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Abstract

We use a machine learning approach to forecast the US GDP value of the current quarter and

several quarters ahead. Within each quarter, the contemporaneous value of GDP growth is un-

available but can be estimated using higher-frequency variables that are published in a more

timely manner. Using the monthly FRED-MD database, we compare the feedforward artificial

neural network forecasts of GDP growth to forecasts of state of the art dynamic factor models

and the Survey of Professional Forecasters, and we evaluate the relative performance. The re-

sults indicate that the neural network outperforms the dynamic factor model in terms of now-

and forecasting, while it generates at least as good now- and forecasts as the Survey of Profes-

sional Forecasters.
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1. Introduction

Policy makers regularly request information on the current state of the economy. This also ap-

plies to central bankers before they adjust their monetary policy stance, as well as to economists

who work in major finance departments and who have to make a decision about a short term

budget plan. However, because GDP is measured on a quarterly frequency, often with consid-

erable time lags, the GDP growth of the current period needs to be estimated as accurately as

possible. This current quarter forecast is often referred to as nowcasting, as defined for instance

by Bańbura et al. (2013). When the nowcast of GDP growth is conducted for the current quar-

ter, more timely and higher frequency information are available. The combination of several

monthly indicators might help to extract signals about the current state of the economy. Un-

fortunately this approach does face some difficulties because monthly indicators are also only

available with certain publication lags, leading to the so called "ragged edge" problem that was

first described by Wallis (1986).

To overcome these challenges, central banks commonly apply the dynamic factor model

(DFM) approach of Giannone et al. (2008). This modeling framework shrinks information from

a large dataset into a few underlying factors, while at the same time applying Kalman-Filtering

techniques to fill up the missing data of the ragged edge within the dataframe. Although this

approach provides a unified framework incorporating dynamic imputation and nowcasting, the

central predictor equation remains linear, making the model potentially unfit to generalize to

non-linear patterns.

This paper addresses several of the above described issues by applying a machine learning

framework to now- and forecasting the GDP growth of the United States between 1999 and

2018. Specifically, an artificial neural network (ANN) approach is chosen within the combined

filter and wrapper approach of Crone and Kourentzes (2010) and Kourentzes et al. (2014). The

resulting multilayer perceptron (MLP) is a highly non-linear, flexible and dynamic framework

that enables us to automatically fit the most appropriate neural network architecture, while

simultaneously allowing for the selection of the most relevant monthly indicators for now- and

forecasting the current and future values of GDP growth. The MLP approach to now- and

forecasting is applied to the real-time monthly vintages of the FRED-MD database, enabling us

to conduct quasi real-time forecasts of US GDP growth between 1999 and 2018.

While no other study of nowcasting has applied ANNs, or machine learning algorithms in

general, several other studies have applied neural networks to forecast macroeconomic and fi-

nancial variables. For example, Tkacz (2001) uses neural networks to forecast the Canadian

GDP growth rate between 1989 and 1992 by applying lagged GDP growth and several other

financial variables, such as yield spreads and monetary aggregates. While Tkacz (2001) uses
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quarterly data to forecast Canadian GDP by using ANNs, Heravi et al. (2004) apply ANNs to

forecast monthly industrial production between 1978 and 1995 for the three largest European

economies, with data provided by Eurostat. In contrast to Tkacz (2001), Heravi et al. (2004)

only use the information contained in the lagged values of monthly y-o-y growth of industrial

production. Most recently, Jung et al. (2018) use recurrent neural networks, elastic nets and

super learners to forecast GDP growth of seven major advanced and developing economies.

They combine the World Economic Outlook Database from the IMF with data from the Inter-

national Country Risk Guide. These combined databases contain quarterly and annual data of

records of national accounts, monetary, trade, labor market variables as well as business and

consumer confidence indices and several risk metrics. The time span ranges from 1970 to 2010,

and forecasts are conducted up until 2010. Besides these studies, ANNs have also been used

in financial forecasting. For instance, Kuan and Liu (1995) investigate the forecasting ability

of ANNs and recurrent ANNs for daily exchange rates of five major currencies between 1980

and 1985. More recently Torres and Qiu (2018) apply recurrent neural networks to daily data

of several crypto-currencies, exchange rates, commodities and stocks between 2013 and 2017.

Our contribution is to demonstrate that feedforward artificial neural networks can be applied

to nowcasting, as well as to forecasting. The reason why we focus on feed forward ANNs, in

contrast to more sophisticated recurrent ANNs, is that there are several efficient procedures to

input variable and network architecture selection. By applying the combined filter and wrapper

approach of Crone and Kourentzes (2010) and Kourentzes et al. (2014), we demonstrate how

the implementation of ANNs can be automatized in the process of now- and forecasting. To

demonstrate the usefulness of the ANN approach, we conduct a now- and forecasting competi-

tion between the standard DFM methodology of Giannone et al. (2008) and Survey of Profes-

sional Forecasters (SPF). Our main findings can be summarized as follows: the applied ANN

approach beats the DFM significantly in now- and forecasting, when the evaluation metrics

are the root mean squared forecast error (RMSFE) and mean absolute forecast error (MAFE).

Compared to the SPF, the ANN produces smaller RMSFEs and MAFEs in now- and short term

forecasting; however, the results are not significantly different from zero. Therefore, the ANN

performs better than the DFM and is at least as good as the SPF.

The remainder of the paper is organized as follows. Section 2 describes the DFM method-

ology of Giannone et al. (2008) and the combined filter and wrapper approach of Crone and

Kourentzes (2010) and Kourentzes et al. (2014). Section 3 describes the applied data, espe-

cially the real-time vintages of the FRED-MD database and the SPF data, and the real-time

forecasting setup. Section 4 presents the empirical results, while Section 5 concludes.
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2. Econometric framework

2.1. Dynamic factor model

To exploit information of many monthly potential predictor variables and obtain an early es-

timate of quarterly GDP growth, Giannone et al. (2008) combine a DFM and the Kalman

smoother. Their two-step approach solves three problems of nowcasting: it deals with the mixed

frequency issue of combining monthly predictor variables and quarterly GDP, it can handle a

large number of potential predictor variables, and it can cope with the ragged edge problem of

the underlying data. Additionally, it has the potential to capture the essential dynamics of the

time series of the panel.

The rest of this section summarises the approach of Giannone et al. (2008). The theory behind

the two-step estimator is derived in Doz et al. (2011).

Let xt|v j
be an n×1 vector of stationary monthly indicator variables available for the vintage

v j, which is transformed so as to correspond to a quarterly quantity when observed at the end

of the quarter.1 Giannone et al. (2008) assume the following factor structure of the transformed

monthly indicators:

xt|v j
= µ +λFt + εt|v j

, (2.1)

where µ is a constant, Ft is an r× 1 vector of common factors, λ is an n× r matrix of factor

loadings, and εt|v j
is an r×1 vector of idiosyncratic components. It is assumed that the common

components given by χt = λFt are linear functions of a few r < n unobserved common factors

that capture most of the variation of the underlying dataset, while the idiosyncratic components

are driven by variable-specific shocks. The dynamics of the factors are modeled as follows:

Ft = AFt−1 +But , (2.2)

where B is a r×q matrix of full rank q, A is a r× r matrix with all roots of det (Ir −Az) lying

outside the unit circle, and ut is a q×1 vector of white noise shocks to the common factors. The

idiosyncratic error term vector εt|v j
is assumed to be white noise, cross-sectionally orthogonal,

as well as orthogonal to the common shock vector ut . In terms of the parametrisation, Giannone

et al. (2008) choose two static factors and two common shocks, hence r = q = 2, which we are

going to follow.

Equations (2.1) and (2.2) set up a state space framework which allows standard Kalman filter

techniques to estimate the common factors. The estimation is conducted as follows: first, by ig-

noring observations that are not available for all the variables of the dataset, a balanced panel is

1See the Appendix of Giannone et al. (2008) for the data transformations.
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created from the original ragged edge dataset. Then, principal components are derived from this

balanced panel and the parameters of (2.2) are estimated by ordinary least squares (OLS) re-

gression. In the second step, the common factors are estimated by running the Kalman smoother

using the entire ragged edge dataset, where true parameters in the state space specification are

replaced by parameter estimates. Hence, when no observation is available, the filter produces

a forecast of the common factors. Having obtained the estimated factors from the unbalanced

panel, the nowcasts of GDP growth finally appear as the fitted values of an OLS regression of

the quarterly GDP series on the quarterly estimated factors:

ŷt|v j
= α +β

′
F̂t|v j

, (2.3)

where ŷt|v j
is the estimated quarterly GDP growth, and F̂t|v j

are the estimated common factors.

2.2. Artificial neural network

This section describes the set-up of our main nowcasting machine, the ANN. ANNs can be

modeled as flexible frameworks, which belong to the class of machine learning algorithms. As

with most machine learning techniques, the ANN can be used for classification—which is a pre-

dictive exercise in which the dependent variable is qualitative—and for forecasting continuous

variables. The description that follows is based on Crone and Kourentzes (2010), Kourentzes

et al. (2014) and Ord et al. (2017).

A simple example of a one-layer feed-forward ANN with I input- and H hidden nodes, also

called neurons, within a time series context is given by

yt+1 =
H

∑
h=1

βhg

(
I

∑
i=1

γhi pi − γ0i

)
−β0, (2.4)

where p = [yt , ...,yt−n,x
′
t+1, ...,x

′
t−k] is the vector of inputs containing lags of the dependent

variable yt+1 and contemporaneous, as well as lagged values of further explanatory variables

x′t+1. The one layer perceptron, as it is frequently called, can be generalised to a MLP. The

coefficient vectors β = [β1, ...,βH ] and γ = [γ1, ...,γI] are the so called output layer and hidden

layer weights. The two coefficients β0 and γ0i are called biases. A bias decides whether or not a

neuron gets activated. A neuron is said to be activated whenever for a given h, the weighted sum

of the previous layer neurons—in this case, when ∑
I
i=1 γhi pi exceeds its bias. The function g()

is referred to as the squashing function and it maps the weighted sum of previous layer neurons

minus bias to some interval (a,b), typically (−1,1) or (0,1). Hence, common choices for g()
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are the hyperbolic tangent, g(x) = e2x−1
e2x+1

, or the sigmoid, g(x) = ex

ex+1
. The reason behind using

a squashing function is purely practical because networks tend to train better when neurons can

only take values from limited data ranges (see Ord et al. (2017)). When a variable is predicted

by the ANN, the final output is retransformed to its original scale by applying the squashing

functions inverse g−1(x) within the output layer. The output and input variables can be of

any scale, meaning that (as within a linear regression) the networks weights would account

for scaling. However, Ord et al. (2017) argue that, similar to the application of the squashing

function, networks tend to train better when the in- and outputs are bijectively transformed into

a common scale. When all of the variables are on a common scale, the networks weights’ only

task is to capture the non-linear relationship between the inputs and the output. An additional

advantage is that neurons are less likely to be saturated; that is, for example for the logistic

squashing function taking values close to 1 (0), regardless of the input being for example 100000

and 10000000 (-100000 and -10000000). The most common scaling practice is to use the

generalised min-max transformer

z(x) = (b−a)
x−min(x)

max(x)−min(x)
+a, (2.5)

which maps a metric variable x into the interval [a,b]. The question of the right values for a

and b is an empirical one and depends upon the forecasting performance of the resulting model.

Given an ANN specification, the interval that maximises forecast accuracy on some validation

data can be chosen. Typical choices to start with are a = 0 and b = 1.

The described ANN can be interpreted as a flexible and highly parametrised non-linear au-

toregressive distributed lag model (ARDL). The weights and biases are estimated or, in the

language of machine learning, trained. The most commonly used training method is the back-

propagation algorithm of Rumelhart et al. (1986). This is a variant of gradient descent in which,

after a random initialisation, the sum of squared errors between predicted and actual outcome

are minimised by adjusting the weights and biases of the ANN. The detected minimum is a

local one. Note, however, that in the context of machine learning finding, the global mini-

mum is not desirable because the trained model would over-fit the training data, leading to poor

out-of-sample performance.

Before the ANN is used for the nowcasting exercise, the input variables—that is, the number

of lags of yt+1 and the additional explanatory variables and their lag structure x′t+1, ...,x
′
t−k—

and the network architecture—that is, the number of hidden layers, the number of neurons

per layer and the type of the squashing function—have to be selected. Crone and Kourentzes
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(2010) provide a combined filter and wrapper approach to select these features of ANNs for

the purpose of time series forecasting. The filter selects the input variables before the network

architecture is selected and the wrapper selects the network architecture given the input selection

afterwards. Lachtermacher and Fuller (1995) demonstrate that an efficient way of input variable

selection for ANNs is by applying stepwise regressions; that is, linear ARDL models. Within

this procedure, all of the variables and lags that are not significant on a 5 % level are deleted

step-by-step. However, stepwise selection is only valid in a statistical sense when the applied

time series is stationary (see Sims et al. (1990)), which is the case here as the FRED-MD series

are transformed to stationarity (see Appendix A.1 for details).2

Given the selected input variables, the network architecture is selected by applying the fol-

lowing wrapper: the data are split into a training set, containing 80 % of the sample, and a

validation set, containing the remaining 20 %. Afterwards, different network architectures with

varying numbers of hidden layers and neurons per layer are trained on the training set by apply-

ing the backpropagation algorithm. Then, the predictive performance of the different networks

is evaluated on the validation set. The network architecture resulting in the smallest mean

squared error (MSE) on the validation set is selected. Because the ANN is able to approximate

any type of function, there is the danger of overfitting the test data when the network archi-

tecture becomes more complex. The minimisation of the MSE on the validation set takes this

concern into account and therefore reduces the negative predictive effects of overfitting. How-

ever, the danger of overfitting on the validation set remains. To minimise that potential effect,

we apply a 5-fold-cross validation scheme and minimise the MSE on the different folds.3

As discussed earlier, the final network architecture and the inputs are selected by the com-

bined filter and wrapper approach of Crone and Kourentzes (2010). When the final network

is trained via the backpropagation algorithm, the resulting coefficients correspond to a local

minimum of the loss function. Because there are multiple local minima, the random initial-

isation of the backpropagation algorithm results in different weights and therefore different

forecasts. Kourentzes et al. (2014) suggest to retrain the network for multiple random initialisa-

2It should be noted that the full filter procedure of Crone and Kourentzes (2010) includes the construction of

further input variables that account for deterministic seasonality and deterministic trends. This variable con-

struction is refereed to as an interative neural filter (INF) because it applies an ANN on the target variable

using trigonometric functions containing the seasonal length of the inputs. The seasonal length is detected

by minimising the euclidean distance between vectors of the target variable, which have been constructed by

splitting the target vector into subvectors of different (equal) length. The INF accounts in a flexible way for

deterministic seasonality of yt+1 and x′t+1. However, the FRED-MD data are deseasonalised and transformed

to stationarity. Therefore, the INF procedure is not applied in this paper.
3Besides the training of the weights and biases within each network, the selection of the number of neurons and

layers, as well as the selection of the squashing function and the transformation interval of the inputs and the

target is referred to as supervised learning in the machine learning terminology.
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tions, which results in a distribution of forecasts. The mode of a kernel density estimate of the

different forecasts shows superiority in terms of forecast accuracy when compared to a single

forecast applying only one trained network. This so called ensemble operator approach is also

applied here for 100 different random initialisations.

Finally, to deal with the ragged edge problem, we fill up missing values by applying univariate

ARMA(p,q) forecasts of each single time series. The lag-lengths of the ARMA(p,q) models are

selected via Akaike information criterion (AIC).

3. Data and forecasting design

3.1. Data

The data behind the MLP and the DFM comes from FRED-MD, the monthly database for

Macroeconomic Research of the Federal Reserve Bank of St. Louis, which is described exten-

sively in McCracken and Ng (2016).

FRED-MD is a large macroeconomic database that i designed for the empirical analysis of

“big data”. The database is publicly available and updated in real-time on a monthly basis.4

It consists of 134 monthly time series and is classified into eight categories: (1) output and

income, (2) labor market, (3) housing, (4) consumption, orders and inventories, (5) money and

credit, (6) interest and exchange rates, (7) prices and (8) stock market. A full list of the data and

its transformation is given in Appendix A.1. The time series start in January 1959 and vintages

of the whole database are available since August 1999.

3.2. Real-time forecasting setup

For the training of the MLP and the estimation of the DFM, we use the information available

at the end of the second month of the quarter, hence we use the initial releases of the FRED-

MD database at the end of February, May, August, and November. We estimate the models

recursively using only information available at each point where the nowcasts are computed.

The first nowcast is conducted for 1999Q3.

4The FRED-MD database is available for download under the following link: https://research.

stlouisfed.org/econ/mccracken/fred-databases/.
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3.3. Survey of Professional Forecasters

The US GDP growth forecasts of the MLP and DFM are compared with the median forecasts

of the SPF.

The SPF is the oldest survey of macroeconomic forecasts in the United States, and it is

conducted and published by the Federal Reserve Bank of Philadelphia.5

The SPF is a quarterly forecast and is released around the 15th of the second month in the

middle of every quarter; that is, mid-February, mid-May, mid-August and mid-November. The

forecasters publish a nowcast of the current quarter, and one-quarter- up to four-quarters-ahead

forecasts.

4. Empirical results

Figure 1 plots the actual realisation of GDP growth together with the nowcasts (horizon h = 0)

of the SPF, the DFM and the MLP. It can be seen that the SPF is sometimes over-pessimistic

at the end of recessions, while being fairly accurate at the beginning. For instance, during the

2008 recession, the SPF nowcast tracks the actual GDP growth tightly. Between 2007:Q3 and

2008:Q3—with the exception of 2008:Q2 where it is with a nowcast of 1.2 % GDP growth

above the actual GDP growth too over-optimistic—, it is fairly accurate with absolute errors be-

tween 0.1 % and 0.5 %. In contrast, in 2009:Q1, the SPF overestimates the actual GDP decline

of -3.3 % with -5.2 % by a large extent.

The DFM nowcasts are most of the time above the GDP growth and hence too optimistic.

This is especially true during the 2008 recession and the recovery period that followed. For

example, between 2010 and 2015, and between 2015 and 2018 the DFM nowcasts are almost

always above the actual realisations and compared to the SPF and the MLP the DFM is the

furthest away from actual GDP growth. The MLP is fairly accurate during the 2008 recession

because its nowcast error is most often smaller compared to the SPF. Exceptions are 2008:Q1

and 2008:Q3, where the SPF produces nowcast errors of -0.4 and 0.1 percentage points, while

the MLP produces nowcast errors of -0.9 and -2.6 percentage points. In the following expan-

sionary period between 2009 and 2018, the MLP nowcast is close to the SPF nowcast, while it

produces superior nowcasts approximately half of the time.

5More information about the SPF can be found in Croushore (1993). All of the SPF releases can be found under

the following link: https://www.philadelphiafed.org/research-and-data/real-time-center/

survey-of-professional-forecasters/.
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Figure 1: Realised GDP growth versus nowcasts.
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Notes: Realised GDP growth versus nowcasts of the DFM, the SPF, and the MLP. NBER recessions are highlighted by gray shading.

These findings mirror themselves in Figure 2, where the cumulative sum of squared forecast

error differences (CSSED) between the DFM, the SPF and the MLP are plotted. The baseline

model here is the MLP such that the squared error difference between the SPF versus MLP and

the DFM versus the MLP are added up and plotted. Whenever the dotted black line (dashed-blue

line) is below the zero line, the MLP outperforms the SPF (DFM) in terms of nowcasting.

It is apparent that, especially before and after the 2008 recession, the MLP is superior to

the SPF. Shortly before and up to the middle of the 2008 recession, the SPF and the MLP are

equally accurate, while the described precision of the SPF shows up in CSSED values larger

than zero from the mid of the recession until its end. The major fall of the CSSED value can

be attributed to the over-pessimistic nowcast of the SPF at the end of the crisis, while the stable

negative values reflect the equal nowcasting accuracy in the following recovery period.
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Figure 2: CSSED plots for nowcasts.
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Notes: This graph shows the CSSED for the nowcast. The CSSED is computed as CSSEDm,τ = ∑
T
τ=R

(
ê2

bm,τ − ê2
m,τ

)
, where ê2

bm,τ denotes the

squared forecast error of the MLP. Values above zero indicate that the alternative model outperforms the MLP, while values below zero mean

that the MLP outperforms the competing model. NBER recessions are highlighted by gray shading.

The CSSED for the DFM versus the MLP indicates that before the 2008 recession both are

equal in terms of nowcasting GDP growth, while especially after the crisis the MLP gets better

and better, which is indicated by the downward sloping dashed blue line.

To summarise the visual analysis of the nowcast horse-race between the SPF, the DFM and

the MLP, one can follow that the MLP produces at least as accurate nowcasts as the SPF, while

the absolute errors that it makes are less severe. The DFM, however, tends to be too optimistic

most of the time. An explanation of the visually detected superiority of the MLP might be stated

as follows. The flexibility of the MLP in terms of input variable selection and the possibility of

non-linear functional fitting when necessary give it a clear advantage over the DFM. The DFM

can only re-weight different variables through the factor extraction procedure while keeping
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the model linear in its predictor equation, making it unable to fit accurately to potential non-

linear periods, such as recessions and subsequent recovery phases. An explanation of the MLPs

superiority towards the SPF is more difficult to give because it is not clear what type of model

the SPF uses for its nowcast.

The next step is to analyse whether the MLP significantly beats the SPF and the DFM in

nowcasting (h = 0) and out of sample forecasting (h > 0). To start the statistical analysis,

the relative forecast performance of the three competitor models is evaluated versus a naive

constant growth model. Table 1 reports the relative RMSFE of the naive benchmark model

versus the three competitor approaches. Values smaller than one indicate that the competitor

model has a smaller RMSFE than the naive constant growth model. In addition, the significance

of the relative forecast performance is tested by the Diebold and Mariano (1995) test. The

nowcasting/forecasting period ranges from 1999:Q3 to 2018:Q3.

Focusing at first on nowcasting, it is apparent that all three competitors beat the naive bench-

mark model significantly on a 1 % level at a horizon of h = 0. Moreover, one can see that the

MLP performs best in terms of relative RMSFE versus the benchmark, while the SPF is ordered

second and the DFM last. The same pattern occurs for the one- (h = 1) and two-steps-ahead

(h = 2) forecasting horizons. On a three-steps-ahead horizon, the MLP is the only model of the

three competitors, which beats the naive benchmark model on a 5 % significance level. Finally,

on a four step ahead horizon, the MLP is again the only model that can significantly beats the

benchmark at least on a 10 % level, while the SPF and the DFM are not able to generate superior

forecasting performance.

Table 1: Nowcasts and forecasts of GDP: out-of-sample evaluation for

DFM, SPF and MLP vs. naive benchmark.

model h = 0 h = 1 h = 2 h = 3 h = 4

DFM 0.477∗∗∗ 0.624∗∗∗ 0.812∗∗∗ 0.950 1.035

SPF 0.518∗∗∗ 0.547∗∗∗ 0.724∗∗∗ 0.809 0.878

MLP 0.398∗∗∗ 0.537∗∗∗ 0.694∗∗∗ 0.839∗∗ 0.942∗

Notes: This table reports the relative RMSFE of GDP growth for the DFM, the SPF, and the MLP relative to

a naive constant growth model for GDP. Evaluation sample: 1999Q3 − 2018Q3. A value below one indicates

that the competitor model beats the naive benchmark model. The stars denote statistical significance at

10%(∗), 5%(∗∗) and 1%(∗∗∗) level of the Diebold and Mariano (1995) test.

As Table 1 shows, the MLP generates the smallest relative RMSFE towards the naive bench-

mark model for the nowcasting and for all forecasting horizons up to h = 4. The next step is

to test whether the MLP is also able to beat the DFM and the SPF directly. Table 2 reports the

relative RMSFE of the MLP versus the two competitor models. A value of the relative RMSFE
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that is smaller than one means that MLP generates a smaller RMSFE than the DFM or the SPF.

The evaluation period is again 1999:Q3 to 2018:Q3.

The DFM is significantly outperformed on all horizons. In terms of nowcasting, the relative

RMSFE is 0.834 and the difference is significant on a 10 % significance level. In terms of

forecasting, the MLP beats the DFM significantly on a 1 % level from a one- up to a four-steps-

ahead forecasting horizon. Comparing the nowcasting performance of the SPF with the MLP

in terms of relative RMSFE, it is apparent that with a value of 0.768 the MLP outperforms

the SPF; however, the result is not statistically significant. Turning towards forecasting, Table

2 shows that the MLP beats the SPF up to a two-steps-ahead forecasting horizon, which is

again insignificant. For for three- and four steps ahead forecasting horizons, the SPF generates

smaller RMSFEs, which are also insignificant. This indicates that when the RMSFE is used as

a forecasting evaluation method, the MLP is at least as good as the SPF in terms of nowcasting

and short-term forecasting, while it significantly outperforms the DFM on every horizon.

Table 2: Nowcasts and forecasts of GDP: out-of-sample

evaluation for MLP, RMSFE.

model h = 0 h = 1 h = 2 h = 3 h = 4

DFM 0.834∗ 0.860∗∗ 0.854∗∗ 0.884∗∗∗ 0.910∗∗∗

SPF 0.768 0.982 0.958 1.037 1.073

Notes: This table reports the relative RMSFE of GDP growth for the MLP relative

to the DFM and the SPF. Evaluation sample: 1999Q3 − 2018Q3. A value below

one indicates that the MLP beats the competitor model. The stars denote statisti-

cal significance at 10%(∗), 5%(∗∗) and 1%(∗∗∗) level of the Diebold and Mariano

(1995) test.

A similar picture occurs when the MAFE is used as a nowcasting/forecasting evaluation

method. This scenario, everything else kept equal, is presented in Table 3. The MLP still

beats the DFM in terms of nowcasting performance; however, the relative MAFE is 0.791 and

the performance advantage of the MLP is now significant on a 5 % level. When it comes to

forecasting, the MLP significantly outperforms the DFM up to a four-quarters-ahead horizon.

Again, similar to the RMSFE evaluation presented in Table 2, the MLP generates a lower MAFE

compared to the SPF on horizons from h = 0 to h = 2, while still being insignificant. The

conclusion remains the same; the MLP outperforms the DFM on every horizon, while the SPF

is insignificantly outperformed when it comes to nowcasting and short-term forecasting.

12



Table 3: Nowcasts and forecasts of GDP: out-of-sample evaluation for

MLP, MAFE.

model h = 0 h = 1 h = 2 h = 3 h = 4

DFM 0.791∗∗ 0.800∗∗∗ 0.845∗∗∗ 0.844∗∗∗ 0.849∗∗∗

SPF 0.883 1.034 1.089 1.163 1.154

Notes: This table reports the relative MAFE of GDP growth for the MLP relative to the DFM and the SPF.

Evaluation sample: 1999Q3 − 2018Q3. A value below one indicates that the MLP beats the competitor

model. The stars denote statistical significance at 10%(∗), 5%(∗∗) and 1%(∗∗∗) level of the Diebold and

Mariano (1995) test.

To get more granular insights and to test for robustness, Table 4 reports the RMSFE and

MAFE of the MLP and, additionally, the relative values of these compared to the respective

evaluation metrics of the SPF and the DFM, while the following variable groups have been

excluded from the training and evaluation samples: Output and income variables (G1), labor

market variables (G2), housing variables (G3), consumption, orders and inventory variables

(G4), money and credit variables (G5), interest rates and exchange rates (G6) and stock market

variables (G8). In addition, Figure 3 depicts a heatmap as a visual inspection of the specific

variables used within the respective quarter by the MLP.6 All of the variables that appear within

the heatmap have been used at least once, while non-depicted variables are not used at all. The

baseline results where none of the groups have been removed are presented in the first row of

the upper and lower part of the table, respectively.

The nowcasting evaluation presented in Table 4 indicates robustness as the relative RMSFEs

and MAFEs do not change by a large extent. However, some differences should be noticed.

When the RMSFE is used as the evaluation metric, the nowcasting superiority of the MLP to-

wards the DFM becomes significant on a 5 % level, when labor market variables (G2) or interest

rates and exchange rates (G6) are excluded. These two groups of variables are most often used,

as can be seen in Figure 3. Because labor market variables tend to be lagging behind produc-

tion or financial market variables, the performance gain due to exclusion might be explained by

efficiency gains due to increased parsimony. In contrast, exchange rates and interest rates are

forward looking financial variables and hence should increase the information gain of the MLP.

However, these fast moving financial variables tend to be noisy and therefore may reduce the

signal extraction by the MLP, ultimately resulting in a lower forecasting performance.

6Please note that the structure of the FRED-MD database has slightly changed over time. For details see the

historical vintages of FRED-MD 1999-08 to 2014-12.
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Table 4: Nowcasts of GDP: out-of-sample RMSFE and MAFE evaluation with different

data groups for MLP.

h = 0

RMSFEMLP
RMSFEMLP

RMSFEDFM

RMSFEMLP

RMSFESPF
MAFEMLP

MAFEMLP

MAFEDFM

MAFEMLP

MAFESPF

All Groups 0.812 0.834∗ 0.768 0.640 0.791∗∗ 0.883

less G1 0.813 0.835∗ 0.769 0.649 0.802∗∗ 0.895

less G2 0.743 0.763∗∗ 0.703∗ 0.597 0.738∗∗∗ 0.823∗

less G3 0.848 0.871 0.802 0.661 0.817∗∗ 0.912

less G4 0.930 0.955 0.880 0.694 0.858∗ 0.957

less G5 0.810 0.832∗ 0.766 0.642 0.794∗∗ 0.886

less G6 0.780 0.801∗∗ 0.738 0.651 0.805∗∗ 0.898

less G7 0.865 0.888 0.818 0.673 0.832∗∗ 0.928

less G8 0.832 0.854∗ 0.787 0.665 0.822∗∗ 0.917

Notes: This table reports the RMSFE and MAFE of GDP growth for the MLP. Evaluation sample: 1999Q3 − 2018Q3. The stars

denote statistical significance at 10%(∗), 5%(∗∗) and 1%(∗∗∗) level of the Diebold and Mariano (1995) test.

Figure 3: Heatmap of the variables used within the MLP.
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Notes: This graph shows a heatmap of all variables that have been used at least once by the MLP within the respective quarter. The blue

squares indicate usage while the while squares indicate non-usage. NBER recessions are highlighted by gray shading.
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Figure 4 plots the distribution of MSEs, which are created during the cross validation when

the MLP is trained. The histogram and kernel density estimates of the MSEs are plotted for the

baseline MLP, where all groups are included and for all MLPs where one of the above described

groups are excluded.

When labor market variables (G2) are excluded, one can see that the distribution of MSEs

spreads out much less when compared to the baseline and that there are less outliers towards

the left tail of the distribution. Since these are MSEs, which are generated during the training of

the MLP, very small values indicate overfitting on the respective fold. A larger number of folds

where the MLP overfits leads to poorer out-of-sample performance on unseen data. It seems

to be the case that the backward looking labour market variables produce the higher degree of

overfitting during the training. This may happen because the additional benefit and associated

information gain of an inclusion is relatively small given that these variables simply aggregate

all previously known movements of production indicators with a time lag. The applied filter ap-

proach for input variable selection described in Section 2.2 comes to its limits in this situation

because it selects mechanically based on significance within ARDL models. A similar reduc-

tion in MSEs can be seen when the fast moving financial variables (G6) are excluded. Again,

there are fewer outliers towards the left tail of the distribution. There also seems to be less over-

fitting during the training when this group is excluded. In this example, a possible explanation

for increased nowcast performance might be a higher signal to noise ratio, resulting from the

exclusion of noisy variables like exchange- and interest rates.
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Figure 4: Histogram and densities of MSE.
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Notes: This graph shows histograms and kernel density estimates of the MSEs, which result from the cross validation during the training of

the MLP. The dashed vertical line represents the mean, while the two dotted lines represent the standard deviation around the mean.

Figure 5 demonstrates the frequency of variables used within the MLP during the time period

the nowcasting exercise is conducted. To avoid being too descriptive at this point, the focus will

be on the 10 most frequent variables applied. Together with Figure 3, an attempt can be made

to open up the black box of the MLP approach. The 10 most frequently used variables from top

to bottom are: inventory sales (ISRATIOx), real personal income (RPI), industrial production

of final products and non-industrial supplies (IPFPNSS), 1-year treasury minus fed funds rate

(T1YFFM), all employees in retail trade (USTRADE), three months treasury rate minus fed

funds rate (TB3SMFFM), initial claims (CLAIMSx), civilian unemployment rate with a dura-

tion of 5 to 14 weeks (UNEMP5TO14), real M2 money stock (M2REAL) and real personal

consumption expenditures (DPCERA3M086SBEA). They are used between 77 and 58 times

during the nowcasting and forecasting exercise. Hence, out of the 10 most frequently selected

variables, the MLP picks mostly real activity variables (4/10), some financial variables (3/10)

and some labor market variables (3/10). Half of the real variables consist of production vari-
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ables (inventory to sales and industrial production of non-industrial supplies) and the other half

of income variables (real personal income and real personal consumption expenditures). The

financial indicators mostly consist of variables describing the yield curve (1-year treasury minus

fed funds rate and 3-month treasury minus fed funds rate). Because the yield curve is one of the

most used variables in the prediction of business cycle turning points, it positively confirms that

the artificial neural network also selects these variables most frequently. Interestingly, labor

market variables are selected frequently because they are supposed to be lagging behind real

and financial movements. However, the most depicted labor market variable is initial claims,

which is an indicator of the labor market as a whole and therefore serves as a forecast of unem-

ployment itself. Which variables are used shortly before and during crisis periods is especially

interesting. For example, in Figure 3 one can see that in the years before the great financial

crisis of 2007 to 2008, the housing variables are not used at all. This may reflect the ability of

the MLP to recognise when a variable is moving apart, for example through an inflating bubble

process as it was clearly the case for the housing market. Yield curves seem to be indicative

before, after and during recessions as they are used by the MLP around the Dotcom and housing

bubbles of 2001 and 2007. The same is true for the most frequently used production, income

and consumption variables that were discussed earlier. Labor market variables make up the

largest block of applied variables. However, finding a consistent pattern among the labor mar-

ket indicators, especially with regard of when and which of those variables are used, is difficult

and shows the limits of the presented attempt to opening up the black box of an artificial neural

network in economic forecasting and nowcasting.
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Figure 5: Bar chart demonstrating the frequency of variables used by the MLP.
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5. Conclusion

This paper applies a machine learning framework to economic now- and forecasting of US

GDP growth. Artificial neural networks are applied to the monthly vintages of the FRED-MD

database. These monthly indicators are used within the flexible MLP framework of Crone and

Kourentzes (2010), Kourentzes et al. (2014) and Ord et al. (2017), which is able to automatically

select the timely variables that are most informative for economic now- and forecasting of the

quarterly GDP growth. The variables are selected by applying a linear ARDL filter approach

of Kourentzes et al. (2014), where the most significant variables and corresponding lags are

selected previously to the network training. The network architecture is selected by the wrapper

approach of Kourentzes et al. (2014), which applies a cross-validation scheme to select the
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number of hidden layers and associated nodes. The MLP is trained with data from the 1950s

up until the late-1990s. Afterwards, the first now- and forecasts are conducted, while the MLP

is continuously retrained within an expanding window scheme. This approach enables us to

get a highly flexible regression framework, which is able to fit to potentially any non-linearity

that might occur throughout time. While the described functional flexibility might serve as an

advantage over traditional linear frameworks, the resulting black box is a clear disadvantage.

The applied MLP framework is used in a now- and forecasting competition against the DFM

approach of Giannone et al. (2008) and the SPF. These two approaches have been chosen be-

cause the DFM approach is the most commonly applied framework for nowcasting applied by

central banks, while the SPF is one of the most hard-to-beat competitors in macroeconomic

forecasting. All three frameworks are tested against a naive constant growth model framework

and outperform it in terms of the RMSFE and the MAFE. When the models are tested against

each other in terms of now- and forecasting accuracy, it is found that the MLP significantly

outperforms the DFM on horizons of h = 0,1, ...,4 in terms of RMSFE and MAFE. Against

the SPF, the MLP generates smaller RMSFEs and MAFEs on a horizon of h = 0. However,

this result is not significant. The results are robust to the omission of subgroups of variables.

To summarise the results, one can conclude that the flexible MLP framework generates signif-

icantly better results compared to the DFM approach, while the results are at least as good as

the SPF nowcasts.

A potential field of future research could be the application of a recurrent neural network

(RNN) to nowcasting. When MLPs are a nonlinear generalisation of ARDL models, RNNs

can be seen as non-linear generalisations of autoregressive moving average distributed lag

(ARMADL) models. However, a major disadvantage is that, to the best of our knowledge,

RNNs do not have efficient filters and wrappers, making an automation of the network structure

difficult.
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A. Appendix

A.1. FRED-MD database

The TCODE column denotes the following data transformation for a series x: (1) no transfor-

mation; (2) ∆xt ; (3) ∆2xt ; (4) log(xt); (5) ∆log(xt); (6) ∆2log(xt); (7) ∆(xt/xt−1 − 1.0). The

FRED column gives mnemonics in FRED followed by a short description.

Some series require adjustments to the raw data available in FRED. These variables are

tagged by an asterisk to indicate that they have been adjusted and thus differ from the series

from the source. For a detailed summary of the adjustments see McCracken and Ng (2016).

Group 1. Output and income

ID tcode FRED Description

1 1 5 RPI Real Personal Income

2 2 5 W875RX1 Real personal income ex transfer receipts

3 6 5 INDPRO IP Index

4 7 5 IPFPNSS IP: Financial Products and Nonindustrial Supplies

5 8 5 IPFINAL IP: Final Products (Market Group)

6 9 5 IPCONGD IP: Consumer Goods

7 10 5 IPDCONGD IP: Durable Consumer Goods

8 11 5 IPNCONGD IP: Nondurable Consumer Goods

9 12 5 IPBUSEQ IP: Business Equipment

10 13 5 IPMAT IP: Materials

11 14 5 IPDMAT IP: Durable Materials

12 15 5 IPNMAT IP: Nondurable Materials

13 16 5 IPMANSICS IP: Manufacturing (SIC)

14 17 5 IPB51222s IP: Residential Utilities

15 18 5 IPFUELS IP: Fuels

16 19 1 NAPMPI ISM Manufacturing: Production Index

17 20 2 CUMFNS Capacity Utilization: Manufacturing
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Group 2: Labor market

ID tcode FRED Description

1 21∗ 2 HWI Help-Wanted Index for United States

2 22∗ 2 HWIURATIO Ratio of Help Wanted/No. Unemployed

3 23 5 CLF160OV Civilian Labor Force

4 24 5 CE160V Civilian Employment

5 25 2 UNRATE Civilian Unemployment Rate

6 26 2 UEMPMEAN Average Duration of Unemployment (Weeks)

7 27 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks

8 28 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks

9 29 5 UEMP15OV Civilians Unemployed - 15 Weeks and Over

10 30 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks

11 31 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over

12 32∗ 5 CLAIMSx Initial Claims

13 33 5 PAYEMS All Employees: Total nonfarm

14 34 5 USGOOD All Employees: Goods-Producing Industries

15 35 5 CES1021000001 All Employees: Mining and Logging: Industries

16 36 5 USCONS All Employees: Construction

17 37 5 MANEMP All Employees: Manufacturing

18 38 5 DMANEMP All Employees: Durable Goods

19 39 5 NDMANEMP All Employees: Nondurable Goods

20 40 5 SRVPRD All Employees: Service-Providing Industries

21 41 5 USTPU All Employees: Trade, Transportation and Utilities

22 42 5 USWTRADE All Employees: Wholesale Trade

23 43 5 USTRADE All Employees: Retail Trade

24 44 5 USFIRE All Employees: Financial Activities

25 45 5 USGOVT All Employees: Government

26 46 1 CES0600000007 Avg Weekly Hours: Goods-Producing

27 47 2 AWOTMAN Avg Weekly Overtime Hours: Manufacturing

28 48 1 AWHMAN Avg Weekly Hours: Manufacturing

29 49 1 NAPMEI ISM Manufacturing: Employment Index

30 127 6 CES0600000008 Avg Hourly Earnings: Goods-Producing

31 128 6 CES2000000008 Avg Hourly Earnings: Construction

32 129 6 CES3000000008 Avg Hourly Earnings: Manufacturing
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Group 3: Housing

ID tcode FRED Description

1 50 4 HOUST Housing Starts: Total New Privately Owned

2 51 4 HOUSTNE Housing Starts: Northeast

3 52 4 HOUSTMW Housing Starts: Midwest

4 53 4 HOUSTS Housing Starts: South

5 54 4 HOUSTW Housing Starts: West

6 55 4 PERMIT New Private Housing Permits (SAAR)

7 56 4 PERMITNE New Private Housing Permits: Northeast (SAAR)

8 57 4 PERMITMW New Private Housing Permits: Midwest (SAAR)

9 58 4 PERMITS New Private Housing Permits: South (SAAR)

10 59 4 PERMITW New Private Housing Permits: West (SAAR)

Group 4: Consumption, orders and inventories

ID tcode FRED Description

1 3 5 DPCERA3M086SBEA Real personal consumption expenditures

2 4∗ 5 CMRMTSPLx Real Manu. and Trade Industries Sales

3 5∗ 5 RETAILx Retail and Food Services Sales

4 60 1 NAPM ISM: PMI Composite Index

5 61 1 NAPMNOI ISM: New Orders Index

6 62 1 NAPMSDI ISM: Supplier Deliveries Index

7 63 1 NAPMII ISM: Inventories Index

8 64 5 ACOGNO New Orders for Consumer Goods

9 65∗ 5 AMDMNOx New Orders for Durable Goods

10 66∗ 5 ANDENOx New Orders for Nondefense Capital Goods

11 67∗ 5 AMDMUOx Unfilled Orders for Durable Goods

12 68∗ 5 BUSINVx Total Business Inventories

13 69∗ 2 ISRATIOx Total Business: Inventories to Sales Ratio

14 130∗ 2 UMSCENTx Consumer Sentiment Index
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Group 5: Money and credit

ID tcode FRED Description

1 70 6 M1SL M1 Money Stock

2 71 6 M2SL M2 Money Stock

3 72 5 M2REAL Real M2 Money Stock

4 73 6 AMBSL St. Louis Adjusted Monetary Base

5 74 6 TOTRESNS Total Reserves of Depository Institutions

6 75 7 NONBORRES Reserves of Depository Institutions

7 76 6 BUSLOANS Commercial and Industrial Loans

8 77 6 REALLN Real Estate Loans at All Commercial Banks

9 78 6 NONREVSL Total Nonrevolving Credit

10 79∗ 2 CONSPI Nonrevolving consumer credit to Personal Income

11 131 6 MZMSL MZM Money Stock

12 132 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding

13 133 6 DTCTHFNM Total Consumer Loans and Leases Outstanding

14 134 6 INVEST Securities in Bank Credit at All Commercial Banks
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Group 6: Interest and exchange rates

ID tcode FRED Description

1 84 2 FEDFUNDS Effective Federal Funds Rate

2 85∗ 2 CP3Mx 3-Month AA Financial Commercial Paper Rate

3 86 2 TB3MS 3-Month Treasury Bill

4 87 2 TB6MS 6-Month Treasury Bill

5 88 2 GS1 1-Year Treasury Rate

6 89 2 GS5 5-Year Treasury Rate

7 90 2 GS10 10-Year Treasury Rate

8 91 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield

9 92 2 BAA Moody’s Seasoned Baa Corporate Bond Yield

10 93∗ 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS

11 94 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS

12 95 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS

13 96 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS

14 97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS

15 98 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS

16 99 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS

17 100 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS

18 101 5 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies

19 102∗ 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate

20 103∗ 5 EXJPUSx Japan / U.S. Foreign Exchange Rate

21 104∗ 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate

22 105∗ 5 EXCAUSx Canada / U.S. Foreign Exchange Rate

26



Group 7: Prices

ID tcode FRED Description

1 106 6 WPSFD49207 PPI: Finished Goods

2 107 6 WPSFD49502 PPI: Finished Consumer Goods

3 108 6 WPSID61 PPI: Intermediate Materials

4 109 6 WPSID62 PPI: Crude Materials

5 110∗ 6 OILPRICEx Crude Oil, spliced WTI and Cushing

6 111 6 PPICMM PPI: Metals and metal products

7 112 1 NAPMPRI ISM Manufacturing: Prices Index

8 113 6 CPIAUCSL CPI: All Items

9 114 6 CPIAPPSL CPI: Apparel

10 115 6 CPITRNSL CPI: Transportation

11 116 6 CPIMEDSL CPI: Medical Care

12 117 6 CUSR0000SAC CPI: Commodities

13 118 6 CUSR0000SAD CPI: Durables

14 119 6 CUSR0000SAS CPI: Service

15 120 6 CPIULFSL CPI: All Items less Food

16 121 6 CUSR0000SA0L2 CPI: All Items less Shelter

17 122 6 CUSR0000SA0L5 CPI: All Items less Medical Care

18 123 6 PCEPI Personal Cons. Expend.: Chain Index

19 124 6 DDURRG3M086SBEA Personal Cons. Expend.: Durable Goods

20 125 6 DNDGRG3M086SBEA Personal Cons. Expend.: Nondurable Goods

21 126 6 DSERRG3M086SBEA Personal Cons. Expend.: Services

Group 8: Stock market

ID tcode FRED Description

1 80∗ 5 S&P 500 S&P’s Common Stock Price Index: Composite

2 81∗ 5 S&P: indust S&P’s Common Stock Price Index: Industrials

3 82∗ 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield

4 83∗ 5 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio
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