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Abstract

In this paper I analyze partnership formation within the property
crime market in the United States. I develop a static matching model, in
which a criminal forms a partnership with a counterpart with the same
probability of success. Using individual arrest data from the National In-
cident Based Reporting System, I pinpoint matches where the underlying
ability of two partners differ. This difference in ability is correlated to
observable characteristics, making the case for discrimination. By com-
paring the regression results to success means for the same demographic
groups, I find patterns consistent with discrimination. Beside the pat-
terns of gender and racial segregation, I find that in white-black matches,
blacks outperform whites, consistent with success means. In male-female
matches the female’s success realization is higher than the male’s, contrary
to the difference in success means, where males on average outperform fe-
males, hinting at a distaste premium.
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1 Introduction

When a criminal wants to commit to a partnership, just like two spouses commit
in a marriage, she would have to choose a partner by her looks. (Becker, 1957,
1968, 1973). Organizing a crime together allows criminals to commit more
sophisticated acts than they would on their own and, given that more people
think on how to cover their traces, a group can prove to be more elusive to
law-enforcement than a single criminal. If the commission of crime was like a
marriage (or vice versa), then each partner would prefer to match with a more
successful counterpart, that would guarantee better outcomes. In my setting,
in equilibrium criminals prefer an associate with the same criminal ability as
their own. This allows me to determine when partner choice is correlated to her
observable traits, as an application of discrimination.

The choice of a marriage partner often follows a pattern of positive assor-
tative matching, where highly educated partners prefer to marry their peers
(for e.g. Rose (2007)) and partners with high earnings potential select one
another(for e.g. Pencavel (1998), Nakosteen et al. (2004)). In the context of
offending, this means selecting a smart partner, who would not snitch and who
would take care of the extra corpses. Until now the economic literature on
crime has focused on single offenders (Becker, 1968) and big organized groups.
This paper is the first to consider the building of a small group, applying the
theory of assortative matching to small criminal enterprises. While discrimina-
tion in the presence of assortative matching has been explored in the context
of employer-employee matches (for e.g. Borowczyk-Martins et al. (2012),Flabbi
(2010)), the crime market offers a unique facet that reveals the underlying abil-
ity, namely arrest, allowing for a measure of the match quality in the presence
of discriminating biases.

In the real criminal world, the practice of the police offering a bargain to
the offender that was first apprehended in order to catch his partner creates
an incentive to choose one’s partner as the best from all possible candidates.
Therefore, I model matches by assuming that the desired partner trait is a
high ability to escape law-enforcement. This incentive leads both partners to
desire a successful counterpart, thereby creating a pattern of positive assortative
matching between criminals.

Using individual data on criminals from the National Incident Based Re-
porting System (NIBRS), I find patterns of gender and race segregation that
lend me the result of non-random matching. Furthermore, criminals most often
prefer a partner from their own gender and race, consistent with criminological
evidence on trust issues being resolved by connecting along social and blood ties
(for e.g. Alarid et al. (2009)).

Arguably, an arrest reveals whether a criminal is of high or low ability. Given
the positive assortative matching, the two partners should be of the same ability
level and empirically this would be the case if both of them got arrested or both
of them run free. If only one partner gets arrested, then there could be an ability
difference between the partners. If this difference turns out to be systematically
correlated to observables, then there is a bias in matching. For example, if in
a black-white pair the whites always gets arrested, then their ability level was
overestimated by the blacks, hinting at a prejudice or bias, based on the skin
colour. In other words, I set the counter factual productivity difference between
the partners to 0 due to the matching incentive, and consider any systematic



difference as taste bias.

To illustrate my empirical strategy I turn to a simple frictionless model of
taste discrimination. My model differs with previous treatments of taste discrim-
ination, as I consider a taste bias to be exercised at the scale of a demographic
group, that is, each member of one group is biased against a member of the
other group. The benchmark matching is unbiased when a criminal matches
with a partner of his same ability level. Turning to biases, a negative taste
has to be compensated by a partner’s ability level higher than the one of the
person exercising the taste. Similarly, a positive taste allows one to match with
a partner with a lower ability level than his own. Looking at interactions be-
tween the tastes of the groups, one group could have a high negative taste when
matching with another group, resulting in no matches between the 2 groups and
segregation. However, full segregation is not observed in the data and I concen-
trate on between group matches. Two groups are compatible and form matches
between one another either if both have positive tastes, or when one group has
a negative taste compensated by the positive one of the other group. In both
cases there are multiple Nash Equilibria for matching choices. Therefore, in this
framework, finding evidence of taste bias can be a necessary but not a sufficient
condition to claim that such preferences are exercised. The bias would be ap-
parent whenever the difference in ability between partners is correlated to the
observable characteristic that defines a demographic group.

On the individual level, the arrest of one’s partner is more likely to seem as
an act of policing than as a group common act of poor judgment of blacks with
respect to whites. I find that in black-white partnership, most often than not
the whites turn out to be of poor quality and face on average a lower probability
of success, both as a group and as partners of successful blacks. Given that they
have been chosen on the base of their ability, there must be a systematic taste
component to the choice, that makes black criminals desire white counterparts.
When considering genders, on average males are more successful than females.
However, in male female partnerships the females are of higher criminal ability
than the males. Therefore, females overvalue the ability of males, consistent
with a positive taste preference, which might underline a negative taste that
males exercise with respect to females.

From all other probable reasons for these patterns, several can be rejected
right away. First, if one partner perceives an act specific advantage (for e.g. that
a white partner would be more likely to blend into the neighborhood where the
crime act is committed), this is individually specific for one crime and cannot
be systematic for all the 900 thousand partnerships in the sample. Second, if
there is only one partner of a certain demographic group in the market, then he
could match favorably. Even if this is a (unreasonable) systematic occurrence,
in my analysis I can control for the diversity of the criminal population and my
results hold even when considering only markets with heterogeneous population.
Third, females might be assigned the safer role in the commission of the crime
because of gender stereotypes, and thus they have a higher success probability.
This cannot hold true for black-white male couples, any choice frictions would be
individual crime specific, controlling for individual offenses does not change the
results and nothing hinders the male to turn the female in and thus contribute
to a lower aggregate success probability. Even when I control for measurement
errors by taking a subsample where only arrested couples are the control group
and a subsample of daylight crimes, results remain robust. Only when I consider



criminals whose age is known and above 30, I find evidence that the bias for
females has disappeared, hinting at an explanation of statistical discrimination
with respect to gender.

This paper links the notion of assortative matching to similarity in observ-
ables, as currently studied with network theory. The preference-for-same has
been documented in diverse settings. Bagues & Perez-Villadoniga (2012) show
in a natural experiment that recruiters prefer applicants who have similar to
their’s skills. Arcand & Fafchamps (2012) demonstrate assortative matching in
social traits like ethnic proximity and wealth between members in community-
based organizations in developing countries. While the 2 notions are used in-
terchangeably in some contexts, here they can be treated separately. I show
explicitly that matching on observables conflicts with matching on ability.

By the virtue of arrest data, I can link assortative matching and similarity
of observables to a productivity measure, thus detecting discrimination. The
economic notion of discrimination has been developed by Becker (1957), and
Aigner & Cain (1977) provide formal treatment to the concepts of taste and
statistical discrimination. Interested readers might refer to Lang & Lehmann
(2012) for an up-to-date discussion of the literature. Structural work on search
has explored discrimination. Particularly, Borowczyk-Martins et al. (2012) and
Flabbi (2010) are examples of a search model describing patterns of matching
and racial wage gaps in the light of taste discrimination. The setting in my
paper differs, I provide a frictionless model of matching and take a reduced
form empirical approach.

There are 2 sides to the literature on assortative matching. From the theo-
retical perspective, Becker (1973) has defined positive assortative matching as a
pairing in which there is positive correlation between the abilities of two spouses.
Shimer & Smith (2003) introduce frictions in the matching market and define
additional conditions in which matching holds. Smith (2006) provides further
extensions and Smith (2011) reviews the literature.

From the empirical side, Abramitzky et al. (2011) and Angrist (2002) con-
sider the effect of sex ratios on assortative mating. Theoretically, as long as
matches are constrained to consist of a male and a female, an unbalanced sex
ratio endows one gender with an advantage in securing a better partner with
respect to an environment with a balanced sex ratio. The crime market is charac-
terized by unbalanced sex and race ratios, however, matches are not constrained
in composition and this allows me to empirically pinpoint a discrimination bias.

Empirically, my approach differs by the employing of an ability measure,
rather than a signal of ability as is e.g. education in Rose (2007) and Pencavel
(1998). I take the difference in the ability of partners, rather than regressing the
trait of one partner on the traits of the other, as does for e.g. Pencavel (1998)
and I take the analysis a step further into the realm of discrimination.

Finally, this paper is related to the economic literature on crime. Starting
with Becker (1968) research has addressed individual decision making and ag-
gregate relationships, however, not in the context of co-offending. The latter
matter is missing in the recent review of Levitt & Miles (2007). The crimino-
logical literature has given more attention to the organization of small crimes
and Alarid et al. (2009) provide evidence from prison interviews that offenders
choose to commit a crime with a friend from the same social circle resolving
issues of trust by matching along social ties. van Mastrigt & Carrington (2013)
provides a review on the literature from the perspective of network homophily



(similarity in observables) in group offending, noting that there is an incentive
to select a successful partner, however stopping short at selecting him from the
local offender pool and not considering the implications of this incentive, as it
is done in this paper.

This paper links the literature on assortative matching with that on crime
and discrimination. The novel empirical design conveys the essential message
that considering positive assortative matching as characterizing matches, and
taking into account productivity differences between demographic groups, one
can refer systematic differences in ability within a match to taste preferences
on observable traits. The identification comes from the endogenous match for-
mation, and by virtue of arrest revealing ability. The model shows that even in
cases where a taste bias is exercised it might go undetected in the data, showing
that the empirical result is a necessary but not a sufficient condition to pin point
biases.

Conceptually assortative matching and discrimination are linked through
the significance of observable traits in the matching choice. When choosing a
partner based solely on ability, observables should not predict significantly the
partner choice. When matching is based on an observable trait, discrimination,
there assortative matching on ability fails. Essentially, my empirical strategy
determines whether matching is based on observables in the presence of incen-
tives to match on ability and I find that criminals like to indulge their costly
discriminatory biases.

The structure of the paper is the following. First, in section 2, I present
the data. Section 3 describes a simple static matching model that will aid
the intuition with the identification strategy and interpretation. Sections 4
and 5 discuss the empirical strategy, results and robustness checks. Section 6
concludes.

2 Data

The source of criminal data for this paper is the National Incident Based Report-
ing System (NIBRS), covering criminal incidents in the United States. The sam-
ple period runs from 1995 to 2010. NIBRS consists of repeated cross-sections,
where the data points are individual level records on crime incidents submit-
ted by law enforcement agencies. These records provides details on how many
perpetrators were involved in one incident, their characteristics and the charac-
teristics of the crime. The NIBRS data is not representative for the US. In 1995
agencies in 9 states submitted data, while 2010 there were 36 states. Given the
amount of collection and submission effort (presumably, it is costlier for bigger
agencies), the NIBRS is skewed towards crimes in the jurisdictions of smaller
and medium-sized agencies. In a given county there can be from 1 to several
agencies, depending on population size and historical factors. Given that one
city can be overseen by several law-enforcement agencies, which have a tradi-
tional focus on neighborhoods or types of crime, it is likely that outcomes within
an agency’s jurisdiction are correlated, so I cluster the errors on this variable
and provide a robustness check with city specification.

Property crimes are a unique segment of crime where offending is relatively
independent of diverse physical endowments between genders. For this rea-
son, I select all the property crimes according to the Uniform Crime Reports



code for the following crimes: arson, robbery, burglary, larceny offenses such as
pocket-picking, purse-snatching, shoplifting, theft from building, theft from coin
operated devices, theft from car or car, all other larceny and selling of stolen
property.

For a given year, I exclude agencies that do not report at least one crime
for a week, similar to Dahl & DellaVigna (2009) and concentrate my analysis
on crime commited in a couple. Dropping individuals for which all the charac-
teristics of gender and race are known, leaves me with 98 percent of the data.
I select individuals between 15 and 65 years of age, leaving out offenders who
are unreasonably young or old and, thus, 87 percent of the observations remain.
Selecting the full couples amounts to 78 percent. In the robustness checks I con-
centrate my analysis more on the arrests where the observables are known with
a higher degree of certainty and on daylight crimes to control for the reporting
bias. I concentrate my analysis on black and white criminals, but I provide ro-
bustness checks with the other races in the sample. Law-enforcement agencies
do not seem to follow a specific pattern in recording the order of criminals in
an incident and records are as if randomly assigned. Nevertheless, I random-
ize their order by generating a uniform distribution and assigning first for the
criminal whose value is less than the mean.

Table 1 presents the summary statistics for criminal partners. The average
criminal is 25 years old white male, he commits 1 offense per crime incident. It
is worth keeping in mind that one crime incident might involve several offenses,
for e.g. assault and robbery are counted separately as offenses. He faces a 0.6
probability of success, defined as the probability of not being arrested. The
average difference in age between offenders in a group is 0 years, but the mean
of the absolute (as in |AgeGapl|) value is 4. The variable agency denotes the
average diversity within the jurisdiction of an agency. This variable is equal to
the frequency of females times the frequency of whites. It would attain value
of 0 or 1 if a given market is homogeneous in the type of criminals. With
a relatively high standard error it shows that there is heterogeneity between
criminal markets. In total there are 1,857,272 individual observations, yielding
928,636 observed partnerships over the sample period. In the following empirical
analysis a couple corresponds to one observation and not to two, as is the case
with dyadic data analysis.

Table 2 presents the cross-tabulation of pairs. The first column shows the
total frequency of the 4 types: black males, black females, white males and
white females. The second column denotes the success rates for each type. The
remaining columns in table 2 show how often does a category of criminal, for
e.g. white male, choose a criminal in the other category. Note that black males
emerge as the most successful and white females as the least successful criminals.
In 78% they pair up with other black males, followed by black females. Black
females choose one another in 67% of the cases. White males choose other
whites in 94% of the cases, of which 74 percentage points are other white males.
White females have a similar preference for other whites, but 51% of them also
choose their own gender. Cross-race matches occur on average in 10% of the
cases for each type of criminal. On average, each type prefers his own type as a
partner.

In order to establish a pattern of matching it is necessary first to refute that
partners are randomly drawn from the distribution of criminals. In table 2 it is
observed that on average criminals prefer partners of their own type. A further



Table 1: Summary Statistics

Mean SD

White 0.650 0.477
Female 0.307 0.461
Age 25.618 9.875
Success 0.603 0.489
Offenses 1.014 0.132
Age Gap 4.426  6.369
Agency 071 .256
Observations 1857272

Notes: An observation is a criminal in a crime committed in jurisdiction of an agency in
certain date and hour. Variables white and female are dummies. Age takes values between
15 and 65. The success rate is the complement to the arrest rate. Each criminal has one or
more offenses on his record for the crime reported. Age Gap refers to the absolute difference
in ages between two partners. Agency takes a value 1 whenever in a given year-agency cell
the market is restricted to only whites, only blacks, only females or only males.

Table 2: Cross Tabulation of Pairs

Total Success Black Males

Black Females

White Males White Females

Black Males 0.261 0.717
Black Females  0.089 0.518
White Males 0.433  0.600
White Females 0.217  0.507

0.779
0.097
0.084
0.040

0.283
0.630
0.025
0.062

0.051 0.048
0.005 0.025
0.737 0.413
0.207 0.514

Notes: An observation is a type of criminal in crime committed in jurisdiction of an agency.
The types here are 4: black males, black females, white males, white females. The columns

sum to 1.



Figure 1: Bias against Matching with Males
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Note: This figure plots the gap between Pr(female, female) and Pr(female) x Pr(female).
Whenever the gap differs from 0 this is an evidence of a bias in matching. The confidence
intervals are constructed through 1000 bootstrap draws of 10 000 observations each. The
larger confidence intervals at the beginning of the sample may reflect the ongoing collection
effort of NIBRS, as the observations in 1995 are less than in 2010.

evidence of bias can be easily seen with the following reasoning. Consider the
probability of observing a pair of two females:

Pr(femaley, females) = Pr(femaley) Pr(females|femaley)

If 2 partners match up randomly, then Pr(females|female;) = Pr(females).
The probability of ending up with a female partner would be independent from
the own gender. In figures 1 and 2 I plot the difference between the sample fre-
quencies of Pr(femaley, females) and Pr(female;)Pr(females) with respect
to gender and race. The figures have been obtained with bootstrapping - by re-
peated drawing of subsamples and calculating the difference between the above-
mentioned frequencies. The line indicates the mean and the confidence interval
is taken over the distribution for each year. In figure 1 Pr(female;, females) >
Pr(femaley)Pr(femalesy), indicating that Pr(females|femaley) # Pr(females)
and thus the choice for another female with whom to form a match is not in-
dependent of own type. The same pattern can be observed in figure 2, showing
that matching is not random also in the dimension of race.

In both figures, correlational evidence shows that criminals do not form
partnerships randomly and that they segregate on observable characteristics.
It is not possible to distinguish whether these patterns are caused by positive
assortative matching on ability between people who happen to be of the same
gender or by a specific gender bias in matching. The model in the next section



Figure 2: Bias against Matching with Blacks
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Note: This figure plots the gap between Pr(white, white) and Pr(white) X Pr(white). When-
ever the gap differs from 0 this is an evidence of a bias in matching. The confidence intervals
are constructed through 1000 bootstrap draws of 10 000 observations each. The larger con-
fidence intervals at the beginning of the sample may reflect the ongoing collection effort of
NIBRS, as the observations in 1995 are less than in 2010.



shows how the following empirical evidence can be interpreted.

3 Model

In this section I will introduce a simple model of assortative matching, which
will introduce the grounds for the empirical strategy in the next section.

When a suitable crime opportunity presents itself, a criminal has to choose a
partner with whom jointly to exploit it. A partner might be required for a vari-
ety of motives - for e.g. complementarity in skills, mentorship or courage. While
motives differ in the individual case, policing technology provides an incentive.
Given the practice of offering a plea bargain to the criminal partner arrested
first, each criminal associate faces the incentive to pair up with the most suc-
cessful possible counterpart, or, put simply, one who would not get arrested and
who would not “sing” to the police, if arrested. Therefore, any criminal would
consider a partner through her ability level. Considering the incentive for a
successful associate from both sides of the partnership, it seems straightforward
that there should be positive correlation between criminal ability traits between
partners.

Consider a given partnership as a match, where there can be 3 patterns in
the correlation of ability between partners. First, a pattern of random match-
ing, when there is no correlation of criminal’s traits within the partnerships.
Second, negative assortative matching is a pattern in which the most able part-
ner prefers the least able one, leading to an empirical observation of negative
correlation of ability between partners. Third, positive assortative matching is
a pattern, where empirically there is positive correlation of ability. One can
think of these patterns as corresponding to certain incentives and motives, as in
the first benchmark case there would be no motive at all. In the second, there
can be a learning motive, where the higher able partner wants to teach, so he
would want to select the least able partner possible. The final pattern would be
consistent with the arrest incentive, where a partner would prefer a counterpart
that is at least as able as him as not to get arrested.

Introducing the criminals, assume that there is a unit continuum of them,
each indexed by an exogeneous probability of success p € [0,1]. p is strictly
increasing in ability, that is, criminals with a high p are more able than crim-
inals with a low p. Assume that there are M demographic groups of criminals
and criminal ability is distributed similarly among them. Given that a match
is composed of 2 criminals, I will consider equilibrium outcomes between group
m and n. Criminals get an exogeneous individual random return on criminal
activity Y > 0. Consider a perfect information case and assume that a criminal
observes the real ability of his partners, so that he chooses between associates
that are better or worse than him in this one measurable attribute. Also, assume
that the criminal has a preference to work with partners from a certain demo-
graphic group. With discrimination choosing potential partners is non random
with respect to observables, as the matching choice is due to them.

Without loss of generality, assume that criminals are ordered as 1 and 2 in a
partnership. The behavioral assumptions are that both partners have to agree
to the match and that once a crime is commited they part ways.

Let the additional utility 7;,, denote a taste from committing a crime with
a partner from the other demographic group, such that the preference for the
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own group is 0. The behavioral assumption behind it is that it is exercised
in the contingencies in which the criminal succeeds. A criminal maximizes his
expected utility with respect to his partner’s success probability:

EUpn(®®) = prpi(Y +T) +pp (1 —p2)(Y = S +Tp) + (1)
pa(1—pp,)0+ (1—p2)(1—pp,)0

where pl and p? are the probabilities for success respectively for criminal 1
from group m and his partner 2 from group n. If criminal 1 gets arrested he
gets a disutility, which is normalized to 0. If he does not get arrested he will
get the return Y. In the special case when his partner gets arrested he will get
the same return because they would have already parted and shared the booty,
but instead of a higher probability of arrest he will loose the additional utility
S > 0 for the security that his partner implicitly provides by staying away from
the law-enforcement 123,

The expected utility is increasing in the probability of success of the partner,
ensuring a preference for the most able partner. The higher the ability of the
choosing criminal, the higher is the marginal utility from the partnership with a
better partner?. Given the same preference for the partner, mutual acceptance
of matches ensures that each criminal will pair up with one of similar ability in
equilibrium.

Consider first the “tasteless” case, where T},, = 0 and p! = ps is an equilib-
rium, referred to later as unbiased matching. Assume that all criminals have a
reservation ability of p!, equal to their own ability. If 1 criminal deviates and
lowers his reservation ability, that is, he accepts a partner that has a lower abil-
ity than him py < p', then he would be worse off. If he would consider a partner
with py > p', then nobody else would match with him, because everybody else
has the strategy to match with a partner of their own ability and he would get
0.

If all criminals have a lower reservation ability (than their own), then one can
deviate profitably by matching up with a higher ability criminal. If all criminals
have a higher reservation ability, then nobody would agree to a match (except
among p; = 1) because the possible counterpart with ps > p' would want to
match with someone of even higher ability p? > p? > p'. Therefore, matching
with a partner of the same ability, p' = p?, is a Nash equilibrium.

IThe additional utility S provides an incentive for the partner not to remain single. If
the interaction between S and Y was multiplicative, instead of additive, then S < 1 would
imply that the utility of both partners succeeding is higher than the utility in the case of
the other partner being arrested, which is consistent with the plea-bargain incentive. Setting
S =Y (1— a) would relax the behavioral conditional independence assumption, where « is the
additional probability of success in case the partner gets arrested, whose realization occurs
after the matching choice has been completed.

2The individual disutility of jail can be normalized to 0 without loss of generality. The
parameters S and Y are assumed to not vary systematically with respect to different probable
partners of the criminal who chooses and there is no explicit sharing rule. In a sense, they
are crime specific. For e.g. if a criminal decides to rob a bank he knows that he would earn
a certain amount no matter the partner and because of the crime he would face a disutility
if his partner get caught. One of the empirical robustness checks controls for the monetary
return on crime and the matching results do not change. Furthermore, differing Y falls into
the domain of search frictions, see for e.g. Smith (2011).

3If Ty ’s influence on the utility was somehow multiplicative then the basic intuition would
remain the same - a positive taste allows for a partner of a relatively lower ability than own,

the converse for the negative taste.
49EBU _ 1
ops P 5
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Figure 3: Distributions of groups of criminals

DPm Pn

The matching pattern can be described through figure 3. Let the individual
ability p,,; to be distributed with a pdf F' with mean p,,, and finite variance §,,.
Within each m group there is a heterogeneity of ability. Consider the matches
between 2 groups, m and n, and assume that p,, < p,. In equilibrium, at the
individual level the difference in ability between partners would be 0. If the
distributions of ability of criminals of groups m and n are coinciding along an
interval, as in figure 3, then there would be matches between the 2 groups. If
criminal j from group n draws a low ability and criminal i from group m draws
a high ability, then they could form a match. For e.g. this would practically
imply that while the white males have a lower productivity mean than the black
males, the white in a black-white group can presumable have a higher criminal
ability than the average white in a white-white group. Otherwise, the 2 groups
would segregate by creating matches within their own groups, as in the left tail
of the distribution of the criminals from group m.

Relaxing the “tasteless” assumption, consider the second case of matches
between groups m and n from the perspective of the m criminal:

When the criminal considers a partner from his own group he does not exercise
a taste, so that matching within a group, if preferred, is unbiased and p., = p?,

EUmm = pin(y - S+p3nS)

Taking the difference in utility when a member of group m chooses between
committing a crime with a member of group m and a member of group n:

Any asymmetry between group preferences would create a pattern in which
there is biased matching, such that p,, # p,. If at least one of two groups
strictly prefers matching within itself, then the other group cannot match with
it, regardless of its preferences. This would lead to segregation and unbiased
matching within group and a taste parameter cannot be empirically identified
because there are no between group matches observed.

12



Therefore, for between group matches it is necessary that EU,,p,, — EUpy, < 0
and EUy, — EU,» < 0, such that matching between groups is preferred or
indifferent to both groups. EU,.m — EUp,, < 0 would be equivalent to:

T
p?n—piﬁgm

where, given that pl, = p?,, some algebra and dropping the criminal subscripts:

T,
mo_ N < -m 2
A (2)
An equilibrium requires a 2 sided taste compatibility. Replacing p™ for the
equivalent expression in equation 2 and more algebra, earns the equilibrium
condition for mixing between groups:

T+ T, >0 (3)

In figures 4 and 5 the matching choices are depicted. Figure 4a shows the
intuition behind the choices, following taste preferences of the m group criminal.
The between group matching condition states that criminal m would prefer any
n criminal above the line defined by T,. For T}, > 0 this includes the 45 degree
line, along which unbiased matching occurs. As it is illustrated, if 73, > 0 then
Pn < Pm, for a positive taste the criminal would be fine with a partner with a
lower ability level than his. For a negative taste, T, < 0, he would match with
a partner from this demographic group only if he is of higher abilityp,, > pn,.

The shaded area in figure 4b depicts the matching choices, where the 2 taste
terms are positive T},, = T}, > 0 and matching sets are compatible®. In this
area, each line parallel to the 45 degree line illustrates a Nash Equilibrium. For
e.g. if all criminals have the strategy to match with someone of equal ability,
anyone deviating would be worse off or not finding a match, like in the unbiased
matching case.

Similarly, in figure 5a I consider the asymmetric case, where the n group
has no taste preferences, while the m group has a positive taste to commit a
crime with them. The Nash Equilibria occur within the shaded area. Finally,
in figure 5b the tastes of the two groups are opposite,—T;,, = T, > 0, and the
unique equilibrium is at p, < p,,. In between these 2 figures is the case where
one group has a negative taste, which is not as big as the positive taste of the
other group, T, > —T;, > 0, earning an equilibrium allocation in the middle
between the 2 lines and, again, p,, < p,,. In this case, the empirical observation
of biases would be a a necessary and sufficient condition for their existence.

Given that T, is demographic group specific, it could be identified from the
observables in the data. If one runs the regression counterpart of equation 2
Pm — Pn on BT, where T denotes the difference in observable trait for the n
partner with respect to m, then its coefficient 8 would be the taste difference
from matching. If 3 is positive, for a criminal from group m (the first in the pair)
matching with a different group n is preferable to matching with his own group,
and empirically p,, > p,. Following the theoretical model, 8 could be 0, and
yet there could be taste preferences in choosing a partner. Finding a matching

5Compatibility as defined by the intersection of the 2 half-planes, defined by the condition
2.
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Tm <0 Pn T,>0

[)'n,
T=0 T=0
Pn > Pm Tm >0 Tm >0
Pn = Pm Ph > Pm
Pn < Pm Pn = Pm
pi’i < p'f?l
p??l
Pm pm Pm p;n > p; ’
(a) Tastes of Group m (b) Positive Tastes
Figure 4: Matching with Tastes
Note: Figure 4a plots the desirable matches from the perspective of the criminal from the m
group. Both in the case of T3, < 0 and T3, > 0 he desires partners from the half-plane above
the lines defined by the taste terms. Figure 4b plots the 2 side desirable matches from the
perspective of both criminals.
Pn T, =0 Pn
Tm >0 Ty =-T,>0
Pn = Pm
p’ri <pNL pn <p7’77/
Pm Pm
Pm Dn < p;” Pm
(a) One Taste (b) Opposite Tastes

Figure 5: Equilibrium Matching

Note: Figure 5a plots the matching set for 2 criminals groups, for which 73, = 0 and 73, > 0.
The equilibrium matching set is the shaded area between the 2 taste lines. Figure 5b plots
the matching set for 7, < 0 and T3, > 0, such that T}, = —T},. In this case the equilibrium
matching set is a line, along which pn, > pn
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allocation outside of the 45 degree line with beta # 0 is a sufficient condition to
say that there are taste preferences, but it is not a necessary statistic.

Ideally, one would want to have several observations over the same criminal
pair in order to pinpoint the fine difference between p,, and p,, in a match. The
lack of such detail in the data is compensated by many observations, that can
relate the systematic differences in the underlying quality of the match to observ-
able traits. Therefore, positive assortative matching characterizes matches in
the criminal market, and systematic differences in ability correlated to matches
between different groups can be referred to taste preferences on observable traits.

4 Empirical strategy

The prediction that p' = p? means that criminals in a pair are of similar quality.
This would be apparent in couples where both criminals were arrested or not
and the observed difference p! — p? = 0. In pairs in which only one criminal got
arrested both of them would be convinced that their quality is similar, but the
realization of arrest could indicate that their probability is different. From the
point of view of the offender both partners face the same probability of getting
caught and arrest is a random realization of policing, not a systematic mistake
due to bias. On the aggregate, I can infer whether these mistakes amount to a
systematic bias correlated to gender.
If the probability of success can be summarized by the empirical equation:

pl=a1 + a1 X as (4)

where the probability of success is an increasing function of the ability of the
criminal a; and a separable crime-specific interaction between his ability and
the one of his partner a; X as, so that, the probability of success is a function of
own and couple incident specific characteristics®. Taking the difference between
the 2 success probabilities would cancel out the crime specific term, so that:

p'—p’ =a1—as (5)
In order to test this I estimate the equation:
pt—p* = (X1 - Xa)B +v (6)

The net difference in characteristics X; — Xo contains the variables white, fe-
male and age. For e.g. white= white; — whitea, where white; and whites
are dummies for white race for criminal 1 and 2 respectively. For a black-

white pair white= 0 — 1 = —1. Given that the order of the criminals within
the pair is randomized, a symmetry of coefficient size is imposed, such that
ﬂwhitel = 7ﬂwhite27~

More formally, under the null Hy : 8 = 0 the difference between the 2
abilities should be 0 on average and not correlated to observables. This would
be equivalent to unbiased matching. Under the alternative H; : 8 # 0, the

6 A general form for this representation is p! = A(a1) + B(a1, az2), where A is an increasing
function of ability and B is symmetric in its arguments.

"The symmetry is present also when estimating as a robustness check a specification with
separate (3’s for the two offenders.
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matching choice is driven by an observable characteristic, therefore, there is a
net difference in taste.

In all the following examples the order of the criminals defines the interpreta-
tion of the independent variables, therefore read “male-female” as first criminal
is male and second criminal is female. Following the theoretical model, the taste
interpretation is from the point of view of the first, male, criminal and the vari-
able that denotes the “switch” of demographic group is the coefficient on X5, or
the negative of the coefficient on a given trait.

The couple incident specific effect is canceled out by taking the difference
in probabilities. This includes distance from law-enforcement agents, number
of policemen on patrol on the day of the crime, crime characteristics and other
traits of the partnership, as well as location specific fixed effects®. Search fric-
tions are presumably not a concern. Shimer & Smith (2003) and Smith (2006)
show that in the presence of frictions the difference in ability should be close to
0, as the null hypothesis predicts.

The dependent variable p! —p? can take the values {—1,0, 1} and has a mean
of zero. Consider the case of a couple with white males. Taking observables
as regressors, would define the perfect match as every match in which both
partners share the same observable characteristics. On one side, the criminals
in this pair will have equal empirical individual p’s (as predicted by observables).
On the other, if they exhibit a difference in ability it will not be correlated to
observables, because there is no variation in them.

Identification would come from pairs with for e.g. a black male and a white
male that would have p! > p?, and a positive dependent variable. The difference
in ability would be correlated to observables, identifying the coefficient on the
variable white. This coefficient would capture the taste matching bias for blacks.
Anticipating the results, a negative coefficient on white would mean that as
the second partner is white the independent variables itself becomes negative,
earning a positive difference between the probabilities of success of the black
and white males. This would mean that black males have a positive taste for
matching with whites, and equivalently, whites have a distaste for matching
with blacks. If white=0, matching is unbiased along this dimension or a bias
cannot be identified.

The first column in table 3 presents the baseline results from the estimation
of equation 6 are presented. The following columns show diverse robustness
checks which will be discussed in the next section. The coefficient on white is
negative, while the coefficient on female is positive. In table 4 the regression
results are presented within the context of the group success means. The first
2 columns denote the unconditional values of p' and p? in the sample. The last
2 columns show the estimated differences, following equation 6.

In male-female groups females have a higher probability of success. The
coefficient on female is positive, and the independent variable is negative, show-
ing that on average females are less likely to get arrested when they are in a
male-female group. The net bias difference is negative®, showing that from the
perspective of the males the taste for forming a group with females is lower than
the taste for other males. Given that this is an equilibrium outcome, females

8Tocation specific fixed effects are included in some of the robustness checks.

9female= female; — femalea, where female; and females are dummies for both partners
for female genders. In this example female=0-1=-1. The variable that denotes the difference
in demographic characteristics is femalea, which enter the equation with a negative sign.
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have a positive taste for matching with males, so that their probability of success
can be lower than the female’s.

Consider the pair of a black male and a black female. For them the de-
pendent variable should be positive, because on average black males face a
higher probability of success than black females, as seen in table 4. Therefore,
Dblackmale — Pblack female > 0 in such a match. However, the coefficient on female

—

is positive meaning that ppiackmale — Pblack femate < 0. Therefore, on average
black females have lower probability of success than black males, but when-
ever they form a cross-gender partnership they are of higher ability. A similar
pattern can be observed in the white male and female pair, where while white
males have a higher likelihood of success, in the observed matches they are of a
lower criminal quality. In other terms, females either have a higher probability
of success than the average of their gender or they accept a male from below the
average and they compensate for the negative bias with a higher success rate.

As already interpreted, in a black-white couple whites are more likely to get
arrested. The estimated coefficient on race is negative, hinting at positive net
bias, such that for blacks the taste for their own group is smaller than the taste
for the whites. Thus, whites do not need to be of similar ability in order to form
a match with blacks.

Finally, the only partnership type of differing race and gender, where both
partners face the same relative probability of success is the one between black
males and white females. On average white females have a much lower average
mean of success, but when they are in a couple with a black they don’t have a
compensating higher probability of success. The net bias is equal to 0, hinting
at either no biases on observables for these matches or the preference for whites
is compensated by the distaste for females, such that partners from these 2
groups match on ability.

The underlying assumptions of the above interpretation are several. The
identification strategy can be stated as follows: under positive assortative match-
ing the differences in the ability measure should be small. If they are explained
by observables, then this is a hint of systematic bias in matching. The assump-
tion of the interpretation of arrest as a predictor of criminal ability is based on
anecdotal evidence according to which criminals of higher ability are the ones
that do not get caught. Unfortunately, this cannot be tested with present data
to the best of my knowledge.

Second assumption is that both partners face an equal probability of arrest,
conditional on the incident. In other terms, police exerts equal effort to catch
each partner. If this were not the case, then the above results would be inter-
preted also with respect to police effort. However, this would mean that the
police are more eager to arrest the male in a male-female pair and the white in
a black and white pair. I know of no evidence for this case.

Third, regression results might pick up unobservable characteristics that
are systematically correlated to the difference in observable ones and define
the preferences for criminal partners. The case of bias related to observable
characteristics rests, but the broader implications of differing criminal ability
between groups could rationalize the case for selective general policing.
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5 Robustness checks

In this section I present some robustness checks. First, in column 2 of table 3
I present estimates with interacted fixed effects for year and reporting agency.
Results remain the same, consistent with notion that location crime specific ef-
fects are canceled out in the differencing of the successes between the 2 partners.
Second, measurement error for non-arrested couples could impact the estimates,
because of reporting bias. In order to assess this issue, I exclude them from the
sample and estimate again equation 6. The results are presented in column 3 of
table 3. Coefficients do not change in sign, but they increase in absolute terms.
This could be due to two reasons: either the measurement error attenuates es-
timates, or, in this way I exclude the group of criminals that were less likely to
select one another on observable characteristics.

In column 4 of table 3 I show that monetary return does not matter for the
choice of a partner, by including it as a covariate. In other words, the size of
the stolen loot does not seem to predict differential matching. In column 5 the
sample is limited to partnerships whose members are older than 29 years. These
offenders are more experiences and the quality of the pairing should be better.
Yet, there is a persistent negative effect for whites. In column 6 the sample is
limited to those crimes that were reported to have occurred in daylight hours,
between 8 and 19. This check minimizes the reporting bias due to the cloak
of the night. In these crimes at least one of the offenders was arrested (thus,
subsample of the sample in column 3) and results are similar in magnitude to
the ones in column 3, but different in size.

One of the channels of relaxing search frictions in the crime market is to
search for partners within the own gang. In column 1 of table 5 I control for
gang affiliation, which would ease the formation of partnerships and it does
not change results. The variable for gang is significant at the 5% level. The
negative coefficient shows that in matches of non-gang and gang members, the
gang ones are more likely to get arrested. This could be either due to inherent
differences between individual criminals and criminals from gangs, where the
former are less likely to get arrested, or, law-enforcement has an easier access
to gangsters due to for e.g. informants. In column 2 I include the full choice
set of races and results remain the same and none of them significantly different
from the black reference category. In column 3 I control for same offense -
if criminals commit the same offense they would be better able to judge one
another. However, results remain the same. In order to partially disentangle
learning from all reasons for matching, I restrict the sample by the age differences
between 2 offenders. In column 4 of table 5 the sample is restricted to only those
pairs whose age difference within is less than 5 years'®. For the first time the
age variable shows a significant direction, hinting that older offenders are less
successful, while the coefficient on race is lower. This is consistent with a bias
for older partners, where they turn out to have a lower ability than the younger
one and they enjoy a bias premium in their favour. This age effect could be also
due to strategic policing, especially when both offenders are young and the older
one is considered to be the “bad influence”, or, because the older offender is more
likely to have a file with the police. In column 5 I exclude observations from a
given agency-year in which the observed partnerships were only between blacks

10The choice of age gap is arbitrary, but representative of the results that the reader can
find in the appendix for different gaps.
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or between males. Such a criminal market would suffer from non availability of
other partners and the results remain the same, given that identification comes
from the pairs with differing observables. In column 6 I aggregate the agencies
into cities and control for city-year fixed effects. The results remain robust
throughout all specifications.

Disaggregating the results by crime types in table 6 shows that the effect
for whites is observed in shop-lifting, theft from building and robberies. The
effect for females is driven by thefts from and of motor vehicles, burglaries,
robberies and other larceny and stolen property offenses. Surprisingly, there is
barely an effect for females in shoplifting, a crime traditionally associated with
their gender. This could be either due to the fact that most matches in this
crime sector are between females, or there is just no negative bias for females,
consistent with their associated reputation. In shoplifting and robberies age is
an asset, while in car theft it is a liability.

Further on, in the appendix one can find robustness checks extending columns
4 and 5 from table 5 and results from multinomial logit estimation of equation
6, as well as, separating the coefficients for the 2 criminals.

6 Conclusion

This paper analyzes partnerships among criminals and provides evidence for
discriminatory bias in matching. I develop a model that predicts patterns of
positive assortative matching on criminal ability. Arrest realizations allow me to
pinpoint matches in which ability differs. Whenever only one of two partners got
arrested this might hint on there being a difference with the criminal skills of the
partners. If this difference is correlated to observable characteristics this might
be evidence for a discriminatory bias. For example if in a group of two white
males one gets arrested the difference between them would not be correlated to
observable characteristics. However, if in a group between a black and white
male the white one is more likely to get arrested, then the ability difference is
related to the skin colour.

Therefore, I identify biases based on observable characteristics from the en-
dogenous decision with whom to match. Discrimination is observed whenever
one partner differs from another in an observable characteristic and faces a
different probability success. In the case of gender, whenever females form a
partnership with males they face a lower probability of arrest than males. Tak-
ing this together with the observation that on average females face a higher
probability of arrest than males, means that in male-female matches females
are either of a higher criminal ability than their average or males are of a lower
criminal ability than their average. This is consistent with females undervaluing
their ability (or males overvaluing theirs). Thus, males get a match premium
that compensates for a taste disutility they incur, or, females have a taste for
matching with males.

I make a similar observation on blacks, who despite having a higher success
average, even when they form a partnership with whites they still face a higher
success probability. Given assortative matching, this is consistent with black
undervaluing their ability and having a positive taste for working with whites.
For whites the reverse is true, they might exercise a negative taste for blacks.
The grounds for this specific criminal preference could be rooted in the percep-
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tion that blacks are more likely to get stopped for general checks by the police,
although in the data I find evidence that blacks are less likely to get arrested
than whites.

Additionally, I find that these biases persist with age, but the discriminatory
one on gender diminishes hinting at the hypothesis of statistical discrimination
between males and females. I find an additional discriminatory bias between
peers of similar ages, where if a 20 year old criminal forms a partnership with
a 17 years old one, then he faces a higher likelihood of arrest. This hints at a
pattern where the younger one compensates for his age with a higher ability.
Other robustness checks include limiting the analysis to criminal market with
demographically diverse offender pool and controlling for measurement errors
by considering only couples where at least one person was arrested or the crime
was commited in broad daylight.

This paper links assortative matching with discrimination in a novel empir-
ical design. It makes a first step in describing matching patterns in the illegal
criminal market, linking the crime literature with the literature on assortative
matching and discrimination. As an implication this paper offers a perspective
into the creation of an organized criminal group, where there is a similar incen-
tive in matching on the probability of success. While the application is novel, it
creates a niche to describe the process of forming a successful group and, thus,
for law-enforcement to exploit matching frictions in reducing the crime rate.
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Table 3: Matching patterns

(1) (2) 3) (4) (5) (6)
p'—p> p—-p* p-p p-p p-p p' -1’
White -0.004%**  _0.005%*%*  -0.010***  -0.006*%** -0.008*** -0.013%**
(0.001)  (0.001)  (0.003)  (0.001)  (0.003) (0.004)
Female 0.007*%%*  0.007%**  0.017***  0.006*** 0.002 0.012%**
(0.001) (0.001) (0.002) (0.001) (0.001) (0.003)
Age -0.000 -0.000 -0.000 -0.000 -0.000** -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Log(loot) 0.000
(0.000)
Constant -0.000 -0.000*** -0.001 -0.002 0.000 -0.001
(0.000) (0.000) (0.001) (0.001) (0.001) (0.001)
Observations 928,636 928,636 422,377 847,121 187,617 239,547
R-squared 0.000 0.020 0.000 0.000 0.000 0.000
Year*Agency FE - b'e - - - -
Sample Only
Restriction: Arrested Loot Age>30 T7<Hour<20
Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Errors

clustered at the reporting agency level. The top of the column shows the dependent variable.
Estimation through OLS, it includes interacted year and agency fixed effects where noted

with “x”.

Table 4: Differences table

Unconditional success means

Regression results

Type of Couple phx P2 pqz Standard Error
Black Male-Black Male 0.717 0.717

Black Male-Black Female 0.717 0.519 -0.007%** 0.001
Black Male-White Male 0.717 0.600 0.005%*** 0.001
Black Male-White Female 0.717 0.508 0.003 0.002
Black Female-Black Female 0.518 0.519

Black Female-White Male 0.518 0.600 0.012%** 0.002
Black Female-White Female  0.518 0.508 0.005*** 0.001
White Male-White Male 0.600 0.600

White Male-White Female 0.600 0.508 -0.007*** 0.001
White Female-White Female 0.507 0.508

Notes: pls and p2x denote the unconditional probabilities of success. p! and p? denote the

probabilities of success, condit
mean of the difference p! — p2.

ional on partner. “s.e.”
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Table 5: Robustness checks

1 2) ®3) (4) (%) (6)
Pt —p? Pl —p? Pt —p? Pt —p? Pt —p? Pt —p?
White -0.004***  -0.004**¥*  -0.004*** -0.003** -0.004%%* -0.005%**
(0.001)  (0.001)  (0.001) (0.002) (0.001) (0.001)
Female 0.007*%**  0.007***  0.006*** 0.006%** 0.007*** 0.007***
(0.001)  (0.001)  (0.001) (0.001) (0.001) (0.001)
Age -0.000 0.000 -0.000 -0.002%** -0.000 -0.000
(0.000)  (0.000)  (0.000) (0.001) (0.000) (0.000)
Gang  -0.006**
(0.003)
Indian Race -0.004
(0.006)
Asian Race 0.001
(0.006)
Constant -0.000 -0.000 -0.001* -0.000 -0.000 -0.000%**
(0.000)  (0.000)  (0.000) (0.000) (0.000) (0.000)
Observations 928,636 945,176 787,282 648,279 924,137 928,636
R-squared 0.000 0.000 0.000 0.000 0.000 0.017
Year*Agency - - - - -
Year*City X
Sample Same Agency
Restriction: Offense  Age Gap<5 index € (0,1)

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Errors
clustered at the reporting agency level. The top of the column shows the dependent variable.
Estimation includes interacted year agency fixed effects where noted. In column 5 the sample
includes agencies that are heterogeneous in at least one dimension between gender and race.
Column 6 includes interacted year city fixed effects instead of year-agency.
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Table 6: Results by Crime Type

(4

UCR Code Crime White Female Age Constant Observations  R-squared
200 Arson 20021 (0.022) 0017  (0.013)  0.001  (0.001) 0.011%  (0.006) 4,337 0.001
231 Pocket-picking -0.001 (0.022) 0.006 (0.011) 0.001 (0.001) 0.006 (0.006) 1,790 0.001
232 Purse-snatching 0.004 (0.017)  -0.007  (0.011) -0.002 (0.001) -0.000 (0.006) 2,863 0.001
233 Shoplifting -0.009***  (0.003)  -0.003*  (0.002) -0.001*** (0.000) -0.001 (0.001) 260,302 0.000
234 Theft from Building -0.011%*  (0.004) 0.002 (0.002) 0.000* (0.000) 0.001 (0.001) 66,485 0.000
235 Theft from Coin-Operated Machine — -0.073 (0.045) 0.066 (0.041) -0.001 (0.001) 0.002 (0.006) 2,499 0.013
236 Theft from/of Motor Vehicle 0.003 (0.006)  0.019%**  (0.004)  0.001***  (0.000) -0.003**  (0.001) 53,866 0.001
237 Parts -0.009 (0.011)  0.031%**  (0.010) -0.000 (0.001) 0.000 (0.003) 12,464 0.001
238 All Other Larceny -0.005%  (0.003)  0.005%%* (0.001) 0.000%** (0.000)  -0.000  (0.001) 166,734 0.000
240 Motor Vehicle Theft 0.013* (0.007)  0.026*%**  (0.004)  0.001***  (0.000) 0.001 (0.002) 47,494 0.002
220 Burglary -0.003 (0.003)  0.017***  (0.002) -0.000 (0.000) -0.001 (0.001) 142,193 0.001
120 Robbery -0.008**  (0.003) 0.019%**  (0.004) -0.001*** (0.000) -0.000 (0.001) 101,160 0.001
280 Stolen Property Offenses 0.013 (0.010)  0.019*** (0.005)  0.001**  (0.000) -0.001 (0.003) 15,003 0.001




A Specification
The regression specification in the main text is:
Pl =P =a+ By (W= W?) + Bp(F' — F) + B (A =A%) +e  (7)

where 1 and 2 refer to the order of the criminals in the partnership. W is
an indicator variable for skin colour, F is an indicator variable for the female
gender. A is age, measured in years. The outcome variable p! —p? € {—1,0,1}.
The first 2 columns of table A.1 repeat the results from table 3 from the main
text. The first column shows the baseline results with no fixed effects, the
second with fixed effects. The last 2 columns show the estimation results for a
multinomial logit model with base outcome 0 and no fixed effects,. The results
are in line with the ones in the first 2 columns and the marginal effect follow
the pattern of the signs of the coefficients in OLS. For e.g. the marginal effect
for white is positive (.0025) for the relative outcome of p? > p! with respect to
p? = p'. Therefore, in the situation of the first criminal becoming white (very
hypothetical), while the second is black, there is an increased likelihood that
p* >ph.
The alternative specification considered in this section is:

Pl =1 =+ B, W+ BIW? + BiF + BFF? + LA + B3A% + €

where ! = —B2 by construction. This symmetry condition is sensitive to
the random order of criminals within a couple. However, when taking several
random orders and taking the mean estimates, it seems that the mean estimate
for white is 0.004 and for female 0.007, both significant. Table A.2 presents the
results. The first column shows estimates with no fixed effects and column 2
shows that the point estimates do not change with the inclusion of location-year
specific fixed effects.

Considering a black male and female couple, the dependent variable becomes
negative, showing that the probability of success of the female is higher than
that of the male. Similarly, in a male white and black couple the probability of
success of the white criminal is lower than that of the black. These results are in
line with the results in the main text. The last 2 columns show the estimation
results for a multinomial logit model. They are in line with the results in the
previous column. For e.g. the marginal effect for the variable White 2 for a
positive outcome variable is positive (0.003). When the second person in the
pair is white it is more likely that the probability of success of the first black
male is bigger than the probability of success of the second white male. The
marginal effect for the second criminal to be a female is -0.005. Only the variable
for age seems to show different results than in the previous specifications, the
marginal effect for age of both criminals is positive ( .00018 to .00022) for both
relative outcomes.

B Further Robustness Checks
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Table A.1: Multinomial Logit Estimates

(1) (2) (3)
pt—p*  p'—p* p'=p?
OLS OLS -1 1
White 0.004%F% _0.005%**F  0.044%*F  _0.032%*
(0.001) (0.001) (0.018) (0.015)
Female 0.007%F%  0.007%%*F  _0.070%**%  (.057%%*
(0.001) (0.001) (0.011) (0.011)
Age -0.000 -0.000 0.000 0.000
(0.000) (0.000) (0.001) (0.001)
Constant 20.000  -0.000%F% 274Kk 9 7ogk

(0.000)  (0.000)  (0.024)  (0.024)

Observations 928,636 928,636 928,636 928,636
R-squared 0.000 0.020
Year*Agency FE - X - -

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Errors
clustered at the reporting agency level. The top of the column shows the dependent variable.
The first 2 columns repeat the results from table 3. The third and fourth column show the

results of a multinomial logit model estimation with base outcome 0.
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Table A.2: Results with a Different Specification

(1) (2) (3)
pt—p*  pt—p* p'—p?
OLS OLS -1 1

Criminal 1
White -0.004***  -0.004***  0.057** -0.009
(0.001) (0.002) (0.025) (0.023)
Female 0.008***  0.008***  -0.114*** 0.020
(0.001) (0.001) (0.025) (0.020)
Age 0.000 0.000 0.004***  0.005%**
(0.000) (0.000) (0.001) (0.001)

Criminal 2
White  0.005%**  0.005*** -0.031 0.056**
(0.001) (0.001) (0.027) (0.024)
Female -0.007*** -0.007*** 0.023 -0.093***
(0.001) (0.001) (0.023) (0.027)

Age  0.000 0.000  0.004%%*  (.004%%*
(0.000)  (0.000)  (0.001)  (0.001)
Constant  -0.002% 0.002  -2.922%F% 2. 9G1***

(0.001)  (0.001)  (0.061)  (0.058)

Observations 928,636 928,636 928,636 928,636
R-squared 0.000 0.020
Year*Agency FE - X - -
Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Errors
clustered at the reporting agency level. The top of the column shows the dependent variable.

The first 2 columns should match the results from table 3. The third and fourth column
show the results of a multinomial logit model estimation with base outcome 0.

Table B.1: Varying Market Heterogeneity

RO @ RS A RC ©
p =P p =P p =P p =P p =P p =P
White -0.004%**% _0.004***  -0.004***  -0.005%** -0.004** -0.005
(0.001) (0.001) (0.001) (0.001) (0.002) (0.004)
Female 0.007*%%  0.007***  0.007*** 0.008*** 0.008***  (.019%**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.003)
Age -0.000 -0.000 -0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Constant -0.000 -0.000 -0.000 -0.000 -0.000 -0.002*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001)
Observations 863,064 924,137 910,933 836,572 464,286 234,055
R-squared 0.000 0.000 0.000 0.000 0.000 0.000
Sample No homo- Resident
Restriction: geneity
Agency index: €(0,1) € (p1,p99) € (p5,p95) € (p25,pT5)
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Table B.2: Varying Ages

Q) 2 () 4) (5) (6)
p'—p? pt—p*  p-p*  p'-p*  p—p? p—p°
White -0.003** -0.003* -0.004** -0.003* -0.006%** -0.004%**
(0.002) (0.002)  (0.002)  (0.002)  (0.002) (0.001)
Female 0.006%*** 0.007***  0.007***  0.008%**  0.006*** 0.007***
(0.001) (0.001)  (0.001)  (0.001)  (0.001) (0.001)
Age -0.002%** -0.003***  -0.005%**  -0.007***
(0.001) (0.001)  (0.001)  (0.001)
Constant -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000)  (0.000)  (0.000)  (0.001) (0.000)
Observations 648,279 599,359 530,101 427588 262,757 928,636
R-squared 0.000 0.000 0.000 0.000 0.000 0.000
Sample Restriction: Age Gap<5 4 3 2 1 Age Dummies
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