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Abstract. In this paper we consider the quantitative decision problem to allocate a certain amount of time 

upon two possible market activities, specifically a legal one and an illegal one: this problem was considered in 
literature by Isaac Ehrlich (in his seminal paper “Participation in Illegitimate Activities: A Theoretical and Empirical 
Investigation”, published in The Journal of Political Economy, in 1973) and the mathematical model we propose and 
use is essentially a formal mathematical translation of the ideas presented by him; but, on the other hand, our 
approach will allow to apply efficiently and quantitatively the Ehrlich qualitative model. Specifically, in this original 
paper, we apply the Complete Pareto Analysis of a Differentiable Decision Problem, recently introduced in literature 
by David Carfì, to examine exhaustively the above Ehrlich-kind decision problem: given by a pair P = (f, >), where 

the function f : T → Rm is a vector payoff function defined upon a compact m-dimensional decision (time) constrain 
T and with values into the m-dimensional payoff space Rm, for some natural number m (in our paper m is 2). So, the 
principal aim of this paper is to show how the D. Carfì Pareto Analysis can help to face, quantitatively, the decision 
problems of the Ehrlich-type in some practical cases, also because the computational aspects were not considered by 
Ehrlich. Our methodologies and approaches permit (in principle), by giving a total quantitative view of the possible 
payoff space of the Ehrlich-decision problems (and consequently, giving a precise optimal solutions for the decision-
maker), to perform quantitative econometric verifications, in order to test the payoff functions chosen in the various 
Ehrlich models. In particular, we apply our mathematical methodology to determine the topological boundary of the 
payoff space of a decision problem, for finding optimal strategies in the participation in such legal and illegitimate 
market activities. The theoretical framework is clarified and applied by an example. 

 

 
0. Introduction 

 

 
In this paper we attempt to investigate the quantitative relation between crime activities and legal 

measurable opportunities by means of an analytical tool introduced in literature by D. Carfì: the Pareto 
Analysis of a Differentiable Decision Problem. Following Ehrlich we develop a quantitative theoretical 
contribution to the study of crime in economic terms proposing a formal decision model to evaluate 
quantitatively the reasonability to commit offenses, which emphasizes the relation between crime and 
punishment. Following Ehrlich, we shall analyze the interaction between offense and defense, moreover 
we derive some behavioral implications.  
 
 
1. The model with two activities 

 
 

In this section we consider the model presented in Ehrlich [2]. This formal model allows us to 
present two new generalizations of the economic model itself and a case study. 
 
The context. We assume, in what follows the following points. 
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Assumption 0. A decision-maker D can participate in two different market activities, say 1 and 2; namely, 
an illegal one, the activity 1, and a legal one, the activity 2. 

 
Assumption 1 (the strategy space). The (universe) strategy space T of the decision maker coincides with 
the positive cone of the Euclidean space R2, that is the Cartesian square (R ≥)2 of the real non-negative 

semi-line R≥ , that is the unbounded real interval [0, →[. 
 
Interpretation (of the bi-strategy). A strategy t, belonging to the strategy space T, is a pair of non-
negative real numbers (t1, t2), whose first component t1 is the time devoted to the first (illegal) activity and 
the second component t2 is the time devoted to the second (legal) activity. 
 
Assumption 2 (monotonicity of the returns). We assume that the returns of the two activities are 

increasing functions W1 and W2, both defined on the time semi-line R≥ and with value into R. Specifically, 
denoted by T1 and T2 the first and second Cartesian projections, respectively, of the strategy universe T 

(both are obviously equal to the semi- line R≥), we have, for any index i, an increasing mapping 
 

Wi : Ti → R 
 

in such a way that the returns of the activity i depends only upon the time devoted to i itself. 
 

Assumption 3 (uncertainty of illegal returns). We assume that the final returns of the first activity (the 
illegal one) depend upon the states of the world belonging to the unit interval of the real line [0, 1]. The 
final return function of the first activity is then a random variable defined on the state space S and with 

values into the function space F(T1,R), that is, an application 

 

L : S → F (T1, R), 

 
mapping each state of the world s of S into a function 
 

Ls : T1 → R : Ls(t1) = L(s)(t1). 
 
Interpretation (of the states of the world). Our interpretation of the state space S is the following: the 

state of the world s  represents a degree of punishment; namely, 0 represents the state of the world in 
which the offender is totally safe, on the contrary 1 represents the state of the world in which the offender 
is fully punished. 

 
Assumption 4 (certainty of legal returns). We assume that the second activity (the legal one) is safe, in 
the sense that its final returns depend only on the time devoted to it. 

 

Assumption 5 (penalty function). We assume that the function Ls  can be defined by the difference 
 

Ls (t1) = W1 (t1) – sF1 (t1), 
 

for any time t1 in T1, where the function F1 : T1  → R ≥ is an increasing function called pena l ty  func t ion . 
 
Definition (payoff random variable). We so can construct a random variable, which we shall call the 
payoff random variable of the decision-maker, on the set S of states of the world and with values in 
the function space TR ≥, namely it is the mapping 

 

X : S → T R ≥, 
 

defined by 
 

Xs(t) = W1(t1) – sF1(t1) + W2(t2), 
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for each state of the world s in the unit interval S and any pair of times t in the strategy space T. 
 
 

2. First extension of the model 

 
In this section we extend the classic model proposed in [2] assuming that the returns functions and 

the penalty function are depending upon the entire strategy pair t = (t1, t2). 
 
Assumption 2 bis (monotonicity of the returns). We assume that the returns of the two activities are 
two increasing functions W1 and W2, both defined on the time cone T = (R≥)2 and with value into the real 
line R, both functions are increasing with respect to the standard orders on the plane with respective 
signature (+, -) and (-, +). For example, the standard order on the plane with signature (-, +), also called 
the cost-benefit order is the order defined by t >cb t’ if and only if t1 < t’1 and t2 > t’2. 

 
Remark. Denoted by T the strategy cone, we have so, for any index i, an increasing (in the above sense) 
mapping  

 

Wi : T → R. 
 
Assumption 3 bis (uncertainty of illegal returns). We assume that the final returns of the first activity 
(the illegal one) depend upon the states of the world belonging to the unit interval of the real line [0, 1]. 

The return function of the first activity is then a random variable defined on the state space S  and with 

values into the function space T R, namely the return function of the first activity is an application 
 

L : S → F ( T, R), 

 

mapping each state of the world s ϵ S into a function 
 

Ls : T → R. 
 
Interpretation (of the states of the world). Our interpretation of the state space S is the following: the 
state of the world s represents the degree of punishment, namely 0 represents the state of the world in 
which the offender is totally safe, on the contrary 1 represents the state of the world in which the offender 
is fully punished. 
 
Assumption 4 bis (certainty of legal returns). We assume that the second activity (the legal one) is safe, 
in the sense that its returns depend only on the time devoted to both activities and not upon the states of 
the world. 
 
Assumption 5 bis (penalty function). We assume that the function Ls can be defined by the difference:  

 
W1 – sF1,  

 
that is by 

 
Ls(t) = W1(t) – sF1(t), 
 

for any pair t in T, where the function 
 

F1 : T → R ≥ 
 
is an increasing penalty function, with respect to the usual order of signature (+, -). 
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Definition (payoff random variable). We can construct a random variable, which we shall call the 
payoff random variable of the decision-maker, on the set S of states of the world and with values in the 

function space T R, namely it is the mapping 
 

X : S → T R 
 

defined by 
 

Xs(t) = W1(t) – sF1(t) + W2(t), 
 

for each state of the world s in the unit interval S  and any pair of times t  in the strategy space T. 
 

 

3. The payoff function associated with a payoff random variable 
 

 
Definition (the transformation associated with the random variable). Any random variable of the 
form  

 

X : S → T R 

 
can be read, immediately, as a family of functions in the space T R, indexed by the set S, namely the family 

 

X = (Xs)s ϵ S 
 
so as an element of the hypercube ( T R)S. Moreover, we can associate with the random variable 
 

X : S → T R 
 
the mapping of T into the Cartesian power (the hypercube) RS defined by 

 

fX : T → RS : t → (Xs(t))s ϵ S; 
 
we call this mapping the payoff transformation associated with the random variable X. 
 
 

4. The model with two states of the world 

 
 
We assume now that the state of the world space S contains only two elements, say 0 and 1. Moreover, we 
assume that the decision maker has total time at his disposal 1 (in conventional unit). 
 
The strategies of the decision maker are triples of non-negative real numbers t = (t1, t2, t3), with unit total 
duration: 
 

║t║1 := ∑t = 1. 
 
The first component t1, of any possible strategy t, is the time devoted to first activity; the second 
component t2 is the time devoted to second activity and the third component t3 is the remaining time 
 

1 - (t1 + t2).  
 

So that, the decision constraint of the decision maker is the canonical 2-simplex Δ2(R3) of the 3-space R3, 

that is the convex envelope M3 of the canonical basis e of R3. 
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The construction of the decision problem associated with a random variable. The payoff 
transformation associated with a random variable 
 

X : S → F (M3, R) 

 
is the function 
 

fX : M3 → RS : fX (t) = (Xs (t))s ϵ S . 
 
The power RS can be identified with the Euclidean plane R2, since the state space S contains only 2 
elements; so that, we can consider the payoff transformation fX as a vector function of the type 
 

fX : M3 → R2 : fX (t) = ( X0 (t), X1 (t)), 
 
for each time triple t of the simplex M3. We obtain, in such a way, a multi-criteria decision problem 
 

(fX, ≥), 
 

associated with the random variable X. 
 
 
Determination of the topological boundary of the problem (fX, ≥). To solve the above decision 
problem, we consider the function 
 

g : Δ2 → M3 : g (t1, t2) = (t1, t2, 1 – t1 – t2), 
 
g is an affine (bijective) parametrization of the canonical 2-simplex M3 (of the 3-space R3) by means of the 

canonical 2-simplex Δ2 of the plane R2 (convex envelope of the canonical basis of the plane and its 
origin). So that, if 
 

f : M3 → R2 
 
is a vector function defined on M3, the composite function 
 

f ᵒ g : Δ2 → R2 
 

is a parametric section of the function f  upon the constraint M3, and moreover, we have 
 

(f ᵒ g) (Δ2) = f (g(Δ2)) = f (M3). 
 
Hence, in order to obtain the payoff space of the decision problem (f, ≥), we can apply the Topological 

Boundary theorem to the section f ᵒ g.  
 
 
The applicative example. In our specific problem, we shall consider the function 
 

h : Δ2 → R2 
 
defined by 

 
h(t) = (X0(t), X1(t)) = 
       = (W1(t1) + W2(t2), W1(t1) – F1(t1) + W2(t2)). 

 
And, for the extended model, we shall consider the function 
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h : Δ2 → R2, 
 
defined by 

 
h(t) = (X0(t), X1(t)) = 
       = (W1(t) + W2(t), W1(t) – F1(t) + W2(t)), 
 

for every pair t in the 2-simplex Δ2. 
 

5. A case study 

 
We face an Ehrlich generalized decision problem, a case study in which an individual has two 

activities: 
 
1) a legal one (the first one) 
2) and an illegal one (the second one) 

 
and in which the conditions are “quite realistic”, in the sense that: 

 

• the activities of the individual are in some way connected; 
 

• it is impossible for the decision-maker to avoid the control of the organized crime and 
consequently he cannot abandon his illegal activity without a “punishment” of this organized 
crime; 
 

• the Justice takes account of the legal activity when it punishes the decision maker for the illegal 
one. 
 
 

5.1 Returns and penalty function 

 
 

We shall consider the (payoff) function f : Δ2 → R2 , from the canonical 2-simplex of the plane R2 into 
R2, defined by 

 
f(t) = (f1(t), f2(t)) := (X1(t), X0(t)) = (W1(t) + W2(t), W1(t) + W2(t) – F2(t)), 

 

for every time bi-strategy t = (x, y) in the triangle Δ2. 
 
Interpretation. If the real pair t = (x, y) is a possible time-strategy of the decision-maker, then: 
 

•  the first component x is the time devoted to the legal activity 1; 
 

•  the second component y is the time devoted to the illegal activity 2; 
 

• the function W1 is the return function corresponding with the legal activity 1, and defined by 
 
W1 (x, y) = ¼ x2 – y,  

 

for each pair (x,y) in the triangle Δ2; note that the time y devoted to the illegal activity affects 
negatively on W1. 
 

• The function W2 is the return function corresponding with the illegal activity 2, defined by 
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W2 (x, y) = xy – ¼ x2 + y + 2, 

 

for each pair (x,y) in Δ2; the time x devoted to the legal activity intervenes negatively on W2, but a 
positive amount xy of returns - due to the positive indirect effect of the legal activity 1. 
 

• the function F2 is the penalty function for the illegal activity 2, defined by 
 
F2 (x, y) = 2 + xy – x2 + ¼ y2, 

 

for each pair (x,y) in the 2-simplex Δ2; the time x devoted to the legal activity reduces the 
punishment, but the law consider negative the interaction xy between legal and illegal activity so 
that the term xy is added to the punishment. 

 

5.2 Total Return functions 

 
For what concerns the first component f1 of the payoff function f, representing the payoff of the decision-
maker when he is totally punished, we obtain 

 
f1(t) = X1(t) = 

 = W1(t) + W2(t) – F2(t)  = 
 = W1 (x, y) + W2 (x, y) – F2 (x, y)  = 
 = (¼ x2 – y) + (xy – ¼ x2 + y + 2) – (2 + xy – x2 + ¼y2)  = 
 = ¼ x2 - ¼ y2, 

 

for every (x, y) in Δ2. 
 
On the other hand, for what concerns the unpunished case, the component f2 is defined by 
 

f2(t) = X0(t) = 
 = W1 (x, y) + W2 (x, y) 
 = (¼ x2 – y) + (xy – ¼ x2 + y + 2) = 
 = xy + 2, 
 

for every (x, y) in Δ2. 
 
Remark. Observe that the functions W2 and F2 are decreasing with respect to the first argument on the 

portion T0, of the simplex Δ2, formed by the points (x, y) such that y < 2x. For what concerns F2 the 
interpretation is clear: when the illegal time y is greater than 2 times the legal one, then the punishment is 
increasing also with respect to the first (legal) argument. On the other hand, on the same subset T0 the 
return of illegal activity is increasing also with respect to the first argument (for example, the legal activity 
supports the illegal one, when the latter is sufficiently organized). 
 

 
6. Determination of payoff space 

 
 
This section will be entirely devoted to the determination of the topological boundary of the payoff space 

f(Δ2). 
 
6.1 Payoff function 

 
Thus we have to examine the function f defined by 
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f (x, y)  = (¼ x2 - ¼ y2, xy + 2) 
= (¼ x2 - ¼ y2, xy) + (0,2), 

 

for each pair (x, y) of the Euclidean plane, upon the strategy constraint Δ2. 
 

 

 
 

 
 

Figure 0. 3D graphical representation of the vector function f  – (0,2). 
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6.2 Transformation of the strategy space 

 

First of all we are interested in the determination of the image of the strategic triangle Δ2. Let 0, e1 and e2 
be the origin, the first canonical vector and the second canonical vector of the Cartesian strategy plane, 
respectively. Applying Carfì's methodology, it is sufficient to study the transformation of the boundary of 

Δ2 and of the critical zone of f on Δ2. 
 

 
 

Figure 1. Bi-strategy space, that is, the canonical 2-simplex of the plane. 

 
 

6.2.1 Transformation of the segment [0, e1] 
 
We start from the image of the segment [0, e1], i.e. the image f ([0, e1]). The segment [0, e1] is the set of 
points (x, y) of the Euclidean plane such that the coordinate y equals 0 and the abscissa x lies in the 
compact interval E := [0, 1]. The value of the payoff function at the generic point (x, 0) of the segment [0, 
e1] is the payoff 
 

f (x, 0) = (¼ x2, 2),  
 
for each time x in the strategy space E. 
 
Note that, for all x in E, the first component x2 belongs to [0, 1]. Thus the image of the segment [0, e1] is 
the segment of the payoff universe with end points (0, 2) and (¼, 2). 
 
In the following figure 2 we show the above transformation. Note that the transformation of the segment 
[0,e1] is contained in the payoff universe and not in the strategic universe. 
 

 
 

Figure 2. Transformation of the segment [0, e1] : f([0, e1]). 
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6.2.2 Transformation of the segment [0, e2] 
 
 
The segment [0, e2] is the set of bi-strategies (x, y) such that the abscissa x is 0 and the second coordinate y 

lies in the interval [0, 1]. The image of the generic point (0, y) of this segment is the payoff 
 
f (0, y) = (- ¼ y2, 2),  

 
for each y in F := [0, 1]. The set of all the above transformation is the set of all payoff-points (X, Y), of 
the payoff universe, with 
 

Y = 2 
 
and X belonging to the interval [-¼, 0]. So the image is the segment with end points (0, 2) and (- ¼ , 2). 
As it is shown in the following figure. 
 
 

 
 

Figure 3. Transformation of the segment [0, e2] : f([0, e2]) 

 

 
6.2.3 Transformation of the segment [e1, e2] 

 
 
The segment [e1, e2] is the set of all points (x, y) of the plane R2 such that 
 

x + y = 1 
 
and whose abscissas x lie in unit interval [0, 1], that is the canonical 1-simplex M2. The image of the 
generic bi-strategy (x, y) of this simplex is the payoff 
 

f (x, 1- x) = (¼ x2 – ¼ (1- x)2, x (1-x) + 2). 
 
From here, we get 
 

f (x, 1- x) = ( ½ x, x - x2) + ( - ¼ , 2). 
 
The vector (- ¼, 2) represents a translation vector, which we can consider after the study of the non-linear 
part 
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h (x, 1- x) = ( ½ x, x - x2). 
 
Let us put 
 

X := ½ x  and  Y := x – x2. 
 
We deduce that the transformation of the 1-simplex M2, by the function h, is the set of all points (X, Y) 
such that  
 

Y = - 4X2 + 2X, 
 

and X lies in the compact interval [0, ½] = ½U. To trace the graph of this parabolic segment, we note that 
the vertex is the point (¼, ¼). Then, the image of our canonical 1-simplex is the set of all payoffs (X, Y) 
such that 
 

Y = 2X – (2X)2, 
 

where X belongs to the interval [0, ½]. So the image is the parabolic segment shown in the below figure. 
 
 

 
 

Figure 4. Transformation of the segment [e1, e2] 

 

 
6.3 Critical zone 

 
 
The critical zone of a differentiable game G = (f, >) is the set of all bi-strategies at which the Jacobian 
determinant of f is 0. 
 

The Jacobian matrix of the function f, at any point (x, y) of the bistrategy space Δ2, is denoted by Jf (x, y) 
and it is the matrix having as rows the gradients of the gain functions f1 and f2, respectively; the two 
gradients are defined respectively by 

 
grad f1 (x, y) = ( ½ x, - ½ y), 
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and 
 

grad f2 (x, y) = (y, x), 
 

for every bistrategy (x, y) in Δ2.. The Jacobian determinant, at the bistrategy (x, y), is 
 

det Jf (x, y) = ½ x2 + ½ y2, 
 

for every pair (x, y) in the bistrategy space Δ2. 
 
 

6.4 Critical space 
 

The critical zone is the subset of the bistrategy space Δ2 of those bistrategies (x, y) at which the Jacobian 
matrix is not invertible, that is verifying the relation 

 
det Jf (x, y) = 0, 

 

i.e., in our case, x = y = 0. 
 
In symbols, the critical zone is the singleton 

 
Cf = {(0, 0)}. 

 
 

6.5 Determination of payoff space of decision problem 

Gathering all the preceding information we obtain our payoff space. The image f([0,1]2) is the set of 
payoffs (X, Y) such that 

Y ≤ -4 (X + 1/4)2 + 2(X + 1/4) + 2  
 

with X ≥ - 1/4 and Y ≥ 2. As it is shown in the following figure. 
 

 
 

Figure 5. Payoff space of the decision problem. 
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Figure 6. Payoff space of the decision problem (zoom). 

 

 

7. Solution on the equiprobability assumption for the space S 
 
Now, we are interested in the determination of the optimal solution, when it is known that the states of 
the world 0 and 1 are equiprobable. In the present case, the optimal solution can be obtained by the 
maximization of the utility average function 
 

E(1/2, 1/2) : R2 → R : (X,Y) → ½ X + ½ Y, 
 

upon our payoff space f(Δ2). Moreover, the unique solution can be obtained also by maximizing the 
cumulative function g, defined by 
 

g (X, Y) = X + Y, 
 
upon the payoff constraint h(M2) with equation 
 

Y = 2X – (2X)2, 
 
where the coordinate X is in the canonical unit interval ½U. That solution belongs to the Pareto maximal 

boundary of our payoff space f(Δ2), translated by the vector (1/4, –2), then, to find the solution upon the 

payoff space f(Δ2), it is sufficient to translate this solution by means of the vector (–1/4, 2). 
 
A section of the function g upon the constraint h(M2) is the function 
 

s : ½U → R 
 
defined by 
 
 s(X) = g(X, 2X – (2X)2) = X + 2X – (2X)2, 
 
for every X in ½U. We have 
 
 s'(X) = 1 + 2 – 8X > 0, 
 
which is positive when 
 

3 – 8X > 0 
 
that is X < 3/8. So the optimal solution in the interval ½U is just the point 3/8, which determines the 
optimal solution (3/8, 3/16) for the function g and finally the optimal payoff 
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(3/8, 3/16) + (– ¼ , 2)  = (1/8, 35/16), 

 

of the space f(Δ2). In order to obtain the corresponding bistrategy (x, y) in the canonical simplex M2, we 
recall that 
 

h(x, 1- x) = ( ½ x, x- x2) = (3/8, 3/16), 
 
and thus the corresponding bi-strategy is the pair (3/4, ¼). 
 

 
 

Figure 7. Equiprobability solution. 

 
 

 
 

Figure 8. Equiprobability solution (zoom). 
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8. Solutions on extreme probability assumption for the space S 
 
 

Starting from the average function IE ( p, 1 - p) :  IR2 → IR, which we shall denote here by g, we have 
 
g (X, Y) = pX + (1 - p)Y, 

 
for every payoff pair (X,Y) in IR2 . 
 
We analyze two extreme cases:  
 

- the case in which the probability of punishment p is maximum, that is p = 1; 

- the case where the probability of punishment p equals 0. 
 
We analyze the first case, in which the offender is most likely (certainly) to be punished; then the function 
defined by 

 
g (X, Y)= 0X + 1Y, 

 
for every payoff pair (X,Y) in IR2 .  
 
Interpretation and remark. We note that the level-sets of the function g will be straight lines parallel to 
the axis of abscissas (horizontal lines). This level-sets will go to intersect the maximal Pareto boundary 
parabola at the point (0, 2 + 1/4). In this case, it would be appropriate to devote time equally to the legal 
and illegal activity (indeed the reciprocal image of our (0, 2+1/4) is (1/2,1/2)), so contrary to the common 
sense, our decision-maker, as he tends to get the maximum profit possible, will not devote his time only to 
the legal activity (even if he knows will be certainly punished): he will split his time equally between legal 
and illegal activities, despite maximal probability of punishment. 
 
In the opposite case the probability of punishment is equal to 0, therefore we obtain the objective 
function 

 
g(X, Y) = 1X + 0Y, 

 
whose level sets are vertical straight lines that will go to intersect optimally the payoff constraint at the 
point (1/4, 2) and the reciprocal image of the point (1/4,2) is the bi-strategy (1,0). 
 
 

 
 

Figure 9. Extreme solutions 
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7. Conservation and compromises 

 
 
7.1 Worst punished gain function with respect to illegal activity 

 
By definition, the worst punished gain function f1

# is defined on the legal strategy space E = U by 
 

f1
# (x) = infU f1 (x, .), 

 
for every legal strategy x in E. The payoff f1

# (x) is the worst possible payoff of the decision-maker, when 
it is punished. 
 
Remark. An individual, comparing the gains that he could get by adopting legitimate or illegitimate 
activities, will notice that a lot of times the profits arising from the illegal ones will be great in comparison 
to those of legitimate activities. Therefore, he would be brought to infringe. However, he also has to keep 
in mind of the possible punishments deriving from behaviors against the law. In fact, we can observe 
three cases: 
 

- the individual devotes his time to illegal activity and he is not punished; 

- the individual devotes his time to illegal activity and he is punished; 

- the individual devotes his time to legal activity (and paradoxically) he is punished. 
 
You will get: 

 

supx ϵ E infy ϵ E f1 (x, y) = v1
# 

 
when the individual has the tendency to maximize in operation some legal activity and to minimize that 
illegal, since he is afraid of the consequential punishment from the second or he hears again of a scruple 
of conscience in to break the law. 
 
Instead, in the opposite case: 

 

supy ϵ F infx ϵ E f2 (x, y) = v2
#. 

 
The individual will have the tendency to maximize in function of illegal activity and to minimize for that 
legal; in this case we find us of forehead to an individual that doesn't fear the punishment that could 
derive from the infringement, rather he could almost say that we find us of forehead to a "inveterate 
criminal", that has as primary objective that to maximize her profits. 
 
Remark. Further situation, possible but few probable, would be had in the case in which the individual 
decided to maximize both in comparison to the illegal and legal activity, in other words he would extend 
to get the maximum possible from both the activities. 
 
From her max-min precedent we can build the conservative bi-value that furnishes us, in this context, a 
sort of initial status from which to get further for improving his own profits, in fact he could be taken as 
value of threat in the problems of selection on the Pareto boundaries 

 
v# = (v1

#, v2
#). 

 
In the case of our study: 
 

v1
# = ¼ supx ϵ [0,1] infy ϵ [0,1] (x2 - y2) = 

      = ¼ supx ϵ [0,1] (x2 - 1) = 
      = ¼ (1 - 1) = 
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      = 0 
and 

v2
# = supy ϵ [0,1] infx ϵ [0,1] (xy + 2) = 

      = supy ϵ [0,1] (0 + 2) = 
      = 2. 

 
So that, the conservative bi-value is the pair (0,2). 
 
 

7.2 Elementary best compromise between punishment-unpunishement 
 
The elementary best compromise bi-gain is the intersection of the segment joining the threat bi-gain v# 

with the supremum of the game with the Pareto boundary of the payoff space of the game f (Δ2). We 
calculate this solution on the first parable  
 
 f(M2) + (- 2, ¼ ); 
 
this latter point satisfies the system: 

 
Y = - 4X2 + 2X  and  Y = X – 1/4 

 
leading to the resolvent equation: 
 

16X2 – 4X – 1 = 0, 
 
whose acceptable solution is A = (1 + 51/2)/8 with corresponding payoff B = A – 1/4. So that the Kalai-
Smorodinsky payoff solution of our decision problem is the translation of the above pair (A, B) by the 
vector (– 1/4, 2): 
 
 K' := f(K) = ((1 + 51/2)/ 8, (1 + 51/2)/ 8 – ¼ ) + (-1/4, 2), 
 
the point K is our best compromise in the bi-strategy space, easily determined by retro-image by f. 
 

 
 
 

Figure 10. Best compromise solution. 
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8. Pseudo-Equilibria 

 
 

8.1. Virtual Nash equilibrium 
 
In our game, the Nash equilibria do not play a major role as we have not precisely a standard game, 
because of the shape of the strategy space, and moreover, even if we consider the smallest possible game 
containing our payoff function, it does not fall within our space of strategies; as we shall show below. Let 
us run out the calculations: we have 
 

f (x, y) = ((1/4) (x2 – y2), xy + 2). 
 
We get: 
 
 ∂1f1(x, y) = (1/2) x > 0 
 
within the range [0, 1], showing a increasing trend of f1. Hence the best reply correspondence of the first 
virtual player is defined by B1 (y) = 1, for any y in F. For the second virtual player, we have two cases; 
indeed, for any fixed strategy x in E = [0,1], we have ∂2f2(x, y) = x, for every y in F = [0,1]; so we have two 
relevant and exhaustive possibilities: ∂2f2(x, y) = x > 0, when we have an increasing trend of the partial 
gain function f2(x, .); or ∂2f2(x, y) = 0, when we have a constant partial gain function f2(x, .). Hence, the 
best reply correspondence of the second virtual player is defined by B2 (x) = 1, if x > 0, and B2 (x) = F, if 
x = 0. In the following figure, we’ll show the graph of the multi-function B2 and the inverse graph of the 
correspondence B1 with their intersection: the Nash equilibrium (1,1). 
 

 
 

Figure 11. Generalizied Nash equilibrium (Nash equilibrium of the minimal extended game). 
 
 

8. 2 Generalized Nash solution 

 
However, refining the analysis, i.e. taking into account not the entire strategic area, but the square 
subspaces with the infimum-vertex at the origin, upon each of them we have a Nash equilibrium. The 
continuous sequence of Nash equilibria forms a so called Nash path.  The Nash equilibrium corresponding 
to the maximum square contained into our strategic triangle falls within our strategy space itself, going to 
be the best compromise between legal and illegal activity. This extreme equilibrium is what we call the 
generalized Nash solution of our problem. 
 
The below figure shows the Nash path (in yellow) and the generalized Nash solution (½, ½). 



19	
  

	
  

 

 
 

Figure 12. Generalized Nash path solution. 
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