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Abstract

We analyze the tax evasion problem with social interaction among the tax-

payers. If the authority commits to a fixed auditing probability, a positive

share of cheating is obtained in equilibrium. This stands in contrast to the

existing literature, which yields full compliance of audited taxpayers who are

rational and thus do not need to interact. When the authority adjusts the au-

diting probability every period, cycling in cheating-auditing occurs. Thus, the

real life phenomenon of compliance fluctuations is explained within the model

rather than by exogenous parameter shifts. Our analysis can also be applied

to crime, safety regulations, employment and environmental protection, as well

as other compliance problems.

JEL Classification: C79, D83, H26, K42
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1 Introduction

The magnitude and importance of the shadow sector is hard to overestimate. Just to

mention one case, the official estimate of the informal GDP for Russia is about 1/3

∗I am grateful to Chaim Fershtman, Rick van der Ploeg, Ronny Razin and Karl Schlag, as well

as seminar participants at UPF, EUI, Salerno and Tel Aviv Universities for valuable comments.
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of formal GDP in the recent years1. A fundamental aspect of the informal activities

is tax evasion, which is usually defined as an effort to lower one’s tax liability in a

way prohibited by law. The present paper focuses on this phenomenon, though tax

avoidance and criminal activities can be analyzed in the same vein.

Most of the tax evasion literature to date is devoted to the income tax evasion.

Such attention can be partially attributed to the existence of relatively reliable data

on this matter (Tax Compliance Measurement Program (TCMP) in the US). Another

reason might be tradition founded by the seminal model of Allingham and Sandmo

(1972).

A detailed survey of the literature on income tax evasion can be found in An-

dreoni, Erard and Feinstein (1998). They identify two directions in the modeling of

the strategic interaction between taxpayers and tax authorities: the principal-agent

approach (e.g., Sanchez and Sobel (1993)) and the game theoretic approach (e.g.,

Reinganum and Wilde (1986), Erard and Feinstein (1994), Peter Bardsley (1997),

Waly Wane (2000)). Both approaches treat the taxpayers as a single player maximiz-

ing her expected payoff from cheating. In particular, there is no direct interaction

among the taxpayers in the literature we are aware of. In reality however a taxpayer is

not an isolated decision maker; rather, she lives in a society and constantly interacts

with other taxpayers.

This paper aims at characterizing the play in evasion game, when the taxpayers

are boundedly rational and there is social interaction among them. Our taxpayers use

a simple behavioral rule, and they decide whether to cheat or not cheat depending on

the previous period behavior of themselves and of those whom they meet. This can

be contrasted with more rational Bayesian updating, for instance when the agents

have priors on the probability distribution of the auditing intensity and learn more

about this distribution through their own play and interaction with others.

Our model is consistent with a number of stylized facts about evasion. First, in

reality taxpayers possess poor knowledge of the audit rules, usually overestimating

the probability of audit (Andreoni et al. 1998, pp. 844, 845). Accordingly, in our

model they do not necessarily know it, but rather implicitly over- or underestimate

it. When the number of interacting people is large, this setting also accounts for

indirect channels of information transmission, such as media. Second, another feature

1A summary of attempts to estimate the size of tax evasion, avoidance and other informal ac-

tivities is given in Schneider and Enste (2000). The results vary a lot with method and country

considered; one common finding is that the shadow sector is growing over time.
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of reality - the heterogeneity of information that taxpayers possess - is reflected in

the initial distribution of choices between cheating and not cheating. Presumably,

more informed taxpayers take the action that brings about higher expected payoff.

Third, the-real world tax authority acts in a substantially different manner than an

individual taxpayer. This organization has resources and incentives to gather a lot of

the information, whereas every individual prefers not to incur the costs of information

collection. The model reflects this asymmetry directly: the tax authority is updating

its belief about the distribution of the taxpayers and accordinly adjusts it policy to

maximize its revenue, whereas each of the taxpayers just follows a simple rule, being it

imitation, learning, or payoff maximization. Fourth, tax evasion is an intertemporal

decision, as claimed, for example, by the Engel and Hines’ study (1999). In our

framework the individuals have one-period memory that allows them to choose a

strategy tomorrow on the basis of today’s observation of the behavior of the others

and their own. As the income reporting is a rare (annual) event, short memory can

be a plausible assumption2.

These four features are incorporated into a simple tax evasion model with an

infinite taxpayer population and two income levels. We consider a large class of

behavioral rules, including scenarios that vary according to the information taxpayers

possess and their attitude towards punishment. At one extreme, taxpayers interacting

in a small group know each other’s income and evasion decision. At the other extreme,

taxpayers interact in a large group, only observing caught evaders.

The main result of the model is the cycling dynamics of auditing and compliance.

With non-committed tax authority, both the share of evading taxpayers and the

auditing intensity of tax authority exhibit fluctuations giving rise to stable cycles.

The system is cycling around an unstable steady state, in which the share of cheaters

is the same as in the Nash equilibrium of the one-shot game, whereas the auditing

probability is not related to its Nash equilibrium value. This happens because in

the game the cheating is effectively determined by the rationality of tax authority,

whereas the intensity of auditing is actually established by the learning rule and

parameters of the game.

From the dynamics generated we can see that in presence of boundedly rational

agents the equilibrium play does not actually occur. Therefore, the dynamics is

2A longer memory is in a sense the same as observing a larger number of agents and thus it can

not alter the main qualitative findings.
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necessary to be taken into account in order to make accurate inference about the

welfare effects of various policies. The estimation of such effects, however, requires

calibration of the parameters of the model, which is a separate issue.

Our model offers one potential explanation for a number of stylized facts. Firstly,

non-zero cheating of audited taxpayers is obtained for the commitment case, which is

certainly more plausible than the absolute honesty of the most of the principle-agent

models (for example, Sanchez and Sobel 1993, Andreoni et al.1998). Secondly, in the

non-commitment case, the following features of dynamics are explained: decreasing

compliance (Graetz, Reinganum and Wilde 1986) and auditing probability (Dubin,

Graetz and Wilde 1990, Adreoni at al. 1998, p.820) observed in the US in the second

half of XX century. These patterns could not be explained by the literature to date

since only static models have been used.

Additionally, an alternative explanation for the puzzle of too much compliance is

offered. It is largely discussed in the literature that people comply much more than

a simple lottery model of evasion predicts. Our results suggest that the reason might

not be the presence of intrinsically honest taxpayers3, but the fact that the system

is far from the equilibrium. This is best illustrated in the commitment case: if the

share of cheating taxpayers is converging to its equilibrium value from below, it looks

as if taxpayers are cheating too little.

Our results are robust to a number of modifications. Firstly, more risk-averse

taxpayers are equivalent to stricter learning rules. Secondly, with any finite number

of income levels the dynamic patterns are preserved. Thirdly, the particular form of

the learning rule does not matter for the most of qualitative features. Overall, it is

only the bounded rationality of the taxpayers that is crucial for our results.

The rest of the paper is organized in the following way. Section 2 contains an

outline of a simple static evasion game. A repeated version of this game with so-

cial interaction is analyzed in section 3, where we first state general results and then

consider various learning rules and a numerical example. In section 4 we discuss ap-

plicability of our results to compliance problems other than tax evasion. Limitations

of the model and possible extensions are mentioned in the concluding section.

3This is how the puzzle is usually resolved (for references see, e.g., Slemrod (2000)).
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2 The model

2.1 A simple one-shot game

As a starting point for modeling the dynamics of evasion we take a simple one-shot

game of tax evasion, based on Graetz, Reinganum and Wilde (1986). Intrinsically

honest taxpayers (who can not evade for moral reasons) are eliminated from that

model, as their presence does not change the results in the given setup. The timing

is as follows:

1. The nature chooses income for each individual from two levels, high H with

probability γ and low L with probability 1− γ;

2. Taxpayers report their income, choosing whether to evade or not;

3. Tax agency decides whether to audit or not.

It is obvious, that low income people never choose to evade, because they are

audited for sure, if they report anything lower than L. At the same time, the high

income people can evade, since with a report L the tax agency does not know, whether

it faces a truthful report by a lower income taxpayer, or cheating from the higher

income ones. The tax authority will never audit high income reports. Then the game

simplifies to the one between higher income people and the tax agency:

audit not audit

cheat (1− t)H − st(H − L), tH + st(H − L)− c H − tL, tL

not cheat (1− t)H, tH − c (1− t)H, tH

where t is the income tax rate, s is the surcharge rate that determines fine for the

amount of tax evaded, c is the audit cost; all these parameters are assumed to be

constant and exogenously given for the tax-raising body4.

It has been shown that under some mild parameter restrictions there is a unique

mixed strategy Nash equilibrium
¡
qNE, pNE

¢
with

qNE =
1− γ

γ

c

t(1 + s)(H − L)− c
, pNE =

1

1 + s
. (1)

Simple comparative statics shows that auditing probability is decreasing in fine;

evasion is increasing in costs of auditing and decreasing with fine, tax rate, income

4Endogenous determination of tax and penalty rate is an interesting task, but it constitutes the

problem of a government rather than a tax authority. Moreover, it has been largely discussed in the

literature, see, for example, Cowell (1990).
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differential and share of high income people. Among other things, we have implicitly

assumed here linear tax and penalty schemes, risk neutral individuals, and linear cost

function for the tax authority. Even with such strong assumptions, repeated social

interaction changes the predictions drastically.

2.2 Repeated social interaction

The importance of social interaction has for a long time been realized in economic

profession. This, however, has not resulted in plethora of rigorous studies, as, on

one hand, considering social interaction theoretically was too demanding in terms of

computations due to intrinsic complexity of the matter; on the other hand, empirical

studies on the topic are in most cases prohibitive due to simultaneity and reflection

biases, as it is nicely outlined in Manski (2000). His paper actually provides a de-

scription of the state of the arts in the field of social interaction on the most general

level.

According to Manski, interaction may occur in constraints, expectations, or pref-

erences, as admittedly does everything in modern economics. Our paper considers

constraint interaction: the constraint is the total taxable income raised by the tax-

payers. More interestingly, the paper contains expectations interaction in the form of

imitation by taxpayers. The preferences interaction occurs, if we allow the learning

rules to be shaped endogenously, e.g. under the influence of social stigma.

Now consider the game presented in the previous section played every period from

0 to infinity. The populations of high income and low income taxpayers are infinite

size with measures of γ and 1 − γ respectively, and this is a common knowledge.

The true income of each taxpayer in a match is known to interacting taxpayers, but

unknown to tax authority. The proportion qτ of high income population is cheating by

reporting low income at time τ . The agency is auditing the low income reports with

probability pτ , which is its private knowledge. Between the rounds the tax agency

updates its belief about the distribution of taxpayers over cheating and not cheating,

the high income agents are following a behavioral rule, potentially learning whose

strategy performs better.

At time τ there are the following types of high income taxpayers: (i) honest,

comprising proportion 1− qτ of population and receiving payoff (1− t)H; (ii) caught

cheating, qτpτ of population with payoff (1− t)H − st(H −L); (iii) not caught cheat-

ing, qτ(1−pτ) of population with payoff H− tL. The tax agency is maximizing either
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its long-run expected revenue by choosing auditing probability for all periods (com-

mitment), or its expected revenue in the next period by choosing auditing probability

for the next period (no commitment).

Note that we can not take a ready aggregate dynamics for the population of

taxpayers because of the asymmetric nature of the players: in the no commitment

case the tax authority is using myopic best response, whereas taxpayers imitate each

other. Without such asymmetry, our game resembles emulation dynamics as it is

defined by Fudenberg and Levine (1998), which is known to converge to replicator

dynamics under some assumptions. However, these assumptions are not satisfied in

our setup: most strikingly, each individual communicates with more than one other.

Our aggregate dynamics thus does not converge to replicator dynamics and has to be

derived for each imitation rule.

In our framework a behavioral rule for n people meeting5 between the stages

is a mapping from a set of outcomes yesterday X = {honest audited, honest not

audited, caught cheating, not caught cheating}n into the set of actions today Y =

{honest, cheating}. We only consider deterministic rules, so this mapping is a func-

tion. The evolution of the share of noncompliant taxpayers can be generally repre-

sented as

qτ+1 = qτ + f(qτ , pτ). (2)

The learning rule will shape the function f(q, p) : [0, 1] 2 → [−1, 1]. In the appendix
it is shown that this function is a polynomial of the order at most n in each of

the arguments, and hence continuous. We shall call the behavioral rules that imply

fq(q, p) < 0 stabilizing, as the larger the share of noncompliance, the slower it is

growing. Correspondingly, the rules with fq(q, p) > 0 will be called destabilizing. The

rules with fq(q, p) = 0 will be called monotonic, as they imply monotonic dynamics

for any feasible p, q.

Define q̂ (p) : [0, 1] → [0, 1] as a function that maps a set of possible auditing

probabilities into a set of long-run outcomes of non-compliance shares, lim
τ→∞

qτ , given

q0 ∈ (0, 1). Define also q̄ (p) : P → (0, 1) as a function that maps the set of auditing

probabilities P into the set of interior steady state values of non-compliance shares. In

other words, q̄ (p) is an interior solution to the steady state condition: f(q̄ (p) , p) = 0.

5Note that observing a proportion of the others in our setup does not make much sense, unless

this proportion is infinitely small. The problem is that if a proportion of the whole population is

met, a rule can condition the behavior on the own type of an agent, so paradoxically there is no

social interaction.
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For both q̂ (p) , q̄ (p) to be single-valued, we need to restrict our attention to the rules

that produce a unique interior steady state. This will be true for almost all 2-person

rules, all 3-person imitation rules, and many other rules with arbitrary number of

interacting people.

The following assumptions seem reasonable and will be kept for the rest of the

paper:

Assumption 1. q̄0 (p) < 0. Noncompliance is decreasing in detection, as otherwise

the punishment is not perceived as such by imitation rule. We do not want to

consider the rules that imply that our agents enjoy the fines.

Assumption 2. μ < 1 + s, or c < (1 + s) t(H − L). Otherwise the auditing is so

wasteful that its costs are always higher than the benefits, so the tax authority

will never audit.

The following proposition describes the evolution of the share of cheating taxpay-

ers.

Proposition 1. Consider the dynamics of the share of evaders q for a behavioral

rule that satisfies the assumption 1. For a stabilizing rule,

if pτ ∈ [0, q̄−1 (1)], then qτ+1 > qτ ;

if pτ ∈ [q̄−1 (0) , 1], then qτ+1 < qτ ;

if pτ ∈ (q̄−1 (1) , q̄−1 (0)), then qτ < q̄ (pτ) =⇒ qτ+1 > qτ , qτ > q̄ (pτ ) =⇒ qτ+1 <

qτ .

For a destabilizing rule the inequalities are reversed.

Proof. We shall prove the statement for the stabilizing rules, as it is completely

analogous for the destabilizing ones. From (2) qτ+1 > qτ ⇐⇒ f(qτ , pτ) > 0. For

an interior solution ( pτ ∈ (q̄−1 (1) , q̄−1 (0))) we have qτ < q̄ (pτ) =⇒ f(qτ , pτ) >

f(q̄ (pτ) , pτ ) = 0, since fq(q, p) < 0 (the rule is stabilizing). Correspondingly,

qτ > q̄ (pτ ) =⇒ f(qτ , pτ) < 0 ⇐⇒ qτ+1 < qτ . For a corner solution q̂ (p) ∈
{0, 1}. As fq(q, p) < 0, either f(0, p) < 0 and qτ+1 < qτ , or f(1, p) > 0

and qτ+1 > qτ . Fix q ∈ (0, 1). For p|q̄−1 (1) ≤ p < q̄ (q) , f(q, p) > 0. By

continuity ∃ε > 0|f(q, p − ε) > 0. Now suppose ∃p < q̄−1 (1) , q|f(q, p) < 0.

Then ∃p0 < q̄−1 (1) , q0|f(q0, p0) = 0 that contradicts corner solution. Thus,

f(q, p) > 0. The proof for pτ ∈ [q̄−1 (0) , 1] follows the same lines.
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We can see that for stabilizing rules with small (large) values of auditing probabil-

ity the cheating is increasing (decreasing). Unexpectedly, in the interval of auditing

probability values that result in interior solution, the change in the proportion of non-

compliant taxpayers is negatively related to their number. This ”anti-scale” effect is

explained by the high enough detection probability, for which the caught cheaters

contribute more to the increase of proportion of the honest, than the honest them-

selves.

The following remark will allow us to get a better feeling about the dynamic

generated by the rules:

Remark 1. Iff a behavioral rule is stabilizing and ∃q̄ (p) , |f (q, p)| < |q − q̄ (p)|∀q,
then for a fixed detection probability p the share of non-compliant taxpayers q

is monotonically converging to q̄ (p).

Remark 2. If a behavioral rule is stabilizing and ∃q̄ (p) , |f (q, p)| < |f (q + f (q, p) , p)|∀q,
then for a fixed detection probability p the share of non-compliant taxpayers q

is converging to q̄ (p).

The latter remark is a familiar contraction mapping; both remarks say that if the

dynamics does not jump too vividly from period to period, it has to exhibit some

convergence.

As for the tax authority, it maximizes its expected net revenue for any given

learning rule in the population. Further we consider two cases for the behavior of tax

authority. If it is unable to announce its auditing probability and keep it forever, we

are in the "game theoretic" framework, and the our dynamics has two dimensions:

already derived one for q and another one for p. We start, however, with a more

simple case, when the auditors can credibly commit to a certain constant in time

strategy (probability), and hence the dynamics is collapsing to one dimension.

2.2.1 Commitment

Assume that the authority commits to a certain auditing probability p once and

forever (this corresponds to the principle-agent framework defined by Andreoni et

al., 1998). This setup may seem unrealistic, but we have at least three reasons to

consider it. Firstly, there is a well established tradition in the literature that deals with

committed tax authority. Secondly, if the authority could choose whether to commit

or not, it would commit, as this allows for a higher payoff. Thirdly, commitment
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models are usually criticized due to the standard result of full honesty of audited

taxpayers. As it will be clear from our results, such criticism does not apply in our

framework.

Under commitment, the tax authority chooses p to maximize its steady state

payoff

γ(1− q̂(p))tH + p(q̂(p)γ(tH + st(H − L)) + (1− γ)tL)

−cp(q̂(p)γ + 1− γ) + (1− p)(q̂(p)γ + 1− γ)tL,

where a function q̂ (p) : [0, 1] → [0, 1] maps a set of possible auditing probabilities

into a set of long-run outcomes of non-compliance shares, lim
τ→∞

qτ .

The corresponding first order condition for interior solution is conveniently written

as

q̄ (p∗) + p∗q̄0 (p∗) =
q0 (p∗) + μ1−γ

γ

1 + s− μ
, (3)

where

μ :=
c

t(H − L)
. (4)

The condition (3) is a familiar equality of marginal expected benefit (left hand

side) and marginal expected cost (right hand side) of auditing an additional taxpayer.

The second order condition is then

2q̄0 (p∗) + p∗q̄00 (p∗) <
q̄00 (p∗)

1 + s− μ
,

where the notation is q̄ = q̄ (p∗) , q̄0 = q̄0 (p∗) , q̄00 = q̄00 (p∗). We keep this notation

henceforth. We define D := q̄00 − (1 + s− μ) (2q̄0 + p∗q̄00). Note that D ≥ 0 at the
maximum, if μ < 1 + s.

The comparative statics for the interior solution6 gives the following relations:

dp∗

ds
=

q̄ + p∗q̄0

D
; (5)

dp∗

dμ
= −

q̄ + p∗q̄0 + 1
γ
− 1

D
; (6)

dp∗

dγ
=

μ

γ2D
. (7)

We will call q̄(p∗)
p∗ average steady cheating, and q̄0 (p∗) marginal steady cheating.

6Note that these conditions do not hold on the border, e.g. for p = 2
3 .

10



Let us consider the forces at play behind the derivatives. The effect of the share

of the high income taxpayers is most straightforward: it is always positive. Intu-

itively, more high income people make auditing more profitable. The effect of cur-

vature embodied in the denominator is essentially the same in all three cases. From

the second order condition it can be seen that for convex functions q̄00 (p) we have

p∗ (1 + s− μ) < 1, and for concave functions the opposite is true. Then both more

convexity and more concavity increase denominator, thus reducing the effect of each

parameter in absolute terms.

The higher fines bring about higher auditing effort, when the average steady cheat-

ing is larger than the marginal one (in absolute terms). In the opposite case, the

tougher punishment relaxes the grip of the tax authority. Intuitively, the increased

fine has a positive direct effect on both the effort of authority (makes detection more

lucrative) and the share of compliant agents (makes compliance more attractive). The

indirect effect is captured by the first term: increased compliance curbs the auditing.

When non-compliance is relatively sensitive to auditing (and visa versa), the indi-

rect effect is small compared to the direct one, so the increased fine results in lower

detection probability.

For the normalized auditing costs, the direct effect is negative (the increase in

costs makes auditing less profitable). The feedback effect is then positive, because

more cheating calls for more auditing. Formally, the different direction of the effects

compared to the case of fine is reflected in the different sign of the whole expression.

There is an additional term 1
γ
− 1 that strengthens the direct effect.

To sum up, we arrive at the following proposition.

Proposition 2. With a committed tax authority and assumptions 1,2 satisfied, dp
∗

dγ
>

0
³
dq∗

dγ
< 0

´
. If additionally q̄ + p∗q̄0 < 1 − 1

γ
, then dp∗

ds
< 0

¡
dq∗

ds
> 0

¢
, dp

∗

dμ
>

0
³
dq∗

dμ
< 0

´
. If 1− 1

γ
< q̄+ p∗q̄0 < 0, then dp∗

ds
< 0, dp

∗

dμ
< 0. If q̄+ p∗q̄0 > 0, then

dp∗

ds
> 0, dp

∗

dμ
< 0.

Proof The proposition follows from explicit consideration of inequalities implied by

equations (5)-(7) under assumptions 1,2.

The proposition actually states that the detection probability is increasing (and

the steady state cheating non-increasing) under a very mild condition on convexity of

the steady state relation between auditing and compliance. Given this condition, the

auditing is affected positively by fines and negatively by costs, if the average steady
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cheating is larger than the marginal one. The opposite is true if marginal steady

cheating is substantially (howmuch is substantial depends on the share of high income

taxpayers) larger than the average. The case in between gives probability negatively

affected by both fine and generalized costs.

We can also see from the proposition that for some parameters the steady state

noncompliance is decreasing in tax rate. This stands in contrast to the conventional

result of the literature: the models featuring fine proportional to the tax evaded

starting from Allingham and Sandmo (1972) result in higher tax rate contributing

to compliance. In our model this does not hold as long as the indirect effect of

the generalized cost outweighs the direct effect, which is in turn more likely with

higher share of high income taxpayers and more steep steady state relation between

auditing and compliance. This, as all other comparative statics results, will depend

on the particular form of a learning rule.

The solution obtained can be compared with the Stackelberg-like equilibrium of

the classical evasion game, when the tax authority moves first (much weaker asymme-

try). Recall, that in this setup q = 1 if p < 1
1+s

, q = 0 if p > 1
1+s

, and undetermined

for the equality. Since auditing is costly, the authority will choose either p = 0, q = 1,

or p = 1
1+s

, q = 0. The latter is preferred whenever the auditing is not too costly,

namely c < γ
1−γ (1 + s)t(H −L), or, in other terms, μ < γ

1−γ (1 + s) (analogous to the

expression in the dynamic version). Comparative statics is trivial in this setup: zero

cheating result is independent of parameter changes as long as they do not violate

rather mild condition of relatively not too expensive auditing. Auditing probability

is decreasing in the surcharge rate, just as in the previous model. The solution of the

static model is discrete, and the probability of audit jumps to zero for high enough μ

or low s.

The prediction of the dynamic model appears to be more plausible, since non-zero

cheating is not observed in reality. As it is known from the literature, the result

of zero cheating in commitment case generalizes for more complicated models with

continuum of taxpayers and presence of intrinsically honest taxpayers. Moreover, the

commitment models are usually criticized on the basis of this unrealistic prediction.

The model presented eliminates this fault, and allows us to reconsider the view of

commitment as something implausible. Then it just boils down to the classical case

of dynamic inconsistency, and the willingness to commit is equivalent to the planning

horizon of the authorities.
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An average taxpayer with high income in Stackelberg setting can only cheat or

not cheat with probability one; in the dynamic case there is a possibility of a mixed

equilibrium. This brings about higher "dynamic" payoff for the individual, if p < 1
1+s

,

and lower payoff otherwise7. This simple result is straightforward: in the classical

setup the equilibrium payoff of taxpayers does not depend on the auditing probability

or the magnitude of fine. Hence, the expected payoff in the dynamic model is greater,

if the audit probability is lower than in the static model, and visa versa.

2.2.2 No commitment

Under no commitment, the tax authority decides on the optimal auditing rule in every

period, assuming that the distribution of the taxpayers has not changed from the last

period qτ+1 = qτ (myopic best response). Then the expected revenue is determined

by (??), where q̄ (p) is substituted by qτ .

The best response strategy is

BR (qτ) =

(
0, if qτ ≤ μ1;

1, if qτ ≥ μ1.

Here μ1 is the level of cheating that induces switch of best response from zero to one

or back:

μ1 :=
1− γ

γ

c

t(1 + s)(H − L)− c
. (8)

As the tax authority is very unlikely to jump from not auditing anybody to auditing

everybody and back, we explicitly augment the choice of tax agency with inertia

variable8:

pτ+1 = αBR(qτ) + (1− α)pτ , (9)

where α determines speed of adjustment; BR is the best response function, which

is defined above as revenue maximizing p given the belief about the distribution of

taxpayers. With α→ 1, we are back to the case of jumping from 0 to 1 probability;

with α→ 0, the probability of audit stays very close to an initial level forever.

An interior steady state is described by the following pair:

qss = μ1, p
ss = q̄−1 (μ1) . (10)

7Evaluating I(q̄(p), p)− I(0, 1
1+s ), we get expression the sign of which depends only on the sign

of 1− p− ps.
8the inertia assumption is common in the literature on learning and evolution - see e.g. Fudenberg

and Levine (1998, p. 31). Convex cost of auditing would have a similar smoothing effect.
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The following proposition shows that in the continuous time the system converges for

a wide class of rules.

Proposition 3. Consider a learning rule characterized by transition function qτ+1 =

qτ + f(qτ , pτ ) with fi(qτ , pτ ) <∞, i = q, p. With non-committed tax authority,

the interior steady state is stable in continuous time, if the learning rule is

stabilizing, fq(q, p) < 0.

The proof is left to the appendix. Simulation results show that in discrete time

setup the cycles around the steady state are observed for various rules. Intuitively,

convergence a là remark 2 can not be achieved, if the detection probability is changing

discretely. However close it comes to the steady state at a range of p that induces a

certain direction of change in q, at some point p goes out of this range and q starts

movement in the opposite direction - as a result we observe cycles.

Comparative static result for the steady state follow trivially from (8), (10) and

Assumptions 1, 2:

dpss

ds
> 0,

dpss

dt
> 0,

dpss

dc
< 0,

dpss

dγ
> 0.

Thus, the auditing probability in steady state is decreasing in costs of auditing and

increasing in the share of high income taxpayers, the tax rate, the magnitude of fine,

and the income differential. Compared to the Nash equilibrium, where probability to

audit only depends on the surcharge rate, our result looks more plausible.

Still, for all parameters but s and γ the effects are the opposite of those in the

commitment model. Whereas it is an open question what horizon a particular tax

authority has, we can compare predictions of the two models by their conformability

with stylized facts. First, it is a prevailing view that evasion is increasing in the tax

rate (See, for example, Clotfelter (1983), Poterba (1987), Giles and Caragata (1999)),

so here the commitment model seems to make a better job. Second, there is also a

weak evidence that evasion is rising with the income (Witte and Woodbury 1985),

and in this sense the long horizon authority is also superior. There is no convincing

evidence on the influence of auditing costs on the auditing probability, and it is really

difficult to say which model is closer to reality on this point.

In the rest point of the repeated game q is the same as in the Nash equilibrium

of one shot game, qss = qNE, since it is derived from the same maximizing revenue

decision of tax authority. Auditing probability pss can be greater or smaller depending

14



on the parameter values and the learning rule. As for the payoffs, since qss is such that

makes the tax authority indifferent between auditing and not auditing, its revenue is

exactly the same in static and dynamic setups. With fixed q the payoff of an average

high income taxpayer is unambiguously decreasing with p, so that comparison across

the models is again ambiguous.
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Figure 1. Phase diagram, average payoff rule
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Figure 2. Phase diagram, effective punishment rule

On the phase diagram we can see that an interior steady state is the intersection

of the horizontal constant auditing line q = μ1 and downward sloping constant com-

pliance line q = q̄ (p). Figures 1, 2 represent the dynamics generated by the rules

considered in the next section. It is worth noting that the south-west and north-west

parts of the picture is consistent with stylized facts presented in the introduction:

both audit probability and the proportion of honest taxpayers decrease (second part

of XXth century). According to this explanation, the observed behavior is out-of-

equilibrium adjustment, and sooner or later the tax evasion will have to go down.

The southern part of generated dynamics also produces values of non-compliance

lower than the Nash equilibrium. This can be taken as an alternative explanation

to the puzzle of too high compliance, usually resolved by introduction of intrinsically

honest taxpayers (Andreoni et al. 1998, Slemrod 2002).

To summarize our findings about the dynamics, we present the following corollary:

Corollary 1. Consider a stabilizing behavioral rule that does not ”jump” too much

in the sense of remark 2. The taxpayer population dynamics is characterized by
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convergence to a steady state in case of committed tax authority and by stable

cycles around a steady state in case of no commitment.

3 Particular behavioral rules

In our simple setting, any agent that has an option to not comply, may receive three

distinct payoffs: from complying, from not complying and being audited, and from not

complying and not being audited. We call the play of such an agent in the previous

period its type, and thus we have 3 types, H (honest, or compliant), C (caught, or

non-compliant and audited), N (not caught, or non-compliant and not audited). Here

we describe the social interaction by considering behavioral rules that i) assigns the

same action to all the agents in a match ii) assigns the same action to the members of

matches characterized by the same composition of types. Further we consider more

closely two rules characterized in the following table:

types met share average payoff effective punish

HHH (1− q)3 honest honest

NNN q3 (1− p)3 cheat cheat

CCC q3p3 honest honest

HHN 3 (1− q)2 q (1− p) cheat cheat

HHC 3 (1− q)2 qp honest honest

HNN 3 (1− q) q2 (1− p)2 cheat cheat

HCC 3 (1− q) q2p2 honest honest

NNC 3q3 (1− p)2 p cheat honest

NCC 3q3 (1− p) p2 cheat honest

HNC 6 (1− q) q2 (1− p) p cheat honest

Here the first row lists possible combinations of types met, the second reports corre-

sponding shares of population, and the last two reflect the resulting play in the next

period.

Having analyzed these two rules, we proceed by constructing their combination

that allows for a change in attitude towards compliance depending on its popularity.

Then we also examine a many people interaction rule, and conclude the section by a

parameterization example.
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3.1 Average payoff principle

Here we consider an imitation rule with very high informational requirements, that is

not only the taxpayers who interact observe each other’s income, but also each other’s

tax reports. Admittedly, this can only make sense if the size of interaction groups is

small. In this case we can think of such groups as very close friends, which do share

this information, for example, in CIS reality. Unfortunately, there are no formal

studies on how widespread this phenomenon is, but based on personal experience,

and experience of friends, and friends of the friends, the author believes that it is

very relevant. Moreover, such information sharing may be relevant throughout the

world, if we think of our interaction groups as families or siblings.

Collecting terms corresponding to ”honest” from the table, we get

1− qτ+1 = (1− qτ )
¡
(1− qτ + qτpτ)

2 + pτqτ(1− qτ + 2pτqτ )
¢

(11)

This equation defines the aggregate dynamics of the population we were interested

in. We see that this rule is stabilizing. Interior steady state level of cheating q̄ (p) at

given auditing is

q̄ (p) =
2− 3p

1− 3p+ 3p2 . (12)

In the commitment case then the long-run non-compliance function is

q̂ (p) =

⎧
⎪⎪⎨
⎪⎪⎩

1, p ∈
h
0, 1√

3

i
;

q̄, p ∈
³
1√
3
, 2
3

´
;

0, p ∈
£
2
3
, 1
¤
.

Let us call the probability that maximizes the authority’s payoff (??) the optimal

auditing probability p∗. Note that p∗ /∈
³
0, 1√

3

´
and p∗ /∈

¡
2
3
, 1
¢
because for constant

q the objective function is linear in p. Furthermore, p = 1 is never optimal because

the objective function is non-increasing on the interval
¡
2
3
, 1
¢
. Hence, the only two

possibilities for optimal p are p∗ = 0 and p∗ that satisfies the first order condition (3).

The condition for corner solution (p∗ = 0) is considered in the appendix, and it can

be seen that corner solution results for values of γ small relative to values of μ. This

is easy to interpret: with small share of high income people (γ) and low benefit from

auditing (stH) it is better not to audit anybody, given that it is costly (c).

As for the speed of convergence, the average payoff rule is in a sense favorable to

the cheaters: it takes a long time to approach no cheating equilibrium, and relatively
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short time - all cheating one. Starting from the middle (q = 1
2
), getting as close as

0.001 to the steady state takes 597 periods for honesty case and only 14 periods for

cheating case. This result was obtained by iterating the function qτ+1(qτ , p) respective

number of times. For the honesty case then p = 2
3
, q597 = 0.001; for the case of

cheating p = 1√
3
, q14 = 0.999, whereas q1 = 0.5 in both cases.

In the no commitment case the dynamics can be seen on the Figure 1. The

variation in steady state p is very small:
³
1√
3
, 2
3

´
, compared to (1

2
, 1) in static case

for s < 1. Hence, the difference in p for these two models is primarily dependent on

s: for large values of fine Nash equilibrium gives less intensive auditing, and for small

fines our model results in lower auditing.

3.2 Effective punishment principle

The idea of the effective punishment rule is that observing punished people (or being

punished) is a sufficient deterrence from cheating. To implement this idea we have

to disregard both expected payoff and imitation considerations in some instances.

Thus, this rule stands in a sense even further from rationality than average payoff

principle. As we shall see further, the effective punishment rule is also more favorable

to compliant behavior. The rule has the same information structure as the previous

one.

As a result, the law of motion for q is given by

qτ+1 = qτ (1− pτ)
¡
3 (1− qτ)

2 + 3 (1− qτ ) (1− pτ) qτ + (1− pτ)
2 q2τ
¢
. (13)

This is aggregate population dynamics, and it can be shown that this rule is

stabilizing as well. The interior steady state is

q̄ (p) =
3(1− p2)−

p
1 + 12p− 18p2 + 8p3 − 3p4
2(1− p3)

. (14)

In the commitment case the long run noncompliance function is

q̂ (p) =

(
q̄, p ∈

£
0, 2

3

¢
;

0, p ∈
£
2
3
, 1
¤
.

There is no corner solution in this case, p∗ ∈
£
0, 2

3

¤
. The effective punishment rule is

contributing more to the honest reporting, and it is of no surprise that the optimal

probability of auditing is lower here for the same parameter values.
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The payoffs of the tax authority for the effective punishment are increasing in the

magnitude of fine slower than for the best average. As a result, the interval of s for

which the tax revenue of static game exceeds that of dynamic is larger for the effective

punishment rule, holding all the parameters constant.

Convergence features are not altered either: to reach no cheating state from the

middle takes 594 periods now (compared with 597 before); to get to all cheating takes

3 periods (14 before). The latter, however, can not be compared directly, as for the

best average all cheating was attainable at p ∈
h
0, 1√

3

i
and computed for p = 1√

3
; for

the present rule it can only happen for p = 0.

In the no commitment case the system converges (in continuous time) to the

steady state with lower probability of auditing than with the previous rule. pss comes

from as a solution of the third-order polynomial q̂ (p) = μ1. From the phase portrait

on Figure 2 it is clear that this value is lower than for the best average principle.

3.3 Endogenous switching between rules

The learning rules implicitly reflect the attitude of the taxpayers towards compliance.

So far we were treating these rules as given. A more realistic assumption, however,

would allow for increased tolerance towards cheating when cheating is widespread.

Consider the simplest case, when the average payoff principle is used in case more

than a share a ∈ (0, 1) of population is cheating, and effective punishment rule is used
otherwise9.

Interestingly, the dynamics remains qualitatively unchanged even for this endoge-

nously mixed rule. For high values of a, that is when switching between rules happens

with not too high cheating, the stable set reminds the one for effective punishment

principle. Correspondingly, for low values of a the dynamics is similar to the one

generated by average payoff principle. Despite some irregularities that may arise in

the behavior of the system, the general cycling pattern remains intact, that can best

9Recall that in previous sections we have shown that average payoff rule reflects better attitude

towards cheating, and the effective punishment reflects better attitude towards compliance.
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be seen on the phase diagram below, a = 0.5:

Figure 3. Endogenous switching between average payoff and effective punishment

The problem of committed authority becomes a bit more complicated, as now the

payoff is a discontinuous function of auditing probability. Nevertheless, proposition 2

remains valid as long as q̄ 6= a. An interesting task related to endogenous switching

would be to analyze a decision of welfare maximizing government that can induce

change in the attitude towards compliance at certain cost. This is however beyond

the scope of this paper, and we leave it for future research.

3.4 Meeting m others: Popularity principle

When m + 1 people meet (and m is substantially larger than 2), we can specify an

imitation rule that requires minimal information about the individual, and namely

only whether he/she was caught cheating. Assume that the availability of this in-

formation is assured by the tax authority for the purpose of deterring the others.

This seems plausible, as the big evasion scandals are normally exposed to the light of

public attention10. Since this rule does not require the knowledge of the tax report,

it can cover groups of substantial size, e.g. colleagues at a single firm or even the

members of the same profession. Then the ease of information dissipation will be

10For ample evidence type e.g. ”tax evasion” in the search engine of Financial Times at

www.ft.com
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reflected in the group size in our model, and we can see how it influences cheating

and auditing.

The intuition behind the rule is straightforward: an agent gets scared and chooses

honesty, if she is caught, or if she observes more than k∗ of other caught agents.

The rule is then the following. For a not caught taxpayer: if more than k∗ caught

individuals are observed, play honest in the next round, if less or equal - play cheat;

for a caught taxpayer: play honest.

The probability to observe less or k∗ caught individuals is defined by

Pr(k ≤ k∗) =
k∗X

i=0

µ
m

i

¶
(pq)i (1− pq)m−i .

Then cheating is evolving according to

qτ+1 = (1− qτpτ) Pr(k ≤ k∗). (15)

Though the rule is stabilizing, the problem with its dynamics is that once the

system comes close to extreme values of q (0 or 1), it is jumping between "almost

all cheating" and "almost all honest" states in every period. This problem obviously

states from an ’epidemic’ nature of the specified principle: once there are very many

cheaters, almost everybody meets a caught cheater, and then all those switch to

playing honest. But once almost everybody is playing honest, almost nobody meets

a caught cheater, and then almost everybody is playing cheat. Proposition 3 still

applies, as continuous time serves as a natural stabilizer in this case.

The usual method to make the dynamics more smooth is to introduce some kind of

inertia into the system, just like it was already done from the side of the tax authority.

So, let us say that with probability β every unpunished individual changes his/her

strategy according to already specified rule, and, correspondingly, with probability

1− β plays the same strategy as in the previous period. As before, punished people

switch to compliance with probability 1, and thus do not exhibit any inertia.

Then in every period (1 − β)(1 − p)q + βq(1 − p) Pr(k ≤ k∗) cheaters remain

cheaters plus β(1− q) Pr(k ≤ k∗) honest people switch to cheating. The dynamics is

described by

qτ+1 = qτ (1− pτ)(1− β) + β(1− qτpτ) Pr(k ≤ k∗). (16)

For small enough values of β it converges to a steady state (cycle in discrete time)

rather than jumps between two extreme values. For simplicity we further consider the
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case when observing one caught individual is enough to deter from evasion (k∗ = 0).

The dynamics is then

qτ+1 = qτ(1− pτ)(1− β) + β(1− qτpτ )
m+1 (17)

In no commitment case we again observe small cycles around the steady state.

Compared to the previous imitation rules, the steady cheating line is shifted to low

cheating - low auditing corner, meaning that steady state is more likely to have low

probability of auditing. This comes from two factors: inertia in decision making β

and number of people to meet m. Notice, however, that even for p → 1 cheating is

not eliminated completely. Indeed, for pτ = 1 qτ+1 = β(1 − qτ )
m+1, so that q = 0

only for β = 0, which is impossible. Hence, for large auditing probabilities m-rule

results in larger cheating than 3-rules. This seemingly strange result stems from poor

information the individuals possess: if nobody is cheating, nobody is caught, so in

the next period β of individuals will cheat.

The steady state auditing is decreasing inm, and hence in the speed of information

dissipation. Indeed, from (17) it can be computed that dpss

dm
< 011.

In the commitment case, then, cheating can be decreasing or increasing over

time depending on whether qτ > q̂ (p∗) or the opposite. dp∗

dβ
has an arbitrary sign.

Since honest reporting is favored more by m-rule, we expect optimal auditing to be

lower for the same parameters. The magnitude of fine is almost irrelevant under the

present imitation rule, since there is no information about payoffs, and people are

deterred from evasion by observing caught cheaters regardless of financial costs of

being caught. Increasing the number of people met in this rule also brings about less

cheating, because seeing more people means higher chance of observing a caught one.

Formally,dp
∗

dm
> 0.

3.5 Parameterization

In the following we parametrize our model to study the dynamics quantitatively:

s = 0.8, t = 0.3, c
H−L = 0.06 (μ = 0.2), γ = 0.5. The fine is usually up to the amount

of tax evaded, and I take 20% less than the whole. The income tax rate ranges from

0.1 to 0.5 across developed countries; the measures for both c
H−L and γ are bound to

be arbitrary, since in reality the auditing function depends on many more variables

11 dp
ss

dm = β(1−μ1pss)m+1 ln(1−μ1pss)
1−β+β(m+1)(1−μ1pss)mμ1
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than just income, and there is a continuum of income levels rather than two. A

convenient way to think of the first measure is as of what share of audited income

has to be foregone for the auditing itself. Andreoni et al. (1998, p. 834) take 0.05

as an example, I think of 0.01 to 0.1 as a possible range. Finally, γ to certain extent

reflects the income distribution, and 0.5 gives an extreme case where there is an equal

number of the rich and the poor.

For the average payoff principle then p∗ = 0.62. Auditing is increasing in the cost

- tax bill ratio, dp∗

dμ
= 0.15 (0.043 for the effective punishment), and decreasing in

the amount of fine, dp∗

ds
= −0.18 (−0.258 for the effective punishment). Intuitively,

faced with higher fine or lower auditing costs, the taxpayers will cheat less in steady

state, hence there is no need for the tax authority to commit to a higher auditing

probability.

For the parameter values chosen, the tax authority is better-off with imitating

taxpayers for the magnitude of fine smaller than 0.5 and worse off for the magnitude

larger than 0.5. This is quite intuitive, since low (high) values of s result in large

(small) auditing probability of static no cheating equilibrium; auditing, in turn, is

costly to implement. In dynamic setting the auditing probability for given parameter

values hits the upper bound of 2
3
, and hence is independent of the surcharge rate,

except for the values of s close to 1. Consequently, "static" revenue is increasing with

the fine, whereas the "dynamic" is staying constant.

For the high values of γ the picture remains the same, except that now for very

large values of fine the "dynamic" revenue rises so much that it exceeds the "static"

one. Finally, with decrease in μ the solution with p strictly less than 2
3
is obtained

for larger and larger set of s values, approaching s ∈ (1
2
, 1]. Correspondingly, the

superiority of "static" revenue is preserved only at s = 1
2
in the limit (μ close to 0).

In the no commitment case (μ1 = 0.125) the steady state value of p is equal to

0.625 for the effective punishment rule compared with 0.659 for the average payoff

rule. The payoff of tax authority is slightly higher when it is able to commit12.

The discrete time dynamics is presented for two rules are presented on the Figures

12Generally for the interior, the condition for superiority of commitment for tax authority is

(1 + s− μ)
¡
q̄p∗−μ1q̄−1 (μ1)

¢
> μ

¡
p∗−q̄−1 (μ1)

¢
1−γ
γ +q̄ − μ1.
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2, 3.

Figure 4. Dynamics by average payoff principle. Figure 5. Dynamics by effective punishment principle.

For the m rule p∗ is increasing in β: tax authority has to audit more, if larger

part of individuals is reconsidering their decision at every period. The change of

surcharge rate is not changing p∗, and the equilibrium auditing is lower than before:

0.43 compared with 0.65 for the first rule (the difference between rules is increasing

with the cost of auditing c). Note that this stems mostly from higher number of

people who interact, rather than from the different information structure of the rule.

Indeed, for m = 2 optimal probability is 0.61, not substantially lower than for the

other rule.

4 Generalized problem

The analysis presented above is by no means confined to tax evasion. A general

compliance problem can be addressed within the same framework: the crucial in-

gredients are a single monitoring (controlling) authority and a large population of

interacting agents that have an option to comply. These can be criminals vs. po-

lice, corrupted officials vs. anti-corruption body, firms not complying with quality or

safety regulations vs. corresponding monitoring authorities, polluting producers vs.

environmental authority, traffic violators vs. road police, free riders vs. controllers in

public transportation. The generalized problem can be then formulated as follows.

In period 0 the otherwise homogenous population of agents is playing comply

or not comply. The shares of non-compliant q0 and audited p0 agents are given
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exogenously. They determine period 0 payoffs of agents and the authority completely.

Between period 0 and period 1 the authority is updating its belief about the share

of compliant agents, the agents meet in groups of n and receive information specified

by a given behavioral rule. In period 1 the authority performs auditing that either

maximizes its expected payoff in this period (no commitment) or maximizes its long-

run payoff (commitment). The agents choose comply or not comply according to the

behavioral rule. The game is then repeated infinitely.

In the present formulation the agents do not submit a report and are not divided

in income groups. Each may choose noncompliance, however, the authority has to

prove the fact of non-compliance, even if it knows that it takes place. Such setup is

especially appealing in application to corruption or free riding: a bureaucrat has to

be caught receiving a bribe in order to be penalized, even if it is a common knowledge

that she/he is corrupted; a passenger without a ticket will not be charged a fine unless

she meets a controller.

Propositions 1 and 3 go through in the generalized setup, as the payoffs play only

an implicit role in them. The dynamics in case of commitment remains therefore the

same. Proposition 2 as well as assumption 2 have to be changed, as the payoff of the

authority in generalized form is

(1− q̂(p))V + pq̂(p)F − cp (18)

rather than (??). Here V > 0 is the value of compliance for the authority, and

F > 0 is the value from detection and punishment. The value of noncompliance is

normalized to zero.

The first order condition is

(p∗q̄0(p∗) + q̄(p∗))F = q̄0(p∗)V + c, (19)

and we can observe the equality of generalized marginal benefit and marginal costs.

The second order condition is

d := (p∗q̄00(p∗) + 2q̄0(p∗))F − q̄00(p∗)V < 0. (20)

The comparative statics is

dp∗

dc
=

1

d
< 0, (21)

dp∗

dF
=

q̄0V 0 (F )− (p∗q̄0 + q̄)

d
; (22)
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that is higher auditing costs will always have higher direct effect of reducing moni-

toring in this setup. The effect of fine is the same as in proposition 2, if V and F

are independent. If they are positively related, the impact of the fine is increased

(becomes more positive or less negative); in case of negative relation the impact is

decreased (becomes less positive or more negative).

In case of no commitment, the switch in best response happens at

μ̂1 =
c

F
. (23)

The steady state is again then described by (10) and corresponding dynamics is

qualitatively the same as in tax evasion problem.

5 Conclusion

The model presented in the paper is designed to capture a number of features of real-

ity, which were largely neglected in the literature on tax evasion, and especially in the

game-theoretic approach to the problem. These features are social interaction, poor

knowledge of auditing probability, asymmetry in the behavior of two parties under

consideration, and intertemporal nature of the tax evasion decision. The interaction

in the model is learning each others’ strategies and payoffs. This allows individuals to

make decisions without acquiring information about auditing probability. Moreover,

with simple imitation rules specified in the game, people also avoid costs of processing

information, as they effectively know what decision to take without solving compli-

cated maximization problems.

The model may rationalize decrease of auditing probability (Slemrod 2007) and

compliance (Graetz, Reinganum and Wilde 1986) observed in the US over past

decades as out-of-equilibrium dynamics. The model can also potentially explain ”too

little” cheating by taxpayers: having initially overestimated auditing probability, they

”undercheat” for a long time due to the inertia and imperfections of the learning rules.

All these results hold for different specifications of the learning rule (our rules differ

in how much people are afraid of being caught and how much information they can

learn from each other).

When we allow the tax agency to commit to a certain probability of auditing,

positive cheating may arise in equilibrium. This seems more plausible than the result

obtained in the most of static commitment models. Such models usually have zero
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cheating of audited taxpayers in equilibrium. Moreover, as opposed to the models in

the literature, the comparative statics with respect to tax rate does not contradict

empirical evidence (cheating is increasing with tax) for a set of parameter values.

However, the relevance of the model to the policy has its obvious limitations. For

instance, nothing can be said about the extent of inertia in auditing decision, though

this could probably be empirically testable. Without good feeling about the inertia

parameter and the learning rule we can not say much about the precise form the

dynamics takes. Furthermore, in reality there are different groups of taxpayers and

different audit classes. Whereas our analysis can be applied to each group separately,

it does not take into account possible inter-group interactions.

In general, the dynamic approach to tax compliance games reopens a whole bunch

of policy issues. Are the recommendations of equilibrium theory valid, if the systems

does not converge to an equilibrium? Are some changes in the existing taxation worth

undertaking, if we take into consideration not only difference in benefits between

initial and final states, but also the costs of transition? Can the decision rules of

the tax authorities and the learning mechanisms governing taxpayers behavior be

manipulated in the way to achieve maximal social welfare?

As a building block for more general models, the behavioral approach can be

employed in the studies on how the government can ensure higher degree of trust in

society (and less evasion as a result), how it can provide optimal (from the point of

view of social welfare) level of public goods, how it can bring about faster growth of

an economy. For this it would be necessary to consider more complicated government

(and hence tax authorities) strategies, involving more than one period memory, and

possibly heterogenous taxpayers.

Finally, the approach taken by no means limits us to consideration of tax evasion.

The model can in principle be applied to violations of law other than tax evasion, if

they have properties of unobservability, costly monitoring and interaction of agents.

The examples here include crime, corruption, employment and environmental protec-

tion, traffic rules violation, financing of public utilities.
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6 Appendix - Proofs

Lemma 1. Under assumption 1, for stabilizing rules fp(q, p) < 0; for destabilizing

rules fp(q, p) > 0.

Proof. By implicit function theorem, fp(q̄ (p) , p) = −q̄0 (p) fq(q̄ (p) , p). For sta-

bilizing rules then fp(q̄ (p) , p) < 0. Suppose ∃q|fp(q, p) < 0. By continu-

ity (a derivative of a polynomial is again a polynomial and hence continu-

ous), ∃q0 ∈ (q, q̄ (p)) |fp(q0, p) = 0, which contradicts the uniqueness of the
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steady state. This proves the lemma for p ∈ (q̄−1 (1) , q̄−1 (0)). For p ∈
[0, q̄−1 (1)] 13, by continuity in both arguments ∃δ, ε > 0| fp(1−δ, q̄−1 (1)−ε) < 0.
Suppose ∃p, q|fp(q, p) > 0, then again by continuity ∃q0 ∈ (q, 1− δ) , p0 ∈
(p, q̄−1 (1)− ε) |fp(q0, p0) = 0. But this would mean that q0, p0 constitute a

steady state, that contradicts the corner solution. The proof for p ∈ [q̄−1 (0) , 1]
is completely analogous. For destabilizing rules fp(q̄ (p) , p) > 0 and the rest of

the proof follows the same logic.

Proof of Proposition 3. To investigate stability of the steady state analytically,

we have to make two approximations. First, consider the system in continuous

time: this makes sense, if we imagine that both the tax authority and individuals

update their evasion or auditing decisions every day, rather than fixing it once

for a whole year. We can rewrite our system of equations as

qτ+∆ = qτ +∆f(qτ , pτ),

pτ+∆ = pτ +∆g(qτ , pτ);

and letting ∆ be very small ( 1
365
, if we think of daily updating), in the limit we obtain

q̇ = f(q, p),

ṗ = g(q, p);

where f(q, p) is defined by the learning rule and g(q, p) = α (BR(q)− p).

The stability matrix of this system is

Ã
∂q̇
∂q

∂q̇
∂p

∂ṗ
∂q

∂ṗ
∂p

!

=

Ã
a11 a12

a21 a22

!

=

Ã
fq(q, p) fp(q, p)

αBR0(q) −α

!

.

The problem with this formulation is that the best response function is not con-

tinuous at the point of steady state, so we can not compute BR0(qss). To go around it,

we can make the second approximation: instead of the discontinuous best response

we take a continuous function ABR(q) = Φ
³
c̄(q)−c

σ

´
, which approaches BR(q) =

(
0, if c̄ < c

1, if c̄ > c
with σ → 0. Conventionally, Φ is cumulative distribution function of

a standard normal random variable. Then ABR0(q) = φ
³
c̄(q)−c

σ

´
c̄0(q)
σ
. Recalling the

expression for c̄(q) and evaluating at steady state (c̄(qss) = c), we get

13In case
£
0, q̄−1 (1)

¤
is not an empty set.
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ABR0(qss) = φ (0)
(1− γ) c

σq (1− γ + qγ)
⇒ a21 ≈

α (1− γ) c√
2πσ2q (1− γ + qγ)

.

Note that we can make a21 (since it is positive) arbitrary large by making σ small

enough and thus getting better approximation of initial best response function.

Now we are ready to address the question of stability of the steady state. If the

real parts of both eigenvalues of the stability matrix are negative, the steady state is

stable (see, for example, Hirsch and Smale (1974). The eigenvalues of our system are

λ1,2 =
1

2

µ
a11 + a22 ±

q
(a11 − a22)

2 + 4a12a21

¶
.

Note that by Lemma 1 in steady state a12
a11

> 0. Then, quite intuitively, the

stabilizing learning rules (fq(q, p) < 0) will lead to convergence. Indeed, for such

rules a11 + a22 < 0 and (a11 − a22)
2 + 4a12a21 < 0. Hence, both eigenvalues have

negative real parts14 - our steady state is stable in continuous time. For the rules

that are destabilizing (fq(q, p) > 0), we shall have no convergence. Indeed, in this

case one eigenvalue is positive, the other is negative - the linarized system is a saddle.

Note that our results hold for any α ∈ (0, 1).

Condition for interior solution - average payoff rule In order to get interior

solution, we have to get more tax revenue there than at p = 0. That is, the

following inequality should hold:

γ(1− q)tH + p(qγ(tH + st(H − L)) + (1− γ)tL)

−c(p(qγ + 1− γ)) + (1− p)(qγ + 1− γ)tL > tL
(24)

Collecting the terms and using the definition (4) for μ we arrive at

1− q + pq(1 + s)

p( 1
γ
− 1 + qγ)

> μ, (25)

which after substituting q with its steady state value q̄ from (12) becomes

−1/p+ (2− 3p) s+ 2
1− 3p2 + 1

γ
(1− 3p+ 3p2) > μ.

As p∗ ∈
³
1√
3
, 2
3

´
, we can check the inequality at the ends of the interval to obtain

μ < γ (s+ 1) , μ < 3
γ

2 (1− γ)
.

Both conditions show that a corner solution obtains for large μ and small γ.

14We do not make any statements about the corner solutions at this point.
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Convex auditing function. With a convex auditing function C (.) the myopic best

response of tax authority is no longer jumping, but is a smooth function of q:

BR (q) =
1

qγ + 1− γ
C 0−1

µ
qγ (1 + s) t(H − L)

qγ + 1− γ

¶
.

and all our insights are preserved, if the slope of the steady auditing line is not too

negative:

dq

dpBR
=

C 00 (.) (qγ + 1− γ)2

γ ((1 + s) t(H − L)− C 0 (.)− C 00 (.) pBR (qγ + 1− γ))
,

that is if the auditing is not too convex.

7 Appendix - Learning rules

Here we consider two more examples of the learning rules as well as a generic deter-

ministic behavioral rule.

7.1 Proportional imitation

To apply proportional imitation rule (PIR), which was proposed and shown to be

optimal by Schlag (1998), we have to modify our setup slightly. The problem with

this rule is the need to know the highest and the lowest payoffs of the agents, which

was assumed away so far. This does not seem to be a very strong assumption to

make: people may know the payoff and still not pursue certain strategy, just because

they do not know how to do it.

According to the rule, each agent meets only one other and imitate its strategy

with probability proportionate to the payoff difference, if this other performed better.

Recall that three payoffs of our game are (1 − t)H − st(H − L) if caught, (1 − t)H

if honest, and H − tL if not caught. The difference between the highest and the

lowest is (1 + s)t(H − L), evaded tax plus a fine. Then not caught cheater never

switches; honest taxpayer meeting not caught one switches with probability 1
1+s
; a

caught cheater meeting an honest agent switches with probability s
1+s

.

Then the law of motion for q is given by

1− q+ = (1− q)[1− q(1− p) 1
1+s

+ qp s
1+s
],

where the right hand side is again at time τ .
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From this expression, the proportion of cheaters increases, if p < 1
1+s

, and de-

creases otherwise. Thus, we get the circling around p = 1
1+s

and q = q(c) again.

Interestingly, only with proportional imitation rule the interior rest point is precisely

the Nash equilibrium of the static game. It happens because in the present specifica-

tion the agents possess more information (about payoffs) and have rather sophisticated

learning technique.

7.2 Best average with only two people meeting

With only two meeting, we still have at time τ the following types of high income

taxpayers: (i) honest, comprising proportion 1−qτ of population and receiving payoff
(1− t)H; (ii) caught cheating, qτpτ of population with payoff (1− t)H − st(H − L);

(iii) not caught cheating, qτ(1 − pτ) of population with payoff H − tL. We use the

best average principle, which in our case actually turns into best payoff (no need to

take average). So, there are only following six pairs with corresponding probabilities

and outcomes of interaction:
two honest (1− q)2 honest

two caught (pq)2 honest

two not caught (1− p)2 q2 cheat

honest and caught (1− q) pq honest

honest and not caught (1− q) (1− p) q cheat

caught and not caught p (1− p) q2 cheat
Thus, the share of cheaters tomorrow is determined according to the following

law:

q+ = (1− p) q

Thus, the cheaters tomorrow are only non-caught cheaters today. We see honesty

prevailing: since p is bounded below by zero, the share of cheaters is non-increasing

function of time. Thus, in commitment case we will always get zero cheating in the

limit, whereas in no commitment case the cheating will converge to a positive constant

value. We conclude that the case of meeting of one other person is a degenerate form

of the process under investigation, and it can not capture the features of the evasion

problem we are interested in.
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7.3 Arbitrary rule with n people in a match

Consider a general deterministic n persons rule without eigen bias (the rule is invariant

to the distribution of types in a match). All individuals that belong to the same match

exhibit the same behavior. Assume also that we have m different observable types

of individuals (in the examples considered we have m ≤ 3). Call the number of

combinations of the types in a match M := mn−1 +

Ã
n

m

!

. It can be shown that

2M distinct rules of this sort can be formulated, with the dynamics represented by

qt+1 =
PM

i=1 IiQt (i). Here Q (i) is the probability that the combination i of the types

occurs, and the particular rule specifies a sequence (Ii)
M
i=1 , Ii ∈ {0, 1}. For a rule not

to be degenerate (jumping to a corner immediately), we must have

∃i, Ii 6= 0;∃j, Ij 6= 1.

Let us concentrate on the endogenous types, that is audited honest, not audited

honest, audited non-compliant and non-audited non-compliant. A period-to-period

dynamics resulting from any rule can be generally written as

qt+1 =
nX

j=0

jX

k=0

Ij,knj,k (1− q)n−j qj (1− p)j−k pk,

f (q, p) =
nX

j=0

jX

k=0

Ij,knj,k (1− q)n−j qj (1− p)j−k pk − q,

where nj,k is a fixed coefficient characterizing number of permutations for the same

combination of types.

As can be seen, the function f (q, p) is a polynomial of the order at most n in each

of the arguments. Adding exogenous types (like rich-poor, self-employed - employees)

does not change this result, as they enter the function in a similar fashion with simplex

coefficients.
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