results obtained under UE and
the results obtaining under the LP rule.

When the LP rule is used there are at least three situations: 1)Passive
infringement γ ≤ θ/(3 − 2θ), 2)Active Infringement γ > θ/(3 − 2θ) and 3)
Licensing by a royalty rate γ > δ2, where 0 ≤ θ/(3 − 2θ) ≤ δ2 ≤ 1, then

Lemma 7. When LP is used as a liability rule, there is licensing if γ >
δ2, otherwise the patent holder does not offer a license and the competitor
infringes the patent. In the case of UE there is no licensing and the competitor
infringes the patent in equilibrium.

the equilibrium quantities under both regimes are

(

πLP
i , πUE

i

)

=







(

πI,LP
i , πI,UE

i

)

0 ≤ γ < δ2
(

πL,R,LP
i , πI,UE

i

)

γ ≥ δ2

where i = 1, 2. In consequence
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πLP
1 =



























(

1+2γ

3

)2
if 0 < γ ≤ δ1

(1 − θ)
(

1+γ

3−θ

)2
+ θ

(

1+2γ

3

)2
if δ1 ≤ γ < δ2

(

1+γ

2

)2 − 5
4

(

(

1+γ

3−θ

)2 − θ
(

1+2γ

3

)2
)

if δ2 < γ < 1
(

1+γ

2

)2 − 5
4

(

(

1+γ

3−θ

)2 − θ
(

1+γ

2

)2
)

if 1 ≤ γ

πLP
2 =











(

1+2γ

3

) (

1−γ

3

)

if 0 < γ ≤ δ1
(

1+γ

3−θ

)2 − θ
(

1+2γ

3

)2
if δ1 < γ < 1

(

1+γ

3−θ

)2 − θ
(

1+γ

2

)2
if 1 ≤ γ

(18)

In the case of UE infringement is always present, then the payoffs under
this situation are

πUE
1 =

{

(

1+γ

3−θ

)2 − θ
(

1−γ

3

)2
if 0 < γ < 1

(

1+γ

3−θ

)2
if 1 ≤ γ

πUE
2 =

{

(1 − θ)
(

1+γ

3−θ

)2
+ θ

(

1−γ

3

)2
if 0 < γ < 1

(1 − θ)
(

1+γ

3−θ

)2
if 1 ≤ γ

(19)

and by comparing payoffs under LP against UE, is established that

Proposition 3. The patent holder, the competitor and the industry are better
off under LP for drastic innovations. however under non drastic the situation
depends on values of θ and γ.

Because the demand is linear the consumer surplus csp = (q1 + q2)
2/2 =

Q2/2, when LP rule is used

QLP =







2+γ

3
if 0 < γ < δ1

(2 − θ)1+γ

3−θ
if δ1 ≤ γ < δ2

2(1+γ)−r

3
if γ ≥ δ2

then

QLP =







2+γ

3
if 0 < γ < δ1

(2 − θ)1+γ

3−θ
if δ1 < γ < δ2

(1+γ)
3

+
√

πI
2 if γ ≥ δ2
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Figure 2: Equilibrium results under LP and UE
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then

QLP =























2+γ

3
if 0 < γ < δ1

(2 − θ)1+γ

3−θ
if δ1 ≤ γ < δ2

(1+γ)
3

+
√

(

1+γ

3−θ

)2 − θ
(

1+2γ

3

)2
if δ2 ≤ γ < 1

(1+γ)
3

+
√

(

1+γ

3−θ

)2 − θ
(

1+γ

2

)2
if γ ≥ 1

(20)

For UE we get that

QUE = (2 − θ)
1 + γ

3 − θ
(21)

7 Conclusions

Appendix

Proof Lemma 1. It is important to notice is that the best response function φ1(q2)
is the same whether DLP > 0 or DLP = 0. The best response when q2 ∈ [0, a−c+ǫ]
is

φ1(q2) =
1 − q2 + γ

2

The best response of the competitor deserves a special treatment. Let,

x(q1, q2) = (1 − q1 − q2 + γ)q2 − θ max
{

πN
1 − (1 − q1 − q2 + γ)q1, 0

}

= x1(q1, q2) − θ max{x2(q1, q2), 0}

be the payoff of the competitor.
When q1 > 1 + γ the price becomes negative for any q2 ≥ 0, then in this case

φ2(q1) = 0 if q1 > 1 + γ

.
If the innovation is drastic πN

1 is the monopoly profit in consequence πN
1 −(1−

q1 − q2 + γ)q1 ≥ 0 for any q1, q2 ≥ 0, then DLP > 0 and, in consequence

φ2(q1) =
1 + γ − (1 + θ)q1

2
if γ/(1) ≥ 1 and q1 ∈ [0, 1 + γ)
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When the innovation is non drastic, for a given q1 ∈ [0, 1 + γ), x(q1, q2) reach
maximum at q̃2, where 0 < q̃2 < q̂2 = (1 + γ − q1)/2 and q̂2 is the maxi-
mum of x1(q1, q2). Then ∂x1(q1, q2)/∂q2 > 0 for q2 ∈ [0, (1 + γ − q1)/2). And
∂x2(q1, 0)/∂q2 = q1 for any q2. Then the best response depends on the sign of
x2(q1, q2), this sign could be positive, negative or zero. There are two values of q1

that make x2(q1, 0) = 0,

qa,b
1 =

(1 + γ) ±
√

(1 + γ)2 − 4πN
1

2

=
(1 + γ)

2
±

√

(

1 + γ

2

)2

−
(

1 + 2γ

3

)2

, where a refers to the inferior value and b to the superior one. For a given q1

x2(q1, 0) reach minimum at qc
1 = (1+γ)

2 , this results plus the fact that γ/(1) < 1
allow to see that

0 < qa
1 < qN1 < qc

1 < qb
1 < 1 + γ

.
In consequence x2(q1, 0) > 0 for q1 ∈ (0, qa

1) ∪ (qb
1, 1 + γ) and x2(0) ≤ 0 when

q1 ∈ [qa
1 , qb

1], then

φ2(q1) =
1 + γ − (1 + θ)q1

2
if q1 ∈ (0, qa

1) ∪ (qb
1, 1 + γ) and γ/(1) < 1

.
The next case appears when q1 ∈ [qa

1 , qb
1], in consequence x2(q1, 0) ≤ 0, then

by looking for some qa
2 that makes x2(q1, q

a
2) = 0

qa
2 = (1 + γ) − q1 − πN

1 /q1

≥ (1 + γ) − qb
1 − πN

1 /qa
1 = 0

, in consequence 0 ≤ qa
2 < 1 + γ. Now by evaluating the derivative on the right of

x at (q1, q
a
2) (or directional derivative in the direction (0, 1)),

∂+x/∂q2(q1, q
a
2) = 1 + γ − 2qa

2 − q1 − θq1, then

φ2(q1) = qa
2 if q1 ∈ [qa

1 , qb
1] ∧ γ/(1) < 1 ∧ 1 + γ − 2qa

2 − q1 − θq1 ≤ 0

or
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φ2(q1) =
1 + γ − (1 + θ)q1

2
if q1 ∈ [qa

1 , qb
1] ∧ γ/(1) < 1 ∧ 1 + γ − 2qa

2 − q1 − θq1 > 0

When is assumed that x2 > 0 the Nash equilibrium is
(

1+γ
3−θ

, (1 − θ)1+γ
3−θ

)

, now if x2 ≤ 0, qa
2(φ1) = qN2 , so then φ1(q

N
2 ) = qN1 and the condition γ/(1) <

1∧1+γ−2qa
2 − q1 − θq1 > 0 becomes in γ/(1) < θ/(3−2θ), this condition implies

that 1+γ
3−θ

∈ [qa
1 , qb

1], then if γ/(1) < θ/(3− 2θ) holds x2 < 0 in equilibrium and the

Nash equilibrium is
(

1+2γ
3 , 1−γ

3

)

.

When γ/(1) < θ/(3 − 2θ) does not hold x2 > 0, the Nash equilibrium is
(

1+γ
3−θ

, (1 − θ)1+γ
3−θ

)

Proof Lemma 2. There is a symmetry respect to last proof, this time φ2(q1) is the
same whether DUE > 0 or DUE = 0, when q1 ∈ [0, 1 + γ] is

φ2(q1) =
1 − q1 + γ

2

and 0 if q1 > 1 + γ.
Let,

y(q1, q2) = (1 − q1 − q2 + γ)q1 + θ max
{

(1 − q1 − q2 + γ)q2 − πN
2 , 0

}

= y1(q1, q2) − θ max{y2(q1, q2), 0}

be the payoff of the patent holder.
When q2 > 1 + γ the price becomes negative for any q1 ≥ 0, then in this case

φ1(q2) = 0 if q2 > 1 + γ

.
If the innovation is drastic πN

2 = 0 , then

φ1(q2) =
1 + γ − (1 + θ)q2

2
if γ/(1) ≥ 1 and q2 ∈ [0, 1 + γ)

When the innovation is non drastic, for a given q2 ∈ [0, 1 + γ), y(q1, q2) reach
maximum at q̃1, where 0 < q̃1 < q̂1 = (1 + γ − q2)/2 and q̂1 is the maximum of
y1(q1, q2). Then ∂y1(q1, q2)/∂q1 > 0 for q1 ∈ [0, (1+γ−q2)/2) and ∂y2(q1, 0)/∂q1 =
−q2 for any q1. Then the best response depends on the sign of y2(q1, q2), this
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sign could be positive, negative or zero. There are two values of q2 that make
y2(0, q2) = 0,

qa,b
2 =

(1 + γ) ±
√

(1 + γ)2 − 4πN
2

2

=
(1 + γ)

2
±

√

(

1 + γ

2

)2

−
(

1 − γ

3

)2

where a refers to the inferior value and b to the superior one. y2(q1, 0) reach

maximum at qc
2 = (1+γ)

2 , in a consequence

0 < qa
2 < qc

2 < qb
2 < 1 + γ

.
Also y2(0, q2) < 0 for q1 ∈ (0, qa

2)∪(qb
2, 1+γ) and y2(0, q2) ≥ 0 when q2 ∈ [qa

2 , qb
2],

then

φ1(q2) =
1 + γ − q2

2
if q2 ∈ [qa

1 , qb
1]

.
if φ1(q2) = 1+γ

3 is played the best response of the other player is 1+γ
3 ∈ [qa

2 , qb
2],

in a consequence it is not a NE.
Because qb

2 > q̂2, the best response belong to the interval [0, qa
2) when y(0, q2) >

0. There is

qa
1 = (1 + γ) − q2 − πN

2 /q2

≥ (1 + γ) − qb
2 − πN

1 /qa
2 = 0

that makes y2(q
a
1 , q2) = 0, where 0 ≤ qa

2 < 1 + γ.
then the derivative on the left (or in direction (-1,0)),
∂−y/∂q1(q

a
1 , q2) = −(1 + γ − 2qa

1 − q2 − θq2), then

φ2(q1) = qa
1 if q2 ∈ [0, qa

1) ∧ γ/(1) < 1 ∧ −(1 + γ − 2qa
1 − q2 − θq2) ≤ 0

φ2(q1) =
1 + γ − (1 + θ)q1

2
if q2 ∈ [0, qa

1) ∧ γ/(1) < 1 ∧ −(1 + γ − 2qa
1 − q2 − θq2) > 0
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If is assumed that y2 > 0 the Nash equilibrium is
(

1+γ
3−θ

, (1 − θ)1+γ
3−θ

)

, now if y2 ≤ 0 in equilibrium, qa
2(φ1) = (1 + 5γ)/3, so then φ2((1 + 5γ)/3) =

qN2 and the condition −(γ/(1) < 1 ∧ 1 + γ − 2qa
2 − q1 − θq1) ≤ 0 becomes in

−(1 − 2γ)/3 + (1 + θ)(1 − γ)/3 ≤ 0, but the first term is always positive then the

unique Nash equilibrium is
(

1+γ
3−θ

, (1 − θ)1+γ
3−θ

)

Proof Lemma 3. When γ ≤ θ/(3 − 2θ), πI,LP
2 =

(

1+2γ
3

) (

1−γ
3

)

>
(

1−γ
3

)2
= πN

2 .

When θ/(3 − 2θ) ≤ γ < 1,

G(γ, θ) = πI,LP
2 − πN

2 =

(

1 + γ

3 − θ

)2

− θ

(

1 + 2γ

3

)2

−
(

1 − γ

3

)2

, now notice that G11 =
(

1
3−θ

)2
− 4θ+1

9 , because at θ = 0 G11 = 0 and because

dG11/dθ = 2(3 − θ)−3 − 4/9 < (2)−2 − 4/9 < 0, G11 < 0 for θ ∈ (0, 1), then G is
concave in γ for θ ∈ (0, 1).

G(1, θ) =
(

2
3−θ

)2
− θ, moreover G2(1, θ) = 8(3 − θ)−3 − 1 < 0 for θ ∈ (0, 1),

G(1, 0) =
(

2
3

)2
and G(1, 1) = 0 then by continuity G(1, θ) > 0 for θ ∈ (0, 1).

G(θ/(3 − 2θ), θ) =

(

1

3 − 2θ

)2

− θ

(

1

3 − 2θ

)2

−
(

1 − θ

3 − 2θ

)2

=
θ(1 − θ)

(3 − 2θ)2
> 0

because G is concave in γ and G(θ/(3 − 2θ), θ), G(1, θ) > 0 G > 0 for γ >
θ/(3 − 2θ) and θ ∈ (0, 1).

When γ > 1, πI,LP
2 ≥ πN

2 = 0.
For the UE case, if γ < 1

πI,UE
2 = (1 − θ)

(

1+γ
3−θ

)2
+ θ

(

1−γ
3

)2
>

(

1−γ
3

)2
= πN

2

and in the case γ > 1, πI,UE
2 ≥ πN

2 = 0

Proof Lemma 4. By using eq 2.14 this definition

FLP =























(

1+γ
3

)2
−

(

1+2γ
3

) (

1−γ
3

)

if 0 < γ ≤ θ
3−2θ

(

1+γ
3

)2
−

(

1+γ
3−θ

)2
+ θ

(

1+2γ
3

)2
if θ

3−2θ
< γ < 1

(

1+γ
3

)2
−

(

1+γ
3−θ

)2
+ θ

(

1+γ
2

)2
if 1 ≤ γ

(22)

and after some algebra
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FLP =















1
9γ(1 + 3γ) if 0 < γ ≤ θ

3−2θ
θ(3−5θ+θ2+γ2(30−23θ+4θ2)+γ(24−22θ+4θ2))

9(3−θ)2
if θ

3−2θ
< γ < 1

(1+γ)2θ(57−50θ+9θ2)
36(3−θ) if 1 ≤ γ

it is straightforward to see that the first and third term are positive, in the case
of the second term, this term is not always positive, but if θ

3−2θ
< γ < 1, the term

is also positive, then FLP ≥ 0.
Now in the case of UE,

FUE =







(

1+γ
3

)2
− (1 − θ)

(

1+γ
3−θ

)2
− θ

(

1−γ
3

)2
if 0 < γ < 1

(

1+γ
3

)2
− (1 − θ)

(

1+γ
3−θ

)2
if 1 ≤ γ

(23)

and after some algebra

FUE =







− θ(6−7θ+θ2+γ2(6−7θ+θ2)−2γ(12−5θ+θ2))
9(−3+θ)2

if 0 < γ < 1
(1+γ)2θ(3+θ)

9(3−θ)2
if 1 ≤ γ

(24)

it is easy to see that the first term in this case is not always positive, however
after find the roots of the polynomial it is easy to see that the expression is equal

or greater than zero when γ > 12−5θ+θ2−2
√

27−9θ−3θ2+θ3

6−7θ+θ2 . In the case of the second

term is easy to see that is positive. Then FUE ≥ 0 if γ > 12−5θ+θ2−2
√

27−9θ−3θ2+θ3

6−7θ+θ2 .

Proof Proposition 2. from 2.14 πL,R
1 =

(

1+γ
2

)2
− 5

4πI
2

πL,R,LP
1 =



























(

1+γ
2

)2
− 5

4

(

1+2γ
3−θ

) (

1−γ
3

)

0 ≤ γ < θ
3−2θ

(

1+γ
2

)2
− 5

4

(

(

1+γ
3−θ

)2
− θ

(

1+2γ
3

)2
)

θ
3−2θ

≤ γ < 1

(

1+γ
2

)2
− 5

4

(

(

1+γ
3−θ

)2
− θ

(

1+γ
2

)2
)

γ ≥ 1

then after some algebra

πL,R,LP
1 − πI,LP

1 =















− (1−γ)(5θ+γ(9+7θ))
36(3−θ) 0 ≤ γ < θ

3−2θ

θ(−9+3θ+θ2+2γθ(−3+2θ)+γ2(18−15θ+4θ2))
36(−3+θ)2

θ
3−2θ

≤ γ < 1
(1+γ)2(1−θ)2θ

16(3−θ)2
γ ≥ 1
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it is easy to see that the first term is negative, the third one is positive and the
second one could be positive or negative this case is not always positive, however
after find the roots of the polynomial this expression is equal or greater than zero
when γ >. In the case of the second term is easy to see that is positive. Then

πL,R,LP
1 − πI,LP

1 ≥ 0 if γ >
θ(3−2θ)+3

√
(3−θ)2(2−θ)

18−15θ+4θ2 .
For the case of UE by preceding as in the LP case,

πL,R,UE
1 =















(

1+γ
2

)2
− 5

4 ∗
(

(1 − θ)
(

1+γ
3−θ

)2
+ θ ∗

(

1−γ
3

)2
)

0 ≤ γ < 1

(

1+γ
2

)2
− 5

4 ∗
(

(1 − θ)
(

1+γ
3−θ

)2
)

γ ≥ 1

then after some algebra and using the definition of πI,UE
1

πL,R,UE
1 − πI,UE

1 =







− θ(18−15θ+θ2−2γθ(3+θ)+γ2(18−15θ+θ2))
36(−3+θ)2

0 ≤ γ < 1
(1+γ)2(−1+θ)θ

4(−3+θ)2
γ ≥ 1

The second term is clearly negative, in the case of the roots of the polynomial
are imaginary then the term is positive or negative, because at θ = γ = 1/2 the
value is −187/7200, then πL,R,UE

1 − πI,UE
1 < 0.

Proof Proposition 3. After some algebra,

πLP
1 − πUE

1 =































θ(3−5θ+θ2)−2γ(−9+21θ−8θ2+θ3)+γ2(27−15θ−2θ2+θ3)
9(−3+θ)2

0 ≤ γ < θ
3−2∗θ

θ(9−12θ+2γ(−6+θ)θ+2θ2+γ2(36−30θ+5θ2))
9(−3+θ)2

θ
3−2∗θ ≤ γ < δ2

θ(2γθ(−9+2θ)+3(3−5θ+θ2)+γ2(54−45θ+8θ2))
12(−3+θ)2

δ2 ≤ γ < 1
(1+γ)2θ(21−26θ+5θ2)

16(−3+θ)2
γ ≥ 1

It easy to see that the third and fourth cases are positive, the second case has
two roots under θ/(2 − theta) and because at θ = γ = 1/2 is positive the term is
also positive in the region under study, the last case has both roots inside the study
region, then after a straightforward analysis it is concluded that. πLP

1 − πUE
1 > 0

if θ < −9+21θ−8θ2+θ3±3
√

9−51θ+85θ2−50θ3+12θ4−θ5

27−15θ−2θ2+θ3 .
In the case of the competitor, after some algebra

πLP
2 − πUE

2 =



















− θ(6−7θ+θ2)+γ(9−30θ+11θ2−2θ3)+γ2(27−12θ−4θ2+θ3)
9(−3+θ)2

0 ≤ γ < θ
3−2∗θ

− θ(9−12θ+2γ(−6+θ)θ+2θ2+γ2(36−30θ+5θ2))
9(−3+θ)2

θ
3−2∗θ ≤ γ < 1

− (1+γ)2(−6+θ)θ2

9(−3+θ)2
γ ≥ 1
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in the last case is easy to see that the expression is positive, in the second
case both roots are under θ/(3 − 2θ) and the expression is negative at θ =
γ = 1/2, finally in the first case both roots are inside the region of interest
then after some analysis is straightforward to see that πLP

1 − πUE
1 > 0 if θ >

−9+30θ−11θ2+2θ3−3
√

9−132θ+238θ2−116θ3+17θ4

2(27−12θ−4θ2+θ3)
.

In the case of the industry

∑

πLP
i −

∑

πUE
i =































θ(−3+2θ)+γ2θ(−3+2θ)+γ(9−12θ+5θ2)
9(−3+θ)2

0 ≤ γ < θ
3−2∗θ

0 θ
3−2∗θ ≤ γ < δ2

θ(−9+3θ+θ2+2γθ(−3+2θ)+γ2(18−15θ+4θ2))
36(−3+θ)2

δ2 ≤ γ < 1
(1+γ)2θ(189−138θ+29θ2)

144(−3+θ)2
γ ≥ 1

In the first case both roots are outside the region of study and at θ = 1/2, γ =
1/10 the expression is negative, then

∑

πLP
i − ∑

πUE
i < 0 if 0 ≤ γ < θ

3−2∗θ , the
third case follows by notice that one of the roots is δ2 (the other one is negative)
and at θ = 1/10, γ = 9/10 the expression is positive, then

∑

πLP
i − ∑

πUE
i > 0 if

θ
3−2∗θ ≤ γ < δ2, and the last case follows directly.

Proof Proposition 4. after some algebra

QLP − QUE =



































θ−γ(3−2θ)
3(3−θ) 0 ≤ γ < θ

3−2∗θ
0 θ

3−2∗θ ≤ γ < δ2

− (1+γ)(−3+2θ)
3(−3+θ) +

√

(

1+γ
3−θ

)2
− θ ∗

(

1+2∗γ
3

)2
δ2 ≤ γ < 1

− (1+γ)(−3+2θ)
3(−3+θ) +

√

(

1+γ
3−θ

)2
− θ ∗

(

1+γ
2

)2
γ ≥ 1

in the case when 0 ≤ γ < θ
3−2∗θ , it is observable that ∂(QLP − QUE)/∂γ < 0

and at γ = θ
3−2∗θ QLP − QUE = 0, then QLP − QUE > 0 for 0 ≤ γ < θ

3−2∗θ . In
the third case, because both roots of the polynomial are below δ2 then the term
is positive or negative, because at θ = 1/10, γ = 9/10 the expression is negative,
by noticing that if the third term is negative this implies that the fourth it is also
negative, then QLP − QUE > 0 for γ ≥ δ2.
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