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Abstract 

The United States (US) Renewable Fuel Standard and California’s Low Carbon Fuel Standard 
support the use of soy biodiesel and renewable diesel in the transport fuel supply for climate 
mitigation. However, linkages between the markets for soy oil and palm oil, which is associated with 
very high land use change emissions, could negatively affect the climate performance of soy-based 
biofuels. This study estimates the own and cross-price elasticities for the supply of soy and palm oils 
in the US using country-level data from 1992 to 2016 under rational expectations, through a 
seemingly unrelated regressions system of equations. We find a positive cross-price elasticity of palm 
oil import with respect to soy oil price and a positive reaction of supply of soy oil to increase in prices 
of palm oil. These results suggest that US biofuel policies may underestimate substitution between 
soy and palm oils and thus overestimate the climate benefits from soy-based biofuel.  
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Linking soy oil demand from the US Renewable Fuel Standard to palm oil 

expansion through an analysis on vegetable oil price elasticities  

1. Introduction 

Biofuel policies in the United States (US), Europe, and other countries around the world have received 

great attention due to their potential market and environmental impacts (Sorda et al, 2010), including 

a significant increase in the amount of vegetable oil used in biodiesel and renewable diesel (US EIA, 

2018; USDA FAS, 2017a). The significant increase in demand for these commodities (Gohin and 

Chantret, 2010; Chen and Onal, 2016) has likely increased prices of vegetable oils and other biofuel 

commodities and contributed to agricultural expansion globally; the resulting land-use change 

substantially increases the net GHG emissions from using biofuels (Malins et al., 2014). The net land 

use change emissions depend on the type of agricultural commodity whose production is expanding. 

Most notably, palm oil is generally associated with the highest land use change emissions of any 

biofuel feedstock (Valin et al., 2016; ARB, 2015; US EPA, 2012) because its expansion is strongly 

associated with the oxidation of carbon-rich peat soils (Miettinen et al., 2012; Page et al., 2011). 

However, an increase in the demand of one biofuel feedstock (for example, soy oil) does not affect 

the fundamentals (demand and supply) of that single feedstock market in isolation. If different types 

of agricultural commodities are substituted or complemented with one another, a change in the 

demand (and price) of a biofuel feedstock may change the supply (and price) of another commodity. 

Changes in price and demand are transmitted through markets, and the responsiveness of prices to 

demand (or supply) shocks can be inferred through analysis of price elasticity: thus, the 

characterization of price elasticities is fundamental to understanding the impacts of policy 

interventions in agricultural markets (Labandeira et al., 2017). 

There are important climate and policy implications of cross-commodity interactions in biofuel 

feedstock markets. In particular, the US Renewable Fuel Standard (RFS) and California Low Carbon 
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Fuel Standard (LCFS) provide higher policy incentive value for biofuels with greater claimed GHG 

savings compared to petroleum (ARB, 2010, US EPA, 2010). Palm oil-derived biofuel does not 

qualify for any support in these policies (ARB, 2015, US EPA, 2012). Other vegetable oils, including 

soy and canola oil, qualify because the regulatory agencies administering these policies have assessed 

these feedstocks to have lower land use change emissions than palm oil (ARB, 2015, US EPA, 2010). 

As a result of these policy decisions, the US has experienced a dramatic increase in the use of soy oil 

in particular, and to a lesser extent, canola, corn and other oils over the past decade (Nelson & Searle, 

2016). However, if the markets of these vegetable oils are linked with that of palm, the high demand 

for soy and other vegetable oils in US biofuel production could indirectly drive an increase in the 

production and supply of palm oil and associated land use change emissions.  

Vegetable oil substitution is reflected in the regulatory analyses for these policies, but to a small 

degree; for example, the US Environmental Protection Agency’s (EPA) analysis for the RFS found 

that only 3% of gross land expansion resulting from soy biodiesel demand is for new oil palm 

plantations, while 9% is for canola expansion and 73% is for soybean expansion (US EPA, 2010). If 

regulatory analyses underestimate the substitution effect between palm oil and other vegetable oils, 

they would underestimate the land use change emissions associated with those vegetable oils. The 

degree to which different vegetable oils substitute for one another is thus a critical factor in the overall 

climate impact of biofuel policies.  

Substitution amongst vegetable oils can be reflected in the calculation of cross-price elasticities. 

Although the empirical literature on own-price and cross-price elasticities for vegetable oils in the 

US and in the EU is large (e.g. Labys, 1973, 1977; Goddard and Glance, 1989; Yen and Chern, 1992; 

Kojima et al., 2016; Cui and Martin, 2017), a vast majority of studies investigate the price elasticities 

of demand and there is little evidence available on price elasticities of supply. The literature provides 

mixed evidence on complementarity and substitutability effects in consumption. For instance, studies 

on cross-price elasticities of demand in the US market find palm and soy oils to be substitutes in 
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consumption (Yen and Chern, 1992). In the EU market, studies have found the consumption of palm 

oil and soy oils to move together, with low and asymmetric cross-price elasticities (Labys, 1977). 

Moreover, there is evidence that US consumers tend to substitute canola oil and soy oil (Yen and 

Chern, 1992; Cui and Martin, 2017), while the consumption of soy oil and tallow move together 

(Labys, 1977; Goddard and Glance, 1989; Yen and Chern, 1992). The literature falls short on studies 

dedicated to the price elasticities of supply (PES).  

The present study focuses on the US vegetable oil market. We examine how the supply of vegetable 

oils reacts to changes in prices in the US and quantify own-price and cross-price elasticities of supply. 

We use country-level data to estimate price elasticities using a Seemingly Unrelated Regression 

Equations (SURE) model, in a Two-Stage Least Square (2SLS) fashion using instrumental variables. 

 

2. Trends in US vegetable oil markets (1992-2016) 

Production and trade of US vegetable oils increased substantially over the period 1992-2016 (table 

1). The US is a net importer of palm oil and does not have significant domestic production. 

Similarly, the US is a net importer of canola oil (17,920 Tg imported in 2016). On the other hand, 

the US is a large producer and net exporter of soybean oil.  

 

TABLE 1 ABOUT HERE 

 

Since the 1990s, the prices of soy, palm, and canola oils in the US market have followed a similar 

pattern, suggesting a high degree of market integration across commodities. The price of canola oil 

is highest and the price of palm oil is lowest among major vegetable oils traded in the US.  

 

FIGURE 1 ABOUT HERE 
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Soy, palm, and canola are the three most heavily consumed oils/fats in the US, except for corn oil 

(table 2). We excluded corn oil from our analysis because it is a byproduct of corn starch production, 

representing only 5% of the corn grain by market value, and its supply is thus very unlikely to respond 

to changes in its price. 

TABLE 2 ABOUT HERE 

 

3. Methodological framework 

3.1 The economic model  

Our analysis is based on the standard profit-maximization theory of production, which assumes that 

producers aim to maximizing their profit. Key variables in producers’ decision-making process 

include expectations on future prices. In particular, the supply quantity for good i may be described, 

ceteribus paribus, as a function of expected prices: 

  𝑄 = 𝑓(𝐸[𝑃|Ω ], 𝐸ൣ𝑃|Ω ൧, 𝒁) 

where 𝐸[∙]  is the expectation operator, Ω  stands for the information set (including all useful 

information to forecast prices that are available to producers), and  𝒁 is the matrix that collects all 

control factors. The economic theory predicts 𝑓′  (the own-price elasticity) to be non-negative, and 𝑓ೕ′   (the cross-price elasticity) to be negative (positive) for substitutes (complements) in production. 

3.2 Estimation method 

We estimate cross- and own-PES for different combinations of vegetable oils in the US markets. We 

use a 2SLS procedure following the approach of Dahl and Duggan (1996). We use instrumental 

variables (IVs) to forecast the variable (say, the variable A) with respect to which the elasticity will 

be estimated (say, the elasticity of B with respect to A), and then we use the predicted values (say, 
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the forecasted A) to assess the PES (again, the elasticity of B with respect to A). The use of IVs allows 

us to deal with the identification problem that may affect the estimation of price elasticities (cfr. 

Angrist et al., 1996; Imbens, 2014; Santeramo, 2015). Following Roberts and Schlenker (2013), we 

use weather-induced shocks, lagged yield and time trend as instruments for the supply1. The empirical 

specification of the first stage is as follows: 

 

ln൫𝑃,௧ ൯ = 𝛼 + 𝛽 ln 𝑃,௧ିଵ +  𝛾,௧ 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 𝑠ℎ𝑜𝑐𝑘𝑠,௧ି்ୀ+  𝜗ଶୀଵ  𝑇𝑖𝑚𝑒 𝑡𝑟𝑒𝑛𝑑 + 𝜈 
(1) 

where 𝑖 and k index, respectively, the commodity and the market; the left hand side (LHS) is the 

logarithm of the price of the vegetable oil, ln൫𝑃,௧ ൯; the right hand side (RHS) includes weather shocks 

(a flexible form for temperature and precipitation), lagged yield and a flexible form of time trend. 

The weather shocks are included following the approach in Roberts and Schlenker (2013). 

The second stage assesses how changes in prices affect supply (the supply elasticity of B with respect 

to the forecasted A). We use a rational expectation framework (Nerlove, 1972, 1979):  the expected 

prices equal realized prices with one period (one year) lag. The assumption is reasonable in that the 

planting decisions and the import decisions have different timing with respect to realized prices. In 

fact, planting decisions are made one year before harvest for the annual crops produced in the US 

(and very limited adjustments can be made to the planted area), while import decisions are made 

assuming that the price of imported commodities tend to reflect the expected price at the destination. 

The resulting econometric specification is as follows: 

 ln൫𝑄൯ = 𝜑 + 𝜀, ln൫𝐸௧ିଵൣ𝑃ప൧൯ + 𝜀, ln൫𝐸௧ିଵൣ𝑃ఫ൧൯ + 𝐶𝐹 + 𝜈 (2) 

where the logarithm of the dependent variable (supply of the i-th commodity in market k), ln൫𝑄൯, is 

regressed on the expected price (at time t-1) for the commodity i, ln൫𝐸௧ିଵൣ𝑃ప൧൯, and on the expected 

price (at time t-1) of the j-th commodity, ln൫𝐸௧ିଵൣ𝑃ఫ൧൯, and CF stands for control factors (following 

                                                 
1 We gratefully acknowledge the suggestion of the reviewer to follow the approach of Roberts and Schlenker (2013). 
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Roberts and Schlenker, 2013) that we have excluded from stage-two (the lagged yield shocks which 

have been used as instruments). The prices of commodity i and commodity j are forecasted in the first 

stage (equation 1), and expressed in log form. The equation allows us to estimate the constant terms, 𝜑, and the coefficients 𝜀, and 𝜀,, which are, respectively, the own-PES and the cross-PES. The 

notation 𝜈 indicates the error term. The double-log specification allows us to interpret the estimated 

parameters (𝜀, and 𝜀,) directly as price elasticities (PES).  

We opt for a Seemingly Unrelated Regression (SURE) system of equations to estimate the parameters 

of interest in a more efficient way compared to the estimates that would be provided through equation-

by-equation OLS estimations. In fact, due to the correlation of the error terms, 𝜈, the cross-equations 

relationships captured by the SURE system increase the efficiency of the estimates (Zellner, 1962). 

Based on equation (2), we derive the SURE system of interest: 

 ⎩⎪⎨
⎪⎧  ln൫𝑄ଵௌ൯ = 𝜑ଵ + 𝜀ଵ,ଵ ln ቀ𝐸௧ିଵ ቂ𝑃ଵௌ ቃቁ + 𝜀ଵ,ଶ ln ቀ𝐸௧ିଵ ቂ𝑃ଶௌ ቃቁ + 𝜀ଵ,ଷ ln ቀ𝐸௧ିଵ ቂ𝑃ଷௌ ቃቁ + 𝐶𝐹 + 𝜈ଵln൫𝑄ଶௌ൯ = 𝜑ଶ + 𝜀ଶ,ଵ ln ቀ𝐸௧ିଵ ቂ𝑃ଵௌ ቃቁ + 𝜀ଶ,ଶ ln ቀ𝐸௧ିଵ ቂ𝑃ଶௌ ቃቁ + 𝜀ଶ,ଷ ln ቀ𝐸௧ିଵ ቂ𝑃ଷௌ ቃቁ + 𝐶𝐹 + 𝜈ଶln൫𝑄ଷௌ൯ = 𝜑ଷ + 𝜀ଷ,ଵ ln ቀ𝐸௧ିଵ ቂ𝑃ଵௌ ቃቁ + 𝜀ଷ,ଷ ln ቀ𝐸௧ିଵ ቂ𝑃ଷௌ ቃቁ + 𝜀ଷ,ଶ ln ቀ𝐸௧ିଵ ቂ𝑃ଶௌ ቃቁ + 𝐶𝐹 + 𝜈ଷ

 (3) 

where the commodities are indexed by ordinal numbers in subscript: 1 stands for palm oil, 2 indicates 

soy oil, and 3 relates to canola oil.  

3.3 Interpretation of own- and cross-PES 

The price elasticities (PES) measure how supplied quantities react to changes in prices. The own-PES 

(𝜀,) quantifies how the supply reacts to changes in its own price: 

 𝜀, = 𝜕𝑄𝜕𝑃 𝑃𝑄 (5) 

where 𝜀, is the own-PES. The own-PES represents the percent change in the supplied quantity of a 

commodity due to a one percent change in the price of that same commodity. The cross-PES (𝜀,) 

quantifies how the supply reacts to a change in price of a different commodity: 
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 𝜀, = 𝜕𝑄𝜕𝑃 𝑃𝑄 (6) 

where 𝜀, is the cross-PES. The cross-PES represents the percent change in supplied quantity of a 

commodity due to a one percent change in price of another commodity.  

The supply is defined as price elastic when the percent change in supply induced by a one percent 

change in price is greater than one (|𝜀| > 1); vice versa, the supply is said to be price inelastic if the 

percent change in supply induced by a one percent change in price is smaller than one (|𝜀| < 1).  

3.4 Data description 

We use country-level data that covers 25 years from 1992 to 2016. The dataset includes data on soy 

oil, palm oil, and canola oil. The data for market fundamentals (in Tg) have been collected from the 

USDA FAS PSDO2 . The net domestic consumption variable has been computed by summing 

production and imports and subtracting exports. The spot prices of vegetable oils are expressed in 

US$/Mt, and have been collected from the USDA Economics, Statistics and Market Information 

System3. Table 3 summarizes the descriptive statistics of key variables4. 

 

TABLE 3 ABOUT HERE 

 

4. Results and discussion 

4.1. Estimation of the supply elasticities 

We find a high correlation between canola and soy oil prices (above 0.95) which could lead to 

collinearity in the analysis; we thus excluded canola oil and restricted the system of equations to focus 

                                                 
2 Available at https://apps.fas.usda.gov/psdonline/app/index.html#/app/home, accessed in September 2016. Specifically, collected data 
concern annual production, domestic consumption, export and import, and oil crush, for the US. 
3 Data on oil crops are available at http://usda.mannlib.cornell.edu/MannUsda 
4  Crush represents the total weight of the whole oilseeds, therefore the quantities shown for crush tend to be higher than those shown 
for production. 
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on the cross-price relationships between soy and palm oils. The system has been estimated by 

controlling for weather variables and time trends, as in Roberts and Schlenker, 2013. The results of 

the second stage of the 2SLS are reported in table 4. In line with economic theory, the own-PES for 

soy oil is positive and statistically significant. However, the quantity of palm oil imports does not 

react to changes in the US price of palm oil. The elasticity of palm oil supply to soy oil price is 

positive and above one (1.23), indicating that an increase in soy oil price results in a more than 

proportional increase in palm oil supply. The elasticity of soy oil supply to palm oil price is 

statistically significant, positive and below one (.142), suggesting that the soy oil supply reacts weakly 

to changes in palm oil price (table 4).  

 

TABLE 4 ABOUT HERE 

 

Our finding that soy oil supply is inelastic to price is logical because soy oil accounts for only around 

one-third of the total market value of soybeans; most of the value of soybeans is in the protein-rich 

meal (calculated with prices from USDA FAS, 2017b, and soybean meal yield from Purcell et al., 

2000). Soybean expansion should thus be expected to respond mainly to soy meal price and only 

weakly to soy oil price. In contrast, the supply of palm oil, for which the US is a net importer, is more 

responsive to soy oil price changes.  

In order to test the robustness of our results, we performed sensitivity analyses. First, we estimated 

the own-price elasticity for US soy oil (through a 2SLS procedure) with data at a higher frequency to 

test the robustness of data frequency. Second, we estimated the cross-price and own-price elasticities 

of vegetable oils in the US using an autoregressive distributed lag (ARDL) co-integration approach. 

Our findings confirm the results presented in the paper. The econometric results are omitted for 

brevity and available upon request. 
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5. Conclusion and Policy Implications 

5.1. Policy implications of the results 

The findings presented here suggest that an increase in the demand for soy oil driven by US biofuel 

policies (and the consequent increase in domestic price for soy oil) may result in a relatively modest 

increase in soy oil production compared to the change in palm oil imports. These results challenge 

those of the ARB LCFS and of the US EPA (2010): the latter projected that an increase in soy oil 

demand would result mostly in an increase in soy oil production. Notably, the US EPA (2010) results 

are ex-ante projections, while our results are an ex-post assessment of the policies.  

The significant response of the palm oil market to changes in soy oil price suggests that support for 

soy biodiesel and renewable diesel in US federal and state policies is inadvertently exacerbating the 

environmental and climate damage from oil palm expansion. The palm oil industry has been 

expanding rapidly, and in addition to driving high GHG emissions from peat oxidation, leads to 

deforestation and a significant loss in biodiversity (Petrenko et al., 2016). The findings presented here 

suggest that the high land use change emissions associated with palm oil may be under-represented 

in regulatory analyses of US soy biofuel. The results presented here suggest that the net GHG 

emissions from soy biofuel demand are significantly higher than projected under current policies. The 

RFS and LCFS may thus overestimate the GHG savings from soy biodiesel and renewable diesel. In 

addition, these findings call into question EPA's determination that biomass-based diesel derived 

from soybean oil qualifies as an advanced renewable fuel (i.e., a fuel with at least 50% lower GHG 

emissions than petroleum diesel).  

 

5.2 Final remarks 

Our estimates of own- and cross-PES  suggest that increases in the price of soy oil have a considerable 

impact on imports of palm oil but a limited effect on soy oil supply. We conclude that increasing soy 
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oil demand due to US biofuel policies may be contributing to the expansion of oil palm plantations 

with associated high land use change emissions from deforestation and peat oxidation. US regulatory 

analyses do not appear to sufficiently account for the magnitude of this effect and may thus 

overestimate the GHG savings from soy biodiesel and renewable diesel. We recommend that US EPA 

redo its analysis of the GHG intensity of soy biodiesel taking into account the strong impact of soy 

oil demand on palm oil imports. 
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Table 1. Production, imports, exports, and trade balance of vegetable oils in the US (annual averages, from 1992 to 
2016). 
  1992-2004   2005-2016  

 Unit Production 
(A) 

Exports 
(B) 

Imports 
(C) 

 Trade Balance 
(B-C) 

 Production 
(A) 

Exports 
(B) 

Imports 
(C) 

Trade Balance 
(B-C) 

  US  
Canola oil Tg 2,423 958 4,877 -3,919  5,528 1,959 12,943 -10,984 
Palm oil Tg 0 51 1,731 -1680  0 221 10,397 -10,176 
Soy oil Tg 76,962 8,365 337 +8028  92,381 10,185 677 +9508 

Source: Authors’ elaboration on USDA FAS PSDO5 (2016). Tg stands for 1012g 
 
 

Table 2 - 2017 statistics of major oils and fats in U.S. market 
Commodity Share of total U.S. 

oil/fat market 
Share of total U.S. 

biodiesel production 
Oil/fat as value share 

of main crop 
Sources 

Soybean oil 49% 55% 31% USDA, EIA 
Canola oil 14% 13% 67% USDA, EIA 
Corn oil 12% 14% 5% USDA, EIA, ICF 
Palm oil (including 
palm kernel oil) 

10% No data 95% USDA, EIA, ICF 

Tallow 5% No data 1% USDA, EIA, ICF 
Sources: USDA, Oilcrops Yearbook; U.S. Energy Information Administration, Monthly Biodiesel Production Report with data for 
July 2018; ICF, Waste, Residue and By-Product Definitions for the California Low Carbon Fuel Standard. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
5 United States Department of Agriculture’s Foreign Agricultural Service, Production, Supply, and Distribution Online. 
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Table 3. Descriptive statistics of the dataset 
 Variable Measure units         Min       Max  Median    Mean      Std. Dev. 

Soy oil 

Production 

Tg 

62.5 102.17 85.68 84.36 10.33 
Imports 0.05 1.39 0.37 0.50 0.39 
Exports 4.25 15.24 9.22 9.24 3.07 
Domestic consumption 58.57 93.21 76.43 77.18 9.73 
Net domestic consumption 55.92 92.87 74.98 75.63 10.10 
Crush 347.16 530.7 452.30 446.01 47.82 
Price $/tonne 310.63 1,172.85 600.42 658.02 246.69 

Palm oil 

Production 

Tg 

0.00 0.00 0.00 0.00 0.00 
Imports 0.99 13.04 3.49 5.89 4.60 
Exports 0.02 0.42 0.09 0.13 0.11 
Domestic consumption 0.91 12.75 3.28 5.71 4.52 
Net domestic consumption 0.93 12.89 3.40 5.76 4.52 
Crush 0.00 0.00 0.00 0.00 0.00 
Price $/tonne 235.00 1,154.00 523.00 586.13 245.51 

Canola oil 

Production 

Tg 

0.59 7.10 3.78 3.91 1.82 
Imports 3.96 17.92 5.55 8.75 4.77 
Exports 0.07 3.01 1.23 1.44 0.76 
Domestic consumption 4.50 23.72 8.49 11.22 6.27 
Net domestic consumption 4.48 23.71 8.05 11.22 6.23 
Crush 0.36 17.40 9.01 9.27 4.4 
Price $/tonne 377.21 1,447.10 681.00 774.01 288.50        

Tg stands for 1012g 

 
 

Table 4. Own-price and cross-price elasticities of supply 
  SUPPLIED QUANTITY 
  Soy oil  Palm oil 

ESTIMATED 
PRICE 

Soy oil .189***  1.23*** 
(.052)  (.484) 

    
   

Palm oil 
      .142***  .344 

(.031)  (.294) 
   

 Control factors YES  YES 
Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Control factors include weather variables and time trends 

 

 
 
 
 



17 
 

Figure 1. Prices of vegetable oils in the US domestic market, from 1992 to 2016. 

  
Source: Authors’ elaboration on USDA AMS6, USDA ERS7 (2016). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
6 United States Department of Agriculture’s Agricultural Marketing Service. 
7 United States Department of Agriculture’s Economic Research Service. 
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Appendix  
 
 
Table A - 2017 statistics of major oils and fats in U.S. market 

Commodity Share of total U.S. 
oil/fat market 

Share of total U.S. 
biodiesel production 

Oil/fat as share of 
main crop 

Sources 

Soybean oil 49% 55% 31% USDA, EIA 
Canola oil 14% 13% 67% USDA, EIA 
Corn oil 12% 14% 5% USDA, EIA, ICF 
Palm oil (including 
palm kernel oil) 

10% No data 95% USDA, EIA, ICF 

Tallow 5% No data 1% USDA, EIA, ICF 
USDA, Oilcrops Yearbook, https://www.ers.usda.gov/data-products/oil-crops-yearbook/oil-crops-
yearbook/#Soy%20and%20Soybean%20Products 
U.S. Energy Information Administration, Monthly Biodiesel Production Report with data for July 2018, 
https://www.eia.gov/biofuels/biodiesel/production/biodiesel.pdf 
ICF, Waste, Residue and By-Product Definitions for the California Low Carbon Fuel Standard, 
file:///Users/stephaniesearle/Downloads/LCFS_Biofuel_Categorization_Final_Report.pdf 
 
 

 


