Covarrubias, Enrique (2008): The number of equilibria of smooth infinite economies with separable utilities.

PDF
MPRA_paper_11099.pdf Download (145kB)  Preview 
Abstract
We construct an index theorem for smooth infinite economies with separable utilities that shows that generically the number of equilbria is odd. As a corollary, this gives a new proof of existence and gives conditions that guarantee global uniqueness of equilibria.
Item Type:  MPRA Paper 

Original Title:  The number of equilibria of smooth infinite economies with separable utilities 
Language:  English 
Keywords:  Uniqueness; determinacy; equilibria; infinite economy; Fredholm map; equilibrium manifold; Banach manifold; index theorem; vector field; Rothe 
Subjects:  D  Microeconomics > D5  General Equilibrium and Disequilibrium > D50  General D  Microeconomics > D5  General Equilibrium and Disequilibrium D  Microeconomics > D5  General Equilibrium and Disequilibrium > D51  Exchange and Production Economies 
Item ID:  11099 
Depositing User:  Enrique Covarrubias 
Date Deposited:  14. Oct 2008 13:34 
Last Modified:  20. Feb 2013 19:52 
References:  Abraham, R. and Robbin, J. Transversal Maps and Flows. Benjamin, New York, 1967. Araujo, A. The NonExistence of Smooth Demand in General Banach Spaces. Journal of Mathematical Economics 17 (1988) 309319. Balasko, Y. Foundations of the Theory of General Equilibrium Academic Press Inc., 1988. Chichilnisky, G. and Zhou, Y. Nonlinear functional analysis and market theory. Working paper (1995) Columbia University. December. Chichilnisky, G. and Zhou, Y. Smooth Infinite Economies. Journal of Mathematical Economics 29 (1998) 2742. Covarrubias, E. Determinacy of equilibria of smooth infinite economies. Working Paper (2008) University of Edinburgh. Dana, R.A. Existence and uniqueness of equilibria when preferences are additively separable. Econometrica 61 (1993) 953957. Dierker, E. Two Remarks on the Number of Equilibria of an Economy. Econometrica 40 (1972) 951953. Dierker, E. Regular Economies. Handbook of Mathematical Economics, vol.2, edited by K.J. Arrow and M.D. Intriligator. NorthHolland Publihing Company, 1982. Kehoe, T.J., Levine, D.K., MasColell, A. and Zame, W.R. Determinacy of Equilibrium in LargeScale Economies. Journal of Mathematical Economics 18 (1989) 231262. MasColell, A. The Theory of General Economic Equilibrium: A Differentiable Approach Econometric Society Monographs 9, Cambridge University Press, 1985. Shannon, C. Determinacy of competitive equilibria in economies with many commodities. Economic Theory 14 (1999) 2987. Shannon, C. and Zame, W.R. Quadratic Concavity and Determinacy of Equilibrium. Econometrica 70 (2002) 631662. Smale, S. An Infinite Dimensional Version of Sard’s Theorem. American Journal of Mathematics 87 (1965) 861866. Tromba, A.J. The Euler characteristic of Vector Fields on Banach Manifolds and a Globalization of LeraySchauder Degree Advances in Mathematics 28 (1978) 148173. Varian, H.L. A Third Remark on the Number of Equilibria of an Economy Econometrica 43 (1975) 985986. 
URI:  http://mpra.ub.unimuenchen.de/id/eprint/11099 