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Abstract

We develop a general equilibrium model of cryptocurrency to study a double spending

prevention mechanism without payment confirmations. Agents trade cryptocurrency using a

digital wallet, and the cryptocurrency system provides a means to verify a wallet’s double

spending history. Double spending can be prevented without payment confirmations under

some conditions if a wallet has a good reputation for transaction history. As the time required

for each confirmation increases, double spending incentives decrease. We provide insights into

the determinants of Bitcoin transaction fees, quantitatively assess the current Bitcoin system,

and evaluate the welfare gain from fast transactions without payment confirmations.
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1 Introduction

Blockchain-based cryptocurrencies (hereafter called cryptocurrencies), especially Bitcoin, have

received extensive attention not only from the public but also from policy makers. A distinctive

feature of cryptocurrencies is that their transactions are verified and recorded in a publicly shared

ledger, which is called a blockchain, by anonymous groups of miners. A block is a set of informa-

tion about cryptocurrency transactions, and the blockchain is a sequence of blocks in which each

block depends on the previous block in time.1 The verification and recording process, which is

called mining work, is costly, making it hard to rewrite the transaction history in the blockchain.

Thus, a seller can discourage a buyer from double spending, i.e., using the same cryptocurrency

more than once, by delivering goods after receiving a sufficient number of payment confirmations

in the blockchain, as illustrated in Chiu and Koeppl (2017). However, the waiting time caused by

precautionary confirmations is a nonpecuniary, but nonetheless, real cost, and the slow speed of

cryptocurrency transactions has been criticized as an important factor that prevents cryptocurren-

cies, such as Bitcoin, from being widely used for retail payments (see Velde (2013), Lo and Wang

(2014), and Baklanova et al. (2017)).2

The objective of this paper is to find an incentive mechanism to overcome the double spend-

ing risk without precautionary confirmations and to quantitatively evaluate the welfare gain from

eliminating delivery lags in the current Bitcoin trading environment. For this purpose, we develop

a general equilibrium model of a cryptocurrency by incorporating key features of cryptocurrencies

into the Lagos and Wright (2005) model. In the model, the cryptocurrency serves as a medium of

exchange, and agents trade the cryptocurrency using their digital wallets. Specifically, if a buyer

instructs his/her wallet to transfer the cryptocurrency to the seller’s wallet, then this information

1See Narayanan et al. (2016), Berentsen and Schar (2018) and Sanches (2018) for technical details on the block

creation process and the Bitcoin transaction process.
2Under the current Bitcoin system, one needs to wait one hour on average for a transaction to be considered final.

Although this delay may seem rather brief by the standard of settlement in the mainstream financial system, it can be

regarded as lengthy by users who have adopted Bitcoin for its promise of instantaneous settlement. In particular, one

hour is a long time in the realm of retail transactions. The use of Bitcoin as a medium of exchange currently appears

limited: it has been used as a means to transfer funds outside of traditional and regulated channels and presumably as

a speculative investment opportunity.
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is distributed to miners’ “Mempools”, which store all unconfirmed transactions. At this stage, the

seller receives a message that the buyer sent the cryptocurrency to his/her wallet, but the currency

does not yet belong to the seller.

The transaction by which the buyer cedes ownership of the cryptocurrency to the seller is

validated only after the transaction information is recorded in the blockchain through the mining

work. Miners create a block with transaction data in their Mempools by solving a mathematical

problem called proof of work (PoW) and append the new block to the blockchain. Thus, the

blockchain records all past transaction information, which is publicly available. Because PoW

is costly, a reward structure is needed for the mining work to take place, and the cryptocurrency

system uses the supply of new cryptocurrency and transaction fees to generate rewards for the

mining work.

A key feature of the cryptocurrency system in the model is that miners’ Mempools store in-

formation on all unconfirmed transactions slightly different from the current Bitcoin system, and

Mempools are publicly observable.3 This structure implies that, combined with the fact that the

blockchain records all past confirmed transactions, agents can verify the double spending history

of any digital wallets. Thus, a digital wallet may obtain a good reputation for no double spending

attempts based on its transaction history. As a result, two types of wallets exist: a wallet with a

good reputation (good wallet) and a wallet without a good reputation (bad wallet).

In the model, if a buyer makes a payment with a bad digital wallet, then the seller delivers

the goods after payment confirmations in the blockchain to prevent a double spending attack. The

delayed consumption, however, leads the utility from consuming goods to be discounted by the

discount factor for the confirmation time. On the other hand, the seller may deliver goods immedi-

ately without payment confirmations if the payment is made through a good digital wallet as long

as the cost of losing a good wallet outweighs the short-run gain from double spending.

In equilibrium, double spending does not occur, but depending on the degree of the double

3Under the current Bitcoin system, if a transaction is not confirmed within a certain period (approximately seven

days), then the transaction will eventually be rejected by the Bitcoin network and be deleted from the Mempool. If

rejected, the funds remain at the bitcoin address from which they were sent. Furthermore, the Bitcoin system removes

all transactions that conflict with transactions recorded in the blockchain from the Mempool.
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spending incentives, equilibrium can be one of three types: delivery lag equilibrium, threat of

double spending equilibrium, and no threat of double spending equilibrium. First, in the delivery

lag equilibrium, the value of trading with a bad wallet is sufficiently high such that the cost of losing

a good wallet is not adequately high to prevent double spending attempts. Thus, a good reputation

of a digital wallet does not expedite the trading process, and sellers deliver goods after payment

confirmations. Second, in the threat of double spending equilibrium, the cost of losing a good

wallet is relatively high to incentivize agents to refrain from double spending, and sellers therefore

provide goods immediately without delivery lags. However, the binding incentive constraint that

prevents double spending restricts the trade volume. Finally, in the no threat of double spending

equilibrium, agents have no incentives for double spending due to the sufficiently high cost of

losing a good wallet, and sellers deliver goods without precautionary payment confirmations.

The key determinant of the equilibrium type and economic activities, such as the trade vol-

ume and mining work, is the time for each confirmation, which is determined by the difficulty of

the PoW. Specifically, as the confirmation time increases, the utility loss from delayed delivery

of goods due to precautionary confirmations increases, and the trade volume and mining work in

the delivery lag equilibrium decrease. Because trading with a bad wallet is accompanied by pre-

cautionary confirmations, an increase in the confirmation time decreases the value of trading with

a bad wallet, which, in turn, reduces incentives to double spend with a good wallet. Thus, as the

confirmation time increases, the equilibrium type tends to change from the delivery lag equilibrium

to the threat of double spending equilibrium and to the no threat of double spending equilibrium.

By the same rationale, an increase in the confirmation time in the threat of double spending equi-

librium relaxes the binding incentive constraint that prevents double spending, which increases the

trade volume and mining work. Finally, in the no threat of double spending equilibrium, economic

activities are the same as those in an economy where double spending is not a possibility and the

confirmation time has no effect on allocations.

One result of the welfare analysis is that welfare increases with the quantity of goods traded

in equilibrium, although a higher trade volume implies a higher welfare cost from mining work.
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This implies that as the confirmation time increases, welfare increases (decreases) in the threat of

double spending equilibrium (delivery lag equilibrium), and the confirmation time has no effect on

welfare in the no threat of double spending equilibrium.

The supply of cryptocurrency controlled by the cryptocurrency system also affects real alloca-

tions and welfare. Specifically, an increase in the cryptocurrency growth rate has a direct negative

effect on welfare by raising the welfare loss from the mining work. Furthermore, in both the deliv-

ery lag and the no threat of double spending equilibria, an increase in the cryptocurrency growth

rate has an indirect negative effect on welfare by reducing the trade volume. Therefore, welfare

decreases with the cryptocurrency growth rate in both equilibria. In the threat of double spending

equilibrium, however, an increase in the cryptocurrency growth rate may increase the quantity of

goods traded by relaxing the binding incentive constraint that prevents double spending, and the

effects on welfare are not evident.

We then use the model to understand the determinants of Bitcoin transactions and its transaction

fees, and to evaluate the current Bitcoin system. The current Bitcoin system does not support

building a good reputation for digital wallets; therefore, retail transactions have delivery lags due

to precautionary confirmations to prevent double spending, which is equivalent to the outcomes of

the delivery lag equilibrium in the model. Our calibrated model shows that the welfare gain from

eliminating delivery lags in the Bitcoin system is substantial: the welfare gain from switching

from the delivery lag equilibrium to the no threat of double spending equilibrium is 0.21% of

consumption.

Literature review The economic literature on cryptocurrencies is relatively limited, despite re-

cent rapid growth. A number of papers study the valuation and pricing of cryptocurrencies. Gandal

and Halaburda (2014) empirically investigate network effects on competition among cryptocurren-

cies and on their relative valuations. Glaser et al. (2014) and Gandal et al. (2018) focus on the

valuation and volatility of Bitcoin as a store of value, and not as a medium of exchange. Cong

et al. (2018) study the dynamic feedback between platform adoption and the responsiveness of the
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token price to expectations about future growth on the platform. Schilling and Uhlig (2018), Choi

and Rocheteau (2019), and Pagnotta (2019) study cryptocurrency pricing in a monetary model

where cryptocurrency can be held for a speculative motive.

Another body of literature seeks to identify problems with cryptocurrencies and studies whether

cryptocurrencies can function as a real currency. Böhme et al. (2015) discuss cryptocurrency’s po-

tential to disrupt existing payment systems and perhaps even monetary systems. Yermack (2015)

examines whether Bitcoin is a currency and concludes that Bitcoin appears to behave more like a

speculative investment than a currency. Weber (2016) assesses the potential to create input and out-

put legitimacy for Bitcoin as a payment system and as a monetary system compared to current prac-

tice. Fernández-Villaverde and Sanches (Forthcoming) study cryptocurrencies as privately issued

currencies by adding currency-providing entrepreneurs to the Lagos and Wright (2005) model and

analyze whether currency competition can achieve price stability and efficient allocation. Kang and

Lee (2019) study competition between central bank-issued money and cryptocurrency and study

how monetary policy affects welfare and economic activities related to the use of cryptocurrency.

We depart from the abovementioned literature by studying the optimal design of the cryptocur-

rency system to improve the extent to which cryptocurrency can be used as a medium of exchange.

We also analyze the determinants of transaction fees showing the relationship between cryptocur-

rency transaction volume and transaction fees. Thus, our paper complements previous studies that

focus on the pricing of cryptocurrencies and that evaluate the current Bitcoin system as a represen-

tative cryptocurrency system.

The paper most closely related to ours is Chiu and Koeppl (2017), who incorporate the distinc-

tive technical features of the Bitcoin system into the Lagos and Wright (2005) model to understand

how a cryptocurrency system affects interactions among participants and double spending incen-

tives and to study the optimal design of cryptocurrency systems. They show that Bitcoin can

overcome double spending by relying on competition to update the blockchain and by delaying the

delivery of goods, but the reward scheme of the current Bitcoin system for mining work has an in-

efficient design. According to these authors, reducing transaction fees and controlling the new coin
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creation rate can decrease the welfare loss from 1.41% to 0.08%. They study the optimal design of

the cryptocurrency system in terms of cryptocurrency transaction fees and the growth rate. In this

paper, we take a step further and show that if the cryptocurrency system supports agents’ ability to

verify a digital wallet’s history of double spending attempts, then double spending can be prevented

without lags in the delivery of goods, eliminating the welfare loss from delayed consumption.4

The fact that a good reputation for a digital wallet without a history of double spending attempts

facilitates trade is echoed in related literature on debt contracts with limited commitment and credit

histories. Kehoe and Levine (1993) and Azariadis and Kass (2013) study the condition under which

the first best allocation is obtained in an economy with limited commitment. Azariadis (2014)

and Carapella and Williamson (2015) study the roles of preventive policies and government debt,

respectively, in credit markets. Azariadis and Kass (2007) derive asset price fluctuation, Hellwig

and Lorenzoni (2009) show that a model with borrowing constraints may generate bubbles, and

Gu et al. (2013) and Bethune et al. (2018) show endogenous credit cycles in models of credit with

limited commitment. Sanches and Williamson (2010) introduce credit with limited commitment

into the Lagos and Wright (2005) model to study a set of frictions under which money and credit

are both robust as a means of payment.

In the debt contract literature, however, an agent builds a good reputation and credit history

by honoring his/her obligations, and a penalty is imposed on defaulters, such as exclusion from

future credit markets for a certain period. By contrast, in our model, a digital wallet rather than a

wallet holder obtains a good reputation if it does not have a history of double spending attempts,

and a seller may deliver goods immediately if payment is made from a wallet with a good rep-

utation. This implies that an agent can still trade cryptocurrency using a new digital wallet that

does not have a good reputation after committing double spending attacks. Therefore, no explicit

penalty, such as exclusion from markets, is imposed on double spenders in our model. The only

4In their appendix, Chiu and Koeppl (2017) analyze conditions under which a Proof-of-Stake (PoS) protocol can

support immediate settlement, although many fundamental issues of the PoS protocol, such as long range attacks for

double spending and consensus problems due to a nothing-at-stake problem, need to be sorted out in their model, as

pointed out in Chiu and Koeppl (2017). On the other hand, the long range attack and nothing-at-stake problem do not

occur under the PoW protocol because of the enormous amount of computational power required for those works.
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disadvantage is that the seller delivers goods only after receiving a sufficient number of payment

confirmations. The idea of dissociating agents from their digital wallets that obtain a reputation

in the model can be interpreted as a means of circumventing a penalty on dishonest agents, and

a similar reputation system can be applied to other related issues. For instance, Cavalcanti and

Wallace (1999a,b) assume that society keeps a public record of the actions of bankers, but a bank

can close and re-open under a different name in reality.

The rest of the paper is organized as follows. Section 2 presents the environment of the model,

section 3 solves economic agents’ problems, and section 4 characterizes the equilibrium. In section

5, we conduct a welfare analysis and study the optimal cryptocurrency system. Section 6 extends

the model with a block size limit, and section 7 concludes the paper. The omitted proofs are

relegated to the Appendix.

2 The model of blockchain-based cryptocurrency

The basic framework of the model is based on Lagos and Wright (2005), with heterogeneous

agents similar to those in Lagos and Rocheteau (2005) and Rocheteau and Wright (2005). Time

is indexed by t = 0,1,2 . . ., and two sub-periods exist within each period; the centralized market

(CM) followed by the decentralized market (DM). A continuum of buyers and sellers exists, each

with unit mass. Additionally, η number of miners exists. All agents live forever with the discount

factor β∈ (0,1) across periods, and the instantaneous utility of each agent in period t is

Buyers: Ut(Xt ,Ht ,qt) = Xt −Ht + δ̂ (τ)Nu(qt)

Sellers: Ut(Xt ,Ht ,ht) = Xt −Ht −ht

Miners: Ut(Xt ,Ht ,et) = Xt −Ht − et .

Here, Xt and Ht are consumption and labor supply, respectively, in the CM, qt is consumption in

the DM, ht is labor supply in the DM, and et is the effort to update the blockchain in the DM,
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i.e., appending a new block to the blockchain, which is called the mining work. N ∈ {0,1, . . .N}

is the number of payment confirmations, τ is the confirmation time that equals the block gener-

ation interval, and δ̂ : R+ → [β ,1] is a decreasing function of τ representing the discount factor

for the confirmation interval. Specifically, if a buyer receives and consumes DM goods after N

confirmations, the utility from consuming DM goods is discounted by δ̂ (τ)N , in the DM.

The utility function, u(q), over the DM goods is a strictly increasing, strictly concave, and

twice continuously differentiable function with u(0) = u′(∞) = 0,u′(0) = ∞, and −q
u′′(q)
u′(q) ≥ 1 for

all q > 0. The production technology for consumption goods available to buyers, sellers, and

miners allows the production of one unit of the perishable consumption good for each unit of

labor supply in each sub-period, but the effort for mining work in the DM does not produce any

consumption goods.

In the CM, there is a centralized Walrasian market in which all agents trade numeraire CM

goods and assets. In the DM, there are bilateral meetings between buyers and sellers. We assume

that a buyer makes a take-it-or-leave-it offer in a pairwise meeting in the DM. Ideally, a buyer

would like to borrow output from a seller in the DM and repay the loan in the next CM. Such

credit arrangements are ruled out here because agents are anonymous and no device is available

to record credit histories, which would allow the possibility of punishing someone who does not

honor debt obligations. Consequently, any trade between buyers and sellers in the DM must occur

on a quid-pro-quo basis through the use of a medium of exchanges. However, we assume that the

seller cannot commit to the timing of the delivery of goods, although the seller ultimately provides

goods in the DM as long as he/she receives the payment.

In this economy, a digital currency called cryptocurrency exists. Although cryptocurrency does

not have any intrinsic value, it can potentially be used as a means of payment similar to government

issued fiat money. Cryptocurrency is traded at the price of φt ≥ 0 in terms of CM goods in the CM

in period t. The stock of cryptocurrency, denoted by Mt in period t, grows at a gross rate of γ , i.e.,

Mt+1 = γMt , and newly created cryptocurrency is awarded to miners whose detailed information

will be described later.
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To use cryptocurrency as a means of payment, agents must have a digital wallet that allows

them to store, send, and receive cryptocurrency. Each wallet has its own public key, and a cryp-

tocurrency transaction takes place between two wallets, each of which is identified by its cryp-

tocurrency address. For example, a buyer transfers cryptocurrency from his/her digital wallet to

the address of the seller’s wallet. We assume that an agent can enter the DM with one digital wallet,

but he/she can open additional wallets in the DM, holding multiple wallets temporarily. In the next

CM, the agent must choose one of the wallets and destroy the others.

To ensure that the transaction by which an agent cedes ownership of cryptocurrency to the other

agent is validated, all transactions are recorded in a digital ledger called a blockchain. A block is a

set of information on transactions conducted between cryptocurrency users in a given period. The

ledger consists of a chain of blocks that contains all the information starting from the first block,

and the ledger is therefore called the blockchain.

The blockchain is a decentralized ledger where blockchain data are stored in miners’ nodes,

which are storage devices such as computers or even bigger servers. All nodes on the blockchain

system are connected to each other and they constantly exchange the latest blockchain data with

each other such that all nodes stay up to date. Finally, the blockchain is publicly observable, and

anyone can therefore verify any transactions and the balance amounts of all users.

Record keeping through the mining process We assume that cryptocurrency transactions in

the CM are automatically recorded in the blockchain. However, transactions in the DM must be

recorded in the blockchain by miners through the mining process. Specifically, the following steps

are taken to settle cryptocurrency transactions in the DM.

If a buyer instructs his/her digital wallet to transfer cryptocurrency to the seller’s wallet, then

this instruction information is distributed to the Mempools of all miners. A Mempool is a device

that stores all unconfirmed transactions in the DM until they are recorded in the blockchain, and

Mempools are publicly observable. At this stage, the seller receives a message that the buyer sent

the cryptocurrency to his/her wallet, but the cryptocurrency does not yet belong to the seller.
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Figure 1: Record keeping through the mining process

The next step is moving transaction information from the Mempool to the blockchain. Specif-

ically, each miner creates a block with transaction data collected from his/her Mempool. To create

a block with transaction data, miners must solve a mathematical problem by expending their own

effort e in the DM, and the speed with which a solution is found increases with effort e.5 Finding

a solution y is called a proof-of-work (PoW) or mining.

A miner who finds a solution first broadcasts it to other miners, who accept or reject the block

after checking the block’s legitimacy. If more than half of miners accept the block and use it

for the next block creation, then the block successfully updates the blockchain. At this stage, the

transaction by which the buyer cedes ownership of cryptocurrency to the seller is validated, and the

seller receives a message of a single payment confirmation, i.e., N = 1. As more blocks are added

to the blockchain following the block containing the buyer’s payment information, the number of

confirmations, N, increases. We assume that N number of blocks are added to the blockchain in

the DM. Finally, after transaction information is recorded in the blockchain, it is removed from

miners’ Mempools. Figure 1 describes the whole process of record keeping through mining work.

It seems worth to discuss the confirmation time, τ , which is the time required for updating

the blockchain with a new block. Because miners must solve mathematical problems to create

blocks, miners’ effort level, in principle, may affect τ . However, the cryptocurrency system can

5For example, a miner can increase the pace of mining work by investing in greater computing power.
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Figure 2: Updating rule of Mempool data

dynamically adjust the difficulty of the mathematical problem to target the confirmation time τ at

a certain level.6 For this reason, we assume that miners’ efforts do not influence the confirmation

time τ and that the cryptocurrency system determines τ .

However, there are technical restrictions on the confirmation time τ . First, the delivery of goods

must occur within the subperiod because consumption goods are perishable. Thus, an upper bound

exists on τ as τ ≤ δ̂−1(β 1/N)≡ τ , where δ̂−1(·) is an inverse of δ̂ (·). Second, as explained in Velde

(2013), to maintain the stability of a cryptocurrency system based on blockchain technology, the

mining process should not be easy and the confirmation time τ should not be too short.7 Thus, we

introduce the lower bound on the confirmation time as τ ≥ τ such that δ̂ (τ)≡ δ < 1.

Mempool Mempools, are an interim storage device in which transaction instructions stay until

they are recorded in the blockchain. Mempool data are stored in miners’ nodes, which contin-

uously exchange the latest Mempool data with each other. Specifically, if two (or more) miners

have different Mempool data, then the miners update their Mempool with the union of data in all

6For example, the current Bitcoin system is programmed to automatically adjust the difficulty level such that it

takes approximately 10 minutes, on average, to mine a new block, even with advances in the computing technology to

solve mathematical problems.
7Specifically, a blockchain needs some time to propagate the latest block(s) to all nodes globally, in order for the

blockchain to stay properly synchronized. If blocks are produced at an extremely fast pace, then some nodes on the

other side of the globe may not be able to catch up with the latest transaction data, which may cause nodes to be no

longer correctly aligned, leading to chain splits (forks), which blockchains must avoid as much as possible to remain

secure.
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Figure 3: Updating rule of blockchain data

Mempools (see Figure 2).8 More importantly, Mempools store all unconfirmed transactions until

they are recorded in the blockchain, which is a bit different from the current Bitcoin system. Under

the current Bitcoin system, an unconfirmed transaction can be rejected by the Bitcoin network after

approximately seven days, and furthermore, all unconfirmed transactions that conflict with trans-

actions recorded in the blockchain disappear in the Mempool. In contrast to the current Bitcoin

system, we assume that all unconfirmed transactions, including conflicting transactions, remain in

the Mempool.9

Consensus protocol Because miners create their own blocks and try to add their blocks to the

blockchain, two (or more) miners may add their blocks to the blockchain at the same time, creating

a split in the blockchain, which is called a fork. In this case, readers and writers of the blockchain

must reach a consensus regarding which state is considered the valid state. We assume that agents

coordinate on the longest chain of blocks as the valid state, as suggested in Nakamoto (2008) and

8By virtue of the updating rule of Mempool data, all Mempools can store all unconfirmed transaction data unless,

for example, a hacker attacks all Mempools and deletes some unconfirmed transaction data at the same time, which

occurs with a zero probability in the model economy.
9On the other hand, we can also assume that information on all rejected transactions, such as transactions that

conflict with the transaction history in the blockchain, is stored in an additional storage device, which is called the

rejected pool. For this study, we need any transaction information that enters the cryptocurrency system to be stored

in one of the storage devices, such as the Mempool, blockchain, or rejected pool, of the cryptocurrency system.
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we call the longest chain the consensus chain (see Figure 3).10

Blocks in the non-consensus chain are called orphaned blocks, and transactions in orphaned

blocks are automatically moved to Mempools. Thus, any transactions in orphaned blocks that do

not conflict with transactions in the (consensus) blockchain will be recorded in the blockchain

later. However, a conflicting transaction cannot be recorded in the blockchain and remains in the

Mempool forever.

Rewards for mining work Because mining work is costly, a reward scheme is needed for mining

to take place. In our model, such rewards are financed by transaction fees and the creation of

new cryptocurrencies. First, buyers must pay k units of cryptocurrency in terms of CM goods as

transaction fees to use the cryptocurrency as a medium of exchange in the DM. Specifically, buyers

choose fees k to have their transactions be incorporated into a specific block. Although buyers

optimally choose transaction fees k, the cryptocurrency system sets the minimum transaction fee

kmin > 0 to prevent spam transactions; thus, k ≥ kmin. We assume that kmin is sufficiently small

such that the trade surplus of buyers in the DM, when they pay kmin as transaction fees, is positive.

Second, the miner also receives newly created (or supplied) cryptocurrency, St . The quantity of the

new cryptocurrency, St , is determined by the growth rate, γ , as St = (γ −1)Mt . Because the reward

cannot be negative, we assume that γ ≥ 1. Both transaction fees and newly created cryptocurrency

are awarded to the winner of the mining competition for his/her successful mining work.

Building a reputation One of the main objectives of this paper is to study how the reputations

of digital wallets affect the set of feasible equilibrium allocations. Specifically, the cryptocurrency

system in this economy allows agents to verify the history of double spending attempts of any

digital wallets, and a digital wallet may have a good or bad reputation based on its double spending

attempt history. The means of tracking the double spending history of a digital wallet will be

discussed after analyzing the double spending strategy. The issue here is the means of assigning a

10Biais et al. (2018) model the proof-of-work blockchain protocol as a stochastic game and show that mining the

longest chain is a Markov perfect equilibrium, without forking.
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good reputation to digital wallets.

A wallet’s reputation must be an outcome of normal transactions. Thus, a mechanism that

assigns a reputation to digital wallets must discourage any incentives for distorting transaction

behaviors just to obtain a good reputation and it must consider many factors, such as the number

of transactions, the total transaction fees that a wallet paid for past transactions, and transaction

patterns.

First, a wallet must have a sufficiently long transaction history without double spending at-

tempts. However, the number of past transaction should not be a single criterion for assigning a

good reputation. For example, if no minimum transaction fees are applied as in the Bitcoin system

and the reputation only depends on the number of transactions, then an agent can overstate the

number of honest transactions by making a sufficient number of spam transactions without trans-

action fees between his/her wallets. Thus, transaction fees that a wallet has paid must be also taken

as an important factor when assigning a good reputation to the wallet.

In this paper, we are not interested in identifying the optimal mechanism for assigning a good

reputation to digital wallets, which may be an interesting direction for future work. Instead, we

propose one mechanism that works in a stationary equilibrium, which we will focus on when

characterizing equilibrium, based on the above argument. In particular, a wallet obtains a good

reputation if it has been used for more than
log

(
1+ v

kmin

(
1− β

γ

))

logγ−logβ transactions consecutively in the

past, where v is the difference between the value a digital wallet with a good reputation and the

value of trading with a digital wallet that does not have a good reputation forever in a stationary

equilibrium, and has paid at least the minimum transaction fees, kmin, for each transaction. This

implies that the present value of total transaction fees that the wallet has paid in a given period is

higher than the value of obtaining a good reputation, and that fees have been paid over time instead

of the total fees being paid in a single transaction.11 Thus, agents have no incentives to distort

trading behaviors to obtain a good reputation of their digital wallets.

11In a stationary equilibrium, inflation is given as
φt

φt+1
= γ , and sum of the present value of the minimum transaction

fee, kmin, for T number of past transactions is

(
γ
β

)T
−1

1− β
γ

kmin, which is higher than v for all T ≥
log

(
1+ v

kmin

(
1− β

γ

))

logγ−logβ .
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We introduce the above mechanism into the model in the following manner using the risk neu-

tral preferences in the CM. Specifically, we assume that a new wallet obtains a good reputation

with the probability ρ < Min

{
logγ−logβ

log
(

1+ v
kmin

(
1− β

γ

)) ,1

}
after cryptocurrency transactions in the DM

without double spending attempts. Thus, 1
ρ number of transactions is required on average without

double spending attempts in the DM for a new digital wallet to obtain a good reputation. Note that

buyers must pay at least kmin units of real cryptocurrency for each transaction; thus, the total trans-

action fees that a wallet must pay to obtain a good reputation is higher than the value of obtaining

a good reputation on average. Thus, buyers have no incentives to create or distort transactions to

obtain a wallet’s good reputation given the risk neutrality in the CM.

3 Economic agents’ problem

In this section, we characterize the optimal behavior of each economic agent in stationary equi-

libria. By stationarity, we mean that all real quantities are constant over time, which implies that

φt

φt+1
= γ . In the following, variables with subscript +1 denote the next period’s variables.

The analysis can be simplified by making two observations. First, one important feature of the

Lagos and Wright (2005) setup is that the value functions for economic agents at the beginning

of the CM are linear in asset holdings, and the optimal choice of asset portfolio is independent

of initial asset holdings.12 For example, let V (m) denote the value function for an agent with m

units of the cryptocurrency at the beginning of the CM. Then, because of quasi-linearity, the value

function can be expressed as V (m) = φm+V (0), which simplifies the analysis. Furthermore, we

focus on a stationary equilibrium with γ ≥ 1, and thus γ = φ
φ+1

> β . This implies that no agents

will carry cryptocurrency into the next CM. For instance, a buyer will not bring more than the

quantity of cryptocurrency necessary to buy a certain amount of goods in the DM.

Second, in this economy, the confirmation time, τ , affects equilibrium outcomes through a

decreasing function δ̂ (τ), which represents the discount factor for each confirmation time. Ad-

12See Williamson and Wright (2010), Nosal and Rocheteau (2011), and Lagos et al. (2017) for detailed information

on the Lagos and Wright (2005) framework.
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ditionally, as explained in the previous section, the cryptocurrency system adjusts the difficulty

of PoW to target the confirmation time τ . Therefore, in the following analysis, we assume that

the cryptocurrency system determines the discount factor δ̂ (τ), and we let δ̂ (τ) = δ if no risk of

confusion exists.

For a straightforward analysis, we also assume throughout the main part of the paper that there

is no limit on the block size. Therefore, no congestion occurs, and all transactions in the DM in

a given period can be included in a single block, implying that all buyers will post the minimum

transaction fee, kmin, for their transactions in the DM. In section 6, we extend the model with the

block size limit such that buyers strategically post transaction fees to have their transactions be

included in a specific block in the blockchain.

3.1 Miners’ problem

In the DM, miners mine N number of blocks updating the blockchain sequentially. Because no

limit is imposed on the block size, which will be relaxed in section 6, the first block contains all

transactions in the DM thereby validating them. All other blocks are empty and verify the update

of the first block raising the number of confirmations of each transaction included in the first block.

Because a mathematical problem that must be solved to create a block depends on the in-

formation of the latest blockchain, miners cannot update the blockchain with their blocks if the

blockchain has already been updated by other miners. Thus, miners compete to update the blockchain

in the DM, and the probability that miner i will win the mining competition for updating the

blockchain depends on his/her efforts ei and the sum of all miners’ efforts, expressed as χ=∑
j=η

j=1
e j.

Specifically, miner i will be the first to solve the PoW and update the blockchain with the proba-

bility ei

χ , as explained in Chiu and Koeppl (2017).13

By winning the competition in the DM, a miner updates the blockchain with his/her block and

receives R units of cryptocurrency as a reward. A miner i takes the choice of other miners as given

13Note that the difficulty of the PoW affects the expected time needed to solve the mathematical problem, but it does

not affect the probability of winning the mining competition (see Chiu and Koeppl (2017) for detailed information and

a micro-foundation for this probability of winning).
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and thus solves the following problem, by virtue of the quasi-linearity of preference in the DM:

πi = Max
ei≥0



βφ+1R

ei

∑
j=η

j=1
e j

− ei



 , (1)

which gives

βφ+1R
∑ j 6=i

e j

{
∑ j 6=i

e j + ei

}2
= 1

as the first-order condition. By imposing symmetry e j = e for all j = 1, . . .η , because all miners

are homogeneous, we obtain

βφ+1R
η −1

η2e
= 1

as the Nash equilibrium of the mining game. Then, the expected profit of a miner, given by (1) and

the sum of all miners’ efforts, χ , are given as

π =
βφ+1R

η2

χ = ηe = βφ+1R
η −1

η
.

In reality, anyone can be a miner if he/she installs a mining program on a computer to perform

mining work. An estimate shows that more than 1,000,000 unique individuals are mining Bitcoins

in the world.14 Thus, mining work is quite competitive, and to capture this fact, we let η → ∞ for

the remainder of the paper, which leads to the next lemma, whose proof is omitted. However,

having finite η < ∞ does not change the main results qualitatively.

Lemma 1 As η →∞, each miner’s effort, e, and the expected profit from mining work, π , converge

to zero, and the aggregate mining effort for each block converges to the real rewards for mining a

new block, i.e., χ → βφ+1R.

14See Buy Bitcoin World (https://www.buybitcoinworldwide.com/how-many-bitcoins-are-there). In addition, ac-

cording to blockchain.info, there are 14 mining pools that individually can account for at least 1% of the total compu-

tation power.
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3.2 Buyers’ problem

In the DM, a buyer makes an offer (q,d) to a seller. The terms of trade (q,d) specify that the

buyer pays the seller d units of cryptocurrency and the seller delivers q units of DM goods.15 To

initiate a transaction, the buyer instructs his/her digital wallet to transfer payment to the seller’s

digital wallet, and we call this transaction an honest transaction. At this point, the digital wallet

application distributes the transaction instruction to miners’ Mempools, and the seller receives a

message indicating the buyer’s payment.

However, receiving this message may be sufficient for the seller to deliver DM goods immedi-

ately because the buyer can always secretly initiate an alternative transaction to undo the payment,

committing a double spending attack. Specifically, suppose that the seller delivers goods to the

buyer immediately without payment confirmations, i.e., N = 0. Then, the buyer can open a new

wallet in the DM temporarily and sends the same cryptocurrency to his/her new wallet.16 We call

this secret transaction a fraudulent transaction and the instruction for a fraudulent transaction is

also distributed to miners’ Mempools.

The honest and fraudulent transactions cannot be contained in the same block because the same

cryptocurrency is used for both transactions. However, these two transactions can be contained in

two separate blocks by two different miners. Then, the final outcome depends on which transac-

tion is recorded in the consensus chain. If the block with the honest transaction is added to the

blockchain first, then the seller receives the payment. On the other hand, if the block with the

fraudulent transaction updates the blockchain first, then the buyer obtains goods without paying

anything to the seller, allowing the double spending attempt to succeed.17 Figure 4 illustrates a

case in which a double spending attack succeeds or fails.

15Note that the seller cannot commit to the timing of delivery. Thus, the number of payment confirmations in the

blockchain, N ∈ {0, . . .N}, cannot be a part of the terms of trade.
16Under the current Bitcoin system, each cryptocurrency has its own unspent transaction output (UTXO) which is

the output of a transaction that a user received in the past and is able to spend in the future. Using the same Bitcoin

indicates that the same UTXO is used to create multiple transactions, and transaction instructions with the same UTXO

cannot be included in the same block.
17In some cases, two blocks are added to the blockchain at the same time, generating a fork in the blockchain. Then,

the final outcome depends on which block belongs to the consensus chain, and the transaction in the orphaned block

will be moved to miners’ Mempools.
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Figure 4: Double spending attacks

Now suppose that the seller delivers DM goods after receiving N number of confirmations. In

this case, the buyer must secretly mine N number of blocks first without the honest transaction.

After receiving DM goods from the seller, the buyer initiates the fraudulent transaction, includes

it in the N + 1th block of his/her blockchain, and then releases the alternative blockchain to the

cryptocurrency network to replace the original blockchain that contains the honest transaction.

As the number of precautionary confirmations N increases, the total PoW that the buyer must

complete to revoke the honest transaction increases, thus increasing the cost of double spending

attacks. Therefore, a seller can prevent double spending attacks by holding up the delivery of

goods until the payment transaction receives a sufficient number of confirmations, as illustrated in

Chiu and Koeppl (2017).

Because the main focus of this paper is to study a mechanism supporting cryptocurrency trans-

actions with zero confirmation, we introduce this feature into the model in a simple way: We

assume that a transaction that received Nc number of confirmations cannot be revoked.18 There-

fore, if the seller believes that a positive probability of double spending attacks exists given the

terms of trade (q,d), then he/she will deliver the goods after Nc number of payment confirmations

18In reality, the number of blocks Nc must depend on other economic factors, such as the transaction volume and

aggregate mining efforts. For example, Chiu and Koeppl (2017) show that as the transaction volume increases, the

precautionary confirmation lags, Nc, rise. However, for our purposes this is a detail, and we treat Nc as an exogenous

variable focusing on how to improve the cryptocurrency system.
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to prevent double spending attacks. On the other hand, if the terms of trade incentivize the buyer

to not attempt double spending attacks even without payment confirmations, then the seller would

transfer goods immediately in the DM, i.e., N = 0, and double spending does not occur. In ei-

ther case, all offers in equilibrium are double spending-proof, i.e., double spending does not occur

given the terms of trade (q,d), which is re-emphasized in the next proposition.19

Proposition 1 In equilibrium, a buyer makes a double spending proof offer to a seller in the DM,

and double spending does not occur.

Double spending history As one can see from the double spending strategy described above,

a buyer must create a fraudulent transaction that conflicts with an honest transaction to double

spend.20 The information about these two transactions is either in the blockchain or in the Mem-

pool, and both the blockchain and Mempool are publicly observable (see Figure 4). Therefore,

agents can verify the history of double spending attempts from any digital wallets by looking at

the blockchain and Mempool.21

This implies that a digital wallet can build a reputation regarding double spending attempts

based on the reputation building process as discussed in the previous section. We call a wallet

with a good reputation a good wallet and a wallet without a good reputation a bad wallet. Because

a good reputation may have its own value, we consider buyers’ value with both types of wallets.

Specifically, let V j(m) denote the value function for a buyer holding m units of cryptocurrency in

19If a seller can commit to the timing of delivery N ∈ {0, . . .N} such that N can be a part of a contract, then the

buyer may offer terms of trade that are not double spending-proof. For example, the seller will accept an offer and

promise to deliver goods immediately even knowing that the buyer will attempt a double spending attack as long as

the buyer also transfers a sufficient amount of cryptocurrency to the seller to compensate for the expected loss from

the double spending attack.
20One may argue that the buyer can revoke the honest transaction by secretly mining a block that does not contain

the honest transaction and attaching it to the consensus chain without creating the fraudulent transaction. In this case,

the honest transaction is recorded in an orphaned block for a moment. However, the honest transaction does not

conflict with previous transactions in the blockchain and is therefore a valid transaction. This implies that the honest

transaction will be moved to miners’ Mempools and be recorded in the consensus blockchain later so double spending

fails. Therefore, the buyer must create fraudulent transactions for double spending.
21In principle, a double spender can attack miners’ Mempools to delete his/her transaction instructions for double

spending. However, unless the double spender deletes the related information from all miners’ Mempools at the same

time, this attack cannot succeed because Mempools are connected with each other and update unconfirmed transaction

data with the union of data in all Mempools. Based on this rationale, we assume that manipulating the history of

double spending attempts is impossible.
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the j ∈ {g,b} type of wallet at the beginning of the CM, where j = g represents a good wallet and

j = b stands for a bad wallet.

Notably, however, although the cryptocurrency system provides all information about recorded

transactions in the blockchain and unconfirmed transactions in the Mempool, it does not provide

any information about the identities of wallet holders. Therefore, agents are still anonymous in a

trade. For example, an agent can destroy an old wallet after committing double spending attacks

and open a new wallet, which does not have a good reputation based on the reputation building

process, to trade cryptocurrency whenever the agent wants.

Double spending incentive without payment confirmations We now study a double spending

prevention mechanism without payment confirmations in the blockchain, i.e., N = 0. Given the

result of proposition 1 and the assumption that a buyer makes a take-it-or-leave-it offer to a seller,

a buyer can purchase q units of DM goods from a seller in exchange for d = q
βφ+1

units of cryp-

tocurrency in the DM. Now suppose that the seller delivers DM goods without any confirmations,

i.e., N = 0. In this case, the buyer can attempt a double spending attack to keep
q

βφ+1
units of

cryptocurrency in his/her wallet in the following manner.

First, the buyer broadcasts the honest transaction with the minimum transaction fee, kmin, and

then generates the fraudulent transaction with the transaction fee k f = kmin + ε f where ε f > 0.

Because miners care about fee revenue, they will include the fraudulent transaction in their blocks

such that double spending succeeds with certainty. In principle, the buyer can secretly mine a block

with a fraudulent transaction for double spending by investing his/her own effort. However, it is

optimal for the buyer not to mine a block by himself/herself as long as ε f is sufficiently small given

the result of lemma 1. Note that double spending succeeds for any ε f > 0, and thus, we take the

limit ε f → 0 in the following analysis because the buyer wants to minimize the transaction fees.

Then, the expected payoff from the double spending attacks is given as q.

However, if the buyer double spends the cryptocurrency, then he/she must start trading with a

bad wallet from the next CM onward. Thus, the cost of double spending is given as β
[
V j(0)−V b(0)

]
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for j = {g,b}. Then, in a DM trade where a buyer exchanges
q

βφ+1
units of cryptocurrency for q

units of DM goods, if

β [V j(0)−V b(0)]≥ q, (2)

then the buyer has no incentives for double spending even though the seller delivers goods without

payment confirmations in the blockchain.

In the CM, an agent can always destroy an old wallet and open a new one if he/she wants. This

implies that a good wallet cannot be worse than a bad wallet, and hence it must be V j(0)≥V b(0).

Note that the necessary condition to satisfy the incentive constraint (2) is that V j(0) > V b(0).

Thus, if a buyer holds a bad wallet, i.e., j = b, then the incentive constraint (2) cannot hold. As

a result, the buyer always has incentives for double spending if no precautionary confirmations

exist. Knowing the buyer’s double spending incentive, the seller delivers goods after receiving Nc

number of confirmations to prevent double spending attacks. In summary, we have the following

proposition, whose proof is omitted.

Proposition 2 If a buyer makes a payment from a bad wallet in a DM meeting, then a seller always

delivers DM goods after receiving Nc number of confirmations to prevent double spending attacks.

Proposition 2 shows that a delivery lag will occur if a buyer makes a payment from a bad

wallet. The result of proposition 2 also applies to the cryptocurrency system in which a wallet

cannot reveal its history of double spending attempts. Suppose that miners’ Mempools do not

store any transaction instructions that conflict with the transaction history in the blockchain as in

the current Bitcoin system. Then, agents cannot verify the double spending history of a digital

wallet. Therefore, a wallet cannot build a good reputation, implying that a sufficient number of

confirmations is required to prevent double spending, which is consistent with the current practice

in Bitcoin transactions.

Given the result of proposition 2, a buyer holding a bad wallet optimally chooses terms of trade

in the DM considering the delivery lag. Then, the value of a buyer entering the CM with m units
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of cryptocurrency in a bad wallet, V b(m), is given as

V b(m) = φm+Max
q≥0

{
−

γ

β
q− kmin +δ Ncu(q)+β

[
ρV g(0)+(1−ρ)V b(0)

]}
, (3)

where we discount the buyer’s utility in the DM by δ Nc
because the buyer receives goods after Nc

number of confirmations. Note, from (3), that each buyer takes the probability ρ that a new wallet

obtains a good reputation as given. However, the probability ρ must satisfy the rule of assigning

a good reputation in equilibrium to prevent incentives for distorting trading behavior simply to

obtain a good reputation as discussed in the previous section.

Now suppose that a buyer has a good wallet in the DM. In this case, if a good reputation for the

wallet has its own value, i.e., V g(m)>V b(m) for all m ≥ 0, then the buyer may make an offer that

satisfies the incentive constraint (2), which leads the seller to deliver goods immediately without

precautionary confirmations.22 In this case, the value function of buyers with a good wallet, V g(m),

is given as

V g(m) = φm+Max
q≥0

{
−

γ

β
q− kmin +u(q)+βV g(0)

}
(4)

subject to

β [V g(0)−V b(0)]≥ q, (5)

where (5) is the incentive constraint (2) that prevents the buyer from engaging in double spending

with a good wallet.

In contrast, if a good reputation for a wallet does not have its own value, then V g(m) =V b(m),

and thus the incentive constraint (5) cannot be satisfied. In this case, sellers deliver DM goods after

Nc number of confirmations and the buyer makes the same offer as that made by buyers holding a

bad wallet. Thus, no economic difference exists between good and bad wallets.

22Here, we implicitly assume that sellers deliver DM goods immediately if buyers have no incentives for double

spending without payment confirmations.
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4 Equilibrium

Our definition of a stationary equilibrium is standard: given prices, all agents behave optimally,

and all markets clear in equilibrium as described in the following definition.

Definition 1 Given {δ , γ , kmin, ρ}, a stationary cryptocurrency equilibrium is a list {z, q, k,

{
rn,χn,{eni}

η
i=1

}N

n=1
} where z ≡ φM and rn ≡ φRn such that:

1. Given {δ ,γ,kmin}, {q,k} solves the buyer’s problem.

2. Given {rn, {en j} j 6=i}, eni = en solves the problem of miner i for all i = 1, . . .η

3. Aggregate mining effort per block is the sum of mining effort of all miners as χn = ηen

4. Reward rn for a block n ∈ {1, . . .N} is generated by (γ,k) and the real cryptocurrency de-

mand

5. The cryptocurrency market clears in the CM as

z =
γq

β
+ k. (6)

The reward Rn for updating the blockchain with the nth block in the DM of a given period,

where n ∈ {1, . . .N}, is the sum of transaction fees and newly created cryptocurrency. First, when

no limit is imposed on the block size, there is no congestion in the mining process, and all buyers

therefore pay the minimum transaction fee, kmin, for their transaction in the DM. Second, the

supply of new cryptocurrency, S, is determined by the growth rate γ as S = (γ −1)M, and S is

equally distributed to the N block winners. Consequently, the total reward in the DM is given as
N

∑
n=1

Rn = (γ −1)M+ kmin
φ . Then, using the market clearing condition (6) and the result of lemma 1,

we obtain,

Λ ≡
N

∑
n=1

χn =
N

∑
n=1

βφ+1Rn = (γ −1)q+βkmin, (7)

which expresses the aggregate mining effort, Λ, in the DM as a function of the trade volume q.

The equilibrium quantity of goods traded, q, in the DM, can be obtained by solving the buyer’s

problem. In equilibrium, three relevant cases are possible for the buyer’s problem depending on
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whether a delivery lag exists in the DM and whether the incentive constraint (5) that prevents

double spending without precautionary confirmations binds.

1. (Delivery lag equilibrium) Sellers deliver goods in the DM after the precautionary payment

confirmations in the blockchain, i.e., there is a delivery lag for DM goods.

2. (Threat of double spending equilibrium) No delivery lag occurs for goods in the DM and the

incentive constraint (5) that prevents double spending binds.

3. (No threat of double spending equilibrium) No delivery lag occurs for goods in the DM and

the incentive constraint (5) that prevents double spending does not bind.

To solve the buyer’s problem and characterize equilibrium, we make the following definitions:

- The quantity of goods traded in the DM:

q∗R ≡ u′−1

(
γ

β

)
(8)

q∗∗R ≡ u′−1

(
γ +1−β (1−ρ)

β

)
. (9)

- The functions of q and δ :

Φ(q)≡−
γ +1−β (1−ρ)

β
q+u(q) (10)

Ω(δ )≡−
γ

β
q̂Nc

(δ )+δ Ncu(q̂Nc
(δ )) , (11)

where q̂Nc
(δ )≡ u′−1

(
γ

δ Ncβ

)
.

Given these definitions, the next proposition characterizes the existence of each type of equi-

librium.
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Proposition 3 Define the cutoff levels of the discount factor δ and set the probability ρ as

δ̃1 =





Ω−1 (Φ(q∗R))

−εδ

if Φ(q∗R)≥ 0

if Φ(q∗R)< 0

(12)

δ̃2 = Ω−1 (Φ(q∗∗R )) , (13)

ρ < Min





logγ − logβ

log
(

1+ v
kmin

(
1− β

γ

)) ,1



 (14)

where εδ > 0 and v = 1
1−β





− 1
β u′−1

(
1
β

)
+u

(
u′−1

(
1
β

))

+ 1
β u′−1

(
1

β (Nc+N)/N

)
−β

Nc
N u

(
u′−1

(
1

β (Nc+N)/N

))





. Then, given a

set of parameters {δ , γ , kmin, ρ}, a unique stationary equilibrium exists as follows:

1. Suppose that δ̃1 ≥ β 1/N . Then, (i) the no threat of double spending equilibrium exists for

δ ∈ [β 1/N , δ̃1], (ii) the threat of double spending equilibrium exists for δ ∈ (δ̃1, δ̃2], and (iii)

the delivery lag equilibrium exists for δ ∈ (δ̃2, δ ].

2. Suppose that δ̃1 < β 1/N ≤ δ̃2. Then, (i) the threat of double spending equilibrium exists for

δ ∈ [β 1/N , δ̃2], and (ii) the delivery lag equilibrium exists for δ ∈ (δ̃2, δ ].

3. Suppose that δ̃2 < β 1/N . Then, the delivery lag equilibrium exists for δ ∈ [β 1/N , δ ].

Proof. See Appendix

Proposition 3 describes how buyer’s double spending incentives and the equilibrium type de-

pend on the discount factor δ . As explained in proposition 2, a seller always delivers goods in the

DM after receiving Nc number of payment confirmations if a buyer makes the payment from a bad

wallet. In this case, the confirmation time τ affects the total time τNc that the buyer must wait

before receiving goods, which affects the buyer’s utility through the discount factor, δ̂ (τ), in the

DM.23 Specifically, as τ increases, δ falls, which reduces the trade surplus, − γ
β q−kmin+δ Ncu(q),

23The confirmation lags, Nc, that prevent double spending attacks can potentially be a function of the confirmation

time τ as Nc(τ). For example, two confirmations may be sufficient to discourage double spending attacks when

the confirmation time is one hour while we may need six confirmations when the confirmation time is 10 minutes.

However, the main results do not change as long as the total time for creating Nc(τ) number of blocks, given as

Nc(τ)τ , increases with the time for creating each block, τ .
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and the value of trading with a bad wallet given by (3). Because the buyer loses the good wallet

and will have to start trading with a bad wallet from the next period if he/she commits a double

spending attack, the buyer has less incentives for double spending as δ decreases. Thus, as δ

decreases due to an increase in the time for each confirmation, τ , the equilibrium type tends to

change from the delivery lag equilibrium to the threat of double spending equilibrium and to the

no threat of double spending equilibrium.

As explained in the previous section, a new wallet obtains a good reputation with the probability

ρ following the reputation building rule. In the proof of proposition 3, we show that v defined in

proposition 3 is the upper bound of v - the difference between the value of trading with a good

wallet and the value of trading with a bad wallet forever - that can be attainable in any equilibrium.

Then, as long as (14) holds, buyers have no incentives to create spam transactions just to obtain a

good reputation as discussed in the previous section.

We now study the determinants of the trade volume, q, and the aggregate mining effort, Λ, in

each type of equilibrium. Note, from (7), that the aggregate mining effort, Λ, can be obtained by

substituting the equilibrium q into (7); therefore, we focus on analyzing the equilibrium quantity

of goods traded, q, in the DM.

Proposition 4 In each type of equilibrium, the quantity of goods, q, traded in the DM is as follows:

1. In the delivery lag equilibrium, q = q̂Nc
(δ )≡ u′−1

(
γ

δ Nc β

)
.

2. In the threat of double spending equilibrium, q = q̂R(δ ) where q̂R(δ ) is determined by

Φ(q̂R(δ )) = Ω(δ ) with the property that q̂R(δ ) ∈ [q∗∗R ,q∗R).

3. In the no threat of double spending equilibrium, q = q∗R.

Proof. See Appendix

In the delivery lag equilibrium, the double spending incentive is sufficiently high that a seller

delivers goods after receiving Nc number of payment confirmations in the blockchain to prevent

double spending attacks. Thus, a buyer optimally chooses q = q̂Nc
(δ ) to maximize the trade sur-

plus, − γ
β q− kmin +δ Ncu(q), considering delivery lags.
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Figure 5: Trade volume q in the threat of double spending equilibrium

Next, in the threat of double spending equilibrium, a seller transfers goods to a buyer im-

mediately without confirmations in the DM and the buyer does not commit double spending in

equilibrium. However, the incentive constraint (5) that prevents double spending without confir-

mations binds, and the binding incentive constraint (5) restricts the quantity of goods, q, traded

in the DM. More precisely, substituting (3) with q = q̂Nc
(δ ) and (4) into the binding incentive

constraint (5) and using the definitions of Φ(q) and Ω(δ ) provided in (10) and (11), respectively,

we obtain

Φ(q) = Ω(δ ), (15)

which determines q given δ . Note, from (9) and (10), that Φ(q) is maximized when q = q∗∗R . Thus,

if Φ(q∗∗R )< Ω(δ ), then there is no q that satisfies (15). When Φ(q∗∗R )≥ Ω(δ ), there are two values

of q that satisfy (15), but only q that is higher than q∗∗R is the equilibrium quantity of goods traded

because otherwise, the objective function (4) is not maximized. At the same time, q cannot be

higher than q∗R to have the binding incentive constraint (5). Figure 5 illustrates how the quantity of

goods, q, traded in the threat of double spending equilibrium is determined.

Finally, in the no threat of double spending equilibrium, the cost of double spending, i.e., losing

a good wallet, is higher than the expected payoff from double spending. Thus, buyers have no

incentives for double spending, and sellers deliver goods instantly without payment confirmations.

The quantity of DM goods traded, q, is the same as that in an economy where double spending is

not possible, and the buyer chooses q = q∗R to maximize the trade surplus in the problem (4).
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Comparative statics Having characterized the existence of each equilibrium, we now discuss

some comparative statics of the set of parameters {δ , γ , ρ} on the quantity of goods, q, traded and

the aggregate mining efforts, Λ, in the DM. Here, we conduct comparative statics of δ instead of

τ . However, the comparative statics of τ can be obtained by taking the opposite effects of changing

δ on equilibrium allocations because δ = δ̂ (τ) decreases with τ .

In the delivery lag equilibrium, the marginal utility of the buyer in the DM with delayed con-

sumption increases with δ . Thus, the trade volume q = q̂Nc
(δ ) and the aggregate mining effort, Λ,

given by (7), increase with respect to δ . An increase in γ decreases q because it raises the holding

cost of cryptocurrency across periods, which is the standard result in the money search framework.

Next, substituting q̂Nc
(δ ) ≡ u′−1

(
γ

δ Nc β

)
into (7), we obtain Λ = [δ Ncβu′(q̂Nc

(δ ))− 1]q̂Nc
(δ ) +

βkmin, which decreases with respect to q̂N(δ ). Thus, the aggregate mining effort, Λ, increases

with γ . This is because an increase in γ implies an increase in the reward for mining works, and

miners therefore invest more effort in the mining competition even though an increase in γ reduces

the real value of the cryptocurrency by decreasing the trade volume q.

In the threat of double spending equilibrium, the quantity of goods traded in the DM, given

by q = q̂R(δ ) ∈ [q∗∗R ,q∗R), decreases with respect to δ as one can see from Figure 5, in contrast to

the case of the delivery lag equilibrium. The intuition behind this result is in line with our earlier

observation. An increase in δ raises the value of trading with a bad wallet as explained above,

reducing the cost of losing a good wallet through double spending. This tightens the binding

incentive constraint (5), and q decreases as a consequence. By the same rationale, an increase

in the probability ρ that a bad wallet obtains a good reputation also reduces the trade volume q

because of its effects on the cost of losing a good wallet and hence double spending incentives.24

The aggregate mining effort, Λ, given in (7), increases with q, and thus decreases with δ and ρ .

An increase in γ , in the threat of double spending equilibrium, has two counteracting effects

on q. On the one hand, an increase in γ raises the cryptocurrency holding cost, which pushes down

q. On the other hand, an increase in γ implies a decrease in the value of trading with a bad wallet

24More precisely,
∂Φ(q)

∂ρ < 0 in (10). Note that Φ(q) decreases with q ∈ [q∗∗R ,q∗R], and thus, q̂R(δ ), defined by

Φ(q̂R(δ )) = Ω(δ ) with the property that q̂R(δ )≥ q∗∗R , decreases with respect to ρ .
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Delivery lag Threat of double spending No threat of double spending

δ γ ρ δ γ ρ δ γ ρ

q + − 0 − ? − 0 − 0

Λ + + 0 − ? − 0 + 0

Table 1: Effects of the discount factor for confirmation time, cryptocurency growth rate, and the

probability that a new wallet obtains a good reputation ρ

given by (3), which relaxes the incentive constraint (5), pushing up q. Which effect dominates

over the other and thus the effects of γ on q depend on the relative values of q̂R(δ ) and q̂Nc
(δ ).25

Similarly, the effects of changing γ on the aggregate mining effort, Λ, given in (7), is unclear.

Finally, in the no threat of double spending equilibrium, the quantity of goods traded in the

DM is q∗R which only depends on γ . Specifically, an increase in γ reduces the trade volume q∗R

because of the increased holding cost of cryptocurrency. Next, using the definition of q∗R in (8),

the aggregate mining effort is given as Λ = [βu′(q∗R)− 1]q∗R + βkmin, which decreases with q∗R.

Therefore, Λ increases with γ , for the same reason as in the case of delivery lag equilibrium. Table

1 summarizes the above analysis.

We close this subsection with the further analysis of δ . The discount factor δ plays an impor-

tant role in the model: It affects the equilibrium type through its effects on the double spending

incentive, and δ also affects the quantity of goods, q, traded (and hence the aggregate mining effort

Λ) except in the no threat of double spending equilibrium. To better understand the effects of δ ,

suppose that β < δ̃1 < δ̃2 < δ , which implies that as δ increases from β to δ , the equilibrium

type changes from the no threat of double spending equilibrium to the threat of double spending

equilibrium and to the delivery lag equilibrium (see proposition 3). Then, by the definition of

δ̃1 = Ω−1 (Φ(q∗R)) in (12) and q̂R(δ ) in proposition 4, we obtain lim
δ→δ̃1

q̂R(δ ) = q∗R. Next, from (9)

25From (10), (11), and (15), we obtain

∂ q̂R(δ )

∂γ
=

q̂R(δ )− q̂Nc(δ )

βu′ (q̂R(δ ))− [γ +1−β (1−ρ)]
.

Because the denominator is negative for all q̂R(δ ) ∈ [q∗∗R ,q∗R),
∂ q̂R(δ )

∂γ R 0 if and only if q̂Nc(δ )R q̂R(δ ).
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Figure 6: Quantity of goods q traded in the DM and the discount factor δ

- (11), δ̃2 = Ω−1 (Φ(q∗∗R )) and q̂Nc
(δ )≡ u′−1

(
γ

δ Nc β

)
, we obtain

−u′(q∗∗R )q∗∗R +u(q∗∗R ) = δ̃ Nc

2

{
−u′

(
q̂Nc

(
δ̃2

))
q̂Nc

(
δ̃2

)
+u

(
q̂Nc

(
δ̃2

))}
,

which implies q̂Nc
(δ̃2)> q∗∗R . Thus, the quantity of goods, q, traded in the DM increases discontin-

uously when the economy switches from the threat of double spending equilibrium to the delivery

lag equilibrium. Figure 6 describes the above analysis, and the effects of δ on the aggregate mining

effort Λ given by (7) show a similar pattern.

Alternative blockchain protocol and double spending incentive In the model, we assume that

miners record cryptocurrency transactions in the blockchain by doing PoW, and the level of diffi-

culty determines the discount factor δ . In reality, there exist many alternative protocols, such as

proof-of-stake and delegated proof of stake, for updating the blockchain. Although each protocol

has its own record keeping process, most of systems keep a positive mass of time for each con-

firmation in order for the blockchain to stay properly synchronized avoiding unnecessary splits of

the blockchain, and the system can affect the confirmation time. Furthermore, a buyer can succeed

double spending if a seller provides goods immediately without payment confirmation by creating

a fraudulent transaction with transaction fees that are higher than transaction fees of the honest
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transaction. Therefore, what matters for buyer’s double spending incentive with a good wallet is

the waiting time before receiving DM goods, which is determined by the confirmation time. Thus,

the main results such as the effects of δ on the equilibrium type and the trade volume would not

change with alternative blockchain protocols although miner’s problem changes.

5 Welfare analysis

We now examine the model’s normative properties in terms of social welfare to find the optimal

cryptocurrency system. We restrict our attention to stationary allocations and define the sum of

expected utilities in a steady state equilibrium across agents as our welfare measure, which is

given as

W = δ̂ (τ)Nu(q)−q−Λ, (16)

where N is the number of precautionary confirmations of the payment. Welfare consists of the

gains from trade less mining costs which are equal to the aggregate rewards for mining work as we

look at the case where η → ∞. Next, substituting (7) into (16), we obtain

W = δ̂ (τ)Nu(q)− γq−βkmin (17)

as our welfare measure in equilibrium.

Thus far, we have taken parameters, such as τ (hence δ ), γ , kmin, and ρ , as exogenously given.

Here, what items are under the control of the cryptocurrency system? First, the probability that a

bad wallet obtains a good reputation ρ is not under the control of the cryptocurrency system but is

determined by a reputation building mechanism as discussed in the previous section. Second, the

cryptocurrency system can control the confirmation time τ by adjusting the level of difficulty with

which a mathematical problem is solved to create a new block. Third, the system determines the

growth rate of cryptocurrency γ , which also affects equilibrium allocations, by changing the supply

of new cryptocurrency provided to miners. Finally, the system sets the minimum transaction fee,
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kmin, but kmin does not affect equilibrium allocations, and setting kmin = 0 is therefore optimal.

However, the minimum transaction fee, kmin, helps the system prevent spam transactions in reality

and is related to the reputation building mechanism. Determining the optimal reputation building

mechanism and kmin may also be interesting, but we leave further analysis on this topic to future

work. In the following section, we focus on analyzing the effects of τ and γ on welfare.

5.1 Confirmation time τ and welfare

In this subsection, we analyze how the confirmation time τ affects welfare and study its optimal

level, denoted as τ∗, given other parameters (γ,ρ,kmin). Note that δ̂ (τ) is a decreasing function of

τ , and τ affects equilibrium allocations through the discount factor δ̂ (τ). Thus, finding the optimal

confirmation time, τ , is the same as finding the optimal discount factor, δ , and we analyze the

effects of δ on welfare in the following analysis.

To study the effects of δ on welfare, we first analyze the effects of trade volume q on welfare.

The quantity of goods traded, q, has two conflicting effects on welfare. First, an increase in q raises

the trade surplus in the DM, which pushes up welfare. On the other hand, a higher trade volume

corresponds to a higher real value of cryptocurrency, which increases the social cost from mining

work due to increased competition. Combined together, the effects of q on welfare are not clear

as one can see from (17). However, the next lemma shows that welfare increases with the trade

volume, q, in equilibrium, which provides a useful intermediate step for welfare analysis.

Lemma 2 Given a set of parameters {δ ,γ,ρ,kmin}, welfare increases with the quantity of goods,

q, traded in the DM in equilibrium.

Proof. See Appendix

Given the result of lemma 2, we can analyze the effects of an increase in δ , caused by a decrease

in τ , on welfare in each type of equilibrium. First, in the delivery lag equilibrium, as δ increases,

the trade volume, q = q̂Nc
(δ ), rises, and welfare loss from the delayed consumption due to delivery

lags in the DM falls. Thus, welfare increases with δ in the delivery lag equilibrium. Second, in
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the threat of double spending equilibrium, the trade volume, q = q̂R(δ ), decreases with δ , so

welfare decreases with δ given the result of lemma 2. Finally, in the no threat of double spending

equilibrium, changing δ has no effects on the trade volume q and hence welfare. However, in this

equilibrium, the economy achieves q = q∗R, which is the highest trade volume attainable in the DM

given a set of parameters (γ,ρ,kmin), and there is no welfare loss from delivery lags. Thus, welfare

is maximized in the no threat of double spending equilibrium.

Based on the above analysis, the next proposition describes the optimal confirmation time τ∗

as a function of the optimal level of the discount factor, denoted by δ ∗, given other parameters.

Proposition 5 Given {γ,ρ,kmin}, the optimal confirmation time is given as τ∗ = δ̂−1 (δ ∗), where

δ ∗ is given as follows:

1. When β 1/N ≤ δ̃1, δ ∗ ∈
[
β 1/N , δ̃1

]
.

2. When δ̃1 < β 1/N ≤ δ < δ̃2, δ ∗ = β 1/N .

3. When δ̃1 < β 1/N ≤ δ̃2 ≤ δ ,

δ ∗ =





β 1/N

δ

if u(q̂R(β
1/N))− γ q̂R(β

1/N)≥ δ
Nc

u(q̂Nc
(δ ))− γ q̂Nc

(δ )

if u(q̂R(β
1/N))− γ q̂R(β

1/N)< δ
Nc

u(q̂Nc
(δ ))− γ q̂Nc

(δ )
.

4. When δ̃2 < β 1/N , δ ∗ = δ .

Proof. See Appendix

The main implication of proposition 5 is as follows. Because welfare is maximized in the

no threat of double spending equilibrium, making the incentive constraint (5) slack by setting

δ ∈ [β 1/N , δ̃1] whenever feasible is optimal, which requires β ≤ δ̃1. Next, when the threat of

double spending equilibrium is the only feasible equilibrium, it is optimal to minimize δ , i.e.,

δ ∗ = β 1/N , to maximize the trade volume. One the other hand, if the only feasible equilibrium is

the delivery lag equilibrium, then maximizing δ , i.e., δ ∗ = δ , is optimal to minimize the welfare

loss from delivery lags. Finally, if the threat of double spending equilibrium and the delivery lag
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equilibrium are both feasible, the optimal level of discount factor, δ ∗, is either β 1/N or δ depending

on the value of maximized welfare in both types of equilibrium.

5.2 Cryptocurrency growth rate γ and welfare

We now study how the cryptocurrency growth rate γ affects welfare and the optimal growth rate

of cryptocurrency, denoted by γ∗, given other parameter values (δ ,ρ,kmin). Note, from (17),

that an increase in γ has a direct negative effect on welfare by increasing the aggregate mining

efforts. Thus, whenever an increase in γ reduces the quantity of goods, q, traded in the DM,

welfare definitely decreases. This implies that as γ increases, welfare decreases in the delivery

lag and no threat of double spending equilibria because q in both equilibrium types decreases

with γ . Similarly, if q falls when γ rises in the threat of double spending equilibrium, welfare

decreases. However, q may increase in response to an increase in γ in the threat of double spending

equilibrium, and in this case, whether welfare increases or decreases in response to an increase in

γ is not clear.

To better understand the effects of γ on welfare, we conduct numerical exercises with the

buyer’s utility function in the DM as u(q) = (q+ξ )1−α−ξ 1−α

1−α where α > 1 and ξ ≈ 0. The length of

the time period is one day, and we set β = 0.951/365 with an annual discount factor of 0.95, so the

annual real interest rate on an illiquid bond is 5.2%. The estimates for the curvature of u(q) vary

widely, and we use α = 1.1, which is within the range of previous studies. We set kmin = 0.00071

to target the average ratio of transaction fees to the Bitcoin transaction volume for the period 2016

to 2017, which is 0.0007, when γ = 1.0571/365, which is the average annual growth rate of Bitcoin

for the same period.26 We set ρ = 0.0002, so it takes 5,000 number of honest transactions on

average for a bad wallet to obtain a good reputation.27 Finally, we use δ = β 1/144, Nc = 6, and

N = 144, which implies that it takes 10 minutes on average for a transaction to be recorded in the

26Source for Bitcoin data: blockchain.info
27The probability ρ quantitatively affects real allocations only in the threat of double spending equilibrium. Thus,

the main results, such as the welfare gain by eliminating delivery lags in the current Bitcoin trading environment, do

not hinge on the value of ρ .

36



Figure 7: Effects of cryptocurrency growth

blockchain, and the average waiting time before receiving goods in the DM with delivery lags is

one hour.28

Figure 7 shows how welfare responds to a change in the growth rate of cryptocurrency γ when

γ changes from 1 to 1.01. Based on our calibration, the probability ρ is sufficiently low to make the

incentive constraint (5) slack for all γ ≥ 1.29 Thus, the no threat of double spending equilibrium

exists for all γ ≥ 1. Because the trade volume in the DM and welfare decrease with γ in the no

threat of double spending equilibrium, the optimal growth rate is given as γ∗ = 1.

5.3 Evaluation of the current Bitcoin system

We close this section with an evaluation of the current Bitcoin system. The current Bitcoin system

provides limited support for digital wallets building a good reputation.30 Thus, in retail transac-

tions, goods are recommended to be delivered after receiving a sufficient number of precautionary

28Under the current Bitcoin system, it takes 60 minutes on average for a transaction to be almost 99.9% secured

against a double spending risk (see Baklanova et al. (2017) and Kang and Lee (2019)).
29If we set ρ = 0.00155, all types of equilibrium can exist depending on the value of γ , and the equilibrium type

changes from the delivery lag to the threat of double spending and then to the no threat of double spending equilibrium

as γ increases from 1 to 1.01. However, setting ρ = 0.00155 is not consistent with the reputation building process in

the model economy.
30Under the current Bitcoin system, if an agent instructs a transfer of Bitcoin to other agents, then the transaction

information enters to the Mempool. However, if a sufficiently long time passes, such as one week, for example,

without the transaction information being recorded in the blockchain, then that transaction information disappears

from the Mempool. Furthermore, the current Bitcoin system deletes all transaction instructions that conflict with the

transaction record in the blockchain from the Mempool. Thus, agents may not be able to track the full transaction

instruction history of a particular digital wallet and thus cannot check the double spending history.
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confirmations, which is equivalent to the delivery lag equilibrium in our model (see Baklanova

et al. (2017) and Chiu and Koeppl (2017)). Furthermore, the average annual growth rate for the

period from 2016 to 2017 is 5.7%, which is inefficiently set based on our welfare analysis.

To evaluate the efficiency of the current Bitcoin system, we compare welfare in the delivery lag

equilibrium with γ = 1.0571/365 to welfare when (δ ,γ) is set optimally. Specifically, we measure

the welfare gain as the fraction of additional consumption that the economy needs such that agents

are indifferent between the current Bitcoin system and the optimal cryptocurrency system.

Our calibrated model shows that the economy achieves the no threat of double spending equi-

librium with γ = 1, and suggests that the welfare gain from adopting the optimal design of Bitcoin

system is 0.21% of consumption in terms of the consumption equivalent measure. In particular,

most of the welfare gain (more than 99.99%) comes from eliminating the delivery lag, and a minute

amount welfare gain comes from setting the growth rate optimally, i.e., γ = 1.

6 Transaction fees with the block size limit

We have assumed that there is no restriction on the block size, so all transactions in the DM of

period t are included in a single block. However, in reality, cryptocurrency users compete for the

speed of their transaction confirmation by posting transaction fees. Thus, in this section, we extend

the baseline model with the block size limit such that a transaction may be recorded in the later

block, causing a verification lag. In particular, we show that this change provides new insights into

the determinant of transaction fees but it does not change the main results of the baseline model.

In this section, we assume that transactions in the DM are recorded in the first N −Nc + 1

number of blocks, and the remaining Nc−1 number of blocks are empty updating the confirmation

of transactions in the previous blocks. Buyers now strategically post transaction fees, k, to have

their transactions be included in a specific block. Because miners care about fee revenue, they will

include transactions with higher fees in earlier blocks. Thus, there will be a decreasing sequence

of fees k1 ≥ k2 ≥ ·· · ≥ kN−Nc+1, and transactions with fees k1 are recorded in the first block,
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transactions with fees k2 are recorded in the second block and so on.

We first study allocations in equilibrium where a good reputation of digital wallets does not

have its own value, and sellers therefore deliver goods after receiving Nc number of confirmations,

i.e., delivery lag equilibrium. Let qn and kn denote the quantity of goods traded and transaction

fees, respectively, of a transaction that is recorded in the nth block in the DM of a given period,

where n ∈ {1, . . .N −Nc +1}. Given the order n, buyers optimally choose qn and kn to maximize

their trade surplus, Sn, as

Sn = Max
qn≥0,kn≥kmin

{
−

γ

β
qn − kn +δ n+Nc−1u(qn)

}
,

which gives

qn = u′−1

(
γ

δ n+Nc−1β

)
≡ q̂n+Nc−1(δ ) (18)

as the quantity of goods traded, qn, in the delivery lag equilibrium for n ∈ {1, . . .N −Nc +1}.

Regarding transaction fees, notice that buyers will pay the minimum fee, kmin, as transac-

tion fees for transactions that are recorded in the (N − Nc + 1)th block, i.e., kN−Nc+1 = kmin.

Next, because buyers are homogeneous, they must be indifferent about the order of a block in

the blockchain. Thus, it must be Sn = SN−Nc+1 for all n ∈ {1, . . .N −Nc}, which gives

kn = kmin −
γ

β
q̂n+Nc−1(δ )+δ n+Nc−1u(q̂n+Nc−1(δ ))+

γ

β
q̂N(δ )−δ Nu

(
q̂N(δ )

)
(19)

as the optimal transaction fees for a transaction that is recorded in the nth block.

As one can see from (18) and (19), transaction fees increase with transaction volumes, i.e.,

cov(qn,kn)> 0. This result is intuitive because as transaction fees increase, the speed of payment

confirmation increases. Then, the utility loss from delayed consumption falls, the marginal utility

from the consumption of DM goods increases, and the optimal trading volume increases as a

consequence.

How does introducing the block size limit affect allocations in equilibrium without delivery lags
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and the existence of each type of equilibrium? Buyers will pay the minimum fee, kmin, as transac-

tion fees in equilibrium without delivery lags similar to the baseline model because transaction fees

do not affect the timing of consumption in the DM. Thus, kn = kmin for all n ∈ {1, . . .N −Nc +1}

in equilibrium without delivery lags. However, the quantity of goods, q, traded in the DM requires

more detailed analysis because it depends on the double spending incentives of buyers.

When a seller delivers goods without payment confirmations, a buyer can successfully double

spend the cryptocurrency by creating a fraudulent transaction with fees kmin+ε f . After committing

the double spending attack, the buyer loses the current wallet and starts trading with a bad wallet

from the next period onward. Taking the limit ε f → 0 as in the baseline model, we obtain (2) as the

incentive constraint that prevents double spending without confirmations in the extended model

with the block size limit. Thus, sellers provide goods after receiving Nc number of confirmations

if a buyer makes the payment from a bad wallet similar to the baseline model.

Then, what is the value of trading with a bad wallet in equilibrium without delivery lags when a

limit is imposed on the block size? As explained above, all other buyers pay the minimum fee, kmin,

as transaction fees in equilibrium without delivery lags. Thus, a buyer with a bad wallet can have

his/her transaction be included in the first block by paying kmin + εb units of real cryptocurrency

as transaction fees. Taking the limit εb → 0, the buyer’s value function with a bad wallet on

the off-equilibrium path is exactly the same as (3), implying that the buyer’s problem described

by equations (3) - (5) does not change in the extended model. Consequently, the quantity of

goods traded, q, in the threat of double spending and no threat of double spending equilibria is

given as q̂R(δ ) and q∗R, respectively, which are the same as in the baseline model. Furthermore,

proposition 3 characterizes the existence of each type of equilibrium in the extended model. The

only difference from the baseline model is the trade volume, q, and transaction fees, k, in the

delivery lag equilibrium.
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7 Conclusion

In this paper, we constructed a search model of cryptocurrency based on blockchain technology to

study an incentive mechanism to support cryptocurrency transactions without payment confirma-

tions. The inherent threat to cryptocurrency as a medium of exchange is the double spending risk.

Current cryptocurrency systems, such as the Bitcoin system, overcome the double spending risk

by relying on costly mining work and delivering goods after precautionary confirmations.

We find that if the cryptocurrency system supports agents checking the history of double spend-

ing attempts for any digital wallet used to trade cryptocurrency, then double spending can be pre-

vented without precautionary confirmations. Specifically, as long as the loss of losing a good wallet

that has a good reputation based on the history of double spending attempts, outweighs the short-

run gain from double spending, an agent will not commit double spending with a good wallet.

Thus, the agent can receive goods immediately if he/she made the payment from a good wallet.

We have shown that double spending incentives critically depend on the confirmation time that is

determined by the level of difficulty of the mining work. We conduct a welfare analysis to study

the optimal design of the cryptocurrency system in terms of the level of difficulty of mining work

and the cryptocurrency growth rate, and use our model to quantitatively assess the current Bitcoin

system and evaluate the welfare gain from adopting the optimal cryptocurrency system.
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Appendix A: Omitted proofs

Proof of propositions 3 and 4. Here, we prove propositions 3 and 4 together by solving the

buyer’s problem.

Because we need V b(0) to derive the incentive constraint (5), we first look at the buyer’s prob-

lem with a bad wallet. The first-order condition of the buyer’s problem (3) is

δ Ncu′(q) =
γ

β
.

Thus, q = q̂Nc
(δ )≡ u′−1

(
γ

δ Nc β

)
in the delivery lag equilibrium. Substituting q = q̂Nc

(δ ) into (3),

we obtain

V b(m) = φm+
1

1−β (1−ρ)

{
−

γ

β
q̂Nc

(δ )− kmin +δ Ncu(q̂Nc
(δ ))+βρV g(0)

}
. (20)

Next, the first-order condition of the buyer’s problem (4) is

u′(q)−
γ

β
−λ = 0, (21)

where λ ≥ 0 is the Lagrange multiplier associated with the incentive constraint (5).

Case 1 In the no threat of double spending equilibrium, the incentive constraint (5) does not bind,

and hence λ = 0 in (21). Then, the quantity of goods traded in the DM is given as q = q∗R ≡

u′−1
(

γ
β

)
. Substituting q = q∗R into (4), we obtain

V g(0) =
1

1−β

{
−

γ

β
q∗R − kmin +u(q∗R)

}
. (22)
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For this to be an equilibrium, the incentive constraint (5) should not bind. Substituting (20) and

(22) into (5), we obtain

Φ(q∗R)≡−
γ +1−β (1−ρ)

β
q∗R +u(q∗R)≥−

γ

β
q̂Nc

(δ )+δ Ncu(q̂Nc
(δ ))≡ Ω(δ ), (23)

as the non-binding incentive constraint (5). Note that Ω(δ ) in (23) increases with δ . Because

Ω(δ ) ≥ 0, if Φ(q∗R) < 0, (23) cannot be satisfied. On the other hand, if Φ(q∗R) ≥ 0, then for all

δ ≤ Ω−1(Φ(q∗R)), (23) holds. Define δ̃1 as described in (12). Then, if β 1/N ≤ δ̃1, the incentive

constraint (5) does not bind for all δ ∈ [β 1/N , δ̃1] and the no threat of double spending equilibrium

exists. If β 1/N > δ̃1, then the no threat of double spending equilibrium cannot exist.

Case 2 In the threat of double spending equilibrium, the incentive constraint (5) binds with λ > 0

in (21). Thus, it must be q < q∗R by (21). Substituting (4) and (20) into the binding incentive

constraint (5), we obtain

Φ(q)≡−
γ +1−β (1−ρ)

β
q+u(q) =−

γ

β
q̂Nc

(δ )+δ Ncu(q̂Nc
(δ ))≡ Ω(δ ), (24)

which determines the quantity of goods, q, traded given δ . Note that Φ(q) in (24) is maximized

with q = q∗∗R where q∗∗R is defined in (9). Thus, if Φ(q∗∗R )< Ω(δ ), no solution to (24) exists. Define

δ̃2 as described in (13). Because Ω(δ ) increases with δ , the necessary condition for the threat of

double spending equilibrium to exist is δ ≤ δ̃2. Given δ ≤ δ̃2, i.e., Ω(δ )≤ Φ(q∗∗R ), two solutions

to equation (24) generally exist: one that is higher than q∗∗R and another that is lower than q∗∗R .

However, the solution to (24) that is lower than q∗∗R does not maximize the objective function (4)

in the buyer’s problem. Thus, the solution to (24) that is higher than q∗∗R must be the quantity of

goods traded in the DM in the threat of double spending equilibrium.

Let q̂R(δ ) be the solution to (24) that is higher than q∗∗R . Next, the binding incentive constraint

(5) requires q̂R(δ ) < q∗R to satisfy (21) with λ > 0. Note that q̂R(δ ) decreases with respect to δ

for q̂R(δ ) ≥ q∗∗R , and q̂R(δ ) goes to q∗R as δ → Ω−1 (Φ(q∗R)). Thus, it must be δ > Ω−1 (Φ(q∗R))
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to obtain the binding incentive constraint (5). Thus, the necessary condition for the threat of

double spending equilibrium to exist is δ ∈ (δ̃1, δ̃2] where δ̃1 and δ̃2 are defined in (12) and (13),

respectively. However, δ cannot be lower than β 1/N . Thus, if δ̃1 ≥ β 1/N , then the threat of double

spending equilibrium exists for all δ ∈ (δ̃1, δ̃2]. Next, if δ̃1 < β 1/N ≤ δ̃2, then the threat of double

equilibrium exists for δ ∈ [β 1/N , δ̃2]. Finally, if δ̃2 < β 1/N , then the threat of double spending

equilibrium cannot exist.

Case 3 In the delivery lag equilibrium, sellers deliver goods after receiving Nc number of confir-

mations in the blockchain, and hence q = q̂Nc
(δ ) ≡ u′−1

(
γ

δ Nc β

)
to maximize the trade surplus,

− γ
β q− kmin +δ Ncu(q). Because a buyer holding a good wallet always wants to take advantage of

its good reputation if possible, the delivery lag equilibrium exists only if a buyer cannot utilize a

good reputation. This is the case when δ > δ̃2, because the incentive constraint (5) can be satisfied

otherwise. Thus, the delivery lag equilibrium exists for all δ ∈ (δ̃2,δ ] if δ̃2 ≥ β 1/N , and for all

δ ∈ [β 1/N ,δ ] if δ̃2 < β 1/N . Note that a wallet’s good reputation does not have its own value here,

and hence V g(m) =V n(m), and the incentive constraint (5) does not hold.

We now show that the reputation assigning rule works in equilibrium given (14). The difference

between the value of trading with a good wallet and the value of trading with a bad wallet forever

is given as

v =
1

1−β

{
−

γ

β
q+u(q)+

γ

β
u′−1

(
γ

δ Ncβ

)
−δ Ncu

(
u′−1

(
γ

δ Ncβ

))}

≤
1

1−β

{
−

γ

β
u′−1

(
γ

β

)
+u

(
u′−1

(
γ

β

))
+

γ

β
u′−1

(
γ

δ Ncβ

)
−δ Ncu

(
u′−1

(
γ

δ Ncβ

))}
≡ ϒ(γ,δ )

where q is the quantity of goods traded when a buyer transfers cryptocurrency from a good wallet,

and we use q ≤ u′−1
(

γ
β

)
to obtain the first inequality. Then, because ϒ(γ,δ ) decreases with γ and

δ , we obtain v in proposition 3 as the upper bound of v that can be attainable in any stationary

equilibrium. Then, as long as (14) holds, buyers have no incentives to create spam transactions

just to obtain a good reputation as discussed in the previous section,
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Finally, by reorganizing the necessary condition for the existence of each case above, we obtain

the results of proposition 3. The proof of proposition 4 is already undertaken in the analysis of each

case.

Proof of lemma 2. Suppose that N = 0. Then, welfare is maximized when q = u′−1(γ) > q∗R.

Because q ≤ q∗R in any equilibrium, welfare increases in the quantity of goods, q, traded in the DM

in equilibrium without delivery lags. Next, when a delivery lag occurs in the DM, i.e., N = Nc,

welfare is maximized at q = u′−1
(

γ
δ Nc

)
> q̂N(δ ). Thus, in the delivery lag equilibrium, welfare

increases in the trade volume q. Combined together, welfare given by (17) increases with the

quantity of goods, q, traded in the DM in any equilibrium.

Proof of proposition 5. First, note that q∗R is the highest trade volume attainable in the DM given

a set of parameters (γ,ρ,kmin) in this economy. The economy achieves q = q∗R in the no threat of

double spending equilibrium, and there is no welfare loss from delivery lags in this case. Thus,

welfare is maximized in the no threat of double spending equilibrium given (γ,ρ,kmin). Thus, if

β 1/N ≤ δ̃1, then the optimal level of δ is given as δ ∗ ∈ [β 1/N , δ̃1], because the economy is in the

no threat of double spending equilibrium for δ ∈ [β 1/N , δ̃1].

Next, suppose that δ̃1 < β 1/N , the no threat of double spending equilibrium is therefore not fea-

sible. First, if δ̃1 < β 1/N ≤ δ < δ̃2, the threat of double spending equilibrium exists for any level of

δ . In this case, welfare decreases with δ , and minimizing δ as δ ∗ = β 1/N is therefore optimal. Sec-

ond, when δ̃1 < β 1/N ≤ δ̃2 ≤ δ , the threat of double spending equilibrium exists for δ ∈ [β 1/N , δ̃2]

and the delivery lag equilibrium exists for δ ∈ (δ̃2,δ ]. In the threat of double spending equilibrium,

welfare is maximized with δ = β 1/N , which gives W |
δ=β 1/N = u(q̂R(β

1/N))− γ q̂R(β
1/N)−βkmin

as welfare. On the other hand, welfare increases with δ in the delivery lag equilibrium, so welfare is

maximized with δ = δ . Welfare in this case is given as W |δ=δ = δ
Nc

u(q̂Nc
(δ ))−γ q̂Nc

(δ )−βkmin.

Thus, if W |
δ=β 1/N ≥W |δ=δ , then δ ∗ = β 1/N , and δ ∗ = δ otherwise.

Finally, if δ̃2 < β 1/N , the only feasible equilibrium is the delivery lag equilibrium, and setting

δ = δ is optimal to minimize welfare loss from delivery lags.
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